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BAYESIAN AND CONSISTENT ASSESSMENTS∗

CARLOS PIMIENTA†

ABSTRACT. In a Bayesian assessmentbeliefs are computed from the
strategy profile following Bayes’ rule at positive probability information
sets and for every subgame. We characterize the set of extensive-forms
(extensive-form games without a payoff assignment) for which the sets
of Bayesian assessments and consistent assessments coincide. In do-
ing so we disentangle the different restrictions imposed byconsistency
across information sets.

1. INTRODUCTION

A sequential equilibrium (Kreps and Wilson, 1982) is a sequentially ra-
tional consistent assessment. The notion of consistency incorporated in the
definition of sequential equilibrium provides a way of selecting beliefs at
zero probability information sets. Loosely speaking, consistent beliefs must
admit an explanation consisting of “small trembles” made toreach those in-
formation sets.

There is a broad theoretical literature dealing with sequential equilibrium.
This partly stems from the apparently ad-hoc procedure whereby consis-
tency selects beliefs, which urged an effort to understand better the no-
tion of consistency and its game theoretical implications.Swinkels (1993),
Battigalli (1996) and Kohlberg and Reny (1997) show that consistency is
related to the game theoretical principle of strategic indepencence. If dif-
ferent players choose their strategies independently thentheir assessments
must be consistent.1
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1 In fact they show that consistency is equivalent to a “strong” version of independence.
See Swinkels (1993) and Kohlberg and Reny (1997) for different interpretations of this
result.
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A number of papers also offer different characterizations of consistency
and/or show that, under certain conditions, sequential equilibrium is equiv-
alent to weaker equilibrium concepts. Fudenberg and Tirole(1991) define
perfect Bayesian equilibrium imposing some intuitive restrictions on beliefs
and show its equivalence to sequential equilibrium in multi-period games
with observable actions. Perea y Monsuwé, Jansen, and Peters (1997) pro-
vide an algebraic characterization of consistency withoutmaking use of
trembles. Litan and Pimienta (2008) find the maximal class ofextensive-
forms such that sequential equilibrium and subgame perfection coincide in
equilibrium strategies and equilibrium outcomes.

In this paper we look at those instances where consistency places no re-
strictions at zero probability information sets. For simplicity, we restrict
ourselves to finite extensive-form games without proper subgames. This
is motivated by the observation that the set of consistent assessments of a
subgame coincides with the projection of the set of consistent assessments
for the entire game on those coordinates corresponding to the subgame; and
that every consistent assessment of the subgame of is part ofsome consis-
tent assessment for the entire game. Apart from this restriction, we do not
impose any further structure on the extensive-form games other than perfect
recall.

To introduce the reader to the nature of the results and the characteriza-
tions that we shall derive consider theextensive-formof Figure 1. We refer
to it as extensive-form and not as extensive-form game because it lacks a
payoff assignment. (Hence, in the sequel, whenever payoffsare not yet
specified we talk about extensive-forms and subforms instead of extensive-
form games and subgames.) If PlayerI movesOut then any belief at Player
II ’s information set is consistent as it can be justified by an appropriate
sequence of trembles. A similar argument holds in the extensive-form of
Figure 2. If playersI andII play according to(r1, r2) then arbitrary beliefs
at PlayerIII ’s information set are consistent.

To formalize these ideas, we define Bayesian assessments by imposing
the only requirement that beliefs at positive probability information sets
are computed from the strategy profile using Bayes’ rule. Clearly, every
consistent assessment is a Bayesian assessment and in general, not every
Bayesian assessment is consistent. Our objective is to characterize the set
of extensive-forms without proper subforms such that everyBayesian as-
sessments is consistent. Consider again the extensive-forms of Figure 1 and
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Figure 2. In Figure 1 (Figure 2) whenever PlayerII ’s information set (Player
III ’s information set) is reached with positive probability, Bayes’ rule fully
determines beliefs at that information set; and whenever that information
set is reached with zero probability, arbitrary beliefs areguaranteed to be
consistent.

It is not difficult to come up with examples of extensive-forms for
which some Bayesian assessment is not consistent. This is thecase of the
extensive-form in Figure 3 and the Bayesian assessment(Out, l2,R,µ(x2) =
1). The reason is that consistent beliefs should place probability zero at the
central node of PlayerIII ’s information set given that in a sequential equilib-
rium “correlation in defections are (partially) ruled out”(Kreps and Wilson,
1982, p. 875). That is, if PlayerI defects, it does not make a defection of
PlayerII more likely.

Figure 5 contains another example. Kreps and Wilson (1982, p. 876)
explain how the consistency criterion invokes the “common knowledge”
principle for beliefs. Hence, any assessment where PlayerI movesOut
and playersII andIII assess different relative probabilities over their left-
hand and right-hand nodes is not consistent. The current work identifies the
relevant characteristic shared by the extensive-forms in figures 3, 5, and any
other extensive form where consistency selects a strict subset of Bayesian
assessments. In identifying this characteristic we will also disentangle the
different restrictions imposed by consistency across information sets.

There are practical reasons why we think that this type of result is worth
exploring. Mainly, the characterizations derived here canbe useful when
it comes to economic applications. They are based on extensive-forms and
quite easy to verify. Furthermore, they can be interpreted as a delineation
of the cases where arbitrary off-equilibrium beliefs are guaranteed to be
consistent. In the last section we show some modification of the the results
that serve this purpose.

Additionally, this paper can help understand better how consistency
brings about restriction in beliefs. While in some cases we may already
have a very good understanding about how consistent beliefsare shaped, as
it happens for instance when one information set comes afteranother like in
Figure 5, in some other cases this relation may be more obscure or, at least,
difficult to identify by arguments that are not context specific (see Figure 6).

l1
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FIGURE 2.
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For this reason, a unifying explanation of the restrictionson beliefs entailed
by consistency that is based solely on the characteristics of extensive-forms
can be of theoretical interest.

In the next section we introduce the basic notation of extensive-form
games and important definitions. Section 3 contains the results illustrated
by a series of examples. Proofs are offered in Section 4. Section 5 is con-
cerned with the relationship between sequentially rational Bayesian assess-
ments and sequential equilibria. Section 6 concludes and shows some prac-
tical implications of the results.

2. BASIC NOTATION AND DEFINITIONS

We start by describing some necessary notation and terminology for finite
extensive-form games with perfect recall. We decompose anextensive-form
gameinto its extensive-formand the payoff assignment. Our characteriza-
tions are stated in terms of extensive-forms. As we mentioned in the intro-
duction we focus on extensive-forms without propersubforms.2

The set ofplayersis N = {0,1, . . . ,N}. Player 0∈ N corresponds to
Nature. We index players other than Nature with the lettern= 1, . . . ,N.

The set ofnodesin the tree is represented byX and the set of final nodes
by Z. The collection ofinformation setsof player n is Hn. An element
h∈ Hn represents the set of nodes that playern cannot distinguish when she
has to move ath. The information set that contains nodex is denoted as
h(x). Furthermore,H =

⋃

nHn.
The set ofactionsavailable at the information seth is A(h). We use

the termsaction andchoice interchangeably. We denote asA =
⋃

hA(h)
the complete set of actions across information sets. Therefore, theA(h)’s
partitionA. If playern chooses actiona∈ A(h), h∈ Hn, when at nodex∈ h,
the next node being reached is denoted byτ(x,a).

2 The terms “extensive-form” and “subform” are taken from Kreps and Wilson (1982).
Kreps and Wilson, however, obtain an extensive-form game from an extensive-form by
specifying an assignment of payoffs to ending nodes together with a strictly positive prob-
ability measure over the set of initial nodes (i.e. Nature’sinitial move). We incorporate the
probabilities associated to Nature’s moves into the extensive-form.
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Given any node, there is a unique sequence of choices that from the root
of the extensive-form lead to that node. That sequence of choices is called
path to node xand it is denoted byP(x).

An extensive-form game is obtained from an extensive-form by specify-
ing for each playern a Bernoullian utility function un : Z → R. Once we
fix an extensive-form, an extensive-form game is given byN Bernoullian
utility functions and it can be seen as a point inR

N|Z|.
The set of playern’s pure strategies Sn is the set of all functionssn :

Hn → A such thatsn(h) ∈ A(h) for all information setsh in Hn. The set
of pure strategy profiles isS= S1× ·· · ×SN. We write S(x) andS(h) to
denote the set of pure strategy profiles that reach, respectively, nodex and
information seth. The setsSn(x) andS−n(x) are the projections ofS(x) on
Sn andS−n = ∏m6=nSm.

A behavioral strategy profileσ is a sequence of functionsσ(· | h) :
A(h)→ [0,1], one for eachh∈ H, satisfying∑a∈A(h)σ(a | h) = 1 for all h.
In turn, asystem of beliefsµ is a sequence of functionsµ(· | h) : h→ [0,1],
one for eachh∈ H, satisfying∑x∈h µ(x | h) = 1 for all h. An assessmentis
a strategy profile together with a system of beliefs(σ ,µ).

We now introduce our two objects of study.

Definition 1 (Consistent Assessments). The assessment(σ ,µ) is consistent
if it is the limit point of a sequence{(σ t ,µ t)}∞

t=0 such that, for allt, σ t is
completely mixed (i.e.σ t(a | h)> 0 for all h∈ H and alla∈ A(h)) andµ t

is derived fromσ t using Bayes’ rule.

Definition 2 (Bayesian Assessments). The assessment(σ ,µ) is aBayesian
assessmentif if the value of µ at information sets reached with positive
probability is computed fromσ using Bayes’ rule.

Of course, every consistent assessment is a Bayesian assessment.

3. NON-CONSISTENTBAYESIAN ASSESSMENTS

In this section we characterize the set of extensive forms such that the
set of consistent assessments is a strict subset of the set ofBayesian assess-
ments. This is done in propositions 1 and 3. Theorem 1 will later assert
that in the complement of the set laid out by the propositionsthe sets of
Bayesian and consistent assessments coincide.

To provide a more clear intuition about the results let us introduce relative
probabilities over the setSof pure strategy profiles.3 A relative probability
on S specifies the relative weight of each subset of pure strategyprofiles

3 Relative probabilities are equivalent to the notion ofconditional probability sys-
tems(Myerson, 1986). In game theory conditional probability systems arise naturally
from the need of specifying probabilities conditional on events that have prior probabil-
ity zero. Among others, conditional probability systems have been studied by Myerson
(1986); McLennan (1989a,b); Blume, Brandenburger, and Dekel (1991); Swinkels (1993);
Hammond (1994); Battigalli (1996); and Kohlberg and Reny (1997)
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with respect to any other subset. This includes subsets having prior proba-
bility equal to zero. A relative probabilityρ onSmust satisfy the following:
for every subsetQ⊂ Sand all nonempty subsetsR, T ⊂ S,

(i) ρ(Q,R) ∈ [0,∞],
(ii) ρ(Q,Q) = 1,
(iii) ρ(Q,T)+ρ(R,T) = ρ(Q∪R,T) if Q∩R=∅, and
(iv) ρ(Q,T) = ρ(Q,S)ρ(S,T), whenever the product does not involve

both 0 and∞.

Standard prior probabilities are therefore given byρ(·,S).
Battigalli (1996) and Kohlberg and Reny (1997) show that everyconsis-

tent assessment can be generated, in a way specified below, bya relative
probability defined over the set of pure strategy profiles andsatisfying a
strong independence property. Strong independence implies weak indepen-
dence and, for our purposes, the latter concept is restrictive enough. The
relative probabilityρ defined overS is weakly independent if for every two
nonempty Cartesian subsetsQ, R⊂ Sand every playern∈ N ,4

ρ(Qn×Q−n,Rn×Q−n) = ρ(Qn×R−n,Rn×R−n).

Every consistent assessment(σ ,µ) can be generated by a relative proba-
bility ρ satisfying weak independence according to:5

σ(a | h) = ρ(S(τ(x,a)),S(h)) for anyx∈ h;and,(3.1)

µ(x | h) = ρ(S(x),S(h)).(3.2)

It can be shown that perfect recall and weak independence imply that (3.1)
is well defined (i.e. it does not depend on the choice ofx∈ h).

We are going to derive a condition that implies restrictionson consistent
beliefs at zero probability information sets. Recall that the path to a node
x, denoted byP(x), is the collection of actions that from the root of the
extensive-form lead to that node. Consider two nodesx and y that have
a common action ¯a ∈ P(x)∩P(y) in their respective paths. Letσ be
a pure behavioral strategy profile that takes action ¯a with probability zero
and every other action in the path tox with probability one. Even though
underσ both nodesx andy occur with probability zero, intuitively, nodey
cannot beinfinitely more likelythan nodex. Let us now offer a more formal
argument.

Let ρ an independent relative probability defined onS that induces the
consistent assessment(σ ,µ) whereσ is as above. We denotesσ the pure

4 Swinkels (1993) calls this conditionindividual quasi-independence. It is the (weak)
notion of independence considered by Kohlberg and Reny (1997). He uses the termquasi-
independencefor the analogous condition when more than one coordinate isallowed to
change. This is the independence condition used by Battigalli (1996). Quasi-independence
implies individual quasi-independence but the opposite isnot true. Swinkels (1993) offers
an example, credited to Myerson, at that effect.

5 The converse is not true, i.e. not every weakly independent relative probability system
generates a consistent assessment. See Kohlberg and Reny (1997) for an example.
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strategy profile which is equivalent toσ . Let Playern be the player that
moves at the information set̄h where the choice ¯a is available. Owing
to independence, the relative probabilityρ(S(x),S(y)) must be equal to
ρ(S(x)−n×{sσ

n },S(y)−n×{sσ
n }). Moreover,ρ(S(x)−n×{sσ

n },S) > 0 be-
cause one element inS(x)−n×{sσ

n }, the pure strategy profilesσ , receives
strictly positive prior probability. Therefore,ρ(S(x)−n × {sσ

n },S(y)−n ×
{sσ

n })> 0 and consequentlyρ(S(x),S(y))> 0. That is, nodey is not infin-
itely more likely than nodex. Now, if xandybelong to the same information
seth thenS(x) andS(y) are subsets ofS(h) and we obtainρ(S(y),S(h))< 1.
Furthermore, if the information seth is reached with probability zero under
σ the last inequality and (3.2) implyµ(y | h)< 1.

Consider again the extensive-form of the game in Figure 3. Theleftmost
node and the central node in PlayerIII ’s information set have a common
choice, actionl1, in their respective paths. If playersI andII play according
to (Out, l2) then(Out, l2) is infinitely more likely than(Out,m). We can use
independence to conclude that the profile(l1, l2) is infinitely more likely
than(l1,m), i.e. the leftmost node in PlayerIII ’s information set is infinitely
more likely than the central node. Since PlayerI playsOut, PlayerIII ’s
information set is reached with probability zero and we needto specify
beliefs at her information set. It follows that consistent beliefs must assign
probability zero to that central node. This restriction does not apply to
Bayesian assessments.

We start our characterization with a sufficient condition for an extensive-
form to have Bayesian assessments that are not consistent. Itcorresponds
to the set of properties suggested above and in our analysis of Figure 3.

Proposition 1. Consider an extensive-form without proper subgames. Sup-
pose that we can find an information set h with two distinct nodes xand y
and a pure behavioral strategy profileσ such that the following conditions
hold:

(i) the information set h is reached with probability zero under σ ; and
(ii) there exists one action̄a∈P(x)∩P(y) that satisfiesσ(ā | h̄) = 0.

Then the set of consistent assessments is strictly contained in the set of
Bayesian assessments.

Property (i) above is clear. The sets of Bayesian and consistent assess-
ments may differ only if some information set receives probability zero. It
also shows that relative probabilities are only part of the story. Not only do
we need a behavioral strategy profile that reveals a likelihood ordering be-
tween two nodes, but also one that at the same time reaches theinformation
set containing these two nodes with probability zero.

Property (ii) captures the relevant features in Figure 3. Tounderstand bet-
ter why we need an action ¯a∈P(x)∩P(y) observe that in figures 1 and 2,
where every Bayesian assessment is consistent, we cannot findtwo nodes
in the same information set that have a common action in theirrespective
paths. To see why we needσ(ā | h̄) = 0, consider the extensive-form of
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Figure 4 and a behavioral strategy profile that assigns probability one to
(l ,Out). There is no restriction on how PlayerIII should form her con-
sistent beliefs. (Every conceivable belief vector at that information set is
the limit of a sequence of conditional probabilities generated by an ap-
propriately chosen sequence of trembles.) In this case, forany system of
beliefsµ, the resulting assessment can be associated to a well definedinde-
pendent relative probability system on the set of pure strategy profiles—and
every Bayesian assessment is consistent.

It is worthwhile pointing out that it is enough to find one behavioral strat-
egy profile that, together with the extensive-form under consideration, sat-
isfies all three properties in Proposition 1 for us to know that there are non-
consistent Bayesian assessments. However, nothing guarantees that every
strategy profile satisfying these three properties is part of one of such as-
sessments. To see this we can combine the extensive-forms infigures 3 and
4 so that both playersI andII can move out. A strategy profile where, in-
deed, both PlayersI and PlayerII move out satisfies the three properties.
However, arbitrary beliefs at playerIII ’s information set are consistent.

Figure 5 is another example where the set of consistent assessment is a
strict subset of the set of Bayesian assessments. Consistencyimplies com-
mon knowledge of beliefs. This means that PlayerII and PlayerIII must
have the same belief over their left-hand and right-hand nodes and that, con-
sequently, not every Bayesian assessment is consistent. In order to see this
in terms of Proposition 1 note that actionr2 belongs to the path of the two
nodes in PlayerIII ’s information set.

The strategy profile(Out, l2,X) is one of the strategies that Proposition 1
demands. But the behavioral strategy profile(Out, r2,L) does not satisfy
property (ii) above and yet it does not admit arbitrary Bayesian beliefs to
form consistent assessments. This suggests that we should explore further
how the values assumed by consistent beliefs at two different information
sets relate to each other. We start this analysis studying signaling games,
where it is well known that sequential equilibrium does not impose restric-
tions on beliefs.6 Once Nature moves, the sender observes her type and
sends a signal to the receiver. If the receiver observes a signal which is
sent in equilibrium, she applies Bayes’ rule to derive her beliefs about the

6 See, for instace, Kohlberg (1990).
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type of the sender. If a signal is not sent in equilibrium, thereceiver has
no restrictions whatsoever to form her beliefs about the type of the sender
upon receiving that signal. Note well that every pair of nodes that belong
to the same information set have completely different pathsfrom each other
because “identical” signals can come from different types.

Consider the extensive-form of a slightly modified signalinggame in Fig-
ure 6.7 After the sender learns her type, and before she sends a signal, she
can end the game. As it is the case in a standard signaling game, no pair
of nodes that belong to the same information set have a commonaction
in their respective paths. Nonetheless, there are actions that are common
to the paths to nodes that belong to different information sets. That is,
C1 ∈ P(x1)∩P(y2) andC2 ∈ P(x2)∩P(y1). Consider the behavioral
strategy profile(F1,F2,U1,D2,RU ,L2) which assigns probability zero toC1
andC2. As mentioned previously, if a strategy profile assigns positive prob-
ability to all the actions leading to a node but one, which is also in the path
to a second node, then the underlying independent relative probability must
consider the (set of pure strategy profiles leading to the) first node as infin-
itely more likely than the second node. In terms of the example this means
ρ(S(x1),S(y2)) = ρ(S(x2),S(y1)) = ∞ which in turn implies that we can-
not haveρ(S(y1),S(x1)) = ρ(S(y2),S(x2)) = ∞ because otherwise a node
must be infinitely more likely than itself. From this argument we obtain that
a consistent assessment with a behavioral strategy profile as above cannot
display beliefs such thatµ(y1 | h1) = µ(y2 | h2) = 1. This restriction does
not apply to Bayesian assessments.

The relevant features of the previous example are generalized in the next
proposition into a new sufficient condition on extensive-forms so that the
set of consistent assessments is a strict subset of the set ofBayesian assess-
ments.

Proposition 2. Consider an extensive-form without proper subforms. Sup-
pose that we can find two distinct information sets h1, h2, four distinct nodes

7 The extensive-form of this game is a simplified version of theone in Figure 235.1 in
Osborne and Rubinstein (1994).
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x1, y1, x2, y2 and a pure behavioral strategy profileσ such that the following
conditions hold:

(i) x1, y1 ∈ h1 and x2, y2 ∈ h2;
(ii) the information sets h1 and h2 are reached with probability zero

underσ ; and
(iii) we can find actions̄a1 ∈P(x1)∩P(y2) andā2 ∈P(x2)∩P(y1)

that satisfyσ(ā1 | h̄1) = σ(ā2 | h̄2) = 0.

Then the set of consistent assessments is strictly contained in the set of
Bayesian assessments.

Remark1. (i) If h1 = h2 then we can apply Proposition 1. However, it
is important thatx1 6= y1 andx2 6= y2. In particular, ¯a1 ∈ P(x1)∩
P(x2) andā2 ∈ P(x2)∩P(y1) together withσ(ā1 | h̄1) = σ(ā2 |
h̄2) = 0 do not guarantee that some Bayesian assessments is not
consistent. Note as well that the last two inclusions do not imply
P(x1)∩P(y1) 6=∅, hence, we cannot apply Proposition 1 in this
case.

(ii) Having two actions ¯a1 andā2 is also necessary. Suppose that in the
extensive-form of Figure 6 we delete actionC2 and replace the two
consecutive information sets of PlayerI by a single information set
where PlayerI has available the three choicesF2, U2 andD2. With
this modification every Bayesian assessment is consistent.

In our signaling game the two zero probability information do not come
one after the other as it occurs, for instance, in the extensive-form of Fig-
ure 5. We have seen that this extensive-form satisfies the conditions of
Proposition 1, therefore, we already know that some Bayesianassessments
are not consistent. We can now see that this extensive-form also satisfies the
conditions of Proposition 2. Indeed, if PlayerI movesOut, then PlayerII ’s
information set and PlayerIII ’s information set are reached with probabil-
ity zero. The left-hand node inII ’s information set and the left-hand node
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in III ’s information set have actionl2 in their respective paths. The analo-
gous is true for the right-hand nodes and actionr2. Note, nevertheless, that
if moving Out was not a possible action the resulting extensive-form would
satisfy the conditions of Proposition 1, but not the conditions of Proposi-
tion 2.

Similar arguments to those in our previous two examples are also valid
when three or more information sets are involved. Figure 7 illustrates this
with three information sets. Consider that playersI andII play according
to (Out,R1,R2,R3). We must specify beliefs at the three information sets of
PlayerIII . The following pairs of nodes have an action in their respective
paths that the previous profile attaches probability zero:(x1,y2), (x2,y3)
and(x3,y1). Weak independence implies that, for each of these pairs, the
pure strategy profile leading to the first node is infinitely more likely than
the pure strategy profile leading to the second node. It follows that a system
of beliefs such thatµ(y1 | h1) = µ(y2 | h2) = µ(y3 | h3) = 1 is not consistent.
Again, this restriction does not apply to Bayesian assessments.

The extensive-form of Figure 7 is such that no two information sets
receiving probability zero come one after another. Figure 8contains an
extensive-form where for some information sets this is the case. For rea-
sons analogous to those discussed in the previous examples,the assessment
(Out,L1,L2,µ(y1 | h1) = 1,µ(y2 | h2) = 1,µ(y3 | h3) = 1,µ(y4 | h4) = 1) is
not consistent.8

The general result, which subsumes Proposition 2, is the following:9

Proposition 3. Consider an extensive-form without proper subforms. Sup-
pose that we can find K≥ 2 distinct information sets h1, . . . ,hK, 2K distinct

8 One small difference is that in this exampleS(y1) andS(x2) are of the same “order of
magnitude”, i.e. neither set is infinitely more likely than the other becauseL1 is chosen by
the strategy profile with probability one. The same is true for S(y3) andS(x4).

9 Nonetheless, we present propositions 2 and 3 separately to facilitate the exposition of
the results. On a technical note, the proof of the Proposition 3 is done by induction (see
page 18), and Proposition 2 corresponds to the initial case.
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nodes x1,y1, . . . ,xK,yK and a pure behavioral strategy profileσ such that
the following conditions hold:

(i) for each i= 1, . . . ,K nodes xi and yi belong to hi;
(ii) the information sets h1, . . . ,hk are reached with probability zero

underσ ; and
(iii) for each i = 1, . . . ,K − 1 we can find and action̄ai ∈ P(xi) ∩

P(yi+1) that satisfiesσ(āi | h̄i) = 0, likewise, there is an action
āK ∈ P(xK)∩P(y1) such thatσ(āK | h̄K) = 0.

Then the set of consistent assessments is strictly contained in the set of
Bayesian assessments.

Remark2. (i) Proposition 2 corresponds toK = 2.
(ii) It is embedded in the statement of the proposition that we have to

find K information setsand an orderof those information sets such
that the condition are true. The conditions do not need to hold for
every possible order.

(iii) Again, it is important that the 2K nodes be distinct. However,
if some of theK information sets are not different it would only
mean that the conditions are satisfied for an integer strictly smaller
thanK.

(iv) If the conditions are satisfied for some value ofK it does not follow
that they are also satisfied for some integer smaller thanK. See for
instance, Figure 7 whereK = 3 and Figure 8 whereK = 4. In both
cases the conditions do not hold for smaller values ofK.

Theorem 1 states that the conditions in propositions 1 and 3 are not only
sufficient but also necessary.

Theorem 1. Consider an extensive-form without proper subforms where
some Bayesian assessments is not consistent. Then the extensive-form sat-
isfies either the conditions listed in Proposition 1 or the conditions listed in
Proposition 3.
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Intuitively, for a fixed behavioral strategy profile, if a zero probability
choice is in the path to two different nodes then we are losingfreedom
to choose consistent beliefs because the same tremble is associated to two
different nodes. The fact that the conditions in propositions 1 and 3 are
not satisfied means that we always have enough freedom so thatarbitrary
beliefs are consistent.

Take a behavioral strategy profileσ and two nodesx andy. Suppose that
there is at least one choice in the path tox that is not in the path toy and at
least one choice in the path toy that is not in the path tox. Suppose further
that none of these two choices is taken with positive probability under σ .
Based only in this information aboutσ and the structure of the extensive-
form we cannot derive a definite likelihood ordering betweennodesx and
y. Recurring to an argument based on trembles, we can fine-tune the trem-
bles associated to the two actions pinpointed before to makeone of the
sequences of trembles necessary to reach one of the nodes as likely as we
want with respect to the other. Ifx andy are the only nodes in the same
information seth and this is reached with probability zero underσ then we
can freely choose consistent beliefs ath.

If the conditions in Proposition 1 are not satisfied the aboveargument
holds even if we have more than two nodes inh and for anyσ . So consis-
tent beliefs ath can be freely chosen. But this choice of beliefs could, in
principle, constrain the set of consistent beliefs available for a second zero
probability information seth′. This can happen when one of the choices
whose tremble we fine-tuned before is in the path to some node in h′. If
the conditions in Proposition 3 are not satisfied forK = 2 then for each of
the remaining nodes in that information set we can again fine-tune some
tremble associated to a choice that is only in the path to thatnode and none
else inh′. The argument can be repeated again for a third zero probability
information seth′′ but if the conditions in Proposition 3 are not satisfied
for K = 3 we do not have restrictions in choosing beliefs ath′′. Continu-
ing in this fashion we can pick arbitrary beliefs at every zero probability
information set.

4. PROOFS

We begin by describing some additional notation.
Given a behavioral strategy profileσ , its carrier C (σ) is the union over

all information setsh of the choicesa ∈ A that satisfyσ(a | h) > 0. Fur-
thermore, a subset of choicesC ⊂ A is said to be a carrier if for each infor-
mation seth it contains at least one choice inA(h). The set of all carriers
is C (Σ). Every carrierC ∈ C (Σ) has associated a set of decision nodes
that are reached with positive probability when any strategy σ with carrier
C (σ) = C is played. We denote that set asX+(C) and its complement as
X0(C).

Given a system of beliefsµ, its supportsupp(µ) is the union over all in-
formation setsh of the decision nodesx for which µ(x | h)> 0. We reserve
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the termcarrier to talk about the set of choices that receive strictly posi-
tive probability for probabilities defined by strategy profiles, and the term
supportfor the analogous concept for probabilities associated to beliefs.

The main tool used in the proofs of Propositions 1, 2 and 3 is Lemma A1
in Kreps and Wilson (1982). Before stating that lemma, some concepts are
necessary.

A labelling is a functionL : A→N that maps each choicea into an integer
numberL(a). For each labellingL there is an associated functionFL : X →N

defined by
FL(x) = ∑

a∈P(x)

L(a).

Definition 3. Given a carrierC, the labellingL is said to be aC-labelling if
we havea∈C if and only if L(a) = 0.

A basis(C,Y) is a subset ofA×X. We say that the basis(C,Y) is con-
sistent if there exists at least one consistent assessment(σ ,µ) such that
C (σ) =C and supp(µ) =Y.

Lemma 1 (Kreps and Wilson (1982, Lemma A1)). The basis(C,Y) is con-
sistent if and only if there is a C-labelling L such that following condition
holds:

x∈Y if and only if x minimizes FL(·) on h(x).

For our purposes Lemma 1 implies the following. Take a behavioral
strategy profileσ that assigns probability zero to the information seth and
suppose that nodesx andy belong toh. If FL(x) ≤ FL(y) for everycon-
ceivableC (σ)-labellingL then a necessary condition for(σ ,µ) to be con-
sistent is thatµ(y | h) 6= 1. In order to prove Proposition 1 we show that,
if the extensive-form meets the conditions given in the proposition, we can
always find such a strategy profile or, more precisely, such a carrier.

For a behavioral strategy profileσ with carrier C, we are thus inter-
ested in inequalities of the formFL(x) ≤ FL(y) that remain true for every
C-labellingL. It will be useful to writeF(x,C) ≤ F(y,C) when this is the
case. For instance, if nodey comes afterx we can readily conclude that
F(x,C) ≤ F(y,C). The expressionF(x,C) ≤ F(y,C) can be meaningfully
read as “nodey cannot be infinitely more likely than nodex under any strat-
egy profile with carrierC”. If x andy belong to the same zero probability
information set this must be respected by consistent beliefs.

To avoid duplication of arguments we provide some results inthe next
lemma that are used continuously throughout the proofs. Throughout, ifE
andF are two arbitrary sets, we useE ⊂ F allowing for equality of the two
sets. As usual, the notationE\F represents the set of elements inE that do
not belong toF .

Lemma 2. Consider a carrier C, an information set h⊂ X0(C), and two
nodes x and y with a common action a∈

(

P(x)∩P(y)
)

\C. Let C′ =
C∪

(

P(x)\{a}), the following holds:
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(i) 0< F(x,C′)≤ F(y,C′);
(ii) if h 6⊂ X0(C′) then there is at least one nodêy ∈ h that satisfies

P(y)⊂C∪P(x); and moreover
(iii)

(

P(x)∩P(ŷ)
)

\C 6=∅, i.e. 0< F(ŷ,C)≤ F(x,C).

Proof. Take a carrierC that does not contain any actiona that satisfiesa∈
P(x)∩P(y). Suppose that under that carrierh∈ X0(C). (Note thatx and
y belong toX0(C) becausea /∈C and that we no dot necessarily assumex,
y∈ h.) We obtain a new carrierC′ by adding toC all the choices in the path
to x except fora, therefore, we also obtain thatx andy belong toX0(C′).

To prove part (i) take anyC′-labellingL. Action a is the only element in
P(x) that is not inC′. Hence,FL(x) = L(a)> 0 and sincea is also inP(y)
we obtainFL(y) ≥ L(a). That is, nodey cannot be infinitely more likely
thanx under a strategy with carrierC′.

Let us turn to part (ii). Suppose now that underC′ some node inh, sayŷ,
is reached with positive probability. As the only difference betweenC and
C′ is thatC′ contains actions in the path tox that are not included inC that
means thatx andŷ have common actions in their respective paths.

Part (iii) follows because every action in the path to ˆy that is not in the
path tox is in C. Since we also have ˆy ∈ X0(C) we obtain 0< F(ŷ,C) ≤
F(x,C). That is, nodex cannot be infinitely more likely than ˆy under a
behavioral strategy profile with carrierC′. �

We can prove the first proposition.

Proof of Proposition 1.Recall thath(x) represents the information set that
contains nodex. The conditions listed in the proposition are equivalent to
the following set being nonempty.

Φ1 =
{

(x,y, ā,C) ∈ X2×A×C (Σ) : y∈ h(x), y 6= x, h(x)⊂ X0(C),

ā∈
(

P(x)∩P(y)
)

\C
}

.

Take an arbitrary element(x,y, ā,C) ∈ Φ1 and construct the carrier

Ĉ=C∪
(

P(x)\{ā}
)

.

Using Lemma 2 (i) we obtain thatF(x,Ĉ) ≤ F(y,Ĉ). If h(x) ⊂ X0(Ĉ)
then the desired result follows. If otherwise some ˆy ∈ h(x) satisfies ˆy ∈
X+(Ĉ) then Lemma 2 (iii) impliesF(ŷ,C) ≤ F(x,C). Sinceh(x) ⊂ X0(C)
this concludes the proof. �

The argument behind the proof of Proposition 2 is similar butslightly
more involved because we have to deal with nodes in two different infor-
mation sets. Given two information setsh1 and h2, we want to use the
structure of the extensive-form to find a carrierC and four nodesx1,y1 ∈ h1,
x2,y2 ∈ h2 such thatF(x1,C)≤ F(y2,C) andF(x2,C)≤ F(y1,C). If h1 and
h2 are subsets ofX0(C) then beliefs at those information sets need to be de-
termined in every assessment(σ ,µ) with C (σ) =C. Consistency implies
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that those beliefs cannot be chosen so thatµ(y1 | h1) = µ(y2 | h2) = 1 be-
cause that would imply that for someC-labellingL it holdsFL(y1)< FL(x1)
and FL(y2) < FL(x2), but necessarily we also haveFL(x1) ≤ FL(y2) and
FL(x2) ≤ FL(y1). The main difficulty of the argument consists of show-
ing that the information setsh1 andh2 are reached with probability zero.
Lemma 2 will be of great help at this effect.

Proof of Proposition 2.Assume thatΦ1 =∅. The conditions in the propo-
sition imply that the following set is nonempty:

Φ2 =
{

(x1,y1,x2,y2, ā1, ā2,C) ∈ X4×A2×C (Σ) : h(x1) 6= h(x2),

y1 ∈ h(x1), y1 6= x1, y2 ∈ h(x2), y2 6= x2, h(x1)∪h(x2)⊂ X0(C),

ā1 ∈
(

P(x1)∩P(y2)
)

\C, ā2 ∈
(

P(x2)∩P(y1)
)

\C
}

.

Let h1 = h(x1) andh2 = h(x2). Take any(x1,y1,x2,y2, ā1, ā2,C)∈Φ2 and
construct the carrier

Ĉ=C∪
(

P(x1)\{ā1}
)

∪
(

P(x2)\{ā2}
)

.

From Lemma 2 (i) we obtainF(x1,Ĉ)≤ F(y2,Ĉ) andF(x2,Ĉ)≤ F(y1,Ĉ).
If both h1 and h2 are contained inX0(Ĉ) then no consistent assessment
(σ ,µ) with C (σ) = Ĉ satisfiesµ(y1 | h1) = µ(y2 | h2) = 1. So we need to
prove the result for the cases where eitherh1 6⊂ X0(Ĉ) or h2 6⊂ X0(Ĉ).

Thus, let us assume thath2 6⊂ X0(Ĉ) (the other case is analogous) and
construct the carrier

Ĉ1 =C∪
(

P(x1)\{ā1}
)

.

Now we show thath1 ⊂ X0(Ĉ1). Suppose to the contrary thath1 6⊂
X0(Ĉ1). Lemma 2 implies that some node inh1 (that is notx1) andx1 have a
common actions in their respective paths that is not contained inC. But this
would imply that the setΦ1 is not empty as we assumed at the beginning.
We can concludeh1 ⊂ X0(Ĉ1).

We havex1 ∈ X0(Ĉ1) because ¯a1 does not belong tôC1. If some node
in h1 does not belong toX0(Ĉ1) then this node must contain in its path a
choice that is also in the path tox1. This is becauseh1 ⊂ X0(C) and the
only difference betweenC andĈ1 is that the latter contains actions in the
path tox1 that are not contained in the former. However, we assumed that
Φ1 is empty so that we can concludeh1 ⊂ X0(Ĉ1).

We also know that ¯a2 /∈ Ĉ1, for otherwise ¯a2 would be a common choice
betweenx1 andy1. Furthermore, ¯a1 /∈ Ĉ1 by construction. It follows that
x2, y2 ∈ X0(Ĉ1). Sinceh2 6⊂ X0(Ĉ) andΦ1 = ∅ we know that there is a
subset of nodeŝh2 ⊂ h2 that does not includex2 nor y2 and that satisfies
ĥ2 ⊂ X+(Ĉ1). From Lemma 2 (iii) we obtainF(ŷ2,C) ≤ F(x1,C) for each
ŷ2 ∈ ĥ2.
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Construct the new carrier

Ĉ′
1 =C∪

(

P(y1)\{ā2}
)

.

By Lemma 2 (i),F(y1,Ĉ′
1) ≤ F(x2,Ĉ′

1). Using the same arguments as
before we can show thath1 ⊂ X0(Ĉ′

1) andx2, y2 ∈ X0(Ĉ′
1). If h2 ⊂ X0(Ĉ′

1)
then the desired result follows becauseF(ŷ2,C) ≤ F(x1,C) keeps holding
when we changeC for Ĉ′

1. That is, a consistent assessment does not satisfy
µ(x1 | h1) = µ(x2 | h2) = 1.

Hence, the next case we need to explore is when a subset of nodes ĥ′2⊂ h2

exists such that̂h′2 ⊂ X+(Ĉ′
1). We construct a new carrier using the set of

choices:

B̃=







P(x1)\





⋃

ŷ2∈ĥ2

P(ŷ2)











⋃







P(y1)\





⋃

x̂2∈ĥ′2

P(x̂2)











.

Let the new carrier be:

C̃=C∪
(

B̃\{ā1, ā2}
)

.

We still obtainh1 ⊂ X0(C̃) from Lemma 2 (ii) andΦ1 = ∅. We obtain
h2 ⊂ X0(C̃) by construction. The last carrier that we consider is:

C∗ =

{

C̃∪
(

P(x2)\{ā2}
)

if |ĥ2| ≤ |ĥ′2|;

C̃∪
(

P(y2)\{ā1}
)

if |ĥ2|> |ĥ′2|.

In either case, the information seth2 is included inX0(C∗) becauseΦ1
is empty. Regardingh1, if some node ˜x1 ∈ h1 belongs toX+(C∗) then
F(x̃1,C̃) ≤ F(y2,C̃). Since we also haveF(x̂2,C̃) ≤ F(y1,C̃) for every
x̂2 ∈ ĥ′2 the restriction on the values that consistent beliefs can take for strat-
egy profiles with carrier equal tõC results. Therefore, we only need to
analyzeh1 ⊂ X0(C∗) together with|ĥ2| ≤ |ĥ′2| (given that the other case is
similar). LetL be an arbitraryC∗-labelling. The following holds:

SL(x1) = ∑ŷ2∈ĥ2
FL(ŷ2)+L(ā1),

SL(y1) = ∑x̂2∈ĥ′2
FL(x̂2)+L(ā2),

SL(y2)≥ L(ā1),

SL(x2) = L(ā2).

To understand better the first (and the second) equality notice that, by con-
struction, the only actions in the path tox1 that do not belong toC∗ areā1

and those that we can also find in the path to some ˆy2 ∈ ĥ2 (although not
necessarily all of them).

Take now a consistent assessment(σ ,µ) with C (σ) = C∗. If µ(y2 |
h2)> 0 thenL(ā1)≤ L(ā2). If moreoverµ(ŷ2 | h2)> 0 for all ŷ2 ∈ ĥ′2 then
FL(x1)≤ FL(y1) because|ĥ2| ≤ |ĥ′2|. This completes the proof asµ(y1 | h1)
cannot take a strictly positive value. �
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The proof of Proposition 3 is similar. GivenK information setsh1, . . . ,hK
the plan is to find two nodesxk andyk for each information sethk so that
for some carrierC we haveF(x1,C) ≤ F(y2,C), . . . ,F(xK ,C) ≤ F(y1,C).
If every hk is included inX0(C) then we cannot haveFL(yk) < FL(xk) for
everyk and someC-labellingL. This implies that if(σ ,µ) is consistent and
C (σ) =C thenµ(xk | hk) 6= 1 for at least onek.

Proof of Proposition 3.First, we assume thatΦ1 = ∅. The conditions in
the proposition imply that for some integerK ≥ 2 the following set is
nonempty:10

ΦK =
{

(x1,y1, . . . ,xK,yK, ā1, . . . , āk,C) ∈ X2K ×AK ×C (Σ) :

h(xi) 6= h(x j) for all i 6= j, and for alli = 1, . . .K,

h(xi)⊂ X0(C), yi ∈ h(xi), yi 6= xi , āi ∈
(

P(xi)∩P(yi+1)
)

\C
}

.

We proceed by induction inK assuming that for any other integerK′ < K
the setΦK′ is empty. The caseK = 2 was considered in Proposition 2.

Let hi = h(xi). Take an arbitrary element ofΦK and construct the carrier:

Ĉ=C∪

(

K
⋃

i=1

(

P(xi)\{āi}
)

)

.

From Lemma 2 (i) we obtainF(xi ,Ĉ)≤ F(yi+1,Ĉ) for everyi = 1, . . .K.
If for every i we also obtainhi ⊂ X0(Ĉ) then a consistent assessment(σ ,µ)
with C (σ) = Ĉ cannot satisfy∏K

i=1 µ(yi | hi) = 1. Thus, we need to prove
the result when, for somei, the sethi is not included inX0(Ĉ). Let I repre-
sent the collection of indexesi such thathi 6⊂ X0(Ĉ).

Take ani ∈ I . Let ĥi represent the subset of those ˆyi ∈ hi that belong
to X+(Ĉ). Nodesxi and yi do not belong tôhi because ¯ai and āi−1 are
not in Ĉ. Moreover, every actiona ∈ P(ŷi) \C is contained inP(xi−1)
and, therefore,F(ŷi ,C) ≤ F(xi−1,C) for all ŷ ∈ ĥi. In particular no action
a∈ P(ŷi)\C can be contained in someP(xk) with k 6= i −1. This would
imply thatΦK′ 6=∅ for some integerK′ < K.11

Construct the carrier:

Ĉ′ =C∪

(

⋃

k/∈I

(

P(yk)\{āk−1}
)

)

.

Lemma 2 (i) impliesF(yk,Ĉ′)≤F(xk−1,Ĉ′) for everyk /∈ I . Furthermore,
it also implies that we still haveF(ŷi ,Ĉ′) ≤ F(xi−1,Ĉ′) for everyi ∈ I and

10Throughout the proof, when the indexi equalsK, the indexi+1 refers to 1. Likewise,
if i = 1, the indexi −1 refers toK.

11 For instance, if actiona ∈ P(ŷi) \C belongs toP(xi−2) then ΦK−1 would be
nonempty. One element of this set can be obtained from our initial choice fromΦK by
dropping the entries corresponding to the nodes at information sethi−1 and actionai−1,
and substituting nodeyi by node ˆyi and actionai−2 by actiona.
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everyŷi ∈ ĥi. If all the information setsh1, . . . ,hK are contained inX0(Ĉ′)
then we obtain that no consistent assessment whose strategyhas carrierĈ′

can assign a belief equal to one to every decision nodexk. Therefore, we
need to analyze what would happen otherwise. LetJ represent the collec-
tion of indexesj such thath j 6⊂ X0(Ĉ′), furthermore, for eachj ∈ J, let
ĥ′j ⊂ h j be the subset of nodes inh j that belong toX+(Ĉ′). The assumption

thatΦK′ =∅ wheneverK′ < K indicates that ifj ∈ J then for every ˆx j ∈ ĥ′j
we obtain

(

P(x̂ j) \C
)

⊂ P(y j+1). With this in mind we use the set of
choices

B̃=







⋃

i∈I



P(xi−1)\





⋃

ŷi∈ĥi

P(ŷi)















⋃

{

⋃

i∈I

P(yi)

}

⋃











⋃

j∈J






P(y j+1)\







⋃

x̂ j∈ĥ′j

P(x̂ j)























⋃

{

⋃

j∈J

P(x j)

}

to construct the new carrier

(4.1) C̃=C∪
(

B̃\{ā1, . . . , āK}
)

.

We can assume that every information seth1, . . . ,hK is contained in
X0(C̃). To see why note that ifhk 6⊂ X0(C̃) then there must be an ac-
tion ã in the second or in the fourth component ofC̃ that is in the path
of some node ˜xk of hk. Moreover, this node cannot be eitherxk or yk. Since
ΦK′ =∅ for everyK′ < K the action ˜a must be contained in eitherP(yk+1)
or P(xk−1). Consider that ˜a∈P(yk+1) then by Lemma 2 (iii) we have that
F(x̃k,Ĉ) ≤ F(yk+1,Ĉ) and we only need to replacexk by x̃k and redefineI
so that it does not includek. Analogously, suppose now that ˜a∈ P(xk−1).
Lemma 2 (iii) impliesF(x̃k,Ĉ)≤ F(xk−1,Ĉ). We now need to replaceyk by
x̃k and remove the indexk from J.

The last carrier that we consider is:12

C∗ =







































C̃∪





⋃

k/∈(I−1)∪(J+1)

(

P(xk)\{āk}
)



 if
∏i∈I (|ĥi |+1)

∏ j∈J(|ĥ
′
j |+1)

≥ 1,

C̃∪





⋃

k/∈(I−1)∪(J+1)

(

P(yk)\{āk−1}
)



 otherwise.

Suppose that∏i∈I (|ĥi |+1) ≥ ∏ j∈J(|ĥ
′
j |+1). We now show that a con-

sistent assessment(σ ,µ) with C (σ) = C∗ cannot satisfy at the same time
all of the following:

(i) for every i /∈ I , µ(yi | hi) = 1,

12 Note the sets(I −1) = {i : i +1∈ I} and(J+1) = { j : j −1∈ J}.
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(ii) for every i ∈ I , µ(yi | hi)> 0 andµ(ŷi | hi)> 0 for all ŷi ∈ ĥi ,
(iii) for every i ∈ I , µ(yi | hi)+∑ŷi∈ĥi

µ(ŷi | hi) = 1.

If the consistent assessment(σ ,µ) satisfies (i), (ii) and (iii) then we
should be able to find aC∗-labelling, sayL, as in Lemma 1. Given that
the setC̃ defined in (4.1) is contained inC∗ we can writeFL(xi−1) =
∑ŷi∈ĥi

FL(ŷi)+FL(yi) for every i ∈ I . Additionally, (ii) and (iii) above im-

ply that SL(xi−1) = (|ĥi |+ 1)SL(yi) for every i ∈ I . A similar argument
shows that for everyj ∈ J the equalitySL(x j) = (|ĥ′j |+1)−1SL(y j+1) also
holds. The definition ofC∗ for the case that we are considering entails
SL(xk)≤ SL(yk+1) wheneverk /∈ (I −1)∪ (J+1). Finally, SL(yk)< SL(xk)
for every k = 1, . . . ,K given that we always haveµ(xk | hk) = 0 and
µ(yk | hk) > 0. We only have to put all these inequalities together to ob-
tain:

∏i∈I (|ĥi |+1)

∏ j∈J (|ĥ
′
j |+1)

< 1.

Which provides a contradiction and concludes the proof sincethe case
∏i∈I (|ĥi |+1)< ∏ j∈J(|ĥ

′
j |+1) is analogous. �

The next step is to prove that the conditions given Propositions 1 and 3
are not only sufficient but also necessary. In order to prove this we need a
characterization of consistent assessments.

Lemma 3 (Kreps and Wilson (1982, Lemma A2)). Let (C,Y) be a consis-
tent basis and let(σ ,µ) satisfyC (σ) = C andsupp(µ) = Y. The assess-
ment(σ ,µ) is consistent if and only if there exists a functionπ : A→ (0,1)
such thatπ(a) = σ(a | h) wheneverσ(a | h) > 0 and, moreover, for every
x∈ X with µ(x | h)> 0:

(4.2) µ(x | h) =

∏
a∈P(x)

π(a)

∑
{x′∈h:µ(x′|h)>0}

(

∏
a∈P(x′)

π(a)

) .

Now we can turn to prove Theorem 1.

Proof of Theorem 1.Fix an extensive-form that does not satisfy neither the
conditions of Proposition 1 nor the conditions of Proposition 3. Given any
carrierC a consistent basis(C,Y) always exists (Lemma 1 gives a way
of seeing this). Take a consistent assessment(σ ,µ) with C (σ) = C and
supp(µ) =Y. Let L be the associated labelling and letπ be a function such
as the one in equation (4.2).

The collection of non-singleton information setsh that satisfyh⊂ X0(C)
is denotedH0. Take any information seth ∈ H0. Is is enough to prove
that for everyµ ′ that only differs fromµ at information seth, i.e. satisfies
µ ′(· | h′) = µ(· | h′) for everyh′ 6= h, the assessment(σ ,µ ′) is consistent.
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First we show that if supp(µ ′) = supp(µ) then (σ ,µ ′) is consistent.
Given the system of beliefsµ ′ we are going to construct a functionπ ′ such
as the one in Lemma 3 that justifies it. Fix an arbitrary nodex∗ that belongs
to h and isy, the support ofµ andµ ′. Letπ ′(a) = π(a) for everya∈P(x∗).
For the rest of the nodes inh andY we only modify the value taken by
π ′ with respect toπ for just one choice in its path. In symbols, for each
x∈ (h∩Y)\{x∗} choose any actionax ∈P(x)\C and letπ ′(a) = π(a) for
every othera∈ P(x)\{ax}. The value ofπ ′(ax) is given so that we adjust
the relative values ofµ ′ with respect toµ appropriately:

(4.3) π ′(ax) =
µ ′(x | h)
µ ′(x∗ | h)

µ(x∗ | h)
µ(x | h)

π(ax).

Equation 4.3 may have modified the value taken by one or several choices
that are in the path to a node that is not inh. To keep track of those changes
we let the setAh consists of those actions whose value underπ ′ has been
assigned by (4.3). And the setYh consists of those nodesy that belong to
some information set inH0\{h} and that have an action in their paths that
belong toAh. By assumption, a node inYh may contain in its path more than
one choice inAh but Yh cannot contain two nodes that belong to the same
information set.

For eachy∗ ∈Yh we maintainπ ′(a) = π(a) for everya∈P(y∗)\Ah. For
the rest of the nodesy ∈ h(y∗) \ {y∗} that belong toY, the support ofµ,
we choose any actionay ∈ P(y) \C and letπ ′(a) = π(a) for every other
actiona ∈ P(y) \ {ay}. We have to adjust the value ofπ ′ to maintain in
the information seth(y∗) the same beliefs as inµ. To do that we offset the
changes made in 4.3 so that

(4.4) π ′(ay) = π(ay) ∏
a∈P(y∗)∩Ah

(

π(a)
π ′(a)

)

.

Again we can define the set of actionsAh(y∗) whose value underπ ′ has
been defined by (4.4) and the setYh(y∗) of nodes that belong to some infor-
mation set inH0\h(y∗) and that satisfyP(y)∩Ah(y∗) 6= ∅. The setAh(y∗)
does not contain two nodes from the same information set and,since the
conditions given in Proposition 3 are not met, it does not contain nodes inh
or h(y′∗) either, for anyy′∗ ∈ Ah.

Since the setH0 is finite, we can continue in the same fashion until all
the actions in the paths to nodes in information sets that belong to H0

are exhausted without redefining any value ofπ ′. Finally, we have to set
π ′(a) = π(a) for every unassigneda. One can check that the resultingπ ′

satisfies equation (4.2) for the system of beliefsµ ′.
Now we prove that for anyx∗ ∈ h the basses(C,Y∪{x∗}) and(C,Y \

{x∗}) are also consistent. We show it first for the basis(C,Y∪{x∗}).
Let Y′ = Y∪{x∗}. As estated in Lemma 1 we are going to construct a

C-labellingL′ such thatx ∈ Y′ if and only if x minimizesSL′(·) overh(x).
SetL′(a) = L(a) for everya∈P(x∗) and for the rest of the nodesx 6= x∗ in



22

h take an arbitraryax ∈ P(x)\C and let

(4.5) L′(ax) = L(ax)+FL(x
∗)−FL(x).

We fix L′(a) = L(a) for every other actiona∈ P(x)\{ax}. That is, we are
adjustingL′ so thatSL′(x) = SL′(x∗) for everyx∈Y.

We will assign the remaining values ofL′ recursively. For the same rea-
sons as before, we know that no value is going to be redefined. Let Ah be
the set of those actions whose value underL′ has been assigned in (4.5)
and letYh be the set of those nodesy that belong to some information set
in H0\{h} and whose paths have an action inAh. For eachy∗ ∈Yh we fix
L′(a) = L(a) for every actiona∈P(y∗) and for eachy∈ h(y∗)\{y∗} select
an arbitraryay ∈ P(y)\C. Let L′(a) = L(a) for everya∈ P(y)\{ay} and

L′(ay) = L(ay)+ ∑
a∈P(y∗)∩Ah

(

L′(a)−L(a)
)

.

We can continue in the same fashion until we have exhausted all the actions
in the paths to the nodes that belong to some information set in H0. In order
to makeL′ completely defined letL′(a) = L(a) for every action that remains
unassigned. It is easy to check that the labellingL′ satisfies the condition
given in Lemma 1 for the basis(C,Y′).

To conclude it remains to show that for anyx∗ ∈ h the basis(C,Y\{x∗})
is also consistent. Take an arbitraryax∗ ∈ P(x∗) \C and letL′(ax∗) =
L(ax∗)+1. We fixL′(a) = L(a) for every other actiona∈ P(x∗)\{ax∗} in
the path tox∗ and also for every actiona ∈ P(x) in the path to any other
nodex∈ h different formx∗. The next step is to assign the values ofL′ for
those actions leading to nodes contained in each information seth(y∗) ∈ H0

that satisfiesax∗ ∈ P(y∗). Since hereafter everything is analogous to the
previous case we can conclude the proof. �

5. SEQUENTIALLY RATIONAL BAYESIAN ASSESSMENTS

In this section we consider extensive-form games and sequentially ra-
tional Bayesian assessments. Obviously, if for an extensive-form every
Bayesian assessment is consistent then, for every payoff vector, every se-
quentially rational Bayesian assessment is a sequential equilibrium.13 Sup-
pose that we are given an extensive-form where some Bayesian assessment
is not consistent. We want to address whether we can always find payoffs
so that in the resulting extensive-form game sequential equilibrium refines
the set of sequentially rational Bayesian assessments.

We first introduce some additional notation needed to define sequential
rationality. Denote asσn the restriction ofσ to those information sets owned
by Playern and denote asσ−n the restriction ofσ to the remaining informa-
tion sets. A behavioral strategy profileσ induces a probability distribution
Pσ on the set of final nodesZ. The expected utility to playern is then given

13 A sequentially rational Bayesian assessment is aweak perfect Bayesian equilibrium
as defined by Mas-Colell, Whinston, and Green (1995, p. 285).
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by the expressionUn(σ) = ∑z∈Z Pσ (z)un(z). Let Pσ
x be the probability dis-

tribution onZ if players use the strategy profileσ and the game starts at the
decision nodex. (Note thatPσ

x is always well defined.) The expected util-
ity to playern from the strategy profileσ at the information seth given the
system of beliefsµ is equal toUn(σ | h,µ) =∑x∈h µ(x | h)∑z∈Z Pσ

x (z)un(z).

Definition 4. The assessment(σ ,µ) is sequentially rational if at every in-
formation seth, the strategy of the player moving at information seth, say
Playern, satisfies

Un(σ | h,µ)≥Un(σ−n,σ ′
n | h,µ) for everyσ ′

n ∈ Σn.

The next lemma asserts that if we can find Bayesian assessmentsthat are
not consistent then, for some payoffs, there are behavioralstrategies that are
part of sequentially rational Bayesian assessments that arenot sequential
equilibrium strategies. The proof of the theorem consists of constructing
such a payoff vector.

Lemma 4. Consider an extensive-form where the set of set consistent as-
sessments is strictly contained in the set of Bayesian assessments. Then we
can find a game with that extensive-form such that set of sequential equi-
librium strategies is a strict subset of the projection onΣ from the set of
sequentially rational Bayesian assessments.

Proof. Let K be such thatΦK 6= ∅ and eitherΦK−1 = ∅ or K = 1. Propo-
sitions 1 and 3 imply that we can find a carrierC and K information
setsh1, . . . ,hK that belong toX0(C) such that, for every consistent as-
sessment(σ ,µ) with C (σ) = C, eachhi strictly contains a subsetĥi with
∏K

i=1

(

∑y∈ĥi
µ(y | h)

)

< 1. That is, if(σ ,µ) is a consistent assessment there
must be at least one information sethi ∈ {h1, . . . ,hK} with at least one node
x∈ hi \ ĥi that satisfiesµ(x | hi)> 0.

For eachi = 1, . . . ,K let ci be an action available athi such thatσ(ci |
hi) = 0. (If at least one does not exist we only need to modify the carrier
C appropriately.) Assign a payoff equal to zero to the player who moves at
hi at every ending node that follows some action inA(hi) \ {ci}. Also as-
sign a payoff equal to zero to ending nodes that follow actionci when taken
at any node in̂hi. Assign a payoff equal to 1 to every player elsewhere.
A Bayesian assessment(σ ,µ ′) such that∏K

i=1

(

∑y∈ĥi
µ ′(y | hi)

)

= 1 is se-
quentially rational but not consistent. �

A possible criticism to the relevance of Lemma 4 is that (as the proof
takes advantage of) differences in strategies may only occur in those parts of
the tree reached with probability zero. In principle, we would like to show
that if some Bayesian assessment is not consistent then, for some payoffs,
sequential equilibrium selects only a strict subset from the set outcomes
generated by sequentially rational Bayesian assessments. However this may
not be possible. We illustrate why by means of three examples.
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Consider Figure 9. Proposition 1 together with Lemma 4 dictates that
there exists a payoff assignment such that the strategy of some sequentially
rational Bayesian assessment is not a sequential equilibrium strategy. If
PlayerI movesr1 at the root of the game then actionl1 is taken with prob-
ability zero and it is common to the paths to the two nodes in the second
information set of PlayerI . Knowing this, we can assign payoffs to end-
ing nodes as described in the proof of Lemma 4. However, we cannot find
payoffs such that the set of outcomes differ. The reason is that sequential
rationality does not let PlayerI deceive himself. (If we replace PlayerI by a
third player in her second information set then there existsa game with that
extensive-form where the sets of outcomes generated by sequentially ratio-
nal Bayesian assessments and sequential equilibria are different.14) Sup-
pose that PlayerI takes actionr1. It is unimportant that she does not use
PlayerII ’s strategy to construct her beliefs at her second information set as
consistency requires. Hence, if movingr1 is optimal then behavior at her
second information set is irrelevant, even for PlayerII , who will always play
a best response to PlayerI behavior because her information set is reached
with positive probability.15

A second example is Figure 5 after substituting PlayerIII by PlayerII
so that she has two consecutive information sets. Again, forevery assign-
ment of payoffs to ending nodes, every outcome generated by asequentially
rational Bayesian assessment is a sequential equilibrium outcome. Note
that sequential rationality by itself may impose restrictions on beliefs at un-
reached information sets. That is, suppose that PlayerI movesOut and
that for some payoffs and beliefs at the first information setof PlayerII
this player prefers(r2,L) to both(r2,R) andl2. Then beliefs at her second

14 From left to right assign the following payoffs to ending nodes: (0,0,1), (0,0,0),
(0,1,0), (2,1,1), (0,0,0) and(1,1,0). The outcome(1,1,0) is generated by a sequentially
rational Bayesian assessment. The unique sequential equilibrium outcome is(2,1,1).

15 Suppose that we add a moveOut at the root of the extensive-form that leads to an
ending node so that if playerI movesOut PlayerII ’s information set is reached with prob-
ability zero. Give payoff(1,0) to that ending node. To the rest of ending nodes, and from
left to right, assign payoffs(0,0), (.5,0), (2,0), (2,1), (0,0) and(2,1). The sequentially
rational Bayesian assessment(Out, l2,L,µ(x) = 1,µ(y) = 1) generates outcome(1,0). But
this is not a sequential equilibrium outcome. Notice, in particular, that that assessment is
not consistent.
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information set must be such that she, in fact, prefersL to R. If otherwise
PlayerII prefersl2 to both(r2,L) and(r2,R) then sequential rationality does
not impose restriction on beliefs. On the other hand, consistency does not
give any degree of freedom when choosing beliefs at PlayerII ’s second in-
formation set. This explains why in this example we can obtain differences
in behavior as implied by sequentially rational Bayesian assessments and
sequential equilibrium but only at unreached parts of the game tree. For
somewhat similar reasons, the same is also true when PlayerI ’s actionOut
is removed from the extensive-form.

The example in Figure 10 is quite different in nature. The fiveopen
circles are the initial nodes, each of them is selected with equal probability
by Nature. Proposition 3 implies that in this extensive-form some Bayesian
assessment is not consistent. Those assessments must attach probability
zero to the two information sets of PlayerIV. That means that the actions
l1, r2, l3 and r4 have to be taken with probability one which leaves, for
instance, actionsr1 and l2 as the two actions that Proposition 3 requires
for K = 2. (This corresponds to the carrierC∗ constructed in the proofs of
propositions 2 and 3.) In this example, consistent Beliefs can be arbitrary at
the bottom information set of PlayerIV but they imposes restrictions on the
set of consistent beliefs at her top information set. Bayesian beliefs can take,
by definition, be arbitrary values at both information sets.Consider now
any game with that extensive-form. Whether or not actions actions l1, r2,
l3 andr4 are sequentially rational does not depend on what is the behavior
at the top information set of PlayerIV. The reason is that that information
set can only be reached from zero probability nodes at positive probability
information sets. This implies that if both information sets of PlayerIV
are reached with probability zero the strategy part of a sequentially rational
Bayesian assessment and a sequential equilibrium strategy may only difer
in behavior at PlayerIV ’s top information set. However, behavior at that
information set cannot affect the sequential equilibrium path.

It seems, however, that these extensive-forms are rather particular and
that, although this is difficult to characterize in any precise manner, if con-
sistent assessments strictly refine Bayesian assessments then, typically, a
payoff vector exists such that sequential equilibrium generates a smaller
set of outcomes as compared to that generated by sequentially rational
Bayesian assessments. See footnotes 14 and 15 for some examples. For
another example, assign payoff(1,1,1,) after Out in the extensive-form
of Figure 3. Then from left to right(2,0,1), (0,1,0), (2,1,0), (0,0,1),
(0,0,1), and(0,0,0). The outcome(1,1,1) can be supported a the Bayesian
assessment where playersI andII play (Out, l2) and PlayerIII puts a belief
equal to one to the center node of her information set. Similar examples can
be constructed for the extensive-forms in figures 6, 7 and 8.
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6. APPLICATIONS

The proofs of the propositions and of Theorem 1 are valid for slightly
stronger results that have the potential of being more useful in applications.
If we have some information about a sequential equilibrium candidate, such
as its carrier, the outcome that it induces, or just some set of choices that
are to be taken with positive probability, then we can apply the results tak-
ing advantage of that information. That is, in applications, no longer do
we need to find one behavioral strategy profile to check whether or not ev-
ery Bayesian assessment is consistent. Instead we can simplyfocus on a
particular family of profiles of interest. Consider the following results.

Proposition 1’. Take an extensive-form without proper subforms and a set
of actions B⊂ A. If we can find a carrier C that contains the set B and an
information set h with two nodes x and y such that

(i) the information set h is included in X0(C); and
(ii) there is an actionā∈ P(x)∩P(y) with ā /∈C.

Then there exists a behavioral strategy profileσ with C⊂ C (σ) such that
some Bayesian assessment(σ ,µ) is not consistent.

Proposition 3’. Take an extensive-form without proper subforms and a set
of actions B⊂ A. If we can find a carrier C that contains the set B and
K information sets h1, . . . ,hK, where each information set hi contains two
nodes xi and yi , such that

(i) the information set hi is included in X0(C); and
(ii) there is an actionāi ∈ P(xi)∩P(xi+1) with āi /∈C.

Then there exists a behavioral strategy profileσ with C⊂ C (σ) such that
some Bayesian assessment(σ ,µ) is not consistent.
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To see why these results hold, notice that the proofs of the propositions
start by selecting one arbitrary element out of a set where weallowed any
carrier satisfying the conditions in the proposition. If werestrict that orig-
inal set (but always allowing it to contain “bigger” carriers) then the proof
goes through without modifications.

The proof of Theorem 1 fixes an arbitrary carrier and then asksif every
strategy with that carrier is consistent. Hence, the following also holds:

Theorem 1’. Take an extensive-form without proper subforms and a set of
actions B⊂ A for which the conditions in propositions 1’ and 3’ are not
satisfied. For every strategyσ with B⊂ C (σ) every Bayesian assessment
(σ ,µ) is consistent.

In our examples, these results imply that in figures 3, 5, 7 and8, if PlayerI
does not moveOut in the strategy of the Bayesian assessment(σ ,µ) then
(σ ,µ) is consistent. Likewise, if(σ ,µ) is a Bayesian assessment in Fig-
ure 6 such that PlayerI does not move(F1,F2) then(σ ,µ) is consistent.

To conclude, we have disentangled the different restrictions on beliefs
imposed by consistency at zero probability information sets. Some restric-
tions apply to a single information set in isolation (Proposition 1) and some
other restrictions apply toK different information sets when considered all
together (Proposition 3). That is, if the conditions of Proposition 3 are sat-
isfied for K information sets and not for anyK′ < K then we can choose
arbitrary beliefs atK−1 of those information sets but this would, for some
behavioral strategy profile, restrict consistent beliefs at the remainder infor-
mation set. Moreover, these propositions are necessary andsufficient. This
can help establish similar results between sequentiality and stronger restric-
tions on assessments that ask for more than simply Bayesian updating.
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