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Abstract

We provide an axiomatic foundation for efficiency measurement in the full 〈input,

output〉 space, referred to as “graph efficiency” measurement by Färe, Grosskopf, and

Lovell [1985]. We posit four types of axioms: indication, monotonicity, independence of

units of measurement, and continuity. We analyze six well-known inefficiency indexes

from the operations-research and economics literature and discuss several other related

indexes.

We present two impossibility results demonstrating that no index can satisfy all of

the axioms on a general class of (well-behaved) technologies. Specifically, no inefficiency

index can satisfy both indication and continuity (in either quantities or technologies), and

no inefficiency index can satisfy both monotonicity and unit independence. We present

a full evaluation of the trade-offs involved in selecting among the indexes.

JEL classification: C43; C61; D24.

Keywords: Technical efficiency indexes; technical efficiency axioms.
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1. Introduction.

Analysis of the axiomatic foundations of efficiency measurement began with Färe

and Lovell [1978], who proposed three axioms that an input-based efficiency index should

satisfy: indication (the index is equal to one if and only if the input vector is efficient

in the sense of Koopmans [1951]), monotonicity (an increase in any input, holding other

inputs as well as all outputs constant, reduces the value of the index), and homogeneity

(e.g., doubling all inputs, holding outputs constant, cuts the value of the index in half).

Subsequently, Russell [1985, 1987, 1990] clarified the initial Färe and Lovell axioms and

introduced two additional axioms for input-based efficiency measurement: invariance

with respect to units of measurement (also known as commensurability) and continuity

(in technologies as well as input and output quantities).

In recent years, empirical research on efficiency measurement has focused much more

on measurement in the full space of inputs and outputs, which we refer to as 〈input,

output〉 space. To our knowledge, however, no work in the Färe-Lovell tradition has

been carried out in this space. While an extensive operations-research (DEA) literature

has assessed the ability of several indexes to satisfy certain properties in this space,

this literature differs in two important respects from the literature in the Färe-Lovell

tradition. First, the DEA literature treats efficiency indexes as functions of production

data, which determine the technology. Second, the DEA-constructed technologies are

convex polyhedrons—usually convex polyhedral cones. We treat the efficiency indexes

as functions of the 〈input, output〉 production vector and an exogenous technology. The

class of permissible technologies is general and in particular is not restricted to the DEA

class. Our analysis thus encompasses technologies constructed by a variety of techniques,

including stochastic frontier methods.

In this paper, we provide an axiomatic foundation for efficiency measurement in

the full 〈input, output〉 space, referred to as “graph efficiency” measurement by Färe,

Grosskopf, and Lovell [1985]. We posit four types of axioms: indication, monotonicity,

independence of units of measurement, and continuity.1 We analyze six well-known in-

efficiency indexes from the operations-research as well as the economics literature: the

hyperbolic index (Färe, Grosskopf, and Lovell [1985]), the directional distance index (Lu-

enberger [1992] and Chung, Färe, and Grosskopf [1997]), the Briec index (Briec [1997]),

the Färe-Grosskopf-Lovell (FGL) index (Färe, Grosskopf, and Lovell [1985]), the addi-

tive (slacks-based) index (Charnes, Cooper, Golany, Seiford, and Stutz [1985]), and the

weighted additive index (typically attributed to Cooper and Pastor [1995]). Several other

indexes are discussed and related to these six.

Although our axioms seem to be natural requirements for an inefficiency index, we

present two impossibility results demonstrating that no index can satisfy all of the axioms.

1 Homogeneity is not considered, since it is not obvious how this property should be extended to 〈input,

output〉 space. We have formulated some possible extensions, but none is satisfied by any of the indexes

we consider.
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Specifically, no inefficiency index can satisfy both indication and continuity (in either

quantities or technologies), and no inefficiency index can satisfy both monotonicity and

unit independence. Trade-offs are confronted in the selection of an index.

We present a full evaluation of each of the indexes in terms of our axioms. Two of

the indexes—the directional distance index and the additive index—are dominated by

alternatives. The hyperbolic index and the Briec index satisfy weak monotonicity, unit

independence, and continuity in both production vectors and technologies while failing

to satisfy the remaining axioms. Since these two indexes have the same properties, they

can be treated as equivalent in terms of our axiomatic structure. The FGL index satisfies

indication, weak monotonicity, and unit independence, while the weighted additive index

satisfies indication, monotonicity, and unit scalability (a weakening of unit independence).

Thus, there are three distinct groups of axioms that are satisfied by an appropriate choice

of the inefficiency index.

Section 2 introduces the notation and describes the general assumptions on tech-

nologies. Section 3 defines an inefficiency index and discusses six of the most prominent

indexes in the literature. Section 4 describes the axioms we use to evaluate the indexes,

while Section 5 presents two theorems stating the incompatibility of two pairs of axioms.

Section 6 presents our main result, Theorem 3, cataloging the performance of each of

the indexes in terms of our axiomatic structure. The proof of Theorem 3 is presented in

the Appendix. Section 7 discusses the implications of these results for some additional

inefficiency indexes. Section 8 concludes.

2. Preliminaries.

A firm (or other production unit) uses n inputs to produce m outputs with production

vectors, denoted 〈x, y〉, contained in the 〈input, output〉 space Rn+m
+ . Denote the origin

of this space by
〈
0[n], 0[m]

〉
.

The firm’s technology set T ⊂ Rn+m
+ contains feasible production vectors. A pro-

duction vector 〈x, y〉 ∈ T is technologically efficient (in the sense of Koopmans [1951]) if

〈x,−y〉 > 〈x̄,−ȳ〉 implies 〈x̄, ȳ〉 /∈ T .2 Denote the efficient subset of T by Eff(T ).

The theoretical literature on technical efficiency measurement has focused on a general

class of technologies satisfying only very weak regularity conditions. We consider the

collection of non-empty, closed technology sets that satisfy the following conditions:3

2 Vector notation: x̄ ≥ x if x̄i ≥ xi for all i; x̄ > x if x̄i ≥ xi for all i and x̄ 6= x; and x̄ ≫ x if x̄i > xi

for all i.
3 All but free disposability of these conditions are necessary to guarantee that our efficiency indexes

are well defined. Free disposability could be dispensed with (theoretically); the only change that would

be needed in what follows would be to redefine the inefficiency indexes on the free-disposal hull of T

rather than on T itself (as in Russell [1987] for input-based efficiency indexes). Note, finally, that the

free disposability assumption implies connectedness of the technology, a property that we exploit.
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(i) 〈x, y〉 ∈ T , ȳ ∈ Rm
+ , and 〈x̄,−ȳ〉 > 〈x,−y〉 implies 〈x̄, ȳ〉 ∈ T (free disposability of

inputs and outputs),

(ii) y > 0[m] =⇒ 〈0[n], y〉 /∈ T , and

(iii) the production possibility set, P (x) =
{

y ∈ Rm
+ | 〈x, y〉 ∈ T

}
, is non-empty and

bounded for all x ∈ Rn
+.

We denote by T the set of non-empty, closed technologies satisfying these conditions.

3. Inefficiency Indexes.

A technological inefficiency index measures the “distance”4 from the production vec-

tor to the frontier of T or to its efficient subset Eff(T ). Typically, the production point

is compared to a particular point—the reference vector—on the boundary or the effi-

cient subset of T . The issues addressed in formulating a specific inefficiency index are (i)

the selection of the reference vector corresponding to any production vector and (ii) the

specification of the distance between the production vector and the reference vector.

Many of the inefficiency indexes in the literature are not well defined—or have unac-

ceptable properties—at the boundary of 〈input, output〉 space. To avoid a loss of focus

on the basic structures of these indexes and the relationships among them, we restrict our

attention here to strictly positive quantities.5 Formally, we define an inefficiency index

as a mapping, I : Ξ → R(I), with image I(x, y, T ), where

Ξ =
{
〈x, y, T 〉 ∈ Rn+m

++ × T | 〈x, y〉 ∈ T
}

(3.1)

and R(I) ⊆ [0, +∞), the effective range of I, varies across specific indexes. Although

the inefficiency indexes are restricted to strictly positive production vectors, a technology

may contain feasible or even efficient points on the boundary of Rn
+.

To extend this definition to inefficiency indexes with parameters, we introduce a pa-

rameter space G ⊆ Rp and a parameter vector g ∈ G. Define a parameterized inefficiency

index as a mapping Ig : Ξ × G → R(I), with image Ig(x, y, T, g). This extension is re-

quired for the directional distance inefficiency index and the axiom of unit scalability,

each of which is defined below.

Many of the indexes we consider were originally defined on the particular subset of

T generated by mathematical programming methods of constructing technology sets on

a finite set of data points. This method, commonly referred to as Data Envelopment

Analysis (DEA), generates convex polyhedral reference technologies (i.e., intersections of

4 We surround “distance” with quotation marks to underscore the informal nature of this notion, which

is not consistent with the formal mathematical concept of distance.
5 We do not mean to imply that these boundary issues are unimportant; on the contrary, since many

data sets contain zero values of input or output quantities, these boundary issues need to be dealt with.

See Russell and Schworm [2009] for an analysis of boundary problems.
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finite numbers of half spaces).6 Many of these indexes, however, can be applied to the

more general class of technologies T .7

To our knowledge, the first formulation of an inefficiency index in the full 〈input,

output〉 space, attributable to Färe, Grosskopf, and Lovell [1985, pp. 110–111],8 is the

hyperbolic inefficiency index, defined by

IH(x, y, T ) = max {λ | 〈x/λ, λy〉 ∈ T } . (3.2)

This index contracts inputs and expands outputs along a (particular) hyperbolic path to

the frontier and maps into the [1,+∞) interval.

Figure 1 illustrates the paths followed for a technology with one input and one output.

The technology set is the shaded area with the boundary given by the thick solid line.

The thick dashed lines identify the production vectors that are compared with one of the

three efficient vertexes. All production vectors in the darkly shaded region are compared

to efficient points. Those in the lightly shaded regions have inefficient points as reference

points. Three examples are displayed, with (x, y) compared to the inefficient boundary

point (x̄, ȳ), (x′, y′) compared to the efficient point (x̄′, ȳ′), and (x′′, y′′) compared to the

inefficient boundary point (x̄′′, ȳ′′). Note that the paths are not parallel; nor are they

simple translates of one another.

The directional distance inefficiency index, IDD, adapted from the shortage function

of Luenberger [1992] to the measurement of inefficiency by Chung, Färe, and Grosskopf

[1997],9 is defined by

IDD(x, y, T, g) = max { λ | 〈x − λgx, y + λgy〉 ∈ T } , (3.3)

where g = 〈gx, gy〉 ∈ Rn+m
++ .10 This index measures the feasible contraction/expansion

in the direction g and maps into R+.

Figure 2 displays the connection between the production vectors and their reference

points for a particular technology and a particular choice of the direction g. Production

vectors in the darkly shaded region, such as (x′, y′), are compared to efficient points, as

are vectors on the three dashed arrows. Those in the lightly shaded areas, such as 〈x, y〉

and 〈x′′, y′′〉, have reference points that are inefficient.

6 See Charnes, Cooper, Lewin, and Seiford [1994].
7 The Range Adjusted Measure of Inefficiency (RAM) attributable to Cooper, Park, and Pastor [1999]

depends critically on the DEA construction of the technology and hence cannot be extended to the

general class of technologies. This index is discussed in Section 7.
8 They refer to this index as the “Farrell Graph Measure of Technical Efficiency” and give it additional

attention in Färe, Grosskopf, and Lovell [1994, Ch. 8].
9 See also Chambers, Chung, and Färe [1996], Färe and Grosskopf [2000], and Cherchye, Kuosmanen,

and Post [2001].
10 Luenberger [1992] and others restrict the direction g only to the non-negative orthant, but we choose

to restrict g to the positive orthant because this enhances the number of axioms—notably continuity

axioms—that the directional distance index satisfies.
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Figure 1: The Hyperbolic Inefficiency Index.
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y

T

〈x, y〉

〈x′, y′〉

〈x′′, y′′〉

〈x̄, ȳ〉

〈x̄′, ȳ′〉

〈x̄′′, ȳ′′〉

Briec [1997] proposes an alternative to the directional distance function by using the

definition of IDD with the direction g = 〈x, y〉. The Briec inefficiency index, defined by

IB(x, y, T ) = max
{

λ |
〈
(1 − λ)x, (1 + λ)y

〉
∈ T

}
, (3.4)

maps into the [0, 1] interval.11 Figure 3 displays the reference points for the Briec index.

The interpretation is the same as for Figures 1 and 2. Note that the paths to the frontier

are not parallel.

Färe, Grosskopf, and Lovell [1985, pp. 153–154] have formulated an extension of the

11 Briec and others argue that this inefficiency index is a special case of the directional distance func-

tion; this is not strictly correct since the formal definition of the directional distance function specifies a

direction g that is independent of 〈x, y〉. In fact, if one were to specify a “generalized directional distance

function” as in (3.3) but with g being a function of 〈x, y〉, then the standard directional distance ineffi-

ciency index (3.3) and the Briec inefficiency index (3.4) would each be special cases of the “generalized

directional inefficiency index.”
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Figure 2: The Directional Distance Inefficiency Index.
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〈x̄′′, ȳ′′〉

input-based Färe-Lovell [1978] efficiency index to the full 〈input, output〉 space:12,13

EFGL(x, y, T ) = min
α,β

{ ∑
i αi +

∑
j βj

n + m

∣∣∣ 〈α, β〉 ∈ Ω(x, y, T )

}
, (3.5)

where

Ω(x, y, T ) =
{
〈α, β〉

∣∣ 〈 α ⊗ x, y ⊘ β〉 ∈ T ∧ 0[n] ≤ α ≤ 1[n] ∧ 0[m] ≪ β ≤ 1[m]
}

,

(3.6)

α ⊗ x = 〈α1x1, . . . , αnxn〉, and y ⊘ β = 〈y1/β1, . . . , ym/βm〉, for α = 〈α1, . . . , αn〉 and

β = 〈β1, . . . , βm〉.14 To make the index comparable to the other indexes in terms of the

12 For obscure historical reasons, they refer to this index as the “Russell Graph Measure of Technical

Efficiency.”
13 Russell and Schworm [2009] have recently modified this index to eliminate critical problems at the

boundary of output space. Since we are considering production vectors that are strictly positive, these

problems do not affect us here.
14 Although Ω(x, y, T ) is not a closed set, the min in (3.5) exists, owing to our restriction that y ≫ 0[m]

and our assumption that the production set P (x) is bounded for all x ∈ R
n
+.
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Figure 3: The Briec Inefficiency Index.
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axioms that follow, we define the FGL inefficiency index by

IFGL(x, y, T ) = 1 − EFGL(x, y, T ), (3.7)

with range [0, 1].15 The FGL index is an average of the coordinate-wise maximal con-

tractions of inputs and expansions of outputs.

The FGL index contracts all inputs and expands all outputs until an efficient produc-

tion vector is achieved. Therefore, as illustrated in Figure 4, all feasible 〈input, output〉

vectors are compared to efficient points. The different shading in Figure 4 shows the

points that are attracted to various efficient points. The top region with the lightest

shading are the feasible points compared to an efficient point on the line segment. The

middle region with the middle shading are the feasible points compared to the efficient

vertex on the lower end of the line segment indicated by 〈x̄′, ȳ′〉. The bottom region with

the darkest shading shows the points compared to 〈x̄, ȳ〉.

15 An alternative that satisfies the same properties is IFGL(x, y, T ) = [ EFGL(x, y, T ) ]
−1

, with range

[1, +∞).
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Figure 4: The IFGL Inefficiency Index.
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The additive index of Charnes, Cooper, Golany, Seiford, and Stutz (CCGSS) [1985],

defined on DEA technologies, can be extended to the class of technologies T as follows:

IA(x, y, T ) = max
s,t





∑

i

si +
∑

j

tj
∣∣ 〈s, t〉 ∈ Γ(x, y, T )




 (3.8)

where

Γ(x, y, T ) =
{
〈s, t〉

∣∣ 〈x − s, y + t〉 ∈ T ∧ s ≥ 0[n] ∧ t ≥ 0[m]
}

. (3.9)

This index maximizes the sum of the slacks and maps into the [0, +∞) interval. Since

the additive index compares all feasible points to efficient points, a figure showing the

reference points would be similar to Figure 4.

An acknowledged problem with the additive index IA is its dependence on units of

measurement. This problem is discussed in the original paper by CCGSS, who propose

a unit-invariant modification of the index. We discuss this index briefly in Section 7. An
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alternative generalization, the weighted additive index, introduces weights for the slack

variables as follows:

IWA(x, y, T ) = max
s,t





∑

i

uisi +
∑

j

vjtj

∣∣∣ 〈s, t〉 ∈ Γ(x, y, T )




 , (3.10)

where u ∈ Rn
+ and v ∈ Rm

+ are pre-specified weights and Γ is defined in (3.9).16

Many other (in)efficiency indexes have been formulated in the literature, but we have

chosen not to include them in our basic analysis because (i) they are defined only for

special classes of technologies such as the DEA class and cannot be straightforwardly

extended to the general class T , (ii) they are dominated, in the context of our axiomatic

structure, by indexes that we do consider,17 or (iii) they are similar to, or even equivalent

to, an index that we do analyze and hence have identical axiomatic properties. Several

of these indexes are discussed briefly in Section 7.

4. Axioms.

We propose four types of axioms as suitable for inefficiency measures defined on the

full space of inputs and outputs. Two of the axioms—indication and monotonicity—

are obvious extensions of axioms proposed by Färe and Lovell [1978] for input-based

measures of efficiency. As none of the inefficiency indexes satisfies monotonicity, we also

consider a weaker version of monotonicity. We consider two nested axioms for invariance

with respect to changes of units of measurement. Finally, we posit a continuity axiom

in production vectors and technologies, as proposed by Russell [1990] for input efficiency

indexes.

The most basic axiom requires that an inefficiency index distinguish between ineffi-

cient and efficient production vectors:18

Indication of Efficiency (I): For all 〈x, y, T 〉 ∈ Ξ, there exists a θ in the range of the

index such that I(x, y, T ) = θ if and only if 〈x, y〉 ∈ Eff(T ).

The two monotonicity axioms are as follows:

Monotonicity (M): For all pairs 〈x, y, T 〉 ∈ Ξ and 〈x′, y′, T 〉 ∈ Ξ satisfying 〈x,−y〉 <

〈x′,−y′〉, I(x, y, T ) < I(x′, y′, T ).

16 Subsequent literature indicates that this formulation was suggested in an unpublished paper by Cooper

and Pastor [1995], but we have not been able to verify this citation.
17 As shown in Theorem 3 below, the additive and the directional distance indexes are also dominated

by other indexes, but these two indexes are included in our basic analysis because they are central to the

development of efficiency measurement (in early, formative years in the case of the former and in recent

years in the case of the latter).
18 In the operations research literature (e.g., Cooper, Park, and Pastor [1999]), an index satisfying (I) is

said to be “comprehensive.”
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Weak Monotonicity (WM): For all pairs 〈x, y, T 〉 ∈ Ξ and 〈x′, y′, T 〉 ∈ Ξ satisfying

〈x,−y〉 < 〈x′,−y′〉, I(x, y, T ) ≤ I(x′, y′, T ).

To formulate changes in units of measurement, let Wx be the set of positive n × n

diagonal matrices and Wy be the set of positive m×m diagonal matrices. The extension

to 〈input, output〉 space of the unit independence axiom proposed by Russell [1987]19 is

as follows:

Unit Independence (UI): For all 〈x, y, T 〉 ∈ Ξ and for all Wx ∈ Wx and Wy ∈ Wy, if

x̂ = Wxx, ŷ = Wyy, and

T̂ =
{

(x̂, ŷ) |
(
W−1

x x̂, W−1
y ŷ

)
∈ T

}
,

then

I(x, y, T ) = I(x̂, ŷ, T̂ ).

This axiom requires that unit changes (and the initial choice of units) have no effect on

the inefficiency index. A weaker requirement for parameterized inefficiency indexes is

invariance with respect to unit changes with compensating changes in parameters:

Unit Scalability (US): For all 〈x, y, T 〉 ∈ Ξ and for all Wx ∈ Wx and Wy ∈ Wy with

x̂ = Wxx, ŷ = Wyy and

T̂ =
{

(x̂, ŷ) |
(
W−1

x x̂, W−1
y ŷ

)
∈ T

}
,

there exists a parameter ĝ ∈ G such that

I(x, y, T, g) = I
(

x̂, ŷ, T̂ , ĝ
)

.

We stress that, in our view, this axiom is substantially weaker than (UI), since it allows

the index to depend on the initial choice of units.

We consider three continuity axioms. Russell [1990] argued (page 256) that continu-

ity is a compelling property, “for it provides assurance that ‘small’ errors of measurement

(of, e.g., input or output quantities) result only in ‘small’ errors of efficiency measure-

ment.” If the technology is constructed from data on production vectors, the argument

for continuity in the technology is perhaps even more compelling. We therefore believe

the strongest of these continuity axioms—continuity in both input and output quanti-

ties and in technologies—is a desirable property for an inefficiency index. Since some

standard inefficiency indexes do not satisfy this strong continuity property, we consider

weaker versions as well.

Continuity in production vectors (C–〈x, y〉): I is continuous in 〈x, y〉.

Continuity in technologies (C–T ): I is continuous in T .20

Joint continuity (C–〈x, y, T 〉): I is continuous in 〈x, y, T 〉.

19 Following the nomenclature of Eichhorn and Voeller [1976] in their axiomatic analysis of price and

quantity indexes, Russell [1987] referred to this property as “commensurability.”
20 As in Russell [1990], we adopt the topology of closed convergence on T .
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5. Impossibility Results.

A fundamental incompatibility among our axioms is encapsulated in the following

result.

Theorem 1: (a) There does not exist an inefficiency index satisfying (I) and (C–〈x, y〉).

(b) There does not exist an inefficiency index satisfying (I) and (C–T ).

Proof: (a) In Figure 5, 〈xν , yν〉 → 〈xo, yo〉. As 〈xν , yν〉 is efficient for all ν and 〈xo, yo〉

is inefficient, (I) implies I(xν , yν, T ) = θ for all ν and I(xo, yo) > θ, violating (C–〈x, y〉).

(b) In Figure 6, T ν → T o. (I) implies I(x, y, T ν) = θ for all ν but also I(x, y, T o) > θ,

violating (C–T ). Each of these examples can be easily extended to higher dimensions.

Figure 5: Incompatibility of (I) and (C–〈x, y〉).

x

y

T

〈xν , yν〉

〈x0, y0〉

〈xν , yν〉 → 〈x0, y0〉

I(xν , yν , T ) = θ, I(x0, y0, T ) > θ

Theorem 1 indicates that the set of all efficiency indexes defined on technologies T

can be partitioned into two subsets: (1) those satisfying indication and hence violating

continuity and (2) those satisfying continuity and hence violating indication. A further
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Figure 6: Incompatibility of (I) and (C–T ).

x

y

T ν
T 0

(x, y)

T ν → T 0

I(x, y, T ν) = θ, I(x, y, T 0) > θ

partitioning of the former is generated by the following result (essentially taken from

Russell [1987]):

Theorem 2: There does not exist an inefficiency index satisfying (M) and (UI).

Proof: Assume efficiency in output space and consider the input requirement set in

Figure 7 and input vectors x̂ and x′. Clearly, (M) implies I(x′, y, T ) > I(x̂, y, T ). Next

note that x̂ = Wxx, where Wx is the two-by-two diagonal matrix with 〈κ, 1〉 on the

diagonal. Moreover, ŷ = Wyy = y′, where Wy is the m-dimensional identity matrix.

Finally, L(ŷ) = L(y), so that T̂ = T in the definition of unit independence, and (UI)

implies I(x′, y, T ) = I(x̂, y, T ), contradicting (M).

6. Properties of the Inefficiency Indexes.

The properties satisfied by the six inefficiency indexes are spelled out in the following

theorem (proved in the Appendix):

Theorem 3:
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Figure 7: Incompatibility of (M) and (UI).

x1

x2

L(y)

x̂ x′

x′ > x̂ =⇒ I(x̂, y, T ) < I(x′, y, T )

x′ = Wxx̂ =⇒ I(x̂, y, T ) = I(x′, y, T )

• IH satisfies (WM), (UI), and (C–〈x, y, T 〉) but fails to satisfy (I) and (M).

• IDD satisfies (WM), (US), and (C–〈x, y, T 〉) but fails to satisfy (I), (M), and (UI).

• IB satisfies (WM), (UI), and (C–〈x, y, T 〉) but fails to satisfy (I) and (M).

• IFGL satisfies (I), (WM), and (UI) but fails to satisfy (M), (C–〈x, y〉), and (C–T ).

• IA satisfies (I) and (M) but fails to satisfy (US),21 (C–〈x, y〉), and (C–T ).

• IWA satisfies (I), (M), and (US) but fails to satisfy (UI), (C–〈x, y〉), and (C–T ).

If we evaluate inefficiency indexes solely in terms of our axioms, then we see that two

indexes should be excluded from further consideration since they are dominated by other

indexes. The directional distance index IDD is dominated by both the hyperbolic index

IH and the Briec index IB, while the index additive IA is dominated by the weighted

additive index IWA.

The axioms do not discriminate between the hyperbolic index and the Briec in-

dex, since both satisfy weak monotonicity, unit independence, and joint continuity in

21 And, of course, (UI).
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the production vector and the technology while failing to satisfy indication and mono-

tonicity. The Färe-Grosskopf-Lovell index IFGL and the weighted additive indexes are

distinguished from the hyperbolic and Briec indexes by satisfying indication but fail-

ing to satisfy continuity in either the production vector or the technology. The Färe-

Grosskopf-Lovell and weighted additive indexes are distinguished from each other by the

Färe-Grosskopf-Lovell index satisfying unit independence and failing monotonicity and

the weighted additive index satisfying monotonicity and unit scalability but failing to

satisfy unit independence.

7. Discussion of Additional Indexes.

As noted in the closing paragraph of Section 3, a number of additional inefficiency

indexes formulated in the literature are not included in the statement of Theorem 3.

This theorem does, however, have implications, discussed briefly in this section, for these

alternative indexes.22

To facilitate comparison of these indexes, we express them in terms of the sets,

Γ(x, y, T ) and Ω(x, y, T ), defined by (3.9) and (3.6). The set Γ(x, y, T ) is the set of

feasible additive slacks while Ω(x, y, T ) is the set of feasible proportional slacks. These

are alternative but equivalent representations of the difference between an initial produc-

tion vector and its reference vector. Their relation can be expressed as follows:

si = (1 − αi)xi, i = 1, . . . , n, (7.1)

and

ti = (1 − βj)yj/βj, j = 1, . . . , m. (7.2)

Although the additive and weighted additive indexes were initially proposed for DEA

technologies, they can be defined—as we have done above—for the general class of tech-

nologies T without modification. Some indexes, however, depend critically on the struc-

ture of the DEA framework. An example is the Range Adjusted Measure (RAM) of

Inefficiency, a modification by Cooper, Park, and Pastor [1999] of the additive index to

achieve unit independence. It depends explicitly on the quantity data for K “decision

making units”: { xik }
K
k=1 , i = 1, . . . , n, and

{
yjk

}K

k=1
, j = 1, . . . , m. The RAM index

is defined by

IRAM (x, y, T ) = max
s,t





∑

i

si

∆x
i

+
∑

j

tj
∆y

j

∣∣∣ 〈s, t〉 ∈ Γ(x, y, T )




 , (7.3)

where

∆x
i = max

k
{ xik }

K
k=1 − min

k
{ xik }

K
k=1 , i = 1, . . . , n, (7.4)

22 We apologize for not acknowledging efficiency-index formulations that have escaped our attention.
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and

∆y
j = max

k

{
yjk

}K

k=1
− min

k

{
yjk

}K

k=1
, j = 1, . . . , m. (7.5)

For this index to be well defined, the set of possible production vectors must be bounded

so that ∆x
i for i = 1, . . . , n and ∆y

j for j = 1, . . . , m are defined. This cannot be achieved

for the general class of technologies T .

Some indexes have been excluded from Theorem 3 because they are dominated by

other indexes in terms of our axiomatic structure. An interesting example is a generalized

hyperbolic measure, introduced in in Section 5.7 of Färe, Grosskopf, and Lovell [1985]:

IGH(x, y, T ) = max
〈λx,λy〉

{λx + λy | 〈x/λx, λyy〉 ∈ T } . (7.6)

This index is based on two parameters, one to contract x and one to expand y. It combines

some of the properties of (a) the hyperbolic index and the Briec index, each based on a

single parameter, and (b) the FGL, additive, and weighted additive indexes, each based

on n + m parameters to achieve coordinate-wise contractions of x and coordinate-wise

expansions of y. This index fails to satisfy either indication or continuity in either the

production vector or the technology and fails to satisfy monotonicity (but is weakly mono-

tonic and unit independent); it, therefore, is dominated by all of the unit-independent

indexes considered above.23

Other proposed indexes can be shown to be equivalent to those we have analyzed

above or are equivalent in terms of our axiomatic system. Several indexes have been

introduced as modifications of the additive index with the objective of achieving unit

independence. In the original paper introducing the additive index (CCGSS [1985]), the

authors propose a unit-invariant modification of the additive index:

IAUI(x, y, T ) = max
s,t





∑

i

si

xi
+

∑

j

tj
yj

∣∣∣ 〈s, t〉 ∈ Γ(x, y, T )




 . (7.7)

Substituting for si, i = 1, . . . , n, from (7.1) and for tj , j = 1, . . . , m, from (7.2) we arrive

at

IAUI(x, y, T ) = max




n −
∑

i

αi +
∑

j

1

βj
− m

∣∣∣ 〈α, β〉 ∈ Ω(x, y, T )






= n − m − min
α,β





∑

i

αi −
∑

j

1

βj

∣∣∣ 〈α, β〉 ∈ Ω(x, y, T )




 .

(7.8)

23 Proofs of violation of identification and monotonicity are easily adapted from the corresponding proofs

of these properties by the hyperbolic index; proof of violation of continuity are easily adapted from the

proof of the same for the FGL index.
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This reformulated AUI index, featuring a vector of coordinate-wise input contractions and

output expansions, is similar to the FGL index and has the same axiomatic properties.24

Pastor, Ruiz, and Sirvent [1999] define an index for DEA technologies and treat it as

a modification of the FGL index. Their formulation is25

IPRS(x, y, T ) = min
α,β

{ 1
m

∑
j

1
βj

1
n

∑
i αi

∣∣∣ 〈α, β〉 ∈ Ω(x, y, T )

}

. (7.9)

This index is also similar to the FGL index in that it begins with the vector of coordinate-

wise input contractions and output expansions, but the PRS index is a ratio of the average

output expansions and the average input contractions. The axiomatic properties of this

measure are identical to those of the FGL index.26

The Measure of Inefficiency Proportions, as described in Cooper, Park, and Pas-

tor [1999], is explicitly identical to IAUI and hence does not need separate treatment.

The Measure of Efficiency Proportions, proposed by Banker and Cooper [1994] for DEA

technologies, can be defined for the class of technologies T by

IMEP (x, y, T ) = max
s,t




 1 −
1

n + m




∑

i

si

xi
+

∑

j

tj
yj + tj




∣∣∣ 〈s, t〉 ∈ Γ(x, y, T )




 .

(7.10)

Substitution for si, i = 1, . . . , n, from (7.1) and for tj j = 1, . . . , m, from (7.2) and some

algebraic manipulation indicates that this representation is equivalent to the IFGL index.

Tone [2001] introduced a slacks-based measure (SBM) of efficiency in an additive DEA

model. This index can be extended to an efficiency index defined for all technologies as

follows:

ESBM (x, y, T ) = min
s,t





1 − 1

n

∑
i

si
xi

1 + 1
m

∑
j

tj
yj

∣∣∣ 〈s, t〉 ∈ Γ(x, y, T )




 . (7.11)

Again, a simple rearrangement of terms shows that 1 − ESBM (x, y, T ) is equivalent to

the IPRS index and hence does not need independent treatment.

8. Conclusion.

The results in Sections 5–7 are summarized in Figure 8. Two of the branchings,

those labeled Theorem 1 and Theorem 2, reflect dilemmas posed by incompatibility of

24 This can be seen by following the same arguments as in the proofs of the properties of IFGL in the

Appendix.
25 Pastor, Ruiz, and Sirvent define an efficiency index, which we invert to obtain an inefficiency index.

Also, we use a different but equivalent parameterization.
26 Again, this can be seen by following the same arguments as in the proofs of the properties of IFGL in

the Appendix.
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axioms. The first branching (Theorem 1) partitions indexes that satisfy indication from

those that satisfy continuity in either quantities or technologies. Theorem 2 partitions

the indexes that satisfy indication into those that satisfy monotonicity (the additive and

the weighted additive indexes) and those that satisfy unit independence (the FGL index

and similar indexes). The final branching on the upper tree at the US node reflects the

dominance of the weighted additive index over the (unweighted) additive index owing

to the satisfaction of unit scalability by the former. The branching at the IWE node of

the lower tree reflects a choice between a property called indication of weak efficiency

(IWE) and monotonicity.27 The indexes satisfying IWE are partitioned into those that

satisfy unit independence (the hyperbolic and Briec indexes) and the one that does not

(the directional distance index). (The RAM index and the generalized hyperbolic index

are omitted from the diagram because the former cannot be adapted to the general set

of technologies T and the latter satisfies neither indication nor continuity.) Each of

the nodes in this schematic reflects trade-offs among the indexes in terms the axiomatic

structure outlined in Section 4.

Figure 8: Choices Among Inefficiency Indexes.

Theorem 1

Theorem 2

IWE

US

UI

I

C

UI

M

Yes

No

Yes

No

Yes

No

IFGL, IAUI , IPRS

IWA

IA

IH , IB

IDD

We therefore reach the following conclusions:

• The directional distance inefficiency index is dominated by the hyperbolic and Briec

inefficiency indexes (which satisfy a stronger unit invariance property).

• Owing to the incompatibility of the indication and continuity axioms and the in-

27 See Russell [1987] for a definition of indication of weak efficiency. All inefficiency indexes of which we

are aware satisfy this property so we have not emphasized it here.
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compatibility of the monotonicity and unit independence axioms, trade-offs remain

among the other four indexes:

(i) If identification and unit independence are essential, choose either the FGL or the

PRS inefficiency index (or one of the alternatives that is axiomatically equivalent).

(i) If identification and monotonicity are essential, choose the weighted additive

index.

(i) If continuity and unit independence are essential, choose the hyperbolic or Briec

inefficiency index.
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Appendix: Proof of Theorem 3.

While numerous results on the properties of various indexes have been reported in

the literature, few have pertained to general technologies. Many of the proofs, moreover,

exploit the special properties of restricted technologies, especially those in the DEA class.

We therefore present proofs of each of the claims in Theorem 3, even in some cases

where similar results have been reported in the literature. Our de novo approach has the

added advantage of presenting proofs that apply to several indexes rather than needlessly

exploiting the special properties of each index.

The proof is divided into four parts: (i) indication, (ii) monotonicity, (iii) unit inde-

pendence, and (iv) continuity.

i. Indication.

It is clear that the only candidates for θ in the definition of (I) are the minimal values

in the ranges of the efficiency index mappings: 0 for IDD, IB, IFGL, IA, and IWA and 1

for IH .

That IH , IDD, and IB fail to satisfy (I) is obvious from Figures 1, 2, and 3, respec-

tively.28 In each case, the production vector 〈x̄′′, ȳ′′〉 is inefficient but I(x̄′′, ȳ′′, T ) = θ.

To show that IFGL satisfies indication, first suppose that 〈x, y〉 ∈ T , with 〈x, y〉 ≫ 0,

is not efficient so that there exists a production vector 〈x′, y′〉 ∈ T satisfying 〈x′, y′〉 ≫ 0

and 〈x′,−y′〉 < 〈x′,−y′〉. Then their exists an α and a β satisfying 0 < α ≤ 1[n] and

0 < β ≤ 1[m] and either α < 1[n] or β < 1[m] such that x′ = α ⊗ x and y′ = y ⊘ β. Since

〈α, β〉 ∈ Ω(x, y, T ), we have

IFGL(x, y, T ) ≥ 1 −

∑
i αi +

∑
j βj

n + m
> 0. (8.1)

Next suppose that IFGL(x, y, T ) > 0. Then either 0 < α < 1[n] or 0 < β < 1[m],

so that there exists a point 〈x′, y′〉 ∈ T , with x′ = α ⊗ x and y′ = y ⊘ β, satisfying

〈x′, y′〉 ∈ T , 〈x′, y′〉 ≫ 0, and 〈x′,−y′〉 < 〈x′,−y′〉. Therefore, (x, y) is inefficient, and

IFGL satisfies indication.

We next sketch the analogous proof for satisfaction of (I) by IWA; satisfaction of this

axiom by IA follows as a special case with u = 1[n] and v = 1[m]. If 〈x, y〉 is inefficient,

there exists a 〈s, t〉 ∈ Γ(x, y, T ) such that either 0[n] < s or 0[n] < t, which implies that

IWA(x, y, T ) > 0. If IWA(x, y, T ) > 0, there exists an 〈s, t〉 ∈ Γ(x, y, T ) satisfying either

s > 0[n] or t > 0[n], in which case 〈x, y〉 is inefficient.

28 And follows from Theorem 1 and the proofs of continuity of these indexes below.
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ii. Monotonicity.

Failure of IH , IDD, and IB to satisfy (M) is obvious from Figures 1, 2, and 3. In

each figure, starting at 〈x′′, y′′〉 and increasing x while holding y at y′′ must leave the

respective index unchanged, since ȳ′′ (as well as y′′) is unchanged.29

To establish (WM) for IH , note that 〈x/λ, λy〉 ∈ T and 〈x,−y〉 > 〈x′,−y′〉 implies,

using free disposability, that 〈x′/λ,−λy′〉 ∈ T ; hence IH(x, y, T ) ≤ IH(x′, y′, T ). Proofs

of (WM) for IDD and IB are analogous.

Figure 7 provides an example showing that IFGL is not monotonic. For the technology

with level set L(y) and the production vectors (x, y) and (x′, y) with x < x′, a simple

calculation shows that IFGL(x, y, T ) = IFGL(x′, y′, T ) = (1 + m)/(2 + m) (assuming y is

efficient in output space).

To prove that IFGL satisfies weak monotonicity, let 〈x,−y〉 < 〈x′,−y′〉 and note that

Ω(x, y, T ) ⊂ Ω(x′, y′, T ). The definition of EFGL in (3.5) implies that EFGL(x′, y′, T ) ≤

EFGL(x, y, T ) so that IFGL(x, y, T ) ≤ IFGL(x′, y′, T )

To prove that IWA (and IA) satisfies monotonicity, let 〈x,−y〉 < 〈x′,−y′〉. Let

〈s, t〉 be the solution to (3.10) for 〈x, y〉 so that IWA(x, y, T ) =
∑

i si +
∑

j tj . Define

〈x̄, ȳ〉 = 〈x, y〉 + 〈s, t〉 so that 〈x̄, ȳ〉 ∈ T . Define 〈s′, t′〉 = 〈x′, y′〉 − 〈x̄, ȳ〉 and note that

〈s′, t′〉 ∈ Γ(x′, y′, T ) and 〈s′, t′〉 > 〈s, t〉. Therefore,

IWA(x′, y′, T ) ≥
∑

i

s′i +
∑

j

t′j >
∑

i

si +
∑

j

tj = IWA(x, y, T ), (8.2)

which proves the result.

iii. Unit independence.

Proofs that (UI) is satisfied are straightforward and nearly identical for IH , IB, and

IFGL. We therefore write out a formal proof only for IH . Given a transformation of the

units of x and y, we have

IH(x̂, ŷ, T̂ ) = max
{

λ | 〈x̂/λ, λy〉 ∈ T̂
}

= max
{

λ
∣∣ 〈

Wxx/λ, λWyy
〉
∈ T̂

}

= max
{

λ
∣∣ 〈

W−1
x (Wxx)/λ, λW−1

y (Wyy)
〉
∈ T

}

= IH(x, y, T ).

(8.3)

It is straightforward to demonstrate that IDD, IA and IWA violate (UI).30 With IDD,

the direction g is defined independently of the units of measurement so that a change of

29 Failure of IH and IB to satisfy (M) also follows from Theorem 2 and the proofs of (UI) for these

indexes below.
30 Salnykov and Zelenyuk [2005] prove that IDD violates (UI).
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units effectively changes the direction. In IA and IWA, the definition of slack variables

independently of the units of measurement ensures the violation of (UI).31

As IA contains no parameters to adjust for unit changes, it fails to satisfy (US) as

well. Both IDD and IWA, however, have sufficient parameters to satisfy (US). Balk [1998]

has proved this for the IDD; we provide a proof for IWA. Consider a transformation of

the units, x̂ = Wxx and ŷ = Wyy and define the parameter transformation

〈û, v̂〉 = 〈W−1
x u, W−1

y v〉. (8.4)

Then

IWA

(
x̂, ŷ, T̂ , 〈û, v̂〉

)
= max

s,t

{
û · s + v̂ · t | 〈x̂ − s, ŷ + t〉 ∈ T̂

}

= max
s,t

{
W−1

x u · s + W−1
y v · t |

〈
W−1

x (x̂ − s), W−1
y (ŷ + t)

〉
∈ T

}

= max
s,t

{
u · W−1

x s + v · W−1
y t |

〈
W−1

x x̂ − W−1
x s, W−1

y ŷ + W−1
y t

〉
∈ T

}

=: max
s′,y′

{
u · s′ + v · t′ | 〈x − s′, y + t′〉 ∈ T

}

= IWA

(
x, y, T, 〈u, v〉

)
.

(8.5)

iv. Continuity.

The failure of IFGL, IA, and IWA to satisfy continuity in either quantities or tech-

nologies is demonstrated by the examples in Figures 5 and 6.32

To prove joint continuity of IH , consider a sequence {xν , yν, T ν} that converges to

{xo, yo, T o}. To simplify notation, let λν = IH(xν , yν, T ν), λo = IH(xo, yoT o), wν =

〈xν/λν , λνyν〉, and wo = 〈xo/λo, λoyo〉. Obviously, λν is bounded from below (at 1).

Given xν → xo and T ν → T o, it follows that P (xν) → P (xo). By assumption, P (xo)

is bounded; hence, for an arbitrary δ > 0, there exists a ν′ such that P (xν) is a subset

of the cube {y ∈ Rn
+ | yk ≤ δ ∀ k} for all ν > ν′. Moreover, for arbitrary ǫ, there

exists a ν′′ such that yν ∈ Nǫ(y
o) for all ν > ν′′. Consequently, λνyν is bounded for all

ν > max{ν′, ν′′}

The strategy is to show that, for arbitrary ǫ, there exists a ν̂ such that

λν < λo + ǫ ∀ ν > ν̂ (8.6)

and

λν > λo − ǫ ∀ ν > ν̂. (8.7)

31 In any event, these facts follow from Theorem 2 and the satisfaction of (M) by these two indexes.
32 Failure of IA and IWA to satisfy continuity also follows from Theorem 1 and satisfaction of (I) by

these indexes.
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To prove (8.6), suppose that λν ≥ λo + ǫ for infinitely many ν and some ǫ > 0.

As λν is bounded for sufficiently large ν, this sequence has a convergent subsequence:

λνk → λ̄ > λo. This in turn implies that wνk → w̄ = 〈xo/λ̄, λ̄yo〉. Since wνk ∈ T νk for

all νk and T ν → T o, we have w̄ ∈ T o. Along with the definition of λo, this implies that

λ̄ ≤ λo, a contradiction.

To prove (8.7), suppose that λν < λo + ǫ for infinitely many ν and some ǫ > 0.

As λν is bounded for sufficiently large ν, this sequence has a convergent subsequence:

λνk → λ̄ < λo − ǫ. As T ν → T o, this in turn implies that uνk := 〈xνk/λνk , λνkyνk〉, a

boundary point in T νk , converges to ū = 〈x̄, ȳ〉 = 〈xo/λ̄, λ̄yo〉, a boundary point in T o.

Moreover, λ̄ < λo implies x̄ > xo and ȳ < yo. Since ū is a boundary point of T o, this

violates the free disposability assumption.

Proofs of joint continuity of IDD and IB are virtually identical to the proof of joint

continuity of IH and hence are left to the reader.
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