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BAYESIAN AND CONSISTENT ASSESSMENTS*
CARLOS PIMIENTAT

ABSTRACT. In a Bayesian assessme¢liefs are computed from the
strategy profile following Bayes’ rule at positive probatlyiinformation
sets and for every subgame. We characterize the set of axddnsms
(extensive-form games without a payoff assignment) forcliihe sets
of Bayesian assessments and consistent assessmentsieoihtido-
ing so we disentangle the different restrictions imposeddysistency
across information sets.

1. INTRODUCTION

A sequential equilibrium_(Kreps and Wilsan, 1982) is a sedjadly ra-
tional consistent assessmeithe notion of consistency incorporated in the
definition of sequential equilibrium provides a way of séleg beliefs at
zero probability information sets. Loosely speaking, é¢stesit beliefs must
admit an explanation consisting of “small trembles” madeettch those in-
formation sets.

There is a broad theoretical literature dealing with segakaquilibrium.
This partly stems from the apparently ad-hoc procedure &dyeconsis-
tency selects beliefs, which urged an effort to understagttebthe no-
tion of consistency and its game theoretical implicatiddwinkels (1993),
Battigalli (1996) and Kohlberg and Reny (1997) show that cgirsicy is
related to the game theoretical principle of strategic peadeence. If dif-
ferent players choose their strategies independentlyttieinassessments
must be consistefit.
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! In fact they show that consistency is equivalent to a “sttaegsion of independence.
Seel Swinkels| (1993) and Kohlberg and Reny (1997) for diffeneterpretations of this
result.
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FIGURE 1.

A number of papers also offer different characterizatiohsomsistency
and/or show that, under certain conditions, sequentialibgum is equiv-
alent to weaker equilibrium concepts. Fudenberg and T{1#91) define
perfect Bayesian equilibrium imposing some intuitive riestins on beliefs
and show its equivalence to sequential equilibrium in rpdtiiod games
with observable actions. Perea y Monsuwe, Jansen, andsR&897) pro-
vide an algebraic characterization of consistency withmaking use of
trembles.| Litan and Pimienta (2008) find the maximal clasexténsive-
forms such that sequential equilibrium and subgame pésfecbincide in
equilibrium strategies and equilibrium outcomes.

In this paper we look at those instances where consisteacgplno re-
strictions at zero probability information sets. For simopy, we restrict
ourselves to finite extensive-form games without propeigaaies. This
is motivated by the observation that the set of consistesgsssnents of a
subgame coincides with the projection of the set of consisiesessments
for the entire game on those coordinates correspondingtsuhgame; and
that every consistent assessment of the subgame of is pswtredf consis-
tent assessment for the entire game. Apart from this réstmriove do not
impose any further structure on the extensive-form gantesy dhan perfect
recall.

To introduce the reader to the nature of the results and tamacteriza-
tions that we shall derive consider thgtensive-fornof Figurel1l. We refer
to it as extensive-form and not as extensive-form game Isecaudacks a
payoff assignment. (Hence, in the sequel, whenever pago#faot yet
specified we talk about extensive-forms and subforms idstéaxtensive-
form games and subgames.) If Play@novesOutthen any belief at Player
II's information set is consistent as it can be justified by apraypriate
sequence of trembles. A similar argument holds in the exterierm of
Figurel2. If playerd andll play according tdrs,r2) then arbitrary beliefs
at Playenll 's information set are consistent.

To formalize these ideas, we define Bayesian assessmentspbgiing
the only requirement that beliefs at positive probabilityjormation sets
are computed from the strategy profile using Bayes’ rule. Gleavery
consistent assessment is a Bayesian assessment and inl,geoteesery
Bayesian assessment is consistent. Our objective is toatheare the set
of extensive-forms without proper subforms such that eRayesian as-
sessments is consistent. Consider again the extensive-fifrrigurd 1 and
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Figure2. In Figuréll (Figufé 2) whenever Plajiés information set (Player
lIl''s information set) is reached with positive probability,y@a’ rule fully
determines beliefs at that information set; and whene\ar ittformation
set is reached with zero probability, arbitrary beliefs guaranteed to be
consistent.

It is not difficult to come up with examples of extensive-farrfor
which some Bayesian assessment is not consistent. This ca#eeof the
extensive-form in Figurkel 3 and the Bayesian assess(aritl,, R, u(x2) =
1). The reason is that consistent beliefs should place prtityat®ro at the
central node of PlaydH ’s information set given that in a sequential equilib-
rium “correlation in defections are (partially) ruled o(Kreps and Wilsan,
1982, p. 875). That is, if Playdrdefects, it does not make a defection of
Playerll more likely.

Figure[5 contains another example. Kreps and Wilson (19828%6)
explain how the consistency criterion invokes the “commaonvidedge”
principle for beliefs. Hence, any assessment where PlayeovesOut
and playerdl andlll assess different relative probabilities over their left-
hand and right-hand nodes is not consistent. The currerit entifies the
relevant characteristic shared by the extensive-formgurdi B[ b, and any
other extensive form where consistency selects a strictetudf Bayesian
assessments. In identifying this characteristic we wdbalisentangle the
different restrictions imposed by consistency acrossmédion sets.

There are practical reasons why we think that this type afltesworth
exploring. Mainly, the characterizations derived here baruseful when
it comes to economic applications. They are based on exeefisims and
quite easy to verify. Furthermore, they can be interpreted delineation
of the cases where arbitrary off-equilibrium beliefs aramguteed to be
consistent. In the last section we show some modificatiohefhe results
that serve this purpose.

Additionally, this paper can help understand better howsistancy
brings about restriction in beliefs. While in some cases wg aleeady
have a very good understanding about how consistent baliefshaped, as
it happens for instance when one information set comesafigther like in
Figurel®, in some other cases this relation may be more obscuat least,
difficult to identify by arguments that are not context sfie¢see Figurel6).

FIGURE 2.



FIGURE 3.

For this reason, a unifying explanation of the restrictiondeliefs entailed
by consistency that is based solely on the characteridtestensive-forms
can be of theoretical interest.

In the next section we introduce the basic notation of exteAd®rm
games and important definitions. Sectidn 3 contains thdtseilustrated
by a series of examples. Proofs are offered in Selion 4.iddd§tis con-
cerned with the relationship between sequentially ratiBagesian assess-
ments and sequential equilibria. Sec{idn 6 concludes antshome prac-
tical implications of the results.

2. BASIC NOTATION AND DEFINITIONS

We start by describing some necessary notation and teragp®dr finite
extensive-form games with perfect recall. We decompostamnsive-form
gameinto its extensive-fornand the payoff assignment. Our characteriza-
tions are stated in terms of extensive-forms. As we mentioné¢he intro-
duction we focus on extensive-forms without propabformﬁ

The set ofplayersis .4/ = {0,1,...,N}. Player Oc .#" corresponds to
Nature We index players other than Nature with the letiet 1,..., N.

The set olhodesn the tree is represented Byand the set of final nodes
by Z. The collection ofinformation setof playern is Hy. An element
h € H,, represents the set of nodes that playeannot distinguish when she
has to move ah. The information set that contains nodes denoted as
h(x). FurthermoreH = | J,,Hn.

The set ofactionsavailable at the information sétis A(h). We use
the termsaction and choiceinterchangeably. We denote as= J,A(h)
the complete set of actions across information sets. ToeretheA(h)’s
partitionA. If playern chooses actioa € A(h), h € Hy, when at node € h,
the next node being reached is denoted pya).

2 The terms “extensive-form” and “subform” are taken from Bsend Wilson|(1982).
Kreps and Wilsan, however, obtain an extensive-form garamfan extensive-form by
specifying an assignment of payoffs to ending nodes togeittik a strictly positive prob-
ability measure over the set of initial nodes (i.e. Natuirggal move). We incorporate the
probabilities associated to Nature’s moves into the exterferm.
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Given any node, there is a unique sequence of choices tmttfr® root
of the extensive-form lead to that node. That sequence atebas called
path to node »and it is denoted by”(x).

An extensive-form game is obtained from an extensive-foyrsgecify-
ing for each playen a Bernoullian utility function y: Z — R. Once we
fix an extensive-form, an extensive-form game is giverNbBernoullian
utility functions and it can be seen as a poin®ilNZ.

The set of playen’s pure strategies Sis the set of all functions;, :
Hn — A such thats,(h) € A(h) for all information setsh in Hy. The set
of pure strategy profiles iIS= S x --- x §y. We write S(x) and S(h) to
denote the set of pure strategy profiles that reach, respggthodex and
information seh. The setsS,(x) andS_n(X) are the projections d(x) on
S ,andS_, = Mm£n Sm-

A behavioral strategy profiles is a sequence of functions(- | h) :
A(h) — [0,1], one for eacth € H, satisfyingy acan) o (a| h) = 1 for all h.
In turn, asystem of beliefg is a sequence of functions- | h) : h— [0, 1],
one for eacth € H, satisfyingy ., (x| h) = 1 for all h. An assessmeris
a strategy profile together with a system of beligfsu).

We now introduce our two objects of study.

Definition 1 (Consistent Assessment3he assessmefw, (1) is consistent
if it is the limit point of a sequencé(at, u')}>, such that, for alt, o' is
completely mixed (i.ect(a| h) > 0 for allh € H and alla € A(h)) and !
is derived froma! using Bayes'’ rule.

Definition 2 (Bayesian Assessmentdjhe assessmefw, (1) is aBayesian
assessmerit if the value of yu at information sets reached with positive
probability is computed frono using Bayes’ rule.

Of course, every consistent assessment is a Bayesian assessm

3. NON-CONSISTENTBAYESIAN ASSESSMENTS

In this section we characterize the set of extensive fornsh slat the
set of consistent assessments is a strict subset of the Bayeian assess-
ments. This is done in propositiohs 1 ddd 3. Theorém 1 widrlassert
that in the complement of the set laid out by the proposititressets of
Bayesian and consistent assessments coincide.

To provide a more clear intuition about the results let unihice relative
probabilities over the s& of pure strategy profile&A relative probability
on S specifies the relative weight of each subset of pure strgbegfjles

3 Relative probabilities are equivalent to the notionaoinditional probability sys-
tems(Myerson, 1986). In game theory conditional probabilitysteyns arise naturally
from the need of specifying probabilities conditional orelts that have prior probabil-
ity zero. Among others, conditional probability systemsénheen studied by Myerson
(1986)] McLennan (1989a,b); Blume, Brandenburger, andeD@©91)] Swinkels (1993);
Hammond|(1994); Battigalli (1996); and Kohlberg and Rer89()
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with respect to any other subset. This includes subsetadavior proba-
bility equal to zero. A relative probabilitg on Smust satisfy the following:
for every subse@ C Sand all nonempty subselig T C S,

() P(Q,R) €0, ],
(i) p(Q.Q) =1,
(i) p(Q,T)+p(RT)=p(QURT)Iif QNR=g, and
(iv) p(Q,T)=p(Q,S5p(ST), whenever the product does not involve
both 0 anc.

Standard prior probabilities are therefore givendgy, S).

Battigalll (1996) and Kohlberg and Reny (1997) show that evensis-
tent assessment can be generated, in a way specified bel@awdbgtive
probability defined over the set of pure strategy profiles sauisfying a
strong independence property. Strong independence isnpkak indepen-
dence and, for our purposes, the latter concept is res&iemough. The
relative probabilityo defined oveSis weakly independent if for every two
nonempty Cartesian subs€sR C Sand every playen € Va4

P(Qnx Q_n, Ry x Q_pn) = p(Qn x Rop,Ry x Rp).

Every consistent assessméat (1) can be generated by a relative proba-

bility p satisfying weak independence accordinE to:

(3.1) o(alh)=p(S(1(x,a)),Sh)) for anyx € h;and,

(3.2) u(x|h) =p(S(x),S(h)).

It can be shown that perfect recall and weak independencly timgt (3.1)
is well defined (i.e. it does not depend on the choice eth).

We are going to derive a condition that implies restrictionsonsistent
beliefs at zero probability information sets. Recall that gfath to a node
x, denoted byZ?(x), is the collection of actions that from the root of the
extensive-form lead to that node. Consider two noxlesdy that have
a common actiora € Z(x) N Z(y) in their respective paths. Let be
a pure behavioral strategy profile that takes actiamith probability zero
and every other action in the pathxavith probability one. Even though
undero both nodesc andy occur with probability zero, intuitively, nodg
cannot benfinitely more likelythan nodex. Let us now offer a more formal
argument.

Let p an independent relative probability defined $that induces the
consistent assessmet, 1) whereo is as above. We denos? the pure

4|Swinkels (1993) calls this conditiondividual quasi-independencdt is the (weak)
notion of independence considered by Kohlberg and Reny/()1 %8 uses the termguasi-
independencéor the analogous condition when more than one coordinaédias/ed to
change. This is the independence condition used by Bditi#806). Quasi-independence
implies individual quasi-independence but the oppositeidrue | Swinkels (1993) offers
an example, credited to Myerson, at that effect.

5 The converse is not true, i.e. not every weakly independgative probability system
generates a consistent assessment._ See Kohlberg and Reiiy fdr an example.
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strategy profile which is equivalent . Let Playern be the player that
moves at the information sét where the choicea is available. Owing
to independence, the relative probabilgpyS(x),S(y)) must be equal to
P(S(X)—n x {s7},S(y)—n x {s7}). Moreover,p(S(x)_n x {s7},S) > O be-
cause one element B(x)_n x {s7}, the pure strategy profile’, receives
strictly positive prior probability. Thereforgy(S(x)_n x {7}, S(y)—n X
{s7}) > 0 and consequently(S(x),S(y)) > 0. That is, nodg is not infin-
itely more likely than nod&. Now, if xandy belong to the same information
seththenS(x) andS(y) are subsets &(h) and we obtaip(S(y), S(h)) < 1.
Furthermore, if the information shtis reached with probability zero under
o the last inequality and (3.2) imply(y | h) < 1.

Consider again the extensive-form of the game in Figure 3.l8ftmost
node and the central node in Playlir's information set have a common
choice, actiory, in their respective paths. If playearandll play according
to (Out |2) then(Out I,) is infinitely more likely than(Out m). We can use
independence to conclude that the profilgly) is infinitely more likely
than(l1,m), i.e. the leftmost node in Play#t s information set is infinitely
more likely than the central node. Since PlaygaysOut, Playerlll’s
information set is reached with probability zero and we needpecify
beliefs at her information set. It follows that consistealiéfs must assign
probability zero to that central node. This restriction slo®t apply to
Bayesian assessments.

We start our characterization with a sufficient conditiondn extensive-
form to have Bayesian assessments that are not consisteotrdsponds
to the set of properties suggested above and in our analyBigure[3.

Proposition 1. Consider an extensive-form without proper subgames. Sup-
pose that we can find an information set h with two distinct nodasdxy

and a pure behavioral strategy profie such that the following conditions
hold:

(i) the information set h is reached with probability zero end; and
(i) there exists one actioac &7(x) N #(y) that satisfiew(a| h) =0.

Then the set of consistent assessments is strictly codtamnthe set of
Bayesian assessments.

Property (i) above is clear. The sets of Bayesian and consiassess-
ments may differ only if some information set receives piolits zero. It
also shows that relative probabilities are only part of tioeeys Not only do
we need a behavioral strategy profile that reveals a liketihardering be-
tween two nodes, but also one that at the same time reacheédhmation
set containing these two nodes with probability zero.

Property (ii) captures the relevant features in Figuire urfderstand bet-
ter why we need an actiame Z2(x) N £ (y) observe that in figurés 1 ahtl 2,
where every Bayesian assessment is consistent, we cannowbrmbdes
in the same information set that have a common action in tespective
paths. To see why we neexa | h) = 0, consider the extensive-form of
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Figure[4 and a behavioral strategy profile that assigns pilityaone to
(I,Out). There is no restriction on how Play#t should form her con-
sistent beliefs. (Every conceivable belief vector at tinfdrimation set is
the limit of a sequence of conditional probabilities getedaby an ap-
propriately chosen sequence of trembles.) In this caserfprsystem of
beliefsu, the resulting assessment can be associated to a well defaed
pendent relative probability system on the set of pureesgsaprofiles—and
every Bayesian assessment is consistent.

It is worthwhile pointing out that it is enough to find one beioaal strat-
egy profile that, together with the extensive-form undersoderation, sat-
isfies all three properties in Propositidn 1 for us to know thare are non-
consistent Bayesian assessments. However, nothing geesathtat every
strategy profile satisfying these three properties is plaone of such as-
sessments. To see this we can combine the extensive-foffigsiiad 3 and
4 so that both playersandll can move out. A strategy profile where, in-
deed, both Playersand Playeil move out satisfies the three properties.
However, arbitrary beliefs at playdi’s information set are consistent.

Figure[® is another example where the set of consistentsamses is a
strict subset of the set of Bayesian assessments. Consisteploys com-
mon knowledge of beliefs. This means that Plajyeand Playedll must
have the same belief over their left-hand and right-haneésaahd that, con-
sequently, not every Bayesian assessment is consistentddnto see this
in terms of Propositiohl1 note that actionbelongs to the path of the two
nodes in Playelll 's information set.

The strategy profiléOut |, X) is one of the strategies that Proposition 1
demands. But the behavioral strategy profi®ut r,,L) does not satisfy
property (ii) above and yet it does not admit arbitrary Bagedeliefs to
form consistent assessments. This suggests that we shquédesfurther
how the values assumed by consistent beliefs at two diffenéormation
sets relate to each other. We start this analysis studygrmabng games,
where it is well known that sequential equilibrium does mopose restric-
tions on beliefd Once Nature moves, the sender observes her type and
sends a signal to the receiver. If the receiver observesralsighich is
sent in equilibrium, she applies Bayes’ rule to derive hergielabout the

6 See, for instace, Kohlberg (1990).
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FIGURE 5.

type of the sender. If a signal is not sent in equilibrium, theeiver has
no restrictions whatsoever to form her beliefs about the tyjpthe sender
upon receiving that signal. Note well that every pair of rot®at belong
to the same information set have completely different pftima each other
because “identical” signals can come from different types.

Consider the extensive-form of a slightly modified signatjyagne in Fig-
ure[®l After the sender learns her type, and before she sends d,sfea
can end the game. As it is the case in a standard signaling, gaozair
of nodes that belong to the same information set have a conaoton
in their respective paths. Nonetheless, there are acti@isate common
to the paths to nodes that belong to different informatiots.selhat is,
Ci e Z(x1)NP(y2) andCy € Z(x2) N X (y1). Consider the behavioral
strategy profilgF1, >, U1, D2, Ry, L2) which assigns probability zero @
andC,. As mentioned previously, if a strategy profile assignstpasprob-
ability to all the actions leading to a node but one, whichi$® @n the path
to a second node, then the underlying independent relatbleapility must
consider the (set of pure strategy profiles leading to th&f) riiode as infin-
itely more likely than the second node. In terms of the exatipk means
P(S(x1),S(y2)) = p(S(X2),S(y1)) = o which in turn implies that we can-
not havep(S(y1),S(x1)) = p(S(y2),S(X2)) =  because otherwise a node
must be infinitely more likely than itself. From this argurhes@ obtain that
a consistent assessment with a behavioral strategy prefédave cannot
display beliefs such that(y; | h1) = p(y2 | h2) = 1. This restriction does
not apply to Bayesian assessments.

The relevant features of the previous example are genedalizthe next
proposition into a new sufficient condition on extensivenis so that the
set of consistent assessments is a strict subset of the Baye$ian assess-
ments.

Proposition 2. Consider an extensive-form without proper subforms. Sup-
pose that we can find two distinct information setst, four distinct nodes

’ The extensive-form of this game is a simplified version ofdhe in Figure 235.1 in
Osborne and Rubinstein (1994).
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FIGURE 6.

X1, Y1, X2, Y2 and a pure behavioral strategy profitesuch that the following
conditions hold:

(1) X1, y1 € hy and %, y» € hy;
(ii) the information sets hand h are reached with probability zero
underg; and
(ii) we can find actiong; € 22 (x1) N P (y2) andaz € Z(x2) N (Y1)
that satisfyo(a; | hy) = a(az | hy) =0.

Then the set of consistent assessments is strictly codt@nge set of
Bayesian assessments.

Remarkl. (i) If hy = hy then we can apply Propositidh 1. However, it
is important thaik; # y; andxp # y». In particular,a; € 22(x1) N
P (X2) andag € Z(x2) N P (y1) together witho(ay | hy) = o(a |
hp) = 0 do not guarantee that some Bayesian assessments is not
consistent. Note as well that the last two inclusions do mqtly
P (x1) NP (y1) # @, hence, we cannot apply Propositidn 1 in this
case.

(i) Having two actionsy; anday is also necessary. Suppose that in the
extensive-form of Figurel 6 we delete actiGnand replace the two
consecutive information sets of Playdry a single information set
where Playet has available the three choides U, andD»,. With
this modification every Bayesian assessment is consistent.

In our signaling game the two zero probability informatianrbt come
one after the other as it occurs, for instance, in the exterfsirm of Fig-
ure[5. We have seen that this extensive-form satisfies thditgmms of
PropositioriL L, therefore, we already know that some Bayesaassments
are not consistent. We can now see that this extensive-fisarsatisfies the
conditions of Propositionl 2. Indeed, if PlaylemovesOut, then Playetl’s
information set and PlayéH 's information set are reached with probabil-
ity zero. The left-hand node ih’s information set and the left-hand node
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FIGURE 7.

in Il1'’s information set have actiola in their respective paths. The analo-
gous is true for the right-hand nodes and actianNote, nevertheless, that
if moving Outwas not a possible action the resulting extensive-form doul
satisfy the conditions of Propositién 1, but not the cowndisi of Proposi-
tion[2.

Similar arguments to those in our previous two examples lse\alid
when three or more information sets are involved. Figuréusgtiates this
with three information sets. Consider that playeendll play according
to (Out, Ry, Ry, R3). We must specify beliefs at the three information sets of
Playerlll . The following pairs of nodes have an action in their respect
paths that the previous profile attaches probability zé€rma;y»), (x2,y3)
and(xs,y1). Weak independence implies that, for each of these paks, th
pure strategy profile leading to the first node is infinitelyrenbkely than
the pure strategy profile leading to the second node. Itidlthat a system
of beliefs such thati(y1 | h1) = p(y2 | h2) = u(ys | hg) = 1is not consistent.
Again, this restriction does not apply to Bayesian assestanen

The extensive-form of Figurel 7 is such that no two informatgets
receiving probability zero come one after another. FigumnBtains an
extensive-form where for some information sets this is thgec For rea-
sons analogous to those discussed in the previous exartiessessment
(Out Ly, Lo pu(yr | ha) =1, u(y2 [ h2) =1, u(ys| hs) =1, u(ya|hs) =1)is
not consisten.

The general result, which subsumes Proposition 2, is tHIeW\f'cngB

Proposition 3. Consider an extensive-form without proper subforms. Sup-
pose that we can find K& 2 distinct information sets1). .., hg, 2K distinct

8 One small difference is that in this examd@/1) andS(x.) are of the same “order of
magnitude”, i.e. neither set is infinitely more likely thdretother becaudg is chosen by
the strategy profile with probability one. The same is trueSgs) andS(x4).

9 Nonetheless, we present propositibhs 2[dnd 3 separatedgititefte the exposition of
the results. On a technical note, the proof of the Propaeids done by induction (see
pagd_18), and Propositidh 2 corresponds to the initial case.
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FIGURE 8.

nodes x,Y1,...,Xk,Yk and a pure behavioral strategy profi such that
the following conditions hold:

(i) foreachi=1,...,K nodes xand y belong to Iy
(ii) the information sets f...,hg are reached with probability zero
undero; and
(iii) for each i=1,...,K —1 we can find and actiom € Z(x)N
P(yi+1) that satisfieo (g | hj) = 0, likewise, there is an action
ak € Z(xx)N P (y1) such thato(ax | hk) = 0.
Then the set of consistent assessments is strictly codt@nehe set of
Bayesian assessments.

Remark2. (i) Propositiori2 corresponds K= 2.

(i) It is embedded in the statement of the proposition thathave to
find K information set@nd an orderof those information sets such
that the condition are true. The conditions do not need td fanl
every possible order.

(i) Again, it is important that the B nodes be distinct. However,
if some of theK information sets are not different it would only
mean that the conditions are satisfied for an integer stisctlaller
thank.

(iv) If the conditions are satisfied for some valuekoit does not follow
that they are also satisfied for some integer smaller kha®ee for
instance, Figurgl7 whei€ = 3 and Figuré B wherk = 4. In both
cases the conditions do not hold for smaller valuek of

Theoreni 1 states that the conditions in propositidns 1 ané 8at only
sufficient but also necessary.

Theorem 1. Consider an extensive-form without proper subforms where
some Bayesian assessments is not consistent. Then theieedemm sat-
isfies either the conditions listed in Propositidn 1 or theditions listed in
Propositior[3.
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Intuitively, for a fixed behavioral strategy profile, if a peprobability
choice is in the path to two different nodes then we are losiagdom
to choose consistent beliefs because the same trembleoisiatssl to two
different nodes. The fact that the conditions in proposiid and B are
not satisfied means that we always have enough freedom sartfiairy
beliefs are consistent.

Take a behavioral strategy profiteand two nodes andy. Suppose that
there is at least one choice in the pathxtibat is not in the path tg and at
least one choice in the pathydhat is not in the path tg. Suppose further
that none of these two choices is taken with positive prditghinder o.
Based only in this information abowat and the structure of the extensive-
form we cannot derive a definite likelihood ordering betweedesx and
y. Recurring to an argument based on trembles, we can finettertesim-
bles associated to the two actions pinpointed before to noakeof the
sequences of trembles necessary to reach one of the nodkslass$ we
want with respect to the other. Xandy are the only nodes in the same
information set and this is reached with probability zero undethen we
can freely choose consistent beliefdat

If the conditions in Propositionl 1 are not satisfied the abasgument
holds even if we have more than two nodesiand for anyo. So consis-
tent beliefs ah can be freely chosen. But this choice of beliefs could, in
principle, constrain the set of consistent beliefs avéaldbr a second zero
probability information sety. This can happen when one of the choices
whose tremble we fine-tuned before is in the path to some note ilf
the conditions in Propositidd 3 are not satisfied Koe= 2 then for each of
the remaining nodes in that information set we can againtfine-some
tremble associated to a choice that is only in the path tortbéé and none
else inh'. The argument can be repeated again for a third zero pratyabil
information seth” but if the conditions in Proposition 3 are not satisfied
for K = 3 we do not have restrictions in choosing belief$Yat Continu-
ing in this fashion we can pick arbitrary beliefs at everyazprobability
information set.

4. PROOFS

We begin by describing some additional notation.

Given a behavioral strategy profite, its carrier ¢’(o) is the union over
all information sets of the choicesa € A that satisfyo(a | h) > 0. Fur-
thermore, a subset of choic€sC A is said to be a carrier if for each infor-
mation seth it contains at least one choice Ath). The set of all carriers
is ¢ (Z). Every carrierC € ¥(X) has associated a set of decision nodes
that are reached with positive probability when any stnategvith carrier
%(0) =C s played. We denote that set 43 (C) and its complement as
X0(C).

Given a system of beliefg, its supportsupd i) is the union over all in-
formation set$ of the decision nodesfor which (x| h) > 0. We reserve
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the termcarrier to talk about the set of choices that receive strictly posi-
tive probability for probabilities defined by strategy pledi, and the term
supportfor the analogous concept for probabilities associatectliefs.

The main tool used in the proofs of Propositibhsl1, 2[dnd 3 mrha A1
in Kreps and Wilsan (1982). Before stating that lemma, sonmeepts are
necessary.

A labellingis a functionL : A— N that maps each choiednto an integer
numberL(a). For each labelling there is an associated functibn: X — N
defined by

A= S L)
acZ(X)
Definition 3. Given a carrie€C, the labellingL is said to be &-labelling if
we havea € Cif and only if L(a) = 0.

A basis(C,Y) is a subset oA x X. We say that the basi€,Y) is con-
sistent if there exists at least one consistent assessfuend such that
¢ (o) =Candsuppu) =Y.

Lemma 1 (Kreps and Wilsan (1982, Lemma Al)Jhe basigC,Y) is con-
sistent if and only if there is a C-labelling L such that felimg condition
holds:

x €Y if and only if x minimizes|k-) on h(x).

For our purposes Lemnid 1 implies the following. Take a beajraVi
strategy profileo that assigns probability zero to the information ls@ind
suppose that nodesandy belong toh. If F_(x) < F_(y) for everycon-
ceivable%’(o)-labellingL then a necessary condition f@w, () to be con-
sistent is thap(y | h) # 1. In order to prove Proposition 1 we show that,
if the extensive-form meets the conditions given in the psion, we can
always find such a strategy profile or, more precisely, sucriec.

For a behavioral strategy profile with carrierC, we are thus inter-
ested in inequalities of the forfA_(x) < F_(y) that remain true for every
C-labelling L. It will be useful to writeF (x,C) < F(y,C) when this is the
case. For instance, if nodecomes aftexx we can readily conclude that
F(x,C) < F(y,C). The expressioifr (x,C) < F(y,C) can be meaningfully
read as “nodg cannot be infinitely more likely than nodkaunder any strat-
egy profile with carrieC”. If x andy belong to the same zero probability
information set this must be respected by consistent Iselief

To avoid duplication of arguments we provide some resulthénext
lemma that are used continuously throughout the proofsougtrout, ifE
andF are two arbitrary sets, we ugeC F allowing for equality of the two
sets. As usual, the notati@h\ F represents the set of elementgithat do
not belong td-.

Lemma 2. Consider a carrier C, an information setd X%(C), and two
nodes x and y with a common actiorea(#(x) N Z2(y)) \C. LetC =
CU (2(x)\ {a}), the following holds:
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(i) 0<F(xC) <F(y,C);
(i) if h ¢ X°(C) then there is at least one nodec h that satisfies
2(y) C CUZ(x); and moreover
(i) (2()N2(Y))\C+#2,i.e.0<F(y,C) <F(xC).

Proof. Take a carrieC that does not contain any actiarthat satisfies €
P(x)N Z(y). Suppose that under that carriee X°(C). (Note thatx and
y belong toX?(C) because ¢ C and that we no dot necessarily assume
y € h.) We obtain a new carri&®’ by adding taC all the choices in the path
to x except fora, therefore, we also obtain thaaindy belong toX°(C').

To prove part (i) take an@’-labellingL. Action a is the only element in
2 (x) thatis notinC'. Hence_(x) = L(a) > 0 and sincais also inZ(y)
we obtainF_(y) > L(a). That is, nodey cannot be infinitely more likely
thanx under a strategy with carri€r.

Let us turn to part (ii). Suppose now that un@isome node i, sayy,
is reached with positive probability. As the only differengetweerC and
C’ is thatC’ contains actions in the path xahat are not included i@ that
means thakx andy have common actions in their respective paths.

Part (iii) follows because every action in the pathytthat is not in the
path tox is in C. Since we also have € X%(C) we obtain 0< F(y,C) <
F(x,C). That is, nodex cannot be infinitely more likely thag dnder a
behavioral strategy profile with carri€f. O

We can prove the first proposition.

Proof of Propositior L Recall thath(x) represents the information set that
contains node. The conditions listed in the proposition are equivalent to
the following set being nonempty.

1= {(x.8C) € X x Ax E(Z) :y € h(x), y # % h(x) < X°(C),
ac (2(xN2(y)) \c}.
Take an arbitrary elemeiix,y,a,C) € ®; and construct the carrier
C=cu(2(x)\{a}).

Using LemmdR (i) we obtain thd(x,C) < F(y,C). If h(x) c X°(C)
then the desired result follows. If otherwise sogne R(x) satisfiesye
X*(C) then LemmaXR (iii) implies (9,C) < F(x,C). Sinceh(x) c X°(C)
this concludes the proof. O

The argument behind the proof of Propositidn 2 is similar dightly
more involved because we have to deal with nodes in two difiteinfor-
mation sets. Given two information sdtg and hy, we want to use the
structure of the extensive-form to find a car@and four nodeg,,y; € hy,
X2,Y2 € hy such thaf (x;,C) < F(y2,C) andF (x2,C) < F(y1,C). If hy and
h, are subsets 0£°(C) then beliefs at those information sets need to be de-
termined in every assessmémt, 1) with % (o) = C. Consistency implies



16

that those beliefs cannot be chosen so that | hy) = p(y2 | he) = 1 be-
cause that would imply that for sonielabellingL it holdsF_(y1) < F_(x1)
and F_(y2) < F_(x2), but necessarily we also have(x1) < F_(y2) and
FL(x2) < F.(y1). The main difficulty of the argument consists of show-
ing that the information setis; andh, are reached with probability zero.
Lemmd 2 will be of great help at this effect.

Proof of Propositiomn R Assume thatP; = @. The conditions in the propo-
sition imply that the following set is nonempty:

= { (x1,Y1.%2.Y2,81,8.C) € X* x A x () : hixt) # hi(xz),
y1 € h(x1), Y17 X1, Y2 € h(X2), 2 # Xz, h(x1) Uh(x2) € X°(C),
& € (2(a)N 2(y2) \C, & € (2 () N 2(y1)) \C}.

S

Leth; = h(x1) andhy = h(xp). Take any(x, Y1, X2,Y2,a1,82,C) € ®, and

construct the carrier
C=Cu(Z(x)\{a})U(Z(x)\{a}).

From LemmdZ2 (i) we obtaiff (x3,C) < F(y2,C >) andF (x2,C) < F(y1,C).
If both h; and h, are contained irXx%(C) then no consistent assessment
(0, u) with ¢ (o) = C satisfiesu(y1 | hy) = u(y: | hz) = 1. So we need to
prove the result for the cases where eithey’ X°(C) or h, ¢ X°(C).

Thus, let us assume thbs ¢ XO( ) (the other case is analogous) and
construct the carrier

C1=Cu(2(x)\{a}).

Now we show thath; c X%(C;). Suppose to the contrary thhi ¢
XO(Cl). Lemmd2 implies that some nodehip(that is notx;) andx; have a
common actions in their respective paths that is not coathinC. But this
would imply that the se®; is not empty as we assumed at the beginning.
We can concludéy c X9(Cy).

We havex; € X%(C;) because; does not belong t€;. If some node
in hy does not belong ta(o(él) then this node must contain in its path a
choice that is also in the path #q. This is becausé; ¢ X°(C) and the
only difference betwee@®@ andC; is that the latter contains actions in the
path tox; that are not contained in the former. However, we assumed tha
®, is empty so that we can conclutle C XO(Cl)

We also know thah, ¢ Cy, for otherwisea, would be a common choice
betweenx; andy;. Furthermoreg L & C by construction. It follows that
X2, Yo € X0(Cy). Sincehy, ¢ X°(C) and®; = & we know that there is a
subset of nodebz C hy that does not includ&, nor y, and that satisfies
hz € X*(Cy). From LemmdR (iii) we obtaiff (J2,C) < F(xy,C) for each
92 € hy.
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Construct the new carrier

Ci=CuU(2(y1) \{a}).

By Lemmal2 (i), F(yl,Cl) < F(xz,Cl) Using the same arguments as
before we can show tha ¢ X°(C}) andxy, y2 € X°(C}). If hy € XO(C))
then the desired result follows becausg),,C) < F(x;,C) keeps holding
when we chang€ for C,. That is, a consistent assessment does not satisfy
pix | ) = p(xe | hg) = 1. .

Hence, the next case we need to explore is when a subset afioddy,

exists such thalt, © X*(C};). We construct a new carrier using the set of
choices:

B= {W(XD\ ( U 32(92)) }U{@Wl)\ ( U 3”(*2)) }
}72€F12 )'QGFI/Z

Let the new carrier be:
C=Cu(B\{a,a}).

We still obtainh; ¢ X°(C) from Lemmal2 (ii) andd; = @. We obtain
h,  X°(C) by construction. The last carrier that we consider is:

o _ JCu(Z()\{&})  if h| < |Ry);
U(2(y2)\{a1})  if [hg| > |hy).

In either case, the information se is included inX%(C*) becauseb,
is empty. Regardindn, if some nodex; € hy belongs toX*(C*) then
F(%1,C) < F(y2,C). Since we also have (%,C) < F(y;,C) for every
%2 € I, the restriction on the values that consistent beliefs defiar strat-
egy profiles with carrier equal t6 results. Therefore, we only need to
analyzeh; ¢ X°(C*) together with|hy| < |h | (given that the other case is
similar). LetL be an arbitrangC*-labelling. The following holds:

SL(X1) =3 yg,ch, FL(V2) + L(a1),
S (Y1) = Sg,ehy, L (%e) +L(32),
S(y2) > L(a),
SL(x2) = L(ag).
To understand better the first (and the second) equalitgetitiat, by con-
struction, the only actions in the pathxgthat do not belong t€* area;
and those that we can also find in the path to sgme h, (although not
necessarily all of them).

Take now a consistent assessm@miu) with ¢'(o) = C*. If u(yz |
hy) > 0 thenL(a;) < L(ag). If moreoverpu(y> | hy) > 0 for all y, € 1, then

FL(x1) < F_(y1) becauseéhy| < |F1’2|. This completes the proof agy; | hy)
cannot take a strictly positive value. O
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The proof of Propositionl3 is similar. Givefiinformation setdy, ..., hg
the plan is to find two nodes, andyy for each information sdty so that
for some carrieC we haveF (x;,C) < F(y2,C),...,F(x,C) < F(y1,C).
If every hy is included inX%(C) then we cannot havi (yx) < F_(x«) for
everyk and some&-labellingL. This implies that if{ o, 1) is consistent and
¢ (0) =Cthenu(x | hy) # 1 for at least oné.

Proof of Proposition B.First, we assume thab; = @. The conditions in
the proposition imply that for some integ&r > 2 the following set is
nonempt

CDK = {(X1>Y1a---;XK7YK,51>-~-7a_k>C) S X2K XAK X Cg(z) .
h(x) # h(xj) foralli # j, and for alli = 1,...K,

h(x) € X°(C), i € h(x), %i %, & € (2(4) N 2 (yi11)) \C}.

We proceed by induction i assuming that for any other integétr< K
the setdy. is empty. The cask = 2 was considered in Proposition 2.
Leth; = h(x ). Take an arbitrary element dfx and construct the carrier:

K
C=Cu (U (%xi)\{a‘a})) -
i=1

From LemmadZ (i) we obtaiff (x;,C) < F(yi41,C) for everyi = 1,...K.

I for everyi we also obtair;  X°(C) then a consistent assessm@nty)
with ¢ (o) = C cannot satisfy 1K ; u(yi | hi) = 1. Thus, we need to prove
the result when, for somrigthe set; is not included inX%(C). Let| repre-
sent the collection of indexésuch thaty; ¢ X%(C).

Take ani € I. Leth represent the subset of thogec™h; that belong
to X*(C). Nodesx andy; do not belong toh; becauses anda_; are
not in C. Moreover, every actiom € 22(¥;) \ C is contained in%?(x_1)
and, thereforeF (y;,C) < F(x_1,C) for all y € h;. In particular no action
ac Z(y;)\C can be contained in som# (x) with k# i — 1. This would
imply that®y, # @ for some integeK’ < K

Construct the carrier:

¢ =cu (U (<@<yk>\{ak_1})> .
k|

Lemma2 (i) implies (yi,C') < F(x1,C’) for everyk ¢ | Furthermore,
it also implies that we still have (V;,C') < F(x_1,C’) for everyi € | and

10Throughoutthe proof, when the indegqualK, the index + 1 refers to 1. Likewise,
if i =1, the index — 1 refers toK.

1 For instance, if actiora € 2(%) \ C belongs to#(x_2) then ®x_, would be
nonempty. One element of this set can be obtained from otialichoice from®y by
dropping the entries corresponding to the nodes at infeomateth;_1 and actiong;_1,
and substituting nodg by nodey; and actiorg;_» by actiona.
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everyy € hi. If all the information setd, ..., hg are contained il)(o((f’)
then we obtain that no consistent assessment whose stresgarrieC’
can assign a belief equal to one to every decision ndd& herefore, we
need to analyze what would happen otherwise. Legpresent the collec-
tion of indexesj such thath; ¢ X9(C"), furthermore, for each € J, let
ﬁ’j C hj be the subset of nodeslin that belong tox* (C'). The assumption
that®y, = @ whenevelK’ < K indicates that iff € J then for every; e ﬁ/j

we obtain(2 (%) \C) C Z(yj+1). With this in mind we use the set of
choices

B= {U| [@(xil)\ (U gz(fli))] }U{Ulﬁ(yi)}u

U om0 [ U 2] | tU{U#00]

jed ijeﬁ/j jed
to construct the new carrier

(4.1) C=CuU((B\{a,...,a}).

We can assume that every information &ef...,hx is contained in
X9(C). To see why note that i, ¢ X°(C) then there must be an ac-
tion & in the second or in the fourth component®fthat is in the path
of some node of hy. Moreover, this node cannot be eithgror y,. Since
dy = & for everyK’ < K the actioramust be contained in eithe? (yy. 1)
or Z(x«—1). Consider thaa € Z(yk;1) then by Lemmal2 (iii) we have that
F (%,C) < F(yks1,C) and we only need to replacg by % and redefind
so that it does not include Analogously, suppose now that"%” (Xx_1).
Lemma2 (iii) impliesF (%, C) < F (x_1,C). We now need to replagg by
X and remove the indekfrom J.

The last carrier that we considef$:

. _ - Tlien (] +1)
Cu 2 (%) \ {a} if > 1,
(k¢(IE)JU(J+1)( ‘ )) Mjea(lhjl+1)

C*

Cu ( U (2(y)\ {@1})) otherwise

k¢ (1—1)U(I+1)

\

Suppose tha[]i¢ (|| +1) > ﬂj63(|ﬁ/j |+1). We now show that a con-
sistent assessmefdr, 4) with ¢’(o) = C* cannot satisfy at the same time
all of the following:

(i) foreveryi ¢ 1, pu(yi | hi) =1,

12Notetheset$l - ={iti+lel}and(J+1)={j:j—1€eJ}.
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(i) foreveryiel, u(y; | h) > 0andu(y; | hj) > 0 for ally; € hi,
(iii) for everyi eI, u(yi [ hi)+ 3gcp MY | hi) = 1.

If the consistent assessmeft, 1) satisfies (i), (i) and (iii) then we
should be able to find &*-labelling, sayL, as in Lemmall. Given that
the setC defined in [(4.11) is contained iG* we can writeF_ (X_1) =
3 gch FL(Yi) + FL(yi) for everyi € |. Additionally, (ii) and (iii) above im-
ply that S (xi_1) = (|hi| + 1)S.(y;) for everyi € I. A similar argument
shows that for every € J the equalityS. (xj) = (|| + 1)1 (yj+1) also
holds. The definition ofC* for the case that we are considering entails
S (%) < S.(Ykr1) Whenevek ¢ (1 — 1)U (J+1). Finally, S (Yk) < S_(X)
for everyk = 1,...,K given that we always havei(x | hy) = 0 and
H(Yk | hk) > 0. We only have to put all these inequalities together to ob-
tain:

Mier (il +1)

Mjea (IM[+1)
Which provides a contradiction and concludes the proof stheecase
Miei (|| +1) < [jea(hjl+ 1) is analogous. O

The next step is to prove that the conditions given Propossiil and 3
are not only sufficient but also necessary. In order to prbigewe need a
characterization of consistent assessments.

Lemma 3 (Kreps and Wilsan (1982, Lemma A2)let (C,Y) be a consis-
tent basis and leto, u) satisfy¢’ (o) = C andsupgu) =Y. The assess-
ment(o, u) is consistent if and only if there exists a functionA — (0, 1)
such thatrr(a) = o(a | h) whenevero(a | h) > 0 and, moreover, for every
x e X with u(x | h) > 0:

m(a)
acZ(x)

e (o)
{¥Xeh:u(x|h)>0} \acZ(X)

Now we can turn to prove Theorér 1.

(4.2) p(x[h) =

Proof of Theorerhl1Fix an extensive-form that does not satisfy neither the
conditions of Proposition] 1 nor the conditions of Propaesil8. Given any
carrierC a consistent basi€C,Y) always exists (Lemmgl 1 gives a way
of seeing this). Take a consistent assessnent:) with (o) = C and
supd i) =Y. LetL be the associated labelling and tebe a function such
as the one in equatioh (4.2).

The collection of non-singleton information sétthat satisfyh c X%(C)
is denotedH®. Take any information set € H°. Is is enough to prove
that for everyu’ that only differs fromu at information seh, i.e. satisfies
(- | )= u(-| h') for everyh’ £ h, the assessmefw, i) is consistent.
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First we show that if supj’) = supgu) then (o, u’) is consistent.
Given the system of beliefs’ we are going to construct a functiamn such
as the one in Lemnid 3 that justifies it. Fix an arbitrary ngdénat belongs
tohand isy, the support oft andy’. Let 7' (a) = ri(a) for everyac 22(x*).
For the rest of the nodes imandY we only modify the value taken by
' with respect tort for just one choice in its path. In symbols, for each
xe€ (hnY)\ {x*} choose any actioax € #(x)\ C and letr7 (a) = m(a) for
every othem € Z(x) \ {ax}. The value offT (ay) is given so that we adjust
the relative values qgfi’ with respect tqu appropriately:

WO ) pex )
“3) ()= Lt [hy pix )

Equation4.B may have modified the value taken by one or desleves
that are in the path to a node that is nohinTo keep track of those changes
we let the sefd, consists of those actions whose value undehas been
assigned by (4]13). And the s¥f consists of those nodgsthat belong to
some information set it ®\ {h} and that have an action in their paths that
belong toA,. By assumption, a node i may contain in its path more than
one choice iNA, but Y, cannot contain two nodes that belong to the same
information set.

For eachy* € Y;, we maintainit' (a) = r(a) for everya e 22(y*) \ An. For
the rest of the nodeg € h(y*) \ {y*} that belong toY, the support of,
we choose any actioa, € Z(y) \ C and letr’(a) = i(a) for every other
actionac Z(y) \ {ay}. We have to adjust the value af to maintain in
the information seh(y*) the same beliefs as . To do that we offset the
changes made [n4.3 so that

m(a) )

(4.4) 1T (ay) = 1(ay) 7(a)

acZ(y*)NAn (

Again we can define the set of actioAgy) whose value unden’ has
been defined by (4.4) and the 3gt, of nodes that belong to some infor-

mation set inH\ h(y*) and that satisfyZ(y) NAny) # 9. The setyyy
does not contain two nodes from the same information setsinde the
conditions given in Propositidd 3 are not met, it does notaimmodes irh
or h(y*) either, for anyy™ € Ay,.

Since the seH? is finite, we can continue in the same fashion until all
the actions in the paths to nodes in information sets thairigeto H°
are exhausted without redefining any valuerbf Finally, we have to set
'(a) = m(a) for every unassigned. One can check that the resultimg
satisfies equation_(4.2) for the system of beligfs

Now we prove that for anx* € h the basse$C,Y U {x*}) and (C,Y \
{x*}) are also consistent. We show it first for the bd€lsy U {x"}).

LetY =Y U{x"}. As estated in Lemmla 1 we are going to construct a
C-labellingL’ such thatx € Y’ if and only if x minimizesS./(-) overh(x).
Setl/(a) = L(a) for everya e &2(x*) and for the rest of the nodes# x* in
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h take an arbitrang, € & (x) \ C and let
(4.5) L'(ax) = L(ax) + AL(X*) — F_(X).

We fix L'(a) = L(a) for every other actiom € Z?(x) \ {ax}. Thatis, we are
adjustingL’ so thatS/(x) = S/ (x*) for everyx €Y.

We will assign the remaining values bf recursively. For the same rea-
sons as before, we know that no value is going to be redefinedALbe
the set of those actions whose value undehas been assigned in_(4.5)
and letY;, be the set of those nodgghat belong to some information set
in HO\ {h} and whose paths have an actiomdn For eachy* € Y, we fix
L'(a) = L(a) for every actiora e & (y*) and for eacly € h(y*) \ {y*} select
an arbitraryay € #(y) \C. LetL'(a) = L(a) for everyac Z(y) \ {ay} and

L'(a)=L@)+ 5 (L'(@-L@).
acZ(y*)NAn

We can continue in the same fashion until we have exhaudtétealctions
in the paths to the nodes that belong to some informatiom$4%.i In order
to makel’ completely defined Idt’(a) = L(a) for every action that remains
unassigned. It is easy to check that the labellihgatisfies the condition
given in Lemmall for the bas{€,Y’).

To conclude it remains to show that for axiye h the basigC,Y \ {x*})
is also consistent. Take an arbitragy: € Z7(x*) \ C and letLl'(ax) =
L(ax<) + 1. We fixL'(a) = L(a) for every other actiom € 22(x*) \ {ax} in
the path tox* and also for every actioa € &(x) in the path to any other
nodex € h different formx*. The next step is to assign the valued.bfor
those actions leading to nodes contained in each informatith(y*) € H°
that satisfiesy € Z2(y*). Since hereafter everything is analogous to the
previous case we can conclude the proof. O

5. SEQUENTIALLY RATIONAL BAYESIAN ASSESSMENTS

In this section we consider extensive-form games and séallgra-
tional Bayesian assessments. Obviously, if for an exteriena every
Bayesian assessment is consistent then, for every paydfirvevery se-
guentially rational Bayesian assessment is a sequenti'&itntwn.@ Sup-
pose that we are given an extensive-form where some Bayessassament
is not consistent. We want to address whether we can alwaypénoffs
so that in the resulting extensive-form game sequentialibgum refines
the set of sequentially rational Bayesian assessments.

We first introduce some additional notation needed to defogential
rationality. Denote ag,, the restriction ob to those information sets owned
by Playem and denote ag_, the restriction o to the remaining informa-
tion sets. A behavioral strategy profitleinduces a probability distribution
PY on the set of final nodea. The expected utility to playaris then given

1B a sequentially rational Bayesian assessmentigak perfect Bayesian equilibrium
as defined by Mas-Colell, Whinston, and Green (1995, p. 285).
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by the expressiold,(0) = 3,z P?(2)un(2). Let B¢ be the probability dis-
tribution onZ if players use the strategy profideeand the game starts at the
decision nodex. (Note thatP? is always well defined.) The expected util-
ity to playern from the strategy profile at the information se given the
system of beliefgt is equal tdJn(0 | h, 1) = Syenh H(X | D) 3 2c2 PZ (2)un(2).

Definition 4. The assessmelio, 1) is sequentially rational if at every in-
formation seth, the strategy of the player moving at information kgsay
Playern, satisfies

Un(0 | h, 1) > Un(0n, 0% | h, 1) for everyay, € .

The next lemma asserts that if we can find Bayesian assesstinatise
not consistent then, for some payoffs, there are behastetkgies that are
part of sequentially rational Bayesian assessments thatarsequential
equilibrium strategies. The proof of the theorem consi$tsomstructing
such a payoff vector.

Lemma 4. Consider an extensive-form where the set of set consistent as-
sessments is strictly contained in the set of Bayesian stssggs. Then we
can find a game with that extensive-form such that set of séiquequi-
librium strategies is a strict subset of the projection brirom the set of
sequentially rational Bayesian assessments.

Proof. Let K be such thatbx # @ and eitherdx_1 = @ or K = 1. Propo-
sitions[1 and 8 imply that we can find a carri@rand K information
setshy,...,hg that belong toXO(C) such that, for every consistent as-
sessmenta, i) with € (o) = C, eachh; strictly contains a subsét with
<, (Zyeﬁi p(y| h)) <1. Thatis, if(o, u) is a consistent assessment there
must be at least one information $et {hy,...,hx } with at least one node
x € h; \ by that satisfiegi(x | hy) > 0.

For eachi = 1,...,K let ¢; be an action available & such thato(c; |
hi) = 0. (If at least one does not exist we only need to modify theiexar
C appropriately.) Assign a payoff equal to zero to the playkowmoves at
hi at every ending node that follows some actiorAin) \ {ci}. Also as-
sign a payoff equal to zero to ending nodes that follow aatjavhen taken
at any node irh;. Assign a payoff equal to 1 to every player elsewhere.
A Bayesian assessmefu, (1) such thaf¥ (Syeh W (y|hi)) =1is se-
guentially rational but not consistent. O

A possible criticism to the relevance of Lemina 4 is that (as ploof
takes advantage of) differences in strategies may onlyracthiose parts of
the tree reached with probability zero. In principle, we Vddike to show
that if some Bayesian assessment is not consistent themrfee payoffs,
sequential equilibrium selects only a strict subset from ¢bt outcomes
generated by sequentially rational Bayesian assessmemigsevdr this may
not be possible. We illustrate why by means of three examples
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FIGURE 9.

Consider Figurél9. Propositidn 1 together with Lenita 4 distdhat
there exists a payoff assignment such that the strategynoé sequentially
rational Bayesian assessment is not a sequential equihibsivategy. If
Playerl movesr; at the root of the game then actibnis taken with prob-
ability zero and it is common to the paths to the two nodes énsiacond
information set of Playel. Knowing this, we can assign payoffs to end-
ing nodes as described in the proof of Lenima 4. However, weatdind
payoffs such that the set of outcomes differ. The reasoraissiquential
rationality does not let Playérdeceive himself. (If we replace Playieby a
third player in her second information set then there exigiame with that
extensive-form where the sets of outcomes generated bgsgaglly ratio-
nal Bayesian assessments and sequential equilibria aesedhttT) Sup-
pose that Playekr takes actiorr;. It is unimportant that she does not use
Playerll’s strategy to construct her beliefs at her second inforonetet as
consistency requires. Hence, if movingis optimal then behavior at her
second information set is irrelevant, even for Playewho will always play
a best response to Playlebehavior because her information set is reached
with positive probabilité

A second example is Figure 5 after substituting Pldileby Playerll
so that she has two consecutive information sets. Agaimgvery assign-
ment of payoffs to ending nodes, every outcome generatedgéguentially
rational Bayesian assessment is a sequential equilibrivccome. Note
that sequential rationality by itself may impose restons on beliefs at un-
reached information sets. That is, suppose that PlaysovesOut and
that for some payoffs and beliefs at the first information afePlayer I
this player prefergr,, L) to both(rp,R) andl,. Then beliefs at her second

14 Erom left to right assign the following payoffs to ending esd(0,0,1), (0,0,0),
(0,1,0), (2,1,1), (0,0,0) and(1,1,0). The outcomé1,1,0) is generated by a sequentially
rational Bayesian assessment. The unique sequentialequm outcome ig2,1,1).

15 Suppose that we add a mo@it at the root of the extensive-form that leads to an
ending node so that if playémovesOut Playerll’s information set is reached with prob-
ability zero. Give payoff1,0) to that ending node. To the rest of ending nodes, and from
left to right, assign payoff$0,0), (.5,0), (2,0), (2,1), (0,0) and(2,1). The sequentially
rational Bayesian assessmé@ut I», L, u(x) = 1, u(y) = 1) generates outconid, 0). But
this is not a sequential equilibrium outcome. Notice, irtioatar, that that assessment is
not consistent.
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information set must be such that she, in fact, prefers R. If otherwise
Playerll preferd;to both(rp,L) and(rz, R) then sequential rationality does
not impose restriction on beliefs. On the other hand, coesty does not
give any degree of freedom when choosing beliefs at Pliigesecond in-
formation set. This explains why in this example we can abdiferences
in behavior as implied by sequentially rational Bayesiaresssments and
sequential equilibrium but only at unreached parts of theey&ree. For
somewhat similar reasons, the same is also true when RlayastionOut

is removed from the extensive-form.

The example in Figure_10 is quite different in nature. The fiypen
circles are the initial nodes, each of them is selected vgjtrakprobability
by Nature. Propositionl 3 implies that in this extensivaxi@ome Bayesian
assessment is not consistent. Those assessments mulstpatibability
zero to the two information sets of Play®. That means that the actions
l1, r2, I3 andrs have to be taken with probability one which leaves, for
instance, actions; andl, as the two actions that Propositibh 3 requires
for K = 2. (This corresponds to the carriét constructed in the proofs of
propositions P and 3.) In this example, consistent Beliefsbeaarbitrary at
the bottom information set of Play&r but they imposes restrictions on the
set of consistent beliefs at her top information set. Bayds#iefs can take,
by definition, be arbitrary values at both information se®onsider now
any game with that extensive-form. Whether or not action®asty, ro,

I3 andr4 are sequentially rational does not depend on what is thevimeha
at the top information set of Play&/. The reason is that that information
set can only be reached from zero probability nodes at pegitiobability
information sets. This implies that if both information setff PlayerlV
are reached with probability zero the strategy part of a setjaily rational
Bayesian assessment and a sequential equilibrium stratagynty difer

in behavior at PlayelV’s top information set. However, behavior at that
information set cannot affect the sequential equilibriuvathp

It seems, however, that these extensive-forms are rathécydar and
that, although this is difficult to characterize in any psecmanner, if con-
sistent assessments strictly refine Bayesian assessmenisyhically, a
payoff vector exists such that sequential equilibrium getes a smaller
set of outcomes as compared to that generated by sequematbnal
Bayesian assessments. See footniotés 14 and 15 for some egarfpt
another example, assign paydff,1,1,) after Out in the extensive-form
of Figure[3. Then from left to righ{2,0,1), (0,1,0), (2,1,0), (0,0,1),
(0,0,1), and(0,0,0). The outcomél,1,1) can be supported a the Bayesian
assessment where playérandll play (Out l2) and Playetll puts a belief
equal to one to the center node of her information set. Sirekamples can
be constructed for the extensive-forms in figures 6, 77and 8.
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FIGURE 10.

6. APPLICATIONS

The proofs of the propositions and of Theorelm 1 are valid fighty
stronger results that have the potential of being more useépplications.
If we have some information about a sequential equilibriamdidate, such
as its carrier, the outcome that it induces, or just some fseha@ices that
are to be taken with positive probability, then we can apbé/results tak-
ing advantage of that information. That is, in applications longer do
we need to find one behavioral strategy profile to check whetheot ev-
ery Bayesian assessment is consistent. Instead we can doeply on a
particular family of profiles of interest. Consider the foliog results.

Proposition 1'. Take an extensive-form without proper subforms and a set
of actions BC A. If we can find a carrier C that contains the set B and an
information set h with two nodes x and y such that

(i) the information set h is included in%C); and

(i) there is an actiomme Z2(x) N Z(y) witha ¢ C.
Then there exists a behavioral strategy proéilevith C C % (o) such that
some Bayesian assessm@miy) is not consistent.

Proposition 3'. Take an extensive-form without proper subforms and a set
of actions BC A. If we can find a carrier C that contains the set B and
K information sets §1..., hgx, where each information set bontains two
nodes xand Y, such that

(i) the information set his included in X(C); and

(ii) there is an actiors; € 22 (%) N & (xi1+1) with & ¢ C.
Then there exists a behavioral strategy proéilevith C C ¢ (o) such that
some Bayesian assessm@miyt) is not consistent.
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To see why these results hold, notice that the proofs of thpgsitions
start by selecting one arbitrary element out of a set wherallsered any
carrier satisfying the conditions in the proposition. If vestrict that orig-
inal set (but always allowing it to contain “bigger” carsgithen the proof
goes through without modifications.

The proof of Theorerhl1 fixes an arbitrary carrier and then dskeery
strategy with that carrier is consistent. Hence, the falhgnalso holds:

Theorem 1'. Take an extensive-form without proper subforms and a set of
actions BC A for which the conditions in propositions 1’ and 3’ are not
satisfied. For every strategy with B C ¢’(0) every Bayesian assessment
(o, ) is consistent.

In our examples, these results imply that in figliiés B, 5, BaifdPlayerl
does not mov®ut in the strategy of the Bayesian assessnieni) then
(o,u) is consistent. Likewise, ifo, ) is a Bayesian assessment in Fig-
ure[6 such that Playérdoes not movéF;, F,) then(o, 1) is consistent.

To conclude, we have disentangled the different restristion beliefs
imposed by consistency at zero probability informatiors s&ome restric-
tions apply to a single information set in isolation (Prapos [1) and some
other restrictions apply t& different information sets when considered all
together (Propositionl 3). That is, if the conditions of Rysition[3 are sat-
isfied for K information sets and not for arly’ < K then we can choose
arbitrary beliefs aK — 1 of those information sets but this would, for some
behavioral strategy profile, restrict consistent beli¢tha remainder infor-
mation set. Moreover, these propositions are necessargudficient. This
can help establish similar results between sequentialyséronger restric-
tions on assessments that ask for more than simply Bayesgating.
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