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Abstract

Sequential decision-making is a noticeable feature of strategic interactions among

agents. The full estimation of sequential games, however, has been challenging due to

the sheer computational burden, especially when the game is large and asymmetric.

In this paper, I propose an estimation method for discrete choice sequential games

that is computationally feasible, easy-to-implement, and e¢ cient, by modifying the

Geweke-Hajivassiliou-Keane (GHK) simulator, the most widely used probit simulator.

I show that the recursive nature of the GHK simulator is easily dovetailed with the

sequential structure of strategic interactions.

�This paper is based on a chapter of my Ph.D. dissertation at Northwestern University. I am thankful to
Leemore Dafny, David Dranove, Michael Mazzeo, Aviv Nevo, and Robert Porter for their guidance. School
of Economics, University of New South Wales. E-mail: s.maruyama@unsw.edu.au
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1 Introduction

The structural estimation of discrete-choice non-cooperative games has rapidly developed

since the seminal works by Bjorn and Vuong (1984) and Bresnahan and Reiss (1991). In these

models, an econometrician studies the observed discrete decisions of agents (e.g. whether

to enter a particular market), assuming latent payo¤s of agents and taking strategic inter-

actions into consideration. By imposing a certain game structure, unobservable structural

parameters, such as sunk entry costs, are estimated. The econometrician can test strate-

gic behavior predicted by theory, such as preemptive behavior. Counterfactual simulations

can be conducted to evaluate the e¤ect of strategic behavior. These analyses, however, are

relevant only if the assumed game structure is valid, at least as an approximation.

The most widely studied in this literature is the class of incomplete information simultaneous-

move games.1 Complete information simultaneous-move games, on the other hand, have seen

much fewer studies, mainly due to its computational complexity. Recent examples are Ba-

jari, Hong, and Ryan (2008) and Soetevent and Kooreman (2007). Furthermore, research

on sequential-move games has been quite limited. In the industrial organization literature,

few examples include Berry (1992), Mazzeo (2002), Schmidt-Dengler (2006), and Maruyama

(2008). Consequently, there exists very little empirical discussion on whether a researcher

should employ simultaneous games or sequential games. The literature of the labor partic-

ipation of couples also has studies of sequential move games, or Stackelberg games in this

1There are numerous recent papers on both methodology and empirical application. Much of recent
progress occurs on dynamic games. Among others, see Aguirregabiria and Mira (2007), Bajari, Benkard,
and Levin (2007), and Su and Judd (2008). For static games, Bajari et al. (2007) is an example.

2



case (e.g. Kooreman (1994) and Hiedman (1998)). These studies directly compare sequen-

tial games with simultaneous or cooperative games, but focus only on simple games with

two players. The estimation of the general class of sequential games has su¤ered from its

computational complication.

In this paper, I propose an estimation method for the general class of discrete-choice

perfect information sequential games. Relying on the literature of simulation-assisted esti-

mation, the proposed method is e¢ cient, computationally practical, and easy-to-use. By

facilitating the estimation of sequential games and, especially, enabling the estimation of

large and asymmetric sequential games, this method makes the sequential game a practi-

cal option for researchers and reinforces grounds for the selection of the game speci�cation,

which is often ad hoc in the current literature.

Moreover, the estimation of sequential games is not only another similar option, but has

some distinctive features and advantages over simultaneous games. First, the sequential

nature of decision-making among agents is quite often a key aspect in describing real-world

strategic interactions. A cartel breaks down following a price cut by a �rm. Manufactures

utilize reverse engineering. A monopolist�s preemptive behavior deters entry in the market.

Not only �rms play sequential games. Konrad et al. (2002) empirically show that, in a

family with parents and two children in Germany, the elder child often chooses to move

farther away from the parents so that he or she induces the younger sibling to take care

of the parents. Empirical analysis of sequential games is also a developing �eld in political

science and international relations (e.g. Bas et al. (2008), and Signorino and Tarar (2006)).
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Second, while the exact decision order of agents is rarely observed, a researcher can esti-

mate sequential games imposing di¤erent decision order assumptions including randomized

orders. In this way, a decision order can be tested. In contrast, the simultaneous-move

assumption is an untestable a priori assumption, unless in a quite simple game setting.

Third, perfect information sequential games have technical advantages and disadvantages,

which are also practically important factors in choosing the game speci�cation. In case of

simultaneous games, the assumption of imperfect information often makes the computation

much simpler. However, this assumption complicates and limits the inclusion of agent char-

acteristics that are unobserved to researchers but observed to the other agents, which may

be crucial factors in the real-world rivalry. Next, whether complete information or incom-

plete information, simultaneous games need to handle the existence of an equilibrium and

the possible multiplicity of equilibria, while perfect information sequential games can utilize

the notion of subgame perfection, which guarantees the existence of a unique equilibrium.2

While this is an advantage of sequential games, the recent literature has o¤ered various

techniques for simultaneous games to handle the multiple equilibrium issue (Ciliberto and

Tamer (2007), Sweeting (2005), and Pakes et al. (2006)). Nevertheless, which equilibrium

occurs is still di¢ cult to rationalize. Sequential games do not have this ambiguity.

On the other hand, the estimation of sequential games is computationally demanding,

because it involves multidimensional integrals, which occur because an equilibrium outcome

observed to an econometrician has multiple random terms due to multiple agents and mul-

2Theoretically multiple equilibriua are possible in tie break cases, but this can be ignored in empirical
application with continuous latent variables.
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tiple alternatives (as well as multiple time points when a panel data set is employed). This

di¢ culty is analogous to the random-utility multivariate probit model, in which the lantent

utility of each alternative has a normal random component. In the probit literature, simula-

tion techniques are widely used to numerically approximate multidimensional integrals, but

the estimation of sequential-move games is complicated by interdependence among strategies

of agents.

Previous studies circumvent or alleviate multidimensional integrals by assuming some

degree of symmetry among agents, making assumptions that simplify the game structure,

and/or not using identity information of each agent in estimating parameters (Berry (1992),

Mazzeo (2002), and Schmidt-Dengler (2006)). However, when a researcher focuses on in-

teractions among heterogeneous agents or when a researcher hopes to capitalize on his or

her rich data set that contains detailed agent characteristics, the game becomes a large

asymmetric game, making multidimensional integrals more formidable to overcome. This is

one of the reasons why the empirical literature of sequential games has been limited com-

pared to its voluminous theoretical counterpart and the well-developed empirical literature

of simultaneous games.

To overcome the issue of multidimensional integrals, the literature of limited dependent

variable models utilizes the simulation-assisted estimation method. For multinomial probit

models, the most widely used simulation technique by far is the Geweke-Hajivassiliou-Keane

(GHK) simulator. It is called GHK, after Geweke (1989, 1991), Hajivassiliou (as reported

in Hajivassiliou and McFadden, 1998), and Keane (1990, 1994). This simulator is compu-
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tationally tractable; the simulated probability is bounded away 0 and 1 and is smooth with

respect to parameters. A number of studies have compared numerous probit simulators, and

have con�rmed its usefulness and relative accuracy (Hajivassiliou, McFadden, and Ruud

(1996), Geweke, Keane, and Runkle (1994), Börsch-Supan and Hajivassiliou (1993)). In

standard multinomial probit models, each alternative may have "interactions" with others

through the variance-covariance matrix of multivariate normal error terms, which the GHK

simulator fully incorporates. In the context of discrete games, however, if the estimation

of strategic e¤ects is a researcher�s main concern, the interaction must be modeled outside

the error components based on the structure of the payo¤ function and equilibrium solution

framework, which is beyond scope of the GHK simulator.

This paper develops a modi�ed version of the GHK simulator, "sequential GHK", showing

that the recursive nature of the GHK simulator can be dovetailed with perfect information

sequential games. The algorithm of GHK relies on the decomposition of a multivariate

normal distribution, f(v1; :::; vJ) = f(v1)f(v2jv1):::f(vJ�1jvJ�2; :::; v1)f(vJ jvJ�1; :::; v1), and

draws recursively from truncated univariate normal distributions. In a sequential-move game,

an equilibrium is solved by using backward induction based on its sequential nature. Given

that the order of simulation draws in GHK is arbitrary, the GHK simulator can easily �t

the sequential game. The modi�cation this paper proposes does not a¤ect the nature of the

simulator; the asymptotic properties are the same as the regular GHK simulator. In contrast

to the two-step estimation methods that are becoming common in the estimation of discrete

games of incomplete information (Aguirregabiria and Mira (2007) and Bajari et al. (2007)),
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the method presented here is a direct full estimation of the game, so information loss is

minimal.3 Estimation is easily accommodated in the standard frameworks of the method of

simulated likelihood or the method of simulated scores.

Exploiting the GHK simulator, the method proposed in this paper is e¢ cient, compu-

tationally powerful, and easy-to-use. Speci�cally, sequential games played by many agents

with many characteristics variables can be estimated, and counterfactual simulations can

be straightforwardly conducted. Maruyama (2008) applies this method to the U.S. health

insurance market in Medicare to simulate the e¤ects of subsidy on social welfare. In the

estimation of its entry model, where, in each county, at most 16 heterogeneous �rms play

a sequential-move game with structural pro�t functions, the computational burden is not

found to be a signi�cant problem.

After formally presenting the setup in the next section, the use of the GHK simulator is

explained in Section 3. Although the proposed method is intuitive and practical, it requires

several a priori assumptions in the setup. The prerequisite decision order assumption is a

particular example. In Section 4, I clarify the relevance and limitations of the assumptions of

the model used in the preceding sections and then discuss possible extensions. To show how

the proposed method outperforms the previous methods in the literature, a Monte Carlo

simulation is conducted in Section 5. Section 6 concludes. Some practical guidelines for

actual estimation are provided in the Appendix.

3The method discussed in this paper is not directly comparable to the two-step estimation methods in
terms of e¢ ciency, because these methods have been developed for games of incomplete information, while
this paper focuses on perfect-information games.
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2 The Setup

I present the use of the "sequential GHK," a modi�ed GHK simulator in the setting of a

simplistic static binary-choice game. Possible extensions and applications of the model to

di¤erent settings are discussed in the next section.

Suppose there are N independent repetitions of games, for example, markets (i =

1; :::; N). In each market, a sequential-move binary-choice game is played by heterogeneous

agents (j = 1; :::; Ji). The results below naturally generalize to the case where the number

of alternatives is greater than two and the case where the number of agents varies across

games. I assume a perfect-information game. There is no private information and all pre-

ceding decisions are known to everyone. A subgame perfect pure strategy Nash equilibrium

(SPNE) in a market is achieved when every agent expects no gain from individually deviating

from its equilibrium strategy in its every subgame. In perfect-information sequential-move

games, there always exists a unique SPNE.4 The equilibrium can be obtained by backward

induction, i.e., in a game tree, by deciding the optimal strategies from the most downstream

agent to the most upstream agent. An econometrician observes the decisions agents make

and some agent characteristics. The payo¤s are not observable. The econometrician�s task

is to draw an inference about the parametrically assumed payo¤ function.

I introduce some notation to simplify the formal presentation. For a vector of indexes

(1; :::; J), the notation "< j" denotes the subvector (1; :::; j�1), "� j" denotes the subvector

(1; :::; j), and "�j" denotes the subvector that excludes component j. Thus, for a vector

4Tie break cases occur with probability measure zero, so they are ignored.
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", "<j is the subvector of the �rst j � 1 components, and "�j is the subvector excluding

component j. For a matrix L; Lj;<j denotes a vector containing the �rst j � 1 elements

of row j, and L�j;�j denotes the subarray excluding row j and column j. When I use a

boldface symbol, it denotes a vector, for example, "i = ("1i; "2i; : : : ; "Jii) : The subscript for

each market, i, is dropped for simplicity when no ambiguity would arise.

In a sequential-move game, agent j�s decision in a market is represented by yj. To simplify

the presentation, an agent�s choice is assumed to be a binary choice � "move" or "do not

move" � and so yj is an indicator variable that takes one if the agent moves. Without

loss of generality, the order of subscripts for agents (1; 2; :::; Ji) comprises the reverse of the

decision order in market i � agent Ji makes a decision �rst and agent 1 at the end. In

the game tree, agent 1 is at the very bottom. Some agent characteristics are observable

to the econometrician and are denoted xj = (x1j; : : : ; xKj). xj may also contain observed

market characteristics. A Ji � K matrix, Xi, summarizes the observed characteristics of

market i and the agents in market i. To capture the other unobservable factors that a¤ect

an agent�s payo¤ and decision, a single-indexed error component, "�ji, is introduced in the

payo¤ function for each decision of agent j. The payo¤ of agent j from choosing yj = � is,

after dropping index i:

�j(yj = �;X; "�j; y�j; 
) � �(yj = �;X;y�j; 
) + "�j: (1)

Here, � is an assumed parametric function of payo¤s with parameters to be estimated, 
.

A subgame perfect pure strategy Nash equilibrium (SPNE) is obtained when every player
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expects no gain from individually deviating from the equilibrium in every subgame. Formally,

an SPNE solution, (ye); is any solution for the decisions of the agents that satis�es:

�j(yj = 1;X; "1j; y
e
�j; 
)��j(yj = 0;X; "0j;

�
ye>j; y

�
<j(y

e
>j; yj = 0)

�
; 
) � 0; if agent j moves in ye

(2)

�j(yj = 1;X; "1j;
�
ye>j; y

�
<j(y

e
>j; yj = 1)

�
; 
)��j(yj = 0;X; "0j; ye�j; 
) < 0; if agent j does not move in ye

(3)

for all j = 1; :::; J;

where y��j(y>j) is the unique SPNE solution for the subgame that starts from agent j given

the decisions of the preceding agents, y>j. This is recursively de�ned and y��1(y>1) is agent

1�s best response to the given decisions of the other agents, y>1.5 The equilibrium solution

can be calculated by the backward induction algorithm for any given parameters 
, observed

characteristics, X, and unobservable heterogeneity, ". Thus, the SPNE solution function is

denoted as:

y�(X; "; 
) � fye with given X; "; 
g:

In estimation of binary games, I need only one error component for each agent, which

governs the relative di¤erence in agent j�s payo¤between the two options, because, in general,

the payo¤from both options are unobservable and what one can infer from observed decisions

5yj in this paper denotes not a strategy pro�le but the revealed decision of agent j. In the SPNE concept,
a strategy is de�ned at every decision node of a game tree, so here an agent�s strategy cannot be expressed
as a binary variable except for agent J . An agent�s deviation from y� holding the others�decisions �xed
does not necessarily mean that all the others make the same decision; it means the others follow the same
strategy.
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concerns only the relative comparison of two payo¤s. Hence I require normalization, such as

"2ji = 0, without loss of generality, and let "ji � "1ji. It may be likely that "1ji and "2ji are

correlated, but the unobserved components that a¤ect a �rm�s pro�t in the same way can

be ignored in comparing the two payo¤s.

I assume a normal distribution for "ji as a requirement for using the GHK simulator.

However, the variance structure within a market can be very �exible. To demonstrate this

point, I add a market-speci�c e¤ect as a simple extension and the component unobserved to

the econometrician is thus speci�ed as:

"ji = !�ji + ��i. (4)

�ji and �i are assumed to be independent of X i, and are independently and identically

distributed in standard normal distribution across �rms and markets, respectively. �i mea-

sures market-speci�c factors that make choosing "move" more attractive for all agents in

market i. This speci�cation is only for demonstration and not crucial for the use of the

following estimation method. In the literature of probit models, applications of the GHK

simulator cover more �exible error structures, such as the multi-period Probit, multivariate

rank ordered Probit, multi-period Tobit, and so on. In most cases, the payo¤s are modeled

scale-free.6 Unless the level of payo¤s is identi�ed, ! and � are not separately identi�ed and

thus normalization is necessary, for example !2 + �2 = 1, so ! =
p
1� �2. Normalization

6An exception is Maruyama (2008), in which pro�t functions are modeled such that the level of variable
pro�ts is identi�ed from demand-side estimation.
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does not a¤ect the argument below.

The estimation relies on the maximum likelihood estimation method. Each game (e.g.

each market) is the unit for which the individual likelihood is de�ned. Denote the observed

market con�guration as yoi . The log-likelihood function can be written as

b�ML = argmax
�

(
1

N

NX
i

ln Pr [yoi = y
�
i (X i; �)]

)
, (5)

where � is the vector of model parameters, (
; �).

However, the probability in the likelihood does not have an analytical solution due to

multidimensional integrals. Unless the dimension of the unobservable factors, namely the

number of agents and alternative options in a market, is very small, numerical approximation,

such as quadrature methods, is impractical. Following the literature, I discuss the use of the

maximum simulated likelihood (MSL) method.7

3 Applying the GHK Simulator

3.1 Maximum Simulated Likelihood with the Crude Frequency

Simulator

The most straightforward simulator for MSL is the crude frequency simulator, also called

the accept-reject simulator and �rst proposed by Lerman and Manski (1981). The simulator

7Method of simulated scores (MSS) is another option, because calculating the derivative of the likelihood
is analytically straightforward. MSS may improve e¢ ciency by removing simulation bias that results from
the logarithm in the log likelihood function (Hajivassiliou and McFadden (1998)).
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they explore for discrete choice models is:

b�LM = argmax
�

(
1

N

NX
i

ln
1

R

X
r

elir) (6)

� argmax
�

(
1

N

NX
i

ln
1

R

X
r

I [yoi = y
�
i (X i; "

r
i ; 
) ]

)
, (7)

where the simulation procedure takes R sets of random draws from the assumed distribution.

In the framework of this paper, for each simulation draw r, a unique simulated equilibrium

market con�guration yr�i is generated for each market i based on data for the market, given

payo¤ function parameters, 
, and the values of the random draws from a multivariate

normal distribution, "ri .

Although this simulator provides estimates that are consistent with R and N , the prob-

ability estimate constructed by this simulator is a discontinuous function of the parameters

and is not bounded away from 0 and 1. The use of the indicator function makes its variance

quite large. Due to these problems, Lerman and Manski �nd that their estimator requires a

very large number of simulations for satisfactory performance. Moreover, the discontinuity of

the likelihood function requires an optimization method that does not require di¤erentiability

of the optimand, such as the nonlinear simplex algorithm of Nelder and Mead (1964).

However, the use of backward induction requires the estimation procedure to compare

payo¤s at every decision node every time the procedure evaluates the likelihood. Thus,

a likelihood evaluation is very expensive and simple discontinuous simulators that require

many simulation draws are practically infeasible in estimating large asymmetric games.
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3.2 The Modi�ed GHK Simulator

The sequential GHK, the simulator I propose, is an extension of the Geweke-Hajivassiliou-

Keane (GHK) simulator. The GHK is a smooth recursive conditioning simulator and is useful

in many cases where the log-likelihood function involves high dimensional integrals with the

multivariate normal distribution. The GHK algorithm draws recursively from truncated

univariate normal distributions, and relies on the decomposition:

f(v1; :::; vJ) = f(v1)f(v2jv1):::f(vJ�1jvJ�2; :::; v1)f(vJ jvJ�1; :::; v1)

along with the fact that the conditional normal density can be written as a univariate nor-

mal distribution. The GHK simulator produces probability estimates that are bounded away

from 0 and 1. The estimates are continuous and di¤erentiable with respect to parameters,

because each contribution is continuous and di¤erentiable. It is also an unbiased estimator

of individual likelihood, l(
; �; yoi ;X i). It has a smaller variance than the crude frequency

simulator, because each element is bounded away from 0 and 1. Currently, the GHK simu-

lator appears to be the most accurate simulator available for a given computation time and

the most widely used probit simulator. The discussion below explains how this powerful

simulator works and how to apply this simulator to the case in which strategic interactions

exist in a sequential game.

The GHK simulator relies on the Cholesky triangular decomposition to decompose the

multivariate normal distribution into a set of univariate normal distributions. The multi-
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variate normal disturbance vector de�ned above, "i; can be rewritten as:

"i = �i�i

where �i is a (Ji + 1)� 1 vector of independent standard normal variables,

�i � N(0; IJi+1)

and �i is a Ji � (Ji + 1) parametric array,8

�i =

266666666664

! 0 �

. . . �

. . .
...

0 ! �

377777777775
:

Thus, "i can be rewritten as:

"i � N(0;
i);

8More �exible variance structures can be addressed by changing �i and the size of �i.
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where 
i is the following positive de�nite matrix:


i � �i�
0
i

=

266666666664

!2 + �2 �2

. . .

. . .

�2 !2 + �2

377777777775
=

266666666664

1 �2

. . .

. . .

�2 1

377777777775
:

It follows that, using the Cholesky decomposition, "i can be written as:

"i = L(
i) � vi; (8)

where L(
) is the lower-triangular Cholesky factor of 
, or LL0 = 
, and vi is another

multivariate standard normal vector:

vi � N(0; IJi):

The individual likelihood can be written, after dropping index i, as:

l(�; yo;X) = Pr [yo = y�(X; "; 
; �)]

=

Z
yo=y�(X;";
)

n(";
)d";

where n(:) is the probability density function of the multivariate normal distribution. This
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expression involves multiple integrals, which are di¢ cult to compute. The general objective

here is to obtain random draws from the distribution of "i subject to yo = y�(X; "; 
; �). To

do so, �rst rewrite the probability expression that explicitly expresses the rectangle in which

the event, yo = y�(X; "; 
; �), occurs:

Pr [yo = y�(X; "; 
; �)] = (9)

Pr

2664 for 8j, �j
�
yj = 1;X; "j; (y

o0
>j; y

�
<j(y

o0
>j; 1)

0); 

�

� �j
�
yj = 0;X; "j; (y

o0
>j; y

�
<j(y

o0
>j; 0)

0); 

�
8>><>>:
> 0 if yoj = 1

� 0 if yoj = 0

3775 :

Recall the form of the payo¤ function, (1).

�j(yj = 1;X; "�j; y�j; 
) = �(yj = 1; y�j;X; 
) + "j

�j(yj = 0;X; "�j; y�j; 
) = �(yj = 0; y�j;X; 
)

The condition for agent j to satisfy yo = y�(X; "; 
; �) is:

if yoj = 1; "j > �
�
yj = 1; y

o
�j;X; 


�
� �

�
yj = 0; (y

o0

>j; y
�
<j(y

o0

>j; 0)
0);X; 


�
� a�j

if yoj = 0; "j � �
�
yj = 1; (y

o0

>j; y
�
<j(y

o0

>j; 1)
0);X; 


�
� �

�
yj = 0; y

o
�j;X; 


�
� b�j

By de�ning: 8>><>>:
aj = a

�
j ; bj =1 if yoj = 1

aj = �1; bj = b�j if yoj = 0

9>>=>>; ;
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(9) can be rewritten as:

Pr [yo = y�(X; 
; �)] = Pr[for 8j, aj(yo;X; "<j; 
) � "j � bj(yo;X; "<j; 
)]:

This expression shows us the rectangle in which the event, yo = y�(X; 
; �), occurs. The

essential di¤erence from the regular multivariate probit case, which involves no strategic

interaction, is that the size of the rectangle, which is determined by the values of a and b,

depends on the values of " as well. However, it does not depend on the error terms of all

other agents. The idea behind the use of the GHK simulator is that, to obtain the interval

of "j, we only need "<j, because the decisions of the upstream agents are given for agent j.

When agent j makes a decision, only the random components of the downstream agents are

relevant to predicting the downstream responses to each of agent j�s options. By using the

Cholesky decomposition, (8), this equation becomes:

Pr [yo = y�(X; 
; �)] = (10)

Pr[for 8j, aj(yo;X;v<j; 
;
) � [L(
) � v]j � bj(yo;X;v<j; 
;
)]

Or:

Pr [yo = y�(X; 
; �)] =

Z
for 8j, aj(yo;X;v<j ;
;
)�[L(
)�v]j�bj(yo;X;v<j ;
;
)]

"
JY
j=1

�(vj)

#
dv;

where �() is the probability density function of the standard normal distribution.
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Now we are ready to apply the GHK simulator. For each simulation, prepare a vector of

independent uniform (0; 1) random variables, (u1; :::; uJi). De�ne the following function:

q(u; a; b) � ��1 (�(a) � (1� u) + �(b) � u) , (11)

where 0 < u < 1 and �1 � a < b � 1:

This function, q(�), is a mapping that takes a uniform (0; 1) random variable into a truncated

standard normal random variate on the interval [a; b].

The property of sequential games that is exploited here is that, when making a decision,

an agent only considers the responses of its downstream agents. For each agent, the deci-

sions of its preceding agents are all given. From agent 1�s perspective, there is no strategic

interaction. For given yo;X;u; 
; L, recursively de�ne a sequence of simulated vj so as to

satisfy yo = y�(X; "; 
; �) for j = 1; :::; J :

ev1 � q

�
u1;

a1
L11

;
b1
L11

�
ev2 � q

�
u2;
a2(ev1)� L2;1ev1

L22
;
b2(ev1)� L2;1ev1

L22

�
:::

evJ � q

�
uJ ;

aJ(ev<J�1)� LJ;1ev1:::� LJ;J�1evJ�1
LJJ

;

bJ(ev<J�1)� LJ;1ev1:::� LJ;J�1evJ�1
LJJ

�

After obtaining the simulated ev, the probability interval for v to satisfy yo = y�(X; "; 
; �)

19



is calculated as:

Q1 � Pr

�
a1
L11

� v1 �
b1
L11

�
Q2 � Pr

�
a2(ev1)� L2;1ev1

L22
� v2 �

b2(ev1)� L2;1ev1
L22

�
:::

QJ � Pr

�
aJ(ev<J�1)� LJ;1ev1:::� LJ;J�1evJ�1

LJJ

� vJ �
bJ(ev<J�1)� LJ;1ev1:::� LJ;J�1evJ�1

LJJ

�
:

Given a; b; L; and ev, each Qj is a straightforward calculation. For example:
Q1 = �

�
b1
L11

�
� �

�
a1
L11

�
:

Repeat this simulation R times and de�ne the likelihood contribution simulator as:

el(
;
; yo;X;R;u) � 1

R

RX
r=1

JY
j=1

Qj(ev1r; :::; evJ�1;r): (12)

The model can be estimated by solving the following maximum simulated likelihood problem:

b�MSL = argmax
�

(
1

N

NX
i

lnel(
;
; yoi ;Xi;R;ui)

)
(13)

= argmax
�

(
1

N

NX
i

ln
1

R

RX
r=1

JY
j=1

Qj(ev1r; :::; evJ�1;r)) .
The literature has developed a general consensus that the GHK simulator is accurate
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in approximating discrete choice probabilities, especially when considering the low compu-

tational e¤ort required. The combination of the recursive conditioning approach and the

smooth univariate truncated variate generation algorithm produces an unbiased (for any

value of R) multivariate probability simulator of l(�) that is smooth, i.e., a continuous and

di¤erentiable function of the model parameters. A key intuition behind this excellent feature

is that the Cholesky triangularization underlying the GHK method implies an importance-

sampling distribution that, while computationally extremely tractable, provides an excellent

approximation to the true correlation structure of the unobservable factors. Most of the

computational e¤ort involved for this simulator comes from drawing the univariate truncated

normal variates. This e¤ort is approximately linear in K, the dimension of the probability

integral. This is a remarkable advantage of this simulator. For the detailed performance and

properties of this simulator, see, for example, Börsch-Supan and Hajivassiliou (1993) and

Hajivassiliou and McFadden (1998).

The GHK simulator has so far been used in applications with no explicit strategic in-

teractions. This is because the original GHK simulator can deal with interactions across j

through the disturbance structure, but not strategic interactions across j, which is clearly a

limitation to address strategic interactions in general, because not only an agent�s random

component but also his decision a¤ect the decisions of the others. For example, Chernew,

Gowrisankaran, and Fendrick (2002) use the GHK simulator in their entry model of hospitals,

but strategic interactions are not taken into account in the empirical model speci�cation.

By exploiting the nature of sequential-move games, that an agent only speculates about the
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decisions of the downstream agents, the discussion in this section showed that the GHK

simulator can be extended to the cases with strategic interactions without losing any virtues

of the simulator.

4 Discussion

4.1 The Relevance of the Sequential-Move Setup

The sequential-move game approach presented in this paper is restrictive in the sense that

it explicitly requires an exogenous decision order. A much more commonly used setup in

empirical studies of discrete games is the incomplete-information simultaneous-move game.

In principle, a researcher should choose a game speci�cation according to the environment

in which the data are generated. The choice is obvious for some cases. For example, some

experiments or well-designed auctions may stipulate a clear decision order. Such cases,

however, are rare. In most cases, both simultaneous games and sequential games are merely

ad-hoc approximations and the reality might lie somewhere in between.

In theory, the simultaneous approach is more general in the sense that any sequential-

move game can be expressed as a simultaneous game. However, constructing and estimating

such simultaneous-move games is not practical, because the size of the choice set of each

agent rapidly grows as the number of players or alternatives increases. Thus, in practice, the

interactions captured by the two approaches are di¤erent.

In choosing a speci�cation, the following should be considered. Background details of
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the game and data, such as institutional speci�cs, behavioral models and frequencies of

observed points in time (aggregation of decision processes over time) may facilitate the

choice. Computational feasibility is also practically important. For large asymmetric games

of perfect information, the method proposed in this paper o¤ers signi�cant computational

advantages. The subgame perfect equilibrium concept precludes existence and multiplicity

issues and the use of the sequential GHK in a one-step direct estimation simpli�es the

estimation procedure and provides e¢ cient estimates in a reasonable amount of time.

Furthermore, explicit treatment of the sequential nature of interactions is a noticeable

feature of this approach. In application, quantifying �rst mover�s advantage is possible.

The decision order assumption may be ad hoc, but the computational advantages allow

researchers to test di¤erent orders, including a randomized order. In this way, researchers

can infer whether the sequential nature is relevant to their particular subject, and, if relevant,

which decision order �ts the data. This is another advantage of the proposed approach.

4.2 Extensions

The framework I present in this paper can be used in more general settings. Increasing

the number of alternatives available to each agent is a straightforward extension, at least

conceptually. A general approach is to assign an additional error term for each additional

alternative. Within the decision turn of each agent, the order of simulation draws for each of

his alternatives is arbitrary, as the same as the regular GHK simulator. However, this may

make the estimation time-consuming, because adding another alternative to each agent�s
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decision considerably increases the number of required draws. The same applies for panel

data. Even if there is no inter-temporal interaction across an agent�s decisions over time, the

existence of serial correlation in the error components considerably increases the number of

necessary draws, though the same method can still be used.

Relaxing the assumption of perfect information is possible within the scope of this paper,

as long as (1) the distribution of each agent�s private information is common knowledge

and (2) each agent�s payo¤ depends only on his own realized random component and the

decisions of the other agents. This incomplete-information game is conceptually simpler,

because each agent predicts the downstream moves by using expected values and the agent�s

decision does not depend on the realization of random components in downstream. This

implies that the proposed sequential GHK becomes the regular GHK. Computation may

or may not become more cumbersome. While the lack of sequential dependency through

random components simpli�es the calculation, the backward calculation of expected payo¤s

of each agent is necessary. Incorporating mixed strategy is computationally impractical and

beyond the scope of the proposed approach.

Can the proposed method be applied to dynamic games? The analysis of dynamic

decision-making with strategic interactions is a rapidly growing area of research (Aguirre-

gabiria and Mira (2007) and Bajari, Benkard, and Levin (2007)). The estimation of dynamic

games is essential in analyzing aspects that the static approach cannot provide identi�cation

for. For example, a dynamic game is used to recover the costs of investment or entry in an

oligopolistic market. Most of this literature employs incomplete-information simultaneous-
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move games.

While the estimation method in this paper captures a certain aspect of dynamic decision-

making or inter-temporal dependence, the empirical approach is quite similar to the classical

static entry analysis, where a cross-sectional data set is used and each agent makes a decision

only once. However, there are several ways to analyze a dynamic feature of multi-period data.

First, when the choice of agents is assumed to be a one-time irreversible decision and the

order of such possible irreversible decisions is exogenously given, the framework in this paper

can be applied to a multi-period data set. This is the idea of Schmidt-Dengler (2006), the

work that analyzes the timing of adoption of MRIs in the hospital industry and employed the

perfect-information sequential-move game framework. In this setting, the empirical question

can be viewed as when each agent makes a move after the preceding agent�s move, and

the model is estimated using a panel data set. The second type of possible application

utilizes the fact that a sequential-move game can be viewed as a series of one single agent�s

repetitive decision-making. There is not interaction among agents but sequential inter-

temporal dependence, i.e. an agent�s payo¤ in each single period is partly determined by

his decision in the previous periods. Third, more generally, repetitive decision-making by

multiple agents over multiple periods can be modeled in the same manner. This extension

does not alter the nature of the framework, but, because the computational burden becomes

signi�cant, the number of time points and/or agents has to be small. In all these potential

applications, the key requirements are: (1) the order of sequence is exogenous and (2) there

is no uncertainty from the agent�s perspective.
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5 Monte Carlo Simulation

*** TBW

6 Concluding Remarks

In this paper I develop a computationally practical and e¢ cient estimation method for em-

pirical models of discrete-choice sequential-move games. Based on a simulation assisted es-

timation approach, I propose the sequential GHK, an extension of the GHK simulator. This

method allows researchers to empirically study strategic interactions in a large asymmetric

game. Speci�cally, researchers can infer the existence and degree of strategic complemen-

tarity and perform counterfactual simulations that explicitly take strategic interactions into

account. The decision sequence that best �ts the data can also be investigated. The method

can be applied to other �elds. In industrial organization, the possibilities span entry, product

choice, auction, advertisement, investment, and so on. Games played in household settings,

politics, and international relations can also be studied with this framework.

Appendix: Computing Miscellanea

Because the modi�cation of the GHK simulator proposed in this paper does not a¤ect the

continuity and di¤erentiability of the GHK, standard maximization routines can be used in

estimation. When taking random draws, variance reduction techniques, such as antithetics

or the Halton procedure, can be used as usual.
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Some computing techniques are helpful in speeding up the computation. The unneces-

sary part of the calculation of the backward induction algorithm can be skipped by using

assumptions of payo¤ functions that are made by economic theory. For example, Maruyama

(2007) exploits the non-increasing property of the pro�t function in the number of entering

rival �rms and decreases the computation time by more than 95 percent. From the program-

ming perspective, another useful technique is the use of the recursive function command.9

When the number of agents varies across observations, this technique is extremely helpful in

e¢ ciently executing the backward induction algorithm.
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