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Abstract

This paper discusses generation asset valuation in a framework where capital
utilization decisions are endogenous. We use real options approach for valua-
tion of natural gas fueled turbines. Capital utilization choices that we explore
include turning on/off the unit, operating the unit at increased firing tempera-
tures (overfiring), and conducting preventive maintenance. Overfiring provides
capacity enhancement which comes at the expense of reduced maintenance
interval and increased costs of part replacement. We consider the costs and
benefits of overfiring in attempt to maximize the asset value by optimally exer-
cising the overfire option. In addition to stochastic processes governing prices,
we incorporate an exogenous productivity shock: ambient temperature. We
consider how variation in ambient temperature affects the asset value through
its effect on gas turbine’s productivity.
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1 Introduction

The power industry has been undergoing major restructuring. Traditionally, elec-

tric utilities were responsible for long-term capacity expansion planning to ensure

the adequacy of the generation capacity, anticipating expected growth in electricity

demand. After the restructuring, capacity expansion is no longer the responsibility

of the utilities. Instead, capacity choice becomes a pure investment decision based on

the profit maximizing behavior of suppliers in the market. Therefore, valuing invest-

ments in generation assets is an important subject that may ultimately influence the

sustainability of the capacity investments and adequacy. Such valuations, however,

must account for various uncertainties, such as demand, price, and even environmen-

tal factors. Operational constraints, such as operating limits and/or flexibility, are

also important factors that may affect the asset values. An important feature of

this paper is that capital utilization decisions are endogenous. Typical to the macro-

economic literature, these decisions are made by rational forward-looking optimizing

agents.

The concept of variable capital utilization has a long tradition in economics. This

notion is related to Keynes’ concept of ‘user cost’. According to Keynes (1936:69-70)

“User cost constitutes the link between the present and the future. For in decid-

ing his scale of production an entrepreneur has to exercise a choice between using

his equipment now or preserving it to be used later on...” Variable capital utiliza-

tion has enjoyed a degree of success in explaining a wide range of macroeconomic

phenomena. Examples include studies of the Great Depression (Ohanian 2001), real

business cycles (Greenwood et al. 1988), and international transmission of produc-

tivity shocks (Baxter and Farr 2005). Other examples include dynamic responses of

macroeconomic aggregates to monetary policy shocks (Christiano et al. 2005) and

asset pricing puzzles (In and Yoon 2007). Baxter and Farr (2005:336) attribute to

this concept a greater role by claiming that “variable utilization of capital is believed

to be of first-order importance to understanding business cycles”.

Conventional modeling involves a reduced form relation known as depreciation-in-

use technology. In this specification, utilization rate is a continuous decision variable.

It controls the amount of capital services used in production and determines capital

depreciation rate. The key parameter that governs the dynamics of such models is the
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elasticity of marginal depreciation with respect to utilization rate. This parameter is

notoriously difficult to quantify (see Baxter and Farr 2005, and references therein).

For instance, Basu and Kimball’s (1997) estimation from 21 manufacturing industries

in the U.S. concludes that “data are not very informative”. Unfortunately, quantita-

tive implications of the models are often sensitive to the choice of this parameter. For

instance, Baxter and Farr (2005) show that international factor co-movement puzzle

can be resolved for some plausible electricity parameters but not for others.

Our approach to modeling variable capital utilization is different. Instead of rely-

ing on a reduced form relationship, we explicitly model the technological restrictions

associated with variable capacity utilization. To do so, we narrow the focus to a

specific sector of the economy: electric power generation. In particular, this paper

focuses on the valuation of natural gas fueled turbines (GTs).

The reason for focusing on natural gas fueled turbines is twofold. First, among

thermal power plants, GTs have gained increasing popularity to new market entrants

because of its lower installment cost and shorter construction time. Second, GTs

are more environmentally friendly than most steam turbines, which in the times

of increased environmental concerns and government regulation makes then more

attractive investment options.

Traditional economic valuations were done using the discounted cash flow (DCF)

method (e.g., Sullivan et al. 2008). The DCF method assumes that the investment

opportunity is now-or-never and irreversible. New information and future opportuni-

ties are overlooked in the DCF approach. Therefore, DCF often underestimates the

value of investments (e.g., Trigeorgis 1996). What is overlooked by the DCF method

is the real option value of investment strategies, referring to the profit that may be

increased or risks that may be mitigated by flexibly exercising the right strategies

at the right moments as new information emerges. Real options valuation methods

take into account the value of flexibility embedded in real operational processes or

activities1. In this paper, we use the real options approach to value a GT. Capital uti-

1Real option valuation methods have been extensively applied in the electric industry. To name
a few, Deng et al. (1999) used real options to value spark spread options; Tseng and Barz (2002)
used the same concept to value operational flexibility of power plants; Siddiqui and Marnay (2006)
valued distributed generation investment; and Davis and Owen (2003) determined an optimal R&D
expenditure level for renewable electric projects.
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lization choices that we are exploring, in addition to turning on/off the unit, includes

operating GT at increased firing temperatures (overfiring) and the flexible timing of

conducting preventive maintenance to the unit. Overfiring provides capacity enhance-

ment which comes at the expense of reduced maintenance interval and increased costs

of part replacement2. In this paper, the costs and benefits of overfiring are put into

consideration in hope to increase the asset value by optimally exercising the overfire

option.

For valuing generation assets, the new challenge offered by the restructured mar-

ket is how individual market participants respond to the uncertain prices optimally

by choosing the level of capital utilization. Thus far, most papers have focused on

the operating constraints3. To the best of our knowledge, none of the existing stud-

ies considered the effect of maintenance on asset pricing. A new operating option

(and constraint) discussed in this paper is the overfire process, which augments the

production capacity of the unit. When market conditions are favorable for selling

electricity, the overfire option could increase the profit. However, it has an adverse

effect on profit through shortening the time to the next preventive maintenance. A

maintenance requires a unit to be off-line for sometime during which no revenue is

incurred. Therefore, an “optimal” strategy exists for exercising the overfire options,

e.g., overfire during the higher price period and shutdown for maintenance during the

lower price period. Our formulation includes both the overfire option and mainte-

nance constraints as the new dimensions of variable capital utilization.

In addition to stochastic processes governing electricity and gas prices we incor-

porate an exogenous productivity shock: ambient temperature. We document how

variation in ambient temperature affect productivity of GT and study the role vari-

able capacity utilization as a transmission mechanism of exogenous shocks. From a

computational perspective, such real option valuation problems are difficult to tackle.

2There have been studies on various approaches to enhance the capacity of GTs, such as water
injection, emulsion firing, increased firing temperatures (overfiring), etc. For example, a series of
projects sponsored by the Electric Power Research Institute (EPRI) in the 90’s have provided data
to quantify the costs and benefits of the approaches for capacity enhancement (e.g., see EPRI Re-
port 1993; also available from www.epri.com). Among them, overfiring provides attractive capacity
enhancement and moderate improvement in heat rate.

3Operating constraints include capacity constraints, ramp constraints, and minimum up/down
time constraints.
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This paper has at least two unique contributions. First, we explicitly model vari-

able capital utilization and study its implications for generation asset valuation. To

the best of our knowledge, the overfire option and maintenance constraints included

in this paper have not yet been considered in the asset pricing literature. Second,

we introduce a novel productivity shock: ambient temperature. We formulate opera-

tional characteristics of a GT to reflect its dependency on ambient temperature. As

a result, this model is capable of identifying how temperature variations affect the

asset value. Furthermore, it can shed some light on how global and long-term climate

change may impact asset values and investments.

This paper is organized as follows. In Section 2, we provide an overview of the

capital utilization choices and technical constraints associated with them. Section

3 presents a dynamic asset pricing model with endogenous capital utilization for

valuing GTs. Uncertainty models for the electricity price, natural gas price, and

the environmental temperature are presented in Section 4. Numerical results are

presented in Section 5. This paper concludes in Section 6.

2 Capacity Utilization Choices: Technological Con-

straints

In our framework, capital utilization decision involves discrete choice among the

four alternatives: keeping GT off-line, normal operating mode, overfiring, and main-

tenance. Since the last two options are novel, they deserve particular attention. This

section describes technological constraints and opportunities associated with overfir-

ing and maintenance processes.

2.1 Overfire process

Consider the operation of a GT with a constant efficiency (or heat rate) H

(MMBtu/MWh) in a single period at time t. Assume that pE
t ($/MWh) and pF

t

($/MMBtu) are the electricity and fuel prices, respectively, at time t. The GT gen-

erates qt MW such that qt ≤ qmax, where qmax is the maximum rated capacity of the
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power plant. The profit due to generating at time t is as follows:

Profit at time t = (pE
t − HpF

t )qt (1)

The term (pE
t − HpF

t ) in (1) is called the spark spread of the power plant at time t.

When the spark spread is positive, converting fuel to electricity is profitable. It is

clear that to maximize the profit, qt is set to be its maximum value qmax.

There are two types of overfire process in thermal power generation industry. Both

are employed to further increase the generating profit in (1). The first is to generate

as much power as possible such that qt > qmax. This can be done by simply burning

more fuel and is normally performed when the spark spread is high. While it may be

used to generate more profit, it comes with a price because overfiring a unit can cause

the temperature inside the combustor to be significantly higher than its normal value,

based on which qmax was originally derived. Under this condition, the unit’s hot sec-

tion components are subjected to overstressing and high-temperature corrosion. If a

unit is overfired for a prolonged period, further damages, such as degradation, defor-

mation, and/or even cracks, may be incurred. Therefore, the duration for overfiring

a unit must be restricted based on metal characteristics of the GT.

The second type of overfire is similar to fuel switching process. Consider an alter-

native fuel (with heat rate H1 < H) that can release more energy than the primary

fuel when it is ignited in the combustor but is considerably more expensive (with

price pF1
t > pF

t ). When HpF
t > H1p

F1
t , it is more profitable to burn the alternative

fuel. If the operator can switch fuel optimally by tracking pF1
t and pF

t in real time, the

profit function in (1) is modified by replacing the term HpF
t with min(HpF

t , H1p
F1
t ).

In this type of overfire, qt may or may not exceed qmax depending on the amount of

fuel burned and the temperature constraint of the combustor. To value the option

of the second type of overfire one follows the approach used to value fuel-switching

units (e.g., Kulatilaka 1993; Zhu and Tseng 2007), as long as the first type of overfire

using a single fuel can be valued. Therefore, in this paper we consider the first type

of overfire, which may be viewed as the generic type of overfire using one single fuel.

2.2 Maintenance process

When a GT has been overfired, maintenance is an efficient way to correct potential
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damages caused by overfire. During a maintenance process, the following steps are

taken: (1) let the unit cool down; (2) clean all working parts; (3) test hot section

components; (4) replace ineffective ones with new parts; and (5) reassemble the unit

and lubricate it.

These steps may take weeks to complete. After the maintenance, we assume that

the GT can work efficiently and safely again. Note in reality the practice of overfire

is normally subject to constraints defined by maintenance contracts (more details are

discussed in Section 3.5). Such contracts keep track the number of overfire hours

and the number of startups and shutdowns to determine when the next preventive

maintenance should take place. In general, overfire shortens the time to the next

preventive maintenance. In this paper we view overfiring a unit as a safe practice

that, however, has restrictions and is closely monitored. As long as the restrictions

are followed with opportune preventive maintenances, we assume that the reliability of

the GT is warranted by the maintenance contracts. Therefore, we assume there is no

long term effect for properly overfiring a unit, such as change of life and salvage value.

The fact that overfiring a unit alters its maintenance schedule calls for optimization

for exercising the overfire option with the optimal timing subject to the maintenance

constraints.

3 Model

In this paper, a real options approach is used for valuing a GT. It is assumed

that the operator is a price taker and has no market power to influence market

prices. Therefore, the electricity and fuel prices are exogenous to the unit commitment

decision models. Furthermore, the operator is risk neutral.

We consider an optimization problem with the objective to value the GT unit with

overfire option and maintenance constraints subject to environment temperature and

market uncertainties. Assume there are hourly spot markets for both electricity and

fuel. The power plant purchases fuel from the fuel market, converts it to electricity,

then sells it to the electricity market. At time t, in addition to turning on/off the

GT (ut), we also consider the overfire option (vt) and the maintenance option (wt).

All three decision variables (ut, vt, wt) are binary, with value equal to 1 representing
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exercising the corresponding option and 0 otherwise. Three underlying uncertainties

are considered: electricity price P E
t , fuel price P F

t , and the environmental tempera-

ture T e
t at time t. This valuation involves a typical multi-stage stochastic optimiza-

tion. Assume that at any time t and state Xt = (xt, yt, zt), the uncertainty vector

Qt = (P E
t , P F

t , T e
t ) is observed. The state variables will be discussed in Section 3.2.

The operator can realize the asset value in the current time period, then maximize

the expected asset value for the remainder of the planning horizon by taking suitable

actions Vt = (ut, vt, wt). Assume a certain time horizon [0, T ] for the valuation. Let

Jt(Xt;Qt) be the so-called value-to-go function at time t indicating the total asset

value of the GT for the remaining period [t, T ] at state Xt. The asset valuation prob-

lem can be formulated using the following recursive relation:

Maximize the expected total profit:

(P ) Jt(Xt;Qt) = max
ut,vt,wt

{Et[Jt+1(Xt+1;Qt+1)] + ft(Xt,Vt;Qt)}, (2)

where

ft(Xt,Vt;Qt) ≡ (P E
t qt − Ct(qt, P

F
t ))ut − St(ut, xt) − Mmtwt (3)

In (3), ft represents the profit of the unit at t by selling power to a spot market

less the generating cost Ct and other costs, if incurred, including startup cost St and

maintenance cost Mmt. Note dispatching qt may also be included in the decision

vector Vt. This issue will be discussed later.

The objective is to determine J0(X̃0; Q̃0) at t = 0, where (X̃0, Q̃0) is the initial

condition of (X0,Q0). Problem (P ) is also subject to a boundary condition at T .

JT (XT ;QT ) = 0, ∀XT ,QT (4)

Equation (4) indicates that there is no system value at the end of the planning horizon.

For a stochastic problem like (P ), it is important to identify the sequence of the

events. In this paper, decisions and observations are made only at the beginning of

each hour. So there is no change of the system status between any two consecutive

decision points. At time t, the state vector Xt is known and the uncertainty vector

Qt is observed, the operator will make a instant decision Vt. This decision involves

operating, say turning on/off, the GT. Since GT is a responsive unit, no decision lead
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time is assumed for the decision to take effect. Namely, at time t after observing Xt

and Qt, Vt is made and Xt+1 is updated, all happening within the instant of time t.

Therefore, more precisely Xt describes the GT’s on/off status over (t − 1, t].

The details of problem modeling and constraints of the stochastic optimization

problem (P ) are described next.

3.1 Decision variables

Decision vector Vt contains three 0/1 decision variables, ut, vt, and wt. They

represent actions to be taken by the operator at time t, including to turn on/off the

GT (ut = 1 or 0); to overfire the GT or not (vt = 1 or 0); and to perform maintenance

or not (wt = 1 or 0). Since a unit cannot overfire unless it is online, and maintenance

can only be conducted when the unit is off-line, these three decision variables are not

completely independent. Their interrelations can be described by the following two

constraints.

ut ≥ vt, ∀t (5)

and

1 − ut ≥ wt, ∀t (6)

Equation (5) implies that if vt = 1, then ut must be 1. And similarly, from (6) if

wt = 1, then ut must be 0.

These decision variables may be viewed as real options available to the operator

at time t subject to exercise constraints.

3.2 State variables

State vector Xt at time t contains three elements, xt, yt, and zt. State variable

xt is used to tracked how long the GT has been online or off-line at time t; yt and zt

are used for maintenance purpose and will be discussed in a later section. The state

transition of xt is depicted in Figure 1; equivalently it is described in the following
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equation.

xt+1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min(ton + tover, max(ton, xt) + 1), if ut = 1 and vt = 1,

min(ton, max(xt, 0) + 1), if ut = 1 and vt = 0,

max(−tcold, min(xt, 0) − 1), if ut = 0 and vt = 0,

max(−tcold − 1, min(0, xt) − 1), if wt = 1.

(7)

Equation (7) shows that the state transitions are driven by the decision variables. An-

other perspective is to show feasible decisions (or options available) to the operator at

different state xt. For example, on the first column of nodes in Figure 1 corresponding

to time t, no options are available at the states corresponding to xt = ton + tover, 2, 1,

-1, and -2, since the unit must remain on or off at those states. The other nodes have

more than one arc incident from them, indicating the existence of real options. The

mathematical descriptions of the options available at different states are as follows.

ut =

⎧⎪⎪⎨
⎪⎪⎩

1, if 1 ≤ xt < ton and ton < xt ≤ ton + tover,

0, if − toff < xt ≤ −1,

0 or 1, otherwise.

(8)

vt =

⎧⎨
⎩

0, if xt = ton + tover or xt < ton,

0 or 1, otherwise.
(9)

Equation (8) represents the so-called minimum uptime/downtime constraints,

which means the unit must be online (off-line) for ton (toff) consecutive hours be-

fore it can be turned off (on). Equation (9) represents the overfire constraints, which

states that the unit can be overfired only after the minimal uptime constraint has been

satisfied, i.e., after at least ton hours of normal operation. This restriction can pre-

vent significant temperature variation within a short time period due to overfire. In

addition, the unit cannot be overfired for more than tover hours continuously. When

it is turned back to normal operation status from overfire, it must remain normal

operation for at least an hour before it can be overfired again.

Once a maintenance decision wt = 1 is made at time t, the unit goes into a

maintenance interval with a duration tmt time periods. That is, the unit must stay

off for at least tmt time periods (approximately two weeks in reality). That is, if

wt = 1 and wt−1 = 0, then xt+tmt = −tcold.
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Figure 1: State transition diagram of xt including operation and maintenance

processes.
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3.3 Cost model

The costs considered in this paper include the fuel cost Ct, startup/shutdown

costs St, and maintenance cost Mmt. The maintenance cost will be discussed in a

later section for maintenance contracts. Fuel cost is modeled as a convex quadratic

function as follows (e.g., Wood and Wollenberg 1996), which is more realistic than

the constant heat rate used in (1).

Ct(qt, P
F
t ) = βe

c(T
e
t )(c0 + c1qt + c2q

2
t )P

F
t (10)

βe
c(T

e
t ) = 1 +

(
T e

t − T d

ΔT d

)
Rc (11)

In (10), qt is the generation level and c0, c1, and c2 are all positive parameters.

Furthermore, we consider the impact on the fuel cost C(qt, P
F
t ) of the environment

temperature T e
t at time t. In reality, GT’s performance is dependent on environment

temperature. The generation capacity (see next section) and fuel consumption vary as

the environment temperature changes. In (11), the cost variation due to temperature

is captured by an adjusting factor βe
c(T

e
t ), which is a function of the temperature T e

t

at time t. If the GT operates at its designed operating temperature T d, i.e., T e
t = T d,

then the adjusting factor βe
c(T

e
t ) = 1. When the environment temperature deviates

from T d, the adjusting factor βe
c will deviate from 1 linearly. When the deviation

reaches ΔT d, the adjusting factor deviates from 1 by Rc, where the parameter Rc is a

constant between 0 and 1. In general, a GT performs better in a cooler environment.

The startup/shutdown costs are the costs associated with turning on or off the

GT (e.g., the labor cost) and are assumed constant in this paper.

St(ut, xt) =

⎧⎪⎪⎨
⎪⎪⎩

Sup, if ut = 1 and xt < 0

Sdown, if ut = 0 and xt > 0

0, otherwise.

(12)

3.4 Generating capacity and overfire

A GT has rated minimum and maximum generating capacities qmin and qmax for

normal operations. Namely, during normal generating operations, the power output

should always be within these two levels. However, qmax per se is a soft limit and may
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be exceeded if necessary. The scenario that qmax is exceeded is called overfire. During

the overfire process, qmax is stretched to qover (> qmax) so that the GT can generate

an additional 10% to 20% power above qmax. Overfire is particularly useful when the

system capacity runs short or the market spark spread is high, indicating converting

fuel into electricity is highly profitable. As already mentioned, the benefit of overfire

comes with a price: more frequent maintenance may be needed. Detailed formulae

for determining the need for maintenance are given in the next section.

Like the fuel cost function, qmax is not a constant and may vary from time to time

depending on environment temperature. The capacity constraint is modeled below

in a similar way to (10).

qminut ≤ qt ≤ (qmax(ut − vt) + qovervt)β
e
q(T

e
t ), (13)

where

βe
q(T

e
t ) = 1 −

(
T e

t − T d

ΔT d

)
Rq (14)

Equations (13) and (14) state the maximum rated capacity can be increased from qmax

to qover. Regardless of overfire, both qmax and qover are dependent on the environment

temperature T e
t . For instance, when T e

t increases, both qmax and qover decrease. Again,

Rq in (14) is a constant between 0 and 1.

The dispatch problem of the GT is to determine the generation level qt at time

t when ut = 1. At time t, after observing the uncertainties, P E
t , P F

t and T e
t , qt is

determined so as to maximize the profit incurred at time t.

q∗t ≡ arg max{P E
t qt − Ct(qt, P

F
t ) | (13)} (15)

Therefore, a necessary condition for overfiring a unit is that q∗t > qmax.

The optimization problem described in (15) is a simple convex quadratic opti-

mization. Because of the responsiveness of GTs, we also assume that once a GT is

turned on it can be instantly dispatched to the optimal level q∗t in (15), which is an

implicit function of the uncertainties observed at time t, Qt. This explains why qt

was not included in the decision vector Vt.

3.5 Maintenance contract

Proper preventive maintenance ensures a GT to function efficiently and reliably.
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A GT owner normally outsources maintenance to avoid staffing full-time crews for

maintaining the units. This is more economical especially for the owners of small

GTs. This outsourcing involves signing maintenance contracts with some maintenance

companies, who are responsible for on-site unit maintenance.

A complete maintenance contract is normally complicated. The contract consid-

ered in this paper is a simplified version of a real maintenance contract. Since the

purpose of maintenance is to prevent early fatigue or outage of a unit, normally caused

by frequent ups/downs and/or quick temperature changes of the unit, the contract

keeps track of the aggregated unit operation hours (yt) and unit startup numbers

(zt), to be defined next. A unit must be shut down for maintenance if either yt or zt

exceeds some prespecified level Nop or N start, respectively.

wt =

⎧⎨
⎩

1, if yt ≥ Nop or zt ≥ N start,

0 or 1, otherwise.
(16)

If the operator operates the GT in compliance with (16), then reliable operation is

warranted by the contracts. Therefore, in this paper no outage possibility is consid-

ered for the GT, as a result of enforcing the maintenance contracts. According to the

contracts, the operator agrees to pay a fixed sum of maintenance cost Mmt at each

maintenance service. Therefore, the “more” one uses the GT (measured by yt and

zt), the more frequent maintenance is needed. How to track yt and zt to measure the

usage of the GT is further explained below.

• The aggregated operation hours is tracked by yt, whose initial value is 0. While

a normal operation hour is counted one hour, an overfire hour referring to one

in which the unit overfires is counted as W > 1 hours. This is because that

overfiring a unit causes more fatigue than normal operation. Therefore,

yt+1 = yt + (Wvt + (1 − vt))ut. (17)

• The aggregated startup numbers is tracked by zt, initially set to 0. Similar to

yt, different levels of startups are categorized depending on the temperature of

turbines. They are: warm start, normal start, cold start, and very cold start.

Generally, the longer a unit has been shutdown, the lower the temperature of

the turbine is. As already mentioned, the higher the temperature variation is,
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the more fatigue is caused. Therefore, a warm startup causes less temperature

variation and fatigue than a normal startup, than a cold startup, and than a

very cold startup. The following is merely an example how the startup number

is considered, depending on how long the unit has been down (xt < 0).

nt(xt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5, if xt > −4 (warm start),

1, if − 4 ≥ xt > −20 (normal start),

1.5, if − 20 ≥ xt > −40 (cold start),

2, if xt ≤ −40 (very cold start),

0, otherwise.

(18)

In (18), a warm start is considered a half normal start if the unit has been down

for less than 4 hours, and a cold start (down for 20 to 40 hours) is considered one

and a half normal start. Overall, the startup number is aggregated as follows.

zt+1 = zt + nt(xt)(1 − ut−1)ut, (19)

Both yt and zt will be reset to 0 after a maintenance is performed.

4 Uncertainty Generating Processes

Three underlying uncertainties are considered in this paper. They are two price

uncertainties, P E
t and P F

t , for the market prices of electricity and fuel, and the envi-

ronmental temperature T e
t . They are further discussed in the following sections.

4.1 Temperature model

This section presents the model of temperature variation over time, since GT’s

operational characteristics, including fuel consumption and generating capacity, are

sensitive to the environment temperature T e
t .

Recent studies have suggested that daily average temperature in US cities can

be modeled using time series approach (Campbell and Diebold 2005). Let T e
t be

the actual temperature for day t; T̄ e
t be the average temperature for day t; and

ΔT
t ≡ T e

t − T̄ e
t . Cao and Wei (2000, 2004) and Baldick et al. (2006) have all suggested
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to model daily temperature deviation ΔT
t as a k-lag autoregressive process in terms

of ΔT
t , ΔT

t−1, · · · , ΔT
t−k+1. Particularly, Cao and Wei (2000) suggested that on day t

the future temperature deviation on day t + 1 (from the average temperature of that

day) can be forecasted based on temperature deviations over the three previous days,

t, t − 1 and t − 2 (i.e., k = 3).

In our study, we collected historical weather data from Maryland to focus on

the market of PJM (Pennsylvania-New Jersey-Maryland). Following the general k-

lag autoregressive process described above, our analysis found that the temperature

deviations on t − 2 were statistically insignificant to forecast the future temperature

deviations on t + 1 (i.e., k=2). Our finding coincided with that reported by Baldick

et al. (2006), who used historical weather data from central Texas. The temperature

model is as follows.

ΔT
t+1 = α1Δ

T
t + α2Δ

T
t−1 + γtεt (20)

γt = γ0 − γ1| sin(π(t + φ)/365)|, (21)

where εt is a standard normal random variable; α1 and α2 represent the autocorrela-

tion coefficients for deviations from average temperature on day t and t − 1, respec-

tively. Equation (21) measures the magnitude of the random fluctuations, which is

seasonal with a fixed term γ0 and a seasonal term of magnitude γ1. The phase φ of

the sinusoid in (21) is a constant.

4.2 Stochastic price process

In this paper, it is assumed that the prices for electricity P E
t and fuel P F

t follow

some geometric mean reverting (MR) processes governed by the following stochastic

differential equations.

d lnP E
t = −ηE(ln P E

t − mE
t )dt + σEdBE

t (22)

and

d lnP F
t = −ηF (ln P F

t − mF
t )dt + σF dBF

t (23)

In (22) and (23), ηE and ηF are reverting coefficients; mE
t and mF

t are the mean

levels of electricity and fuel prices at time t, respectively; σE and σF are constant

volatilities; and BE
t and BF

t are two Wiener processes with correlation ρ. Such mean
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reverting models have been commonly used in representing energy price movements

(e.g., Barz 1999; Tseng and Barz 2002; Tseng and Lin 2007).

5 Numerical Results

The problem formulation (P ) given in Section 3 is a difficult mixed-integer multi-

stage stochastic program. We used the least squares Monte Carlo (LSMC) method

initially proposed by Longstaff and Schwartz (2001) to solve the problem (P ). Using

Monte Carlo simulations to generate scenarios of the evolution of the underlying un-

certainties, the conditional expectation at the right-hand side of (2) can be estimated

by least squares regressions. This estimation is repeated and is integrated with dy-

namic programming iterations moving backward in time to obtain the asset value at

time 0. For details of the algorithm using LSMC for valuing the overfire option of a

GT, the interested reader is directed to Zhu (2004).

5.1 Test system parameters

Consider a small-sized GT with the input-output characteristics following (10)

and (11). Based on real data, the following parameters are devised: c0 = 200, c1 =

8.149, and c2 = 0.00452. The generating capacities of the GT are: qmin = 75MW,

qmax = 200MW, qover = 230MW. We also assume that ton = 2, toff = tcold = 1, and

tover = 1 to fully capture the influence of the physical constraints. Let the startup cost

be $1000 and shutdown cost be $500. Assume the designed operating environment

temperature T d to be 66oF, and the allowable operating temperature range ΔT d to

be 60oF. The adjusting factors for both fuel cost Rc and generating capacity Rq due

to temperature variation are both set to 2%.

Assume the current electricity price P E
0 is $20/MW and the natural gas price P F

0

is $2.2/MMBtu. Hourly electricity prices and gas prices are generated by two mean-

reverting processes using (22) and (23). The reverting coefficients are ηE = 0.072 and

ηF = 6.95 × 10−4; the volatilities are σE = 0.27 and σF = 0.019 for the logarithms

of the electricity and natural gas prices, respectively. The mean-reverting process

for the electricity price considers a daily price pattern. The 24 hourly mean levels

mE
t are summarized in Table 1, which captures the cyclical nature of the expected
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Table 1: Values of hourly mE
t for ln P E

t

t 1 2 3 4 5 6 7 8

mE
t 1.887 2.656 1.935 2.340 3.503 3.857 3.758 4.660

t 9 10 11 12 13 14 15 16

mE
t 4.861 4.710 5.811 4.736 5.044 5.738 5.917 4.713

t 17 18 19 20 21 22 23 24

mE
t 3.723 1.457 1.322 2.511 3.617 0.645 1.603 1.833

electricity prices. For the natural gas prices, mF
t = 1.0195 is set to a constant for

all t because there are no hourly markets for natural gas. Furthermore, we assume

that the correlation coefficient ρ between electricity and gas prices is 0.4, as observed

in the markets. The parameters of the price processes used here are consistent with

those in Tseng and Barz (2002).

For the maintenance contracts, the maximum number of operation hours Nop =

1600 hours and the maximum startup numbers is N start = 120 between any two

maintenance intervals. Assume W = 4, i.e., an overfire hour is equivalent to 4 normal

operation hours. The startup number is measured using (18). Assume the dura-

tion of each maintenance interval Tmt is two weeks, i.e., 336 hours. Each time the

maintenance is carried out costs Mmt = $5, 000.

Following the model described in (20) and (21), we have collected weather data

(from January 2000 through December 2002) from the National Climatic Data Center

website (www.ncdc.noaa.gov) in the area of Maryland, and use them to calibrate the

model. The parameter values for α1, α2, γ1, γ2, and φ are obtained via standard

statistical analysis. We further categorize γ1 into seasonal values. The estimated

values of the parameters are summarized in Table 2.

5.2 Valuing a GT with overfire capacity and maintenance

contract

Use the LSMC approach and the uncertainties models calibrated in the previous

section, we value the GT over a one year (8760 hours).
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Table 2: Values of the parameters of the temperature model

Parameters Value

α1 0.831

α2 -0.194

γ0 8.322

γ1 (Spring) 5.697

γ1 (Summer) 5.774

γ1 (Fall) 5.741

γ1 (Winter) 5.753

φ -14.2

Asset value vs. time T

Next we consider the capacity value of the GT vs. the length of the time horizon T ,

ranging from one month to one year. The result is depicted in Figure 2. It can be seen

that the capacity value of the GT with overfire capacity and maintenance contract

is around $150/KW for one year. In general, the capacity value increases with the

length of time horizon T monotonically and approximately linearly. From Figure 2,

it can be seen that the relation is bumpy when T is between 3 and 7 months. This

is because a two-week maintenance is incurred within this time period. Since the

unit has to be off-line during the maintenance interval, it impacts the overall asset

value and creates the bumpiness of the seemingly linear relation when T is not big.

However, as T exceeds 8 months, which is considerably longer than the duration of

the maintenance interval, the asset value returns to an approximately linear function

of T .

Asset value vs. price process parameters

Next we conduct sensitivity analysis to observe how the capacity value of the GT

changes with the price parameters, including the reverting coefficients (ηE and ηF )

and volatilities (σE and σF ). The asset value vs. the change of reverting coefficients

is illustrated in Figure 3. Although both relations (value vs. ηE and value vs. ηF )

19



�

��

��

��

��

���

���

���

���

� � � � � �� ��

�	
��

������

�
��
��
	�
�
��
��
�
��

�
�
��
��
��
�
 
�

Figure 2: Capacity value of the GT over time.

are depicted in the same figure, only one parameter is changed at a time with all

others fixed at their baseline values given Section 5.1. Both of the changes of the

asset value and parameter value are measured based on percentage deviated from

$150/KW (with T = 1 year) and the baseline value, respectively. It can be seen from

Figure 3, the asset value decreases as the value of the reverting coefficient increases.

The result can be interpreted as follows. For a MR process, a price deviated from the

mean is deemed temporary and is subjected to a reverting force to move the price back

towards the mean. The bigger the reverting coefficient is, the stronger the reverting

force is. When a reverting coefficient is bigger, it also means any price deviation

from the mean lasts shorter and, therefore, there are fewer profitable opportunities

due to the price deviation. Therefore, the asset value decreases as the reverting

coefficient increases. The same arguments applies to both the reverting coefficients

of the electricity price and the fuel price. On the other hand, when the value of ηE

continues to increase, the decrease of the asset value eventually stops. This may be

interpreted as that the electricity price becomes easier to forecast.

In Figure 4, we show the sensitivity analysis of the asset value vs. the price
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Figure 3: Capacity value of the GT vs. change of reverting coefficients.

volatilities. When σE increases, the asset value increases. Since the GT makes profits

by exploring opportunities of big price spread between the electricity and the fuel,

a bigger σE makes such profitable opportunities more likely to occur. According to

Figure 4, the asset value is insensitive to the volatility of the fuel price. This is due

to the fact that the value of σF remains to be small even after perturbation.

Asset value affected by environment temperature

As mentioned, a GT’s operational characteristics (including fuel cost function and

generating capacities) are sensitive to the environment temperature T e
t . To test how

the asset value is sensitive to the environment temperature, we design a counterfac-

tual case, in which the environmental temperature is stationary maintained at the

recommended operating temperature T d
t for all times. Therefore, βe

c = βe
q = 1 for

the counterfactual case, which is then compared with two cases with uncertain tem-

peratures following the proposed temperature model. For simplicity, we choose T to

be 8 weeks to exclude the effect of maintenance. One test case uses the temperature

model for the summer and another for the winter. Generally, T e
t > T d

t in the summer.

Therefore, both qmax and qover are smaller and the asset value is also lower than the

values in the counterfactual case. The situation is reversed in the winter case. The

result of the summer case is depicted in Figure 5. It can be seen that as T = 8,

temperature uncertainty accounts for approximately 2.2% decrease of the asset value

(compared with the baseline.) The result of the winter case is given in Figure 6,
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Figure 4: Capacity value of the GT vs. change of volatilities.

where the asset value is higher than that in the counterfactual case.

5.3 Overfire option value

To extract the value of the overfire option, we introduce an additional constraint

that limits the overall number of overfire hours. First, let ot be a new state variable

that tracks the aggregated overfire hours, which is reset to 0 after a maintenance is

performed.

ot+1 = ot + vt (24)

An upper bound Nover is then imposed to ot such that the unit cannot overfire at

time t if ot exceeds Nover.

We then run the model for determining the asset value (T = 1 year) repeatedly

with the value of Nover increased gradually. The capacity value of the GT vs. Nover

is depicted in Figure 7. Initially, the asset value increases as Nover increases from

0, since overfire a real option that has value. When the value of Nover equals 100

hours, the asset value reaches a maximum. After that, the value stops increasing

even Nover increases. Therefore, Nover = 100 hours (or roughly one hour every three

days) can be viewed as the optimal number of overfire per year. If one continues to
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Figure 5: Asset value decreased in summer due to temperature.
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Figure 6: Asset value increased in winter due to temperature.
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Figure 7: Capacity value affected by overfire limit.

increase Nover, the asset value converges because the imposed constraint with Nover

is no longer binding. Overfiring the GT less than 100 hours is not optimal. On the

other hand, overfiring the unit more than 100 hours is not economical, because the

maintenance costs outweigh the benefit.

5.4 Maintenance option value

Since maintenance is necessary and required, it may not be perceived to have

options. Note that (16) states that maintenance is required by the contracts if at

least one of the two maintenance conditions is met, yt ≥ Nop and zt ≥ N start. The

same equation, however, does not necessarily imply that maintenance should not

take place even when none of these two conditions is met. Clearly, there is an option

of flexibly determining the maintenance timing. To measure the value of such an

option, we manage to take away this option by modifying (16) such that maintenance

is performed only when it is absolutely necessary, i.e., at least one of yt and zt has

reached its upper limit. We then run the model to determine the asset value (with
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T = 1 year) and compare it with the original asset value with (16). The capacity

value of the GT is 146.7 $/KW without the maintenance option, and was 149.8 $/KW

with the option. That is, approximately 2 % of the capacity value can be attributed

to the flexible timing of performing necessary maintenance. This option value can

also be viewed as the value of flexibility in timing of maintenances.

6 Discussion and Conclusion

In this paper, we develop a generation asset valuation framework where capital

utilization decision is endogenous. In particular, we apply real option methods for

valuation of natural gas turbines considering overfire option, maintenance constraints,

and environment temperature. Numerical results show that the overfire option can be

optimally exercised to increase the asset value. This proposed model is also capable

of identifying how temperature variations affect the asset value, which has not been

tackled in the literature.

Recently, there has been a growing concern about global warming, especially more

frequent weather events such as heat wave. The proposed model shows that temper-

ature increase and changing patterns of weather uncertainty will impact the asset

value. Our study, however, focuses on an individual’s problem by considering the

asset value of a price-taking GT. One interesting extension is to consider systemic

effects due to global warming, e.g., its impact on both supply and demand. For

example, as shown in this paper the change in ambient temperature would poten-

tially affect performance of all suppliers generating power using thermal systems.

This would potentially shift the supply-curve of the producers. On the demand side,

one possible scenario is that the temperature under extreme weather condition could

cause sharper increase in peak demand. In this scenario, both supply and demand

effects would seem to make the price higher. Certainly, there are many other factors

to consider, such as other weather scenarios and patterns, fuel price, competition,

and market mechanism. Nevertheless, the proposed model has the potential to be

expanded to include more global and long-term climate change uncertainties, which

may have significant impact to the asset values. Overall, the proposed model and the

numerical results provide some new insights in the valuation and operation of GTs.
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Appendix A. Nomencla

A1. List of abbreviations used in the text

DCF discounted cash flow

GT Gas turbine

LSMC Least squares Monte Carlo

MR Mean reverting

A2. List of symbols used in the model formulation

Index

t time, t = 1, · · · , T .

Parameters

T the number of hours of the planning horizon.

H, H1 heat rate of a GT

ton the minimum number of hours the unit must remain on after it has been

turned on before it can be turned off.

toff the minimum number of hours the unit must remain off after it has been

turned off before it can be turned back on.

tcold the number of hours required to cool the unit from shutdown.

tover maximum number of hours the unit can be overfired continuously.
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qmin minimum rated capacity of the unit (without overfire).

qmax maximum rated capacity of the unit (without overfire).

qover maximum rated capacity of the unit when it is overfired (qover > qmax).

P E
t spot price at time t for electricity.

P F
t , P F1

t spot price at time t for fuel.

T e
t environment temperature at time t.

T d designed operating temperature of the gas turbine.

ΔT d designed operating temperature range of the gas turbine.

βe
c(T

e
t ) adjusting factor for fuel cost when the environment temperature is T e

t at time

t.

βe
q(T

e
t ) adjusting factor for qmax when the environment temperature is T e

t at time t.

Rc adjusting factor for fuel cost due to environment temperature variation.

Rq adjusting factor for generating capacity due to environment temperature vari-

ation.

nt(xt) equivalent startup number at state xt used by the maintenance contract.

tmt the minimum number of periods the unit must be shutdown for maintenance.

Mmt direct maintenance cost which are determined by the maintenance contracts.

Nop the maximal aggregate operating hour between any two maintenance inter-

vals, defined by the maintenance contracts.

N start the maximal aggregate number of startups between any two maintenance

intervals, defined by the maintenance contracts.

Ct(qt, P
F
t ) : fuel cost for operating the unit at output level qt with fuel price at P F

t at

time t.
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St(ut, xt) : startup/shutdown cost associated with turning on/off the unit at time t.

Mt(yt, zt) : maintenance cost associated with the unit in time period t.

Qt an uncertainty vector including P E
t , P F

t , and T e
t indicating all the uncertain-

ties at time t.

Q̃0 initial condition of Qt at t = 0.

V ariables

ut zero-one decision variable indicating whether the unit is to be turned on or

off at time t.

vt zero-one decision variable indicating whether the unit is to be overfired or

not at time t.

wt zero-one decision variable indicating whether the unit is to be shutdown for

maintenance or not at time t.

xt state variable indicating how many hours the unit has been turned on (xt > 0)

or off (xt < 0) by time t.

yt state variable indicating the total number of hours at time t that the unit

has been overfiring since the most recent maintenance.

zt state variable indicating the total startup numbers at time t since the most

recent maintenance.

qt variable indicating the amount of power that the unit generates at time t.

Xt a state vector including xt, yt and zt indicating the status of the unit at time

t.

Vt a decision vector including ut, vt and wt indicating the decisions of the unit

at time t.

X̃0 initial condition of Xt at t = 0.
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