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Abstract

It is stylized that productivity and input size should relate positively and monotonically in the

long run. In this paper, I present a theory that unifies the role of demand and production to

investigate conditions that make this relation a bell-shape. Under the optimality assumption and

when establishments operate in the same market, I quantify a simple algebraic condition on demand

and production elasticities that governs the relation between productivity and input size. The case

where establishments face different demands is also considered using a simple trade model and the

implications are shown to be qualitatively the same. Supportive evidence is obtained from plant-level

data on ready-mix concrete. Findings of this paper have important implications on how productivity

dispersion and size distribution are formed within industries.
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1 Introduction

This study mainly addresses the formation of size distribution among heterogeneous producers in a new

light by deviating from the traditional view that mapping from productivity distribution to that of input

size is one-to-one. I present a theory that unifies the role of both demand and production sides in turning

this relation into a non-monotonic one, most likely bell-shaped with one or even several peaks. Besides,

I rely on plant-level data to show this fact and its implications empirically. It turns out that the relevant

condition governing how input level changes with productivity is

εMR + εν = −1, (1.1)

where εMR is the elasticity of marginal revenue and εν is the elasticity of returns to scale (RTS), both

with respect to output. Prima facie, this formula can be useful in two ways: 1) it helps to envision the

shape of input size relations with a known demand function; 2) it can suggest counter-factual demand

functions that exhibit certain features in their input size relation. The latter application can also find

use in identifying an industry’s unobserved aggregate demand curve by utilizing observables such as

employment, sales, and productivity.

The first implication of my result is naturally a need to re-examine how size distributions are formed

as a result of productivity differences. In addition to the intensity of capital utilization discussed by

Rossi-Hansberg & Wright (2007), differences in market structures can also be a reason for differences

in the thickness of upper-tail in size distributions across industries when mid-productivity plants are

the contributors. The conclusions of this study also offer new perspectives into causes of productivity

dispersion. With a bell-shaped relationship, in particular, ranges of productivity differences can be

created and shaped at any given input level, even in the absence of shocks and uncertainties. Trade

gains can also be far greater than previously thought. The opening of new markets would now have

two expansionary effects: as Melitz (2003) argues, it causes a shift in employment and output shares

to the incumbent producers with higher productivities, and it also lets very productive plants to act

“normally” by significantly expanding their workforce in response to the increase in demand. Welfare

losses as a result of employment frictions, such as Hopenhayn & Rogerson (1993) adjustment costs, can

also be smaller than thought as small plants might not be suffering from those frictions but from demand

constraints.

From the literature, however, the standard picture is always a monotonic one. In an early work,

Lucas (1978) uses difference in management skills to generate distributions of productivity and size, and

2



at the end more productive firms hire larger labor. In Jovanovic (1982), Hopenhayn (1992), Ericson

& Pakes (1995), and Luttmer (2007) growth happens as producers accumulate idiosyncratic shocks to

their productivity. The evolution of industry happens as less efficient producers, or those hit by a string

of bad shocks, realize that they can never be profitable and exit market, reallocating their resources to

entrants and/or more productive units. More productive units, nevertheless, grow fast and become large

in the long run. Bontemps, Robin & Van Den Berg (2000), and Bertola & Garibaldi (2001) achieve

similar results with the search and matching models of employment. Constant-elasticity demand is a

favorite among theorists and is one demand function that can create monotonic relation between input

and productivity. A large body of theoretical works, such as Melitz (2003) and Luttmer (2007), walk

along this line. Melitz & Ottaviano (2008) use a linear demand in their analysis which, by the analysis

in this paper, would cause non-monotonic productivity-input relation, thought they avoid any discussion

of input sizes. This attitude towards a positive relation between input and productivity seems to have

become so stylized that thinking otherwise attracts harsh criticism.

Interestingly enough, the available empirical works provide very few details on the exact shape of

possible productivity–size relations. It is widely documented that average productivity is (slightly) higher

in larger employment classes1. But, if we believe that this trend is enough evidence that employment

should positively relate to productivity, then I have to confront that with Table 1. In all two-digit

manufacturing industries, establishments demonstrate very weak, and sometimes negative, correlations

between their employments and productivities2. Bakhtiari (2008) shows that focusing on plants older than

six years does not change the implications significantly, underlining the need for a long-run explanation.

In this paper, the contradiction is addressed by pointing out the combined role of both the supply and

demand side in forming a non-monotonic relation between productivity and input size, which in turn

explains why correlations observed in the data are so low.

My approach is mostly a rerun of the firm production problem, but I rely on very general forms

of revenue and cost function with no peculiar assumption attached to a specific market or production

process. I first assume that all establishments operate in the same market, possibly in a monopolistic

competition, and derive an algebraic condition on the elasticities of marginal revenue and RTS that

specifies the slope of productivity-input relation at any point (Equation (1.1))3. Using a simple trade

model, I then extend the theory to encompass the cases where establishments face different demands

and show that despite the fact that more monotonicity can be achieved in the relation, the qualitative

1See, for example, Bartelsman & Dhrymes (1998).
2Section 4 describes how productivities are computed.
3The reason that the condition is stated using the elasticity of marginal revenue is that using the more familiar elasticity

of demand or revenue results in a differential equation which complicates further discussion.
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SIC corr(E,rtfp) SIC corr(E,rtfp)
20 0.106 30 0.079
22 -0.088 31 -0.019
23 -0.049 32 0.211
24 -0.017 33 -0.060
25 -0.006 34 -0.026
26 0.160 35 -0.112
27 0.100 36 0.064
28 0.128 37 0.015
29 -0.345 38 0.075
All 0.007

Table 1: Correlations between employment and log productivity (revenue total factor productivities is
used).

features of a bell-shape still hold.

Geometrically, the elasticity condition derived here explains why it is hard to achieve monotonicity:

to have a fully monotonic relation between productivity and input, the revenue function, especially, has

to stay above a logarithmic function, while almost all revenue functions are bounded above because of

finite consumer demand. Higher RTS close the range of possibilities and diminishing RTS demand a

faster growing revenue function, for a monotonic relation to be possible.

Empirical exercises are focused on demonstrating existence of a bell-shaped relation among the con-

crete plants. I use the concrete industry as my pilot study for several reasons. The localized structure of

the market for concrete proves very useful in characterizing market type and demand size. The average

concrete plant is very mature, and homogeneity of concrete provides me with a more accurate measure of

productivity. However, product homogeneity does not rule out productivity dispersion because concrete

is a spatially differentiated product (Syverson 2004). Using non-parametric and semi-parametric mod-

els, the productivity–employment relation in concrete is shown to resemble a bell-shape and the form

of relation is shown to be robust to changes in market size. A positive correlation between average size

and market demand is also revealed in the results. As a testable implication, I show that bootstrapped

simulations assuming a bell-shape relation between productivity and employment push the corresponding

correlation in the correct direction and come close to the numbers observed in the data.

Lastly, market and production structures are not presented as a final verdict in the analysis of non-

monotonicity, though the empirical results of this paper draw a fairly favorable picture of their influence.

In practice, many producers might be affected by suboptimal decision making, also causing the input–

productivity relationship to deviate from its monotonic form. It is not clear if the inefficiency of decisions

is spread amongst plants consistently to induce bell-shaped relations; detailed study of those effects

currently falls out of the scope for this paper. However, assuming that inefficiency and its extent are
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randomly and uniformly distributed among plants, input and output trends should not change, making

the effect of suboptimal decisions trivial in my study.

The rest of the paper is organized as follows. The following section derives the condition under

which input size falls with productivity when plants all operate in the same market. It also presents

some examples. Section 3 discusses the relation when plants can trade across markets and face different

demands. Section 4 describes my data, and in Section 5 I investigate the empirical relationship between

productivity and employment for the concrete industry. The paper is then concluded.

2 Size Relations: A Single Market

Plants produce output level q by incurring a cost of C(q, φ). φ is a productivity parameter so that higher

values of φ correspond to lower costs of production. Function C accounts for variable costs of production

as well as any possible fixed overhead costs. Assume C(., .) is smooth enough, and let subscripts denote

partial derivatives with respect to that argument. General properties of the cost function are set out

below as obvious physical facts.

Assumption 2.1. Cost function C(q, φ) is such that at every q ≥ 0 and φ ≥ 0:

(i) C(q, φ) > 0,

(ii) Cq > 0 and Cφ < 0,

(iii) C(., .) is multiplicative separable, i.e., C(q, φ) = c1(q)c2(φ) for some functions c1 and c2 satisfying

(i) and (ii).

Properties (i) and (ii) are natural for any valid cost function. Assumption (i) reiterates the “no

free-lunch” condition and also implies that there might be some fixed costs of operation (especially if

C(0, φ) > 0). By Assumption (ii), producing every extra unit of output involves a positive cost, with

productivity acting as cost reducing. Item (iii) ensures that relative changes in cost can be decoupled

into additive output and productivity effects, as is the case with most popularly used cost functions. An

important result of such decoupling is that the production returns to scale (RTS) will be independent of

productivity and will be a function of the output level only. To see that, notice that RTS relate to cost

function as (Zellner & Ryu 1998)

ν(q) =
C(q, φ)

qCq(q, φ)
. (2.1)

Plants also make revenue of R(q) by producing output level q, which is the same for all plants in the
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same market4. The revenue function is also assumed smooth enough, with properties described in the

next assumption.

Assumption 2.2. Revenue function R(q) is such that:

(i) R(0) = 0 and Rq(0) > 0,

(ii) Rqq < 0.

The assumption establishes that revenue function is concave and increasing in output level in a range

q ∈ [0, q̄), where q̄ can be finite or infinite and defines the maximum feasible output under the optimality

condition. A plant’s profit function is simply π = R(q) − C(q, φ). In a textbook manner, a bounded

solution for q exists where marginal cost equals marginal revenue. Plants hire x units of a composite

input to meet their production. This input is thought of as aggregating the role of different production

factors (such as labor, capital, material, intangibles, etc.) Zellner & Ryu (1998) show that the RTS can

also be expressed as ν(q) = dq
dx

x
q
. Eliminating ν between this relation and (2.1) and solving the resulting

partial differential equation yields5

x =
C(q, φ)

w
. (2.2)

where w is the unit price of input and is normalized to 1 henceforth.

2.1 Local Non-Monotonicity

The following definitions prove useful in the coming analysis.

Definition 2.1. Let the output-elasticity of marginal revenue be εMR =
qRqq

Rq
.

Definition 2.2. Let the output-elasticity of returns to scale be εν =
qνq

ν
.

Note that by Assumption 2.2, εMR is always negative. However, the sign of εν is kept ambiguous to

make results applicable to a variety of RTS functions.

Local properties of q(φ) and x(φ) are discussed by determining the signs of derivatives with respect

to φ under the optimality conditions. The general form of the relation q(φ) is rather straight-forward as

depicted by the following proposition.

Proposition 2.1. Let R(.) and C(., .) satisfy Assumptions 2.1 and 2.2. Then, more productive plants

produce more output, i.e. dq
dφ

> 0.

4A common revenue function for all producers in a market can be thought of as the outcome of a monopolistic competition,
where each producer is atomistic, hence everybody responds to market aggregates rather than strategic interactions.

5Assuming that cost function is linear homogeneous in input prices, Shephard’s lemma leads to the same result.
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Proof: Starting from the first order condition Rq(q)−Cq(q, φ) = 0 and taking derivatives with respect

to φ gives

(Rqq − Cqq)
dq

dφ
= Cqφ. (2.3)

By second-order optimality condition we have Rqq − Cqq < 0. Therefore, to show that output is an

increasing function of φ, it only requires that Cqφ < 0. But, from (2.1), Cq = C
qν

and because of

Assumption 2.1(iii) the only explicit dependence on φ appears in C(., .). Therefore

Cqφ =
∂

∂φ
Cq =

∂

∂φ

(

C

qν(q)

)

=
Cφ

qν(q)
< 0,

which completes the proof. �

One important implication of Proposition 2.1 is that, in equilibrium, output level is a unique and one-

to-one mapping of productivity. Hence, in most discussions, productivity and output play an equivalent

role.

Lemma 2.1. Let Assumptions 2.1 and 2.2 hold. Then εMR + εν < 1
ν(q) − 1.

Proof: Note that Cqq can be written as follows

Cqq =
∂

∂q
(Cq) =

∂

∂q

(

C

qν(q)

)

=
Cq

qν(q)
−

C

qν(q)

νq

ν(q)
−

C

qν(q)

1

q
.

But, from (2.1), C
qν(q) = Cq. The first-order condition also requires that Cq = Rq. Replacing both in the

above equation results in

Cqq =
Rq

q

(

1

ν(q)
− εν − 1

)

. (2.4)

The second-order condition requires that Rqq < Cqq . Replacing with (2.4) into this condition yields

Rqq <
Rq

q

(

1

ν(q)
− εν − 1

)

,

which can be rewritten as

qRqq

Rq

+ εν <
1

ν(q)
− 1.

The proof is complete by applying the definition of εMR. �

The above lemma defines the feasible region for the elasticities where solutions to the production
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problem exist and are finite. The following proposition is the main result specifying conditions that

result in non-monotonicity in x(φ) relation:

Proposition 2.2 (Local Non-Monotonicity). More productive plants hire larger input in a neighbor-

hood of φ, i.e. dx
dφ

> 0, if and only if

−1 < εMR + εν <
1

ν
− 1.

Conversely, more productive plants hire smaller input in a neighborhood of φ, i.e. dx
dφ

< 0, if and only if

εMR + εν < −1.

The relation x(φ) peaks where εMR + εν = −1.

Proof: Since x(φ) = C(q(φ), φ) = c1(q(φ))c2(φ), then for x(φ) to be decreasing, it must be that

dx(φ)

dφ
= c′1(q)c2(φ)

dq(φ)

dφ
+ c1(q)c

′

2(φ) < 0,

where primes denote derivatives. Take the inequality c′1(q)c2(φ)dq(φ)
dφ

+ c1(q)c
′

2(φ) < 0. Note that, from

(2.3), dq/dφ = c′1(q)c
′

2(φ)/(Rqq−Cqq). Replace this into the inequality and multiply by q(Rqq−Cqq)
c2(φ)
c′
2
(φ) .

Note that the direction of inequality does not change because c′2(φ) < 0 and Rqq −Cqq < 0 (second-order

condition), hence the multiplier is positive. Use c1(q)c2(φ) = C(q, φ) and Rq = Cq (first-order condition)

and simplify the inequality to get

qRqq

Rq

−
qCqq

Cq

+
qCq

C
< 0.

By definition, the following results hold

ǫMR =
qRqq

Rq

, ǫν =
qCq

C
−

qCqq

Cq

− 1.

Now, replace these results into the inequality to get ǫMR + ǫν < −1. The condition for x(φ) increasing

can also be derived by changing the direction of inequalities. The upper bound on ǫMR + ǫν comes from

Lemma 2.1. �

Figure 1 illustrates the relevant ranges of elasticities in which input size increases or decreases with

productivity6. Proposition 2.2 is a description of how the demand-side and supply-side influence the

6In (2.2), input price does not have to be fixed with productivity. A w(φ) with wφ > 0 means that more productive
firms, for instance, are willing to offer higher wages or higher rental prices. In that case, it is possible to show that the
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- εMR + εν‖ ‖
-1 1

ν
− 1

dq

dφ
> 0

dx
dφ

< 0

dq

dφ
> 0

dx
dφ

> 0
xxxxxxxxx

Figure 1: Ranges of values for elasticities and the direction of change for input and output.

q

MR

MC1: ν1

MC2: ν2

A

B

Figure 2: If ν2 > ν1, then x increases when area B is larger than area A.

direction of change for x(φ). An incrementally more productive plant produces more output at a lower

price. Keeping marginal revenue constant, plants are bound to hire less input with higher RTS. At the

same time, cost savings increase the output level. Proposition 2.2 states that input level will increase

with productivity if the latter effect is larger than the former (Figure 2). However, marginal revenue is

not constant. An incrementally more productive plant will optimally increase its input level only if it

receives a large enough boost in revenue as a result. With diminishing marginal revenue, this condition

becomes less probable as the productivity level gets higher. Very high RTS at any point also close the

range of possibilities for a positive x(φ) relation.

2.2 Geometric Interpretation

To show the possibility range of revenue functions that can achieve a positive one-to-one relation between

productivity and input, let’s assume ν is fixed (I generalize to varying ν afterward). Proposition 2.2 can

then be written as

−
1

q
<

Rqq

Rq

<
1
ν
− 1

q
. (2.5)

condition from Proposition 2.2 changes to

dx

dφ
≷ 0 ⇔ εMR + εν ≷

1

ν
(Ξ − 1) − 1,

where Ξ ∈ (0, 1] and depends on elasticities of input price and cost to productivity. In particular, with fixed w, Ξ = 1.
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(a)
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q
(b)

R

q∗

Figure 3: (a) The permissible range of normalized revenue functions for x(φ) to be positive monotonic.
(b) Change in the permissible range with diminishing RTS.

Let x(q(φ)) be monotonically increasing in the interval [q∗,∞). Then, the revenue function has to satisfy

q∗ log

(

q

q∗

)

<
R(q) − R(q∗)

Rq(q∗)
< νq

1− 1

ν
∗ q

1

ν − νq∗. (2.6)

The middle term is the normalized revenue function so that it starts from zero with slope 1 at q∗. q∗

can be regarded as the cutoff output level. With C(0, φ) > 0, plants producing output levels below

some q∗ make negative profit and leave the market in equilibrium. With a one-to-one mapping between

productivity and output, there exists a corresponding cutoff productivity φ∗ for which plants do not

produce if φ < φ∗. Plants with φ = φ∗ are indifferent between producing quantity q∗ and exit.

The upper and lower ranges of a revenue function that can generate a monotonic x(φ) are illustrated

in Figure 3(a). The upper limit is the feasibility restriction, so that bounded solutions exist. At the same

time, revenue function has to stay above a logarithmic function to stay within those bounds. If the RTS

diminishes with q, so that εν < 0, a positive term is added to both sides of (2.5). In addition, the upper

limit is also affected by ν falling. Together, they help shift both limits upwards, with the upper limit

shifting by a larger value. This effect is depicted in Figure 3(b). In this case, revenue has to increase

with output, on average, even faster. With the same reasoning, if the RTS go up with q, both limits in

(2.6) shift downward, with the upper limit moving faster. In this case, the range in (2.6) closes quickly.

2.3 Some Examples

For simplicity, let’s assume that ν is fixed and constant and plants produce according to

q = φxν . (2.7)
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It is easy to check that the cost function associated with this production is C(q, φ) = (q/φ)
1

ν and satisfies

Assumption 2.1. With fixed ν, the relevant condition becomes εMR = −1. Testing this condition with a

linear inverse demand function of the form p(q) = p0 − p1q gives

dx

dφ
≶ 0 if q(φ) ≷

p0

4p1
. (2.8)

Using the one-to-one mapping of output to productivity in this example, one can equivalently express

the above condition in terms of productivity as follows

dx

dφ
≶ 0 if φ ≷

(

2

νp0

)ν (

p0

4p1

)1−ν

. (2.9)

Figure 4 shows q(φ) and x(φ) generated using p0 = 7.8 and p1 = 0.0335 7 and for three different values

of ν = 0.8, 1, 1.2. The figure also features the cutoff productivity for each case.

It can be shown that x(φ) relation need not necessarily be unimodal. A careful choice of demand

function can create an arbitrary form of x(φ). To show that, I reverse engineer a specific demand function

by assuming constant ν and setting 1 + εMR equal to the following polynomial

1 + εMR = a

n
∏

i=1

(Zi − q), (2.10)

and then strategically placing the zeros, Zi, to shape the form of x(φ) in desired ways. Some constraints

also apply. First of all, to have a falling upper tail, n has to be odd and
∏n

i=1 Zi > 0. The position of

each zero and the distance between zeros, |Zi+1 − Zi|, determine curvature. The location of peaks in

x(φ) can be controlled with each Zi. Also, the closer two zeros are, the smaller the trough in between

the corresponding peaks will be. If zeros are farther apart, then a larger trough can be generated. For

example, let 1 + εMR = 1
11000 (10 − q)(20 − q)(40 − q). The corresponding revenue, inverse demand,

productivity–output relation, and productivity–input relation for three different values of ν = 0.8, 1, 1.2

are shown in Figures 5 and 6. In this case, using three zeros, a bimodal x(φ) relation is created. Notice

that the demand function in Figure 6 looks almost indistinguishable from a CES demand, but with totally

different implications.

7These numbers come from calibrating this model to the concrete data in Section 5.3.
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3 Size Relations: Several Markets

So far, all plants were supposed to be operating in the same market and facing the same demand. When

costly trade is possible, Melitz (2003) shows that more productive units actually engage in trade and

increase their demand as a result. At the same time, less productive units supply only domestically.

Consequently, the very presence of trade possibilities subjects producers to different demands depending

on their production efficiency. Using a parsimonious trade model similar to that of Melitz (2003), I

show that differences in demand combines bell-curves for different markets to generate a more monotonic

relation to the advantage of high-productivity plants. However, in the big picture, the relation still has

a falling upper tail.

Let trade be possible with N other markets (N + 1 total markets) at a marginal cost of τi for outside

market i 8. For simplicity, assume constant ν and that all markets face the same linear demand curve.

Also assume that w = 1 in all markets, both before and after trade opens. Then, profit function for plant

j will be:

π = (p0 − p1q
D)qD +

N
∑

i=1

(p0 − p1q
O
i )qO

i −
qD +

∑N

i=1 qO
i

φj

−
N

∑

i=1

τiq
O
i , (3.1)

where D and O superscripts refer to the domestic and outside markets, respectively. Solving the first

order conditions yields

qj =
p0φj − 1

2p1φj

I[φj > φD
∗

] +

N
∑

i=1

(p0 − τi)φj − 1

2p1φj

I[φj > φO
∗i], (3.2)

where I[ ] is the indicator function, and domestic and foreign cutoff productivities are

φD
∗

=
1

p0
, φO

∗i =
1

p0 − τi

, i = 1, . . . , N. (3.3)

Figure 7 is based on using a linear demand and demonstrates how trade with multiple markets adds more

peaks to x(φ), resulting in monotonicity over a wider range of productivities compared to the non-trading

case. In this example, I am still using p0 = 7.8 and p1 = 0.0335, and I let trade be possible with five

other markets with trading costs τi = {3, 3.5, 4, 5, 6}. Note that a huge increase in market shares of high-

productivity producers still does not rule out a bell-shaped relation, though a wider bell is generated as

a result.

8I use the term “outside” to signify that other markets need not be international.
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Figure 7: The shape of productivity–output and productivity–input relations when it is possible to trade
with five other markets.

4 Data

4.1 The Concrete Industry as Test Bench

Results of Section 2 rely on the characterization of a market, so that all plants belonging to the same

market face the same, or very similar, demands. One class of industries where a market is easier to

identify is the localized-market industries. In industries whose products are mostly traded locally, the

center of trade is mainly an urban or industrial area with boundaries conveniently defined by already

available geopolitical borders such as county and state lines. In practice, even within a localized-market

industry, trade can still cross these borders for a number of traders, but the concentration of activity

makes defining markets for these industries a more feasible task compared to other industries.

Among industries with a localized market, the ready-mix concrete (SIC 3273) has many attractive

features to make it suitable for study. First, due to the high costs of transportation, concrete is not shipped

very far compared to many other products9. Therefore, it qualifies as a localized-market industry.

Second, concrete is a very homogeneous product. As a result, the magnitude of revenue variation

due to quality or taste differences is largely minimized, leaving mostly physical productivity to drive

differences in revenue productivity across plants. Foster, Haltiwanger & Syverson (2008) demonstrate

this fact empirically by showing that revenue and physical productivities behave mostly the same in several

industries, including concrete, where output is mostly homogeneous. This characteristic of concrete is

especially useful since most data, including mine, lack information on input and output prices and can

provide estimates of revenue productivity only.

Third, the homogeneity of concrete does not rule out the presence of productivity dispersion, even at

9The US Bureau of Transportation Statistics’ Commodity Flow Survey reports that concrete plants shipped their prod-
ucts to an average radius of 64 miles in 1993 and 82 miles in 1997.
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the equilibrium. Syverson (2004) shows that, because transportation costs for concrete are high, customers

make purchase decisions based not only on efficiency of production but also on physical distance. This

finding illustrates that concrete is a diverse product, not by variety, but by spacial differentiation. As a

result of this diversity, a wide range of productivities are present in the data, enabling me to study the

productivity–size relation.

Finally, more than 86% of all concrete plants and about 76% of those plants with less than 10 employees

are at least four years old (the average age is about 15 years). This fact is very likely caused by the spatial

differentiation of products, which limits competition, entry and exit. As for my results, I benefit from

the fact that the effect of entries and dynamics of young plants is largely minimized due to the maturity

of the average plant10.

I will define market size as the population of construction workers in an urban area. Syverson (2004)

discusses the suitability of such a definition by arguing that the construction industry is the main consumer

of ready-mix concrete, while the cost of concrete is a small share of construction costs. This makes the

demand measure reasonably with productivity shocks to concrete.

4.2 Data on the Concrete Industry

The source for my data is the US Center for Economic Studies’ Census of Manufactures (CM) panels 1982,

1987, 1992, and 1997. The CM spans the universe of manufacturing plants in the US, with plant defined

as an individual physical place of production and identified with a Plant Permanent Number (PPN).

Some of the reported variables in the CM are total shipment value, employment for production and

non-production workers, total hours worked, book values of and investment in machinery and structures

and costs of energy and materials. For each plant, the four-digit Standard Industry Classification (SIC),

product class, and location (state-county) are also reported in the CM11. The location information,

especially, enables me to link each plant geographically to its corresponding market defined below. I

use the real values for input and output constructed by Chiang (2005). Specifically, Chiang uses the

4-digit deflators available from the NBER/CES Productivity Database12 and estimates real equipment

and structure capital from a perpetual inventory model and the NBER estimated depreciation rates.

Many of the CM records are flagged as administrative records, for which all data except employment

is imputed. The quality of the imputed data is in serious doubt. For that reason, I use the weighted CM

subsamples for my analysis and estimates. This leaves me with 2,027 sample concrete plants.

10Davis, Haltiwanger & Schuh (1996) discuss how job creation and destruction rates change sharply from two to four
year-old plants, yet change very slowly as plants get older than four years.

11Some of the state-county data were missing or erroneous. These were fixed by matching the CM to the Census Bureau’s
Standard Statistical Establishment List (SSEL).

12Refer to Bartelsman & Gray (1996) for more details.
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The revenue Total Factor Productivity (rTFP) is used to measure productivity based on a Cobb-

Douglas production function and is computed using input cost shares and the deflated revenue as real

output. Formally, for plant j at time t, rTFP is defined as

rtfpjt = qjt − αhhjt − αeqkeq
jt − αstkst

jt − αeejt − αmmjt, (4.1)

where lower case letters label variables in logs. Here q is the nominal output deflated by the industry-

specific price index. h is labor input (total hours worked), and keq and kst are the equipment and

structures capital stocks, respectively. e is energy and m is material input. The α coefficients for

concrete are computed using the cost share indexes described by Chiang (2005). To make productivities

comparable over the selected range of years, I use residuals from regressing productivity values on year

dummies. I then re-adjust the mean value of the residual productivities to be equal to the original total

mean.

Finally, in the coming empirical results, instead of measuring a composite input, I will measure the

input size of plants by their total employment (TE) as defined by Davis et al. (1996, Appendix A.3.1).

Employment is easily observed for each plant and has reasonably low measurement error compared

to estimates of a composite input. In defense of this shift, I find that the correlation between total

employment and total hours for concrete plants is 0.95. Besides, if the relative intensity of productive

factors is assumed constant, the optimal choice of each input factor will be a constant proportion of

total hours, or alternatively a constant proportion of total employment. This enables me, at least for the

concrete industry, to treat the production function (2.7) as if it depended on employment only.

4.3 Demand Market

Due to availability of detailed data and required crosswalks, I use Core-Based Statistical Areas (CBSA)

as markets for concrete plants. A CBSA is a functional region around an urban center. The CBSA system

includes a mix of micro- and metropolitan areas in the United States, providing me with a sufficiently

large range of market sizes13. Economic activity is mostly concentrated within a CBSA, making it a

suitable candidate for market analysis, though the degree of market isolation can still depend on the

physical proximity of CBSA’s.

Market size is measured as the population of construction workers (SIC 15– to 17–) aggregated to the

CBSA level. Construction employment is obtained from the County Business Patterns aggregated to the

13The US Office of Management and Budget’s definition of a metropolitan area is an urban area with the population of
at least 50,000. Micropolitan areas are those with the population between 10,000 and 50,000.
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Mean Std.Dev. Min. Median Max.
43,173.4 58,022.6 48 16,600 327,397

Table 2: Summary statistics for population of construction workers in different markets.

CBSA level and matched by CBSA-year14. There are 667 markets that match to my subsample. More

detailed statistics for this market definition can be found in Table 2.

5 Empirical Results

In this section, I undertake a series of exercises with two major goals. First, I show that a bell-

shaped productivity–employment relation best fits the concrete data, using a range of parametric to

non-parametric methods. Second, I explain the low correlations in the data by non-monotonicity in the

productivity–input relation. The effect of the market size on the productivity–employment relation is

also highlighted in the exercises15.

5.1 Non-Parametric Estimation of the Relationship

To see how input and output relate to productivity in concrete, while imposing the least constraints, I

estimate the following non-parametric relations

TEj = H1(log(φj)) + ǫj , (5.1)

Qj = H2(log(φj)) + ζj . (5.2)

TE is the total employment at plant j and Q is the deflated value of output. I am leaving out time effects

for the moment to increase the number of observations used in estimation. Later, the time effect will be

included when estimating the relation semi-parametrically.

I estimate Hi(.), i = 1, 2 using the Nadaraya–Watson kernel regression with a Gaussian kernel

(Simonoff 1996). In my preferred setting, I choose a fixed bandwidth of 0.4 (for log productivity).

This choice enables me to demonstrate the qualitative nature of both relations, while filtering excess vari-

ations due to noise and disturbances. Estimation is done for 1,000 points spaced logarithmically along

the productivity axis and using all the available observations on concrete plants. Figure 8 shows the es-

14The employment data for some of the counties is suppressed to protect confidentiality of the data. I follow Syverson’s
method to impute those data. Basically, since the number of employers in several different size groups is being reported,
I will multiply the number by mid point of the size range and sum up to generate the impute. Also, the County Business
Pattern reports data as early as 1986. For that reason, I link my 1982 panel to the 1987 data on the worker population.

15All the empirical exercises in this section are also repeated (but not reported here) using revenue Labor Productivity
(rLP) for robustness check. rLP is especially less noisy but less detailed in describing production. On supporting side, the
implications turn out very much the same with both rLP and rTFP.
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Figure 8: Kernel regression estimates of productivity–employment and productivity–output relations and
the estimated density of plants in the concrete industry.

timated relations. The estimation error for these plots is inversely related to the probability distribution

of productivity (Bierens 1994). For this purpose, the KDE (with Gaussian kernel and bandwidth 0.4 for

log productivity) of plant concentration is shown at the bottom of Figure 8. The productivity range 1 to

20 seems to host most of the plants, while the density of observations becomes very sparse at the upper

and lower ends, where the estimation error is expected to be large. Focusing on the rTFP interval [1,20],

input is mostly falling with productivity, whereas output is mostly increasing. These observations seem

robust to the size of market, where market sizes are classified into two groups and KDE for each case is

shown in Figure 8 (I am using worker population of 3,000 to break the data).

5.2 Semi-Parametric Estimation of the Relationship

In the non-parametric estimates, the varying density of plants along the productivity axis and the presence

of outliers can undermine confidence that the overall picture of productivity–employment relationship is

that of a bell-shape. Also, in non-parametric estimation, data is not sliced by time so that a reasonable

number of observations are available for the method. More importantly, the shape of the relation in

markets of a certain size needs to be shown to be bell-shaped. In this section, I try to overcome these

issues by estimating a semi-parametric model with a polynomial of predetermined degree in the log
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Dep.Var. log(TEjt) log(Qjt)
σerror 1.127 1.119

Table 3: Standard deviation of error in the estimated semi-parametric models.

of productivity to approximate the relationship. I also estimate the productivity-output relationship

in the same way and make comparisons. The effects of time and market size are secondary and will be

approximated in both relations non-parametrically by fitting thin-plate splines (Moussa & Cheema 1992).

The general form of this model is

log(TEjt) =
P

∑

p=0

β1p log(φjt)
p + H1(Ljt, t) + ǫjt, (5.3)

log(Qjt) =

P
∑

p=0

β2p log(φjt)
p + H2(Ljt, t) + ζjt, (5.4)

where TE is total employment, and Q is deflated shipment value. Ljt is the market size for plant j at

time t. φjt is measured as rTFP. To minimize the computational burden and to reduce running time

down to a reasonable length, market size is classified into discrete values by rounding its log to the nearest

0.5. P is the degree of the polynomial term used in the model.

The estimates are computed using a penalized least-squares method that minimizes the following

function with respect to βp’s and a proper choice of function Hi(., .)

Sλ =
1

n

n
∑

j=1

∑

t

ǫ2jt + λJ2

(

Hi(L, t)
)

. (5.5)

J2

(

Hi(., .)
)

is a measure for the roughness of the fit, and here it is defined as the integral of the square

of the second derivative of Hi with respect to its arguments. λ is the penalty parameter, whose choice is

a trade-off between accuracy of the fit and its smoothness. s is the number of observations. My actual

choice of value for λ proves not to be very crucial as the estimation result remains practically unchanged

for values of λ within a wide range from 0.1 to 10. I report results when I set λ equal to 1.

The choice of polynomial degree in model (5.3), however, seems critical. A small value of P will not

capture enough curvature, and high values of P will add in noise and cause instability of estimates. In

an experimental stage, I added polynomial powers one by one, until the estimates started to become

unstable. The most stable predictions are achieved when P = 4. Table 3 reports the standard errors

from estimating models in (5.3).

To demonstrate the estimation results, predicted values were generated for three representative market

sizes: 1,000, 10,000, and 100,000. The results of the previous section suggest using the productivity
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Figure 9: Estimated productivity–employment and productivity–output relationship in the concrete in-
dustry.

range 1 to 20 to avoid having to interpret the segments caused by outliers. The estimated curves for

productivity–employment and productivity–output relations are shown for this range in Figure 9. Results

are very similar to those from the kernel regression.

5.3 Correlations with Productivity

It is also worth calibrating a model of linear demand with production function (2.7) to investigate the

extent to which I have been able to reduce productivity–employment correlations as a result of a bell-

shaped relation. With Syverson (2004) estimating the returns to scale in the concrete industry around

0.996, the constant returns to scale assumption is realistic enough and also lets me solve for an analytical

solution, which is of the form

qj =
p0 −

1
φj

2p1
, xj =

qj

φj

. (5.6)

Applying nonlinear least-squares to the data on plant-level employment and rTFP, the model parameters

are estimated as p0 = 7.797(0.280) and p1 = 0.034(0.002) (numbers in parentheses are standard devia-

tions). 1,000 bootstrapped distributions of productivity are generated and employment and its correlation

with productivity are computed using (5.6) and the estimated p0 and p1. The resulting correlations are

reported in Table 4.

Data shows weak negative correlations between productivity and employment, an indication that the
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Source corr(TE,rTFP) corr(Q,rTFP)
Data -0.035 -0.008

Simulation -0.298(0.109) 0.193(0.106)
Simulation with

δj = U [−0.25p0, 0.25p0] -0.259(0.095) 0.020(0.018)
Simulation with

δj = U [−0.5p0, 0.5p0] -0.197(0.075) 0.010(0.017)
Simulation with

δj = U [−0.9p0, 0.9p0] -0.132(0.052) 0.005(0.016)

Table 4: Actual and bootstrapped correlations between productivity and employment and between pro-
ductivity and output. (Standard deviations are shown in parentheses.)

most productive plants are not necessarily the largest. Meanwhile, output has a very weak correlation

with productivity, but more positive than that with employment, as also indicated by the results of

previous sections.

The bootstrapped results, on the supporting side, show that a bell-shaped relationship can bring

down the correlations with employment into the negative territory, while still keeping correlations with

output positive. However, looking at correlation levels, the parametric model seems to have overdone its

purpose. With market size deemed important in this relation, I suspect that the parametric model is

estimated for the aggregate industry and, hence, misses demand variations due to differences in market

size. Also, my theoretical model ignores the presence of demand shocks that might be caused by shifting

construction activity or economic conditions. To partly account for these effects, I rewrite my inverse

demand function as

pj = p(qj , L) + δj , (5.7)

where δj is an idiosyncratic demand shifter and summarizes the effect of change in market size as well

as demand shocks. Random shocks are drawn from a uniform probability distribution independently for

each single plant and in each run of the bootstrap process. Table 4 reports the simulated correlations

with different ranges of shocks and using the same estimated parameters as before. Correlations actually

move closer to those of data as the range of possible shifts widens to cover the whole range of demand

sizes from zero and upwards.

6 Conclusion

Using models that generate non-monotonic relations between input size and productivity are subject to

harsh criticism. Constant-elasticity demand has been very popular with researchers since Dixit & Stiglitz

(1977) showed the nice aggregation properties that this demand function exhibits. However, in practice,
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this assumption does not seem to hold very well. The input–productivity relation is non-monotonic within

concrete and also within most other industries, judging by their low productivity-employment correlations

and also shown by Bakhtiari (2008) for the general class of localized-market industries. Consequently,

future models of heterogeneous producers have to consider the possibility of non-monotonic relations,

especially when discussing productivity dispersion and size distributions.

This paper unifies the role of demand and production in predicting the sign of input–productivity

slope in a simple algebraic condition. The simplicity of the condition opens new avenues for a creative

mind to wander into new territories. Arbitrary forms of input–productivity relations can be generated

and be associated with a corresponding demand structure. Also, the possibility of identifying demand

(unobserved) from available data on employment, sales, capital stock, and productivity (observable)

exists. The availability of micro-level data on size and productivity might actually be a practical bridge

to the demand side, and the results of this paper act as a prelude to harnessing the wealth of information

already available to us but hidden in the data.
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