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Abstract

I analyze a model of human capital development in the presence of peer effects.

Parents invest in their child, and this investment conveys a positive externality

upon the childs peers. Parents also acquire wealth, which i) finances consumption,

and ii) determines a childs peer group. I show how the freedom to compete for

desirable peers exacerbates the natural underinvestment problem. The analysis

thereby produces a general equilibrium framework in which the inefficiencies dis-

played in a rat-race interact with those stressed in the multi-tasking literature. I

consider an extension in which both wealth and parental investment are observed

with noise.
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1 Motivation and Introduction

The determinants of human capital formation are, for various reasons, important to
understand. Economists have recognized that such determinants include not only the
level of resources that are devoted to the process, but also the social context in which
this investment takes place. For example, there is now a large literature on ‘peer ef-
fects’ that analyzes and attempts to quantify the notion that an individual’s outcomes
are sensitive to the particular individuals that they interact with (see Durlauf (2004)
for a comprehensive survey). This paper presents a model of human capital develop-
ment in which parents allocate resources mindful of the existence of peer effects. A
central concern is the efficiency of such resource allocations.

Peer effects are modeled in a simple, direct manner: parents make investments
in their child’s human capital and this spills over to the child’s peers. If peers were
fixed, then there is a natural underinvestment problem since no parent takes into
account the fact that their investment benefits others. However, peers are not fixed:
parents face ‘the promise of social mobility’ in the sense that they have the capacity
to undertake costly actions that place their child among desirable peers. In particu-
lar, a family’s (endogenous) wealth determines the type of peer group that their child
will interact with. This is modeled as a marriage problem with observable wealth,
but can be thought of as representing a competitive market process whereby wealth
determines which families can afford to live in which neighborhoods (or attend which
schools). Finally, the model captures the feature that acquiring wealth places a de-
mand on family resources, thereby raising the cost of parental investments.

Most existing studies that model human capital development in the presence of
peer effects are concerned with the efficiency of equilibrium segregation across neigh-
borhoods. Prominent examples include Benabou (1996a), Durlauf (1996), and de Bar-
tolome (1990). Although these studies are concerned with the efficiency of parental
location choices, they generally trivialize the parental investment choice.1 In contrast,
the efficiency of such investment choices are the central issue here.

A related literature abstracts from explicit peer effects and instead focuses on ‘fis-
cal spillovers’: the effect of neighborhood composition on local public finance decisions,

1Although a parents’ human capital acts as an input in the production of their childs’ human capital,
it is not a choice variable in Benabou (1996a) (it is an exogenous type). Human capital is produced
with neighborhood-wide educational inputs (per capita) in de Bartolome (1990), and, in a similar vein,
Durlauf (1996) assumes that all individuals in a neighborhood receive the same investment.
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such as educational expenditures (e.g. Benabou (1996b) and Fernandez and Rogerson
(1996)). There are two relevant points to be made here. First, the standard public
goods problem (under-provision) is readily overcome when contributions are monetary,
since it is relatively simple for local governments to establish and enforce the suitable
contracts, e.g. imposing suitable tax rates. Indeed, this is the essence of Tiebout com-
petition. Such mechanisms are not available when the contributions take the form of
parental investment, implying that the under-investment problem remains. Second,
for any given tax rate, families prefer to be surrounded by wealthier families since
they generate greater tax revenue. Families also wish to be surrounded by wealthy
families in the model presented here, but for a very different reason: wealth signals
that such families have also made high parental investments. This perspective may
help reconcile the puzzling coexistence of i) the fact that parents have a concern about
which school their child attends, and ii) a general disagreement in the empirical liter-
ature as to whether school resources have a significant impact on outcomes.

The model developed here extends the literature on competitive matching with
pre-match investments by analyzing multiple pre-match investments. This is an im-
portant extension since the literature stresses two distinct roles of pre-match invest-
ments. First, an investment has a surplus-generating role when it serves to increase
an agent’s value as a potential partner - i.e. to generate surplus within a match. Sec-
ond, an investment has a matching role when it serves as a means through which
more desirable partners can be attracted.2 There is a class of models have a single
investment that plays both roles simultaneously (e.g. Bidner (2008a), Peters (2007b),
Peters (2007a), Peters and Siow (2002) and Cole, Mailath, and Postelwaite (2001)).3 A
second class of models employ a single investment in the matching role only (e.g. Bid-
ner (2008b), Hoppe, Moldovanu, and Sela (2005), Damiano and Li (2007), and Rege

2The only other paper that I am aware of that incorporates multiple pre-match investments is Han
(2005). In that paper, firms choose both a workplace characteristic and a wage payment (workers choose
a single productive characteristic). Although the firm makes multiple investments, both of the invest-
ments are observed, and therefore both simultaneously play the surplus-generating and matching role.
In contrast, the present paper uses multiple investments to distinguish the roles.

3These model can be further classified according to the significance of agents’ types. In Peters
(2007b), Peters (2007a), Peters and Siow (2002) and Cole, Mailath, and Postelwaite (2001), types de-
termine the cost of investment (much like in signaling models) but do not affect an agent’s value as a
partner, which only depends on their investment (making signaling uninteresting). In Bidner (2008a),
types determine the productivity of investment and therefore influence an agent’s value as a partner
(as in signaling), but do not affect investment costs (making signaling infeasible).
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(2007)). Finally, a large and varied class of models uses a single investment to focus
on the surplus-generating role only (e.g. non-cooperative models of public good contri-
bution, hold-up, etc., as well as competitive models such as the Kremer (1993) O-Ring
Theory). Conceptually, these roles are distinct. As such, interesting insights may be
overlooked if we either ignore one of the roles, or try to impose both roles on a single
investment. Section 6 below sheds more light on the issue, as it considers an extension
of the model in which both investments are observed with noise.

The central message delivered by the model is that competition for peers exac-
erbates the inherent inefficiency associated with parental investment externalities.
There are essentially two components to this. First is the fact that families devote too
many resources to acquiring wealth in order to compete for better peers. Modern treat-
ments of this phenomenon explicitly incorporate matching (e.g. Hoppe, Moldovanu,
and Sela (2005) and Rege (2007)), but the general ‘rat-race’ phenomenon has long
been recognized (e.g. Akerlof (1976), and Frank (1985)). The model presented here
places this phenomenon within a ‘general equilibrium’ setting because the objects
that agents are competing for - the parental investment embodied in peers - is itself
endogenous. This leads to the second aspect: competition for peers consumes parental
resources, which makes parental investments themselves more costly. This mecha-
nism is reminiscent of the adverse effects of high-powered incentives stressed in the
literature on multi-tasking (e.g. Holmstrom and Milgrom (1991)). Again, the model
places this mechanism within a ‘general equilibrium’ context because incentives are
only high-powered because of the possibility of interaction with others.

The conclusion that competition for peers is detrimental is in direct contrast to
the positive conclusions drawn from models in which a single investment plays both
a surplus-generating role and a matching role. In such models, the desire to at-
tract better partners provides an added impetus to invest - as it does in this model
- but, the fact that there is only one investment automatically implies that the under-
investment problem is, at least in part, resolved.4 Despite the dramatic difference
in the conclusions reached, the models produce many observationally-equivalent out-
comes. For instance, positive assortative matching (on wealth, parental investment,
and type) is predicted by both models. However, the models are empirically distin-
guishable, at least in principal, because they differ on the variables that cause positive
matching. For instance, models with a single investment predict that it is the child’s

4In Bidner (2008a), the added impetus actually leads to the reverse problem - over-investment.
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human capital that allows for a better match, whereas the model here predicts that it
is wealth.

The basics of the model are laid out in Section 2. Essentially, families observe their
type, acquire wealth and make parental investments, then compete for a desirable
partner (peer) in the matching market. The equilibrium concept is defined following
a description of the matching market. Various general results, including existence,
uniqueness, and some welfare properties, are presented in Section 3. Following this,
two illustrations are presented. The first, in Section 4, is quite simple and is designed
to demonstrate i) how to calculate equilibria, and ii) some strong welfare dominance
properties. The second illustration, in Section 5, is more detailed, and demonstrates
how to derive equilibria when simple closed-form solutions are not available. Fur-
thermore, the illustration provides the background for an extension in Section 6. The
extension examines a situation in which both wealth and parental investment are ob-
served (with noise) in the matching market. I demonstrate that many of the results
are robust in this dimension, and that additional insight is obtained as i) outcomes
depend on the distribution of types, and ii) special cases are obtained as the different
noise levels are manipulated.

Although the model is motivated by peer/neighborhood effects, I believe the mech-
anisms highlighted by the model are applicable to a variety of situations that share
the essential features - e.g. analysis of labour and marriage markets.

2 Model

2.1 Fundamentals

A family consists of one adult and one child, and is indexed by i ∈ [0, 1]. Each adult is
endowed with an ability, θi, where θi is continuously distributed onΘ ≡ [

θ, θ
]

according
to Ψ, which is assumed to have a positive and bounded density ψ ∈ (0,∞) on Θ.

Adults have preferences defined over two outcomes: consumption and the human
capital of their child. Consumption is financed by wealth, and wealth is determined
by an investment that the adult makes in their productivity. If an adult makes x

units of investment in their productivity, then this allows them to consume an amount
that produces utility according to f(x), where f is a twice differentiable function with
fx > 0, fxx < 0, and limx→0 fx(x) =∞.

The process of earning income and consuming does not involve any form of inter-
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action with other families. In contrast, the development of a child’s human capital is,
in part, a social phenomenon. In particular, child i not only benefits from parental
investments made by adult i, but also benefits from parental investments made by
the parents of their peers. To focus ideas, suppose that children socialize in pairs.5 If
adult i makes y units of parental investment and their child socializes with a child
whose parents make y′ units of parental investment, then the human capital of child i
is given by h(y, y′). The function h is twice differentiable with hy, hy′ > 0 and hyy ≤ 0. I
assume that interaction is weakly complementary in the sense that hyy′ ≥ 0. That is,
the marginal product of parental investment in non-decreasing in the level of parental
investment made by their partner. This property of h is important in matching prob-
lems because it determines the efficient matching pattern (Becker (1973)). Finally,
I make the regularity assumption that hyy(y, y) + hyy′(y, y) ≤ 0. This says that the
marginal product of parental investment is non-increasing when evaluated at a point
in which both members of the match make the same investment. The assumption
ensures that a well-defined social optimum exists.

To fix ideas, it will be convenient to assume that h belongs to the class of general-
ized CES functions:

h(y, y′) = [(1− φ) · q(y)ρ + φ · q(y′)ρ] 1ρ ,

where ρ ∈ (−∞, 1], φ ∈ [0, 1], and q is an increasing, twice continuously differentiable,
concave function.6

Even when q is chosen to be the identity function, q(z) = z, the CES specification is
flexible enough to capture linear (ρ = 1), Cobb-Douglas (ρ→ 0), and Leontief (ρ→ −∞)
specifications. The parameter φ captures the degree to which a child’s human capital
is sensitive to the parental investment embodied in their peers.

An adult’s ability, θ, determines the costs incured in making both types of invest-
ment. In particular, if an adult of ability θ chooses the investment bundle (x, y), then
their total investment is T = x + y, which has an associated cost of c(T, θ), where c
is a twice continuously differentiable function where i) the marginal cost is positive,

5This assumption is made for simplicity. Allowing for any finite number of agents per group is not
problematic if we assume that all an agent cares about is the average of the investments made by others
in the group.

6Note that q being C2 implies that both q′ and q′′ are continuous functions, the monotonicity of q

implies that there is no ŷ < ∞ such that limy→ŷ q′(y) = 0. Together, these imply that −q′′(y)/[q′(y)]2 is
continuous on (0,∞).
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except at zero: cT (0, θ) = 0 and cT (T, θ) > 0 for T > 0, ii) the marginal cost is strictly in-
creasing: cTT > 0, and most importantly iii) the marginal cost is decreasing in ability:
cTθ(·) < 0.

The assumption that investment costs depend on the total investment, and not
the composition, can be motivated by interpreting x as expenditures on consumption,
and y as expenditures on a child’s human capital. These expenditures are financed
from wealth, which is acquired from labor income. A parent’s labor income depends on
their labor supply, as well as their wage. The wage equals their marginal productivity,
which is their ability. Adults are endowed with a unit of time that is divided between
work and leisure. By allocating t units of time to working, the adult obtains a leisure
payoff of �(1− t), and can allocate T = tθ units to the two types of expenditures. Thus,
if we assume that �′(1) = 0, we can interpret the cost of investment as the opportunity
cost of leisure: c(T, θ) = −�(1−(T/θ)). Despite this interpretation, the functional forms
adopted in the illustrations will be chosen for their analytical simplicity.

Finally, in order to analyze the effect of altruism, I assume that the adults’ objective
function incorporates a weighted sum of consumption and child human capital. In
particular, if an adult chooses the investment bundle (x, y) and is matched with a
family that chooses an investment bundle (·, y′), then the adult’s total payoff is:

V (x, y, y′, θ) ≡ (1− α) · f(x) + α · h(y, y′)− c(x+ y, θ), (1)

where α ∈ (0, 1] parameterizes altruism. To ensure that parents choose a positive
amount to invest in their child’s human capital - that is, to make the model interesting
- I assume that limy→0 Vy (x, y, y

′, θ) > 0 for all values of (x, y′). This is automatically
satisfied when either ρ < 1 or α = 1. In all other cases, the assumption is satisfied if
limy→0 q

′(y) =∞.

2.2 Structure

Each adult clearly has an interest in who their child socializes with. The mechanism
through which a child is assigned a peer is intended to capture the feature that par-
ents are somewhat able to influence the quality of their match through the choice of
investments. In particular, the model will unfold in two stages as follows:

1. Adults observe their ability, θ, and choose their investment bundle (x, y).

2. Families enter a matching market in which they match with another family.
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The matching market is modeled in a somewhat reduced form manner, and is intended
to capture the salient features of a frictionless matching game with a large, even,
number of agents. The key element is that only agents’ wealth, x, is observed in
the matching market (this is relaxed in Section 6 below). It is convenient to assume
that agents are able to ‘hide’ any amount of their wealth at some arbitrarily small,
but positive, cost. We think of each agent, having observed the wealth of all agents,
proposing to - and receiving propositions from - other agents. Any agent that goes
unmatched gets a payoff equivalent to being matched with a family that makes zero
investment in their child’s human capital. Thus, all agents prefer to be matched than
to remain unmatched. The matching market is said to be in equilibrium once all
further mutually agreeable propositions are exhausted. I impose certain conditions
on the matching market that are intended to capture the the essential properties of
this equilibrium allocation as the number of agents becomes infinitely large. This is
discussed in more detail in the following section.

2.3 Equilibrium

The economy is in equilibrium when i) agents make their investments optimally, given
a conjecture about the matching market, and ii) equilibrium in the matching market,
given the pattern of investments that are made, does not contradict the agents’ ini-
tial conjecture. I consider two classes of equilibria; pooling and separating. Rather
than introducing an all-encompassing definition of equilibrium at this point, I offer
specialized definitions for each of these classes in their respective sections.

2.3.1 Pooling Equilibrium

In a pooling equilibrium, all families have the same observed wealth, say xP . Since
all families appear identical in the matching market, matching must effectively be
random. Furthermore, any unilateral deviation from a wealth of xP will not change
a family’s matching prospects since they will still be matched with some family (and
all families appear identical). This implies that no family can be hiding wealth in a
pooling equilibrium, since hiding wealth entails a small cost.

Given that other families invest according to (xP , yP (θ)), each agent faces the fol-
lowing optimization problem:

max
x,y

{(1− α) · f(x) + α ·H(y)− c(x+ y, θ)} , (2)

8



where

H(y) ≡
∫
h(y, y(z))dΨ(z).

The profile (xP , yP (θ)) is a pooling equilibrium if the solution to (2) is {xP , y(θ)}, for all
θ ∈ Θ. Importantly, the optimal value of x must be xP for all families. For this reason,
pooling equilibria will often fail to exist.

Proposition 1. A pooling equilibrium does not exist if there is imperfect altruism
(α < 1).

In light of this, one must take care when commenting on the trade-off emphasized
in the literature: that signaling is wasteful but facilitates efficient matching patterns.
In Hoppe, Molodovanu, and Sela (2005), this trade-off is motivated by making a com-
parison across equilibria - however, once the investment yields a private benefit in
addition to any signaling aspect, the equilibrium without investment fails to exist. Of
course, one could always motivate the trade-off by comparing equilibrium outcomes
to a benchmark in which the ‘signal’ is also hidden. I analyze a model in which both
types of investment are observed with noise in Section 6 below.

One last point to note is that, since the marginal benefit to parental investment
is non-decreasing in the investment of others, pooling equilibria will generally not be
unique (the parental investments, not wealth, will differ).

2.3.2 Separating Equilibrium

Separating equilibria have the property that the parental investment made by each
family is perfectly revealed by their observed wealth level. For this to occur, families
must have no incentive to ‘hide’ part of their wealth from the matching market. This
in turn requires that families of different types must optimally choose different wealth
levels. I look for equilibria in which wealth is a differentiable and strictly monotone
function of type.

The pair of functions, {x(θ), y(θ)}, are candidate equilibrium investment functions
if x(·) is a differentiable, strictly monotone function. If agents invested according to
these candidate functions, then observing a family with a wealth of z in the matching
market reveals that the family is of type x−1(z), and therefore has made a parental
investment of μ(z) ≡ y(x−1(z)). Since all families prefer to match with those that have
higher values of μ(z), it follows that the only stable matching is positive assortative
on μ(z).
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LetX be the set of investments that arise in equilibrium (the image of x(θ)). Agents
recognize that if they enter the matching market with a wealth of z ∈ X, then they
will be matched with any family that has made a parental investment of μ(z). On
the other hand, if they enter with a wealth of z /∈ X then, since they match with
some family, they get matched with a family that has made some parental investment
in {μ(z′) | z′ ∈ X}. In light of this, we can interpret μ as a matching market return
function.

Separating behaviour is only consistent with μ being non-decreasing (at least on
X). Suppose to the contrary that for some pair of observed equilibrium wealth levels,
(x, x′), where x < x′, we had μ(x) > μ(x′). Those with an observed wealth of x′ would
be better off hiding part of their wealth and displaying a wealth of x to the matching
market (since the associated cost is arbitrarily small). This would then contradict the
fact that x′ is a wealth level observed in equilibrium.

To summarize, we say that the function μ is consistent with the candidate invest-
ment functions {x(θ), y(θ)} if i) μ is non-decreasing on X, and ii)

μ(z)

⎧⎨
⎩= y(x−1(z)) if z ∈ X
∈ {y(x−1(z)) | z ∈ X} otherwise.

(3)

The first of these conditions can also be expressed as:

μ(x(θ)) = y(θ), for all θ ∈ Θ. (4)

Taking the non-decreasing return function as given, families invest optimally. In
particular, given μ, investments are optimal if

{x(θ), y(θ)} ∈ argmax
x,y
{V (x, y, μ(x), θ)} (5)

for all θ ∈ Θ.
Putting this all together, a separating equilibrium is defined as follows.

Definition 1. A separating equilibrium is a pair of candidate investment functions,
{x(·), y(·)}, and a matching market return function, μ(·), such that:

1. {x(·), y(·)} are optimal given μ(·), and

2. μ(·) is consistent with {x(·), y(·)}.
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One central property of a separating equilibrium is that families are perfectly seg-
regated along the parental investment dimension. This, by itself, does not imply
that families are also perfectly segregated along the wealth dimension. That is, if
parental investment were non-monotonic in type, then two different types will make
the same parental investment (and therefore can be matched together), yet have dif-
ferent wealth levels. This possibility is ruled out by the following.

Result 1. Parental investment is a weakly increasing, differentiable function of type
in a separating equilibrium.

This comes from the observation i) μ being non-decreasing implies that if wealth
is increasing (decreasing) in type then parental investment is weakly increasing (de-
creasing) in type, and ii) that total investment is increasing in type (see Appendix).
Differentiability follows from the assumed differentiability of x(·) and an inspection
of the equation that implicitly defines optimal parental investments. Since both x(θ)

and y(θ) are differentiable in a separating equilibrium, condition (4) implies that so
too is μ. This fact is used in deriving the equilibrium return function, but before doing
so, it is useful at this point to establish a set of benchmark investment levels since
they will also feature in the derivation.

2.3.3 Some Benchmarks

To begin, suppose that each family were exogenously matched with a family of the
same type. The optimal investments in this setting are called the Nash investments
(since families take their partner as given). Some insight into the role played by
‘the promise of social mobility’ can be obtained by comparing the Nash investments
to the equilibrium investments. The Nash investments, xN(θ) and yN(θ), satisfy the
following:

{
xN(θ), yN(θ)

} ∈ argmax
x,y

V (x, y, yN(θ); θ). (6)

When investing in this way, families do not take into account that their parental in-
vestment benefits their partner. To formalize this, we can define the Efficient invest-
ments, x∗(θ) and y∗(θ), as those that satisfy:

{x∗(θ), y∗(θ)} ∈ argmax
x,y

V (x, y, y; θ). (7)

Given the positive externality, the following result is not particularly surprising.
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Result 2. Nash investments are not efficient. In particular, yN(θ) < y∗(θ) and xN(θ) ≥
x∗(θ).

Nash wealth is (weakly) greater than the efficient wealth level since the Nash
parental investment is lower, which lowers the cost of making the wealth enhancing
investment. The reason that the inequality is weak is that both wealth levels may be
zero (when α = 1).

Result 3. Both the Nash- and Efficient Investments are independent of ρ.

This follows from the observation that for any z > 0, we have h(z, z) = q(z),
hy(z, z) = (1 − φ) · q′(z), and hy′(z, z) = φ · q′(z) for all values of ρ. Although this is
a special feature of the generalized CES form imposed on h, it will be useful below.

2.3.4 Deriving the Equilibrium

The equilibrium is derived in two steps. First, the matching market return function
is derived. Once we verify i) that this function is increasing on X, and ii) that appro-
priate values for off-equilibrium investments can be found, the second step involves
using the first-order conditions to derive the optimal parental investment associated
with given wealth level. These two curves are plotted in the same space, and their
intersection characterizes equilibrium investments.

To begin, consider the problem of deriving the matching market return function.
Parents make choose their investment bundle, (x, y), taking μ as given. Since wealth is
a strictly increasing function, almost all families will optimally make interior wealth
investments. This, together with the observation that μ is differentiable in equilib-
rium, implies that optimal investments are characterized by the first-order conditions:

(1− α) · fx (x(θ)) + α · hy′ (y(θ), y(θ)) · μx(x(θ))

= cT (x(θ) + y(θ), θ)
(8)

α · hy (y(θ), y(θ)) = cT (x(θ) + y(θ), θ) (9)

Equating the left-hand sides of these, and using (4), we get the following differential
equation:

μx(x) =
α · hy (μ, μ)− (1− α) · fx (x)

α · hy′ (μ, μ)
≡ Γ(μ, x) (10)

In order to pin down μ, we need an initial condition. To obtain this, we turn our at-
tention to the fact that we need suitable off-equilibrium values for μ. All we need is
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that for all z /∈ X, μ(z) = y(θ) for some θ. Given that y is non-decreasing in θ we can
safely set μ(z) = y(θ) for all z /∈ X (if the objective is to ensure that no family has
an incentive to deviate to an off-equilibrium investment). Now consider the problem
faced by families of the lowest type. In equilibrium they are always matched with a
family that invests y(θ), and by the above argument, can do no worse by deviating
to anything else. Therefore, their equilibrium investments coincide with those that
would be made had they taken their partner as fixed. This gives us the initial con-
dition that the lowest types make their Nash investments: {μ0, x0} =

{
yN(θ), xN(θ)

}
.

This, combined with (10), defines an initial values problem.
The solution to the initial values problem represents a candidate equilibrium re-

turn function, which we need to verify is strictly increasing on X. To do this, we sketch
out the direction field associated with Γ. That is, for any given point in (μ, x) space,
we know that the slope of μ(x) equals Γ(x, μ). The essential features of this process
are illustrated in Figure 1. To begin, consider the case in which α < 1, and consider
the set of points such that Γ = 0. Such points are described by the implicit function,
N(x), which satisfies:

(1− α) · fx(x) = α · hy(N(x), N(x)). (11)

It is straightforward to verify that N(x) is a strictly increasing function, as depicted.
At points to the left of N(x), we have Γ < 0 and at points to the right of N(x), we have
Γ > 0. Thus, any solution to the initial values problem will be downward-sloping to
the left of N(x), flat at N(x), and upward sloping to the right of N(x), as depicted. The
particular solution depends on the initial condition, but note that the initial condition
lies on N(x) since (11) is a consequence of the first-order conditions associated with
the Nash investments. The blue line depicts a solution to the initial values problem,
and it is straightforward to see that it must be strictly increasing on x ≥ x0. Values of
x below x0 do not arise in equilibrium, so μ need not be governed by Γ in this region.
The dashed blue line is one possibility for what μ looks like below x0: it captures a
situation in which agents realize that cutting their investment below x0 means that
they must match with the least desirable family (who makes a parental investment
of μ0). When α < 1, note that the initial condition will be strictly interior. Since
Γ(x, μ) is continuously differentiable at all x > 0 and μ > 0, the fundamental theorem
of differential equations can be applied to demonstrate that a solution exists, and
is unique. If α = 1, then Γ > 0 on the entire space so that we can be sure any
solution is strictly increasing, and the initial condition lies on the μ axis. Existence
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and uniqueness of the solution to the initial values problem is immediate when α = 1,
since we can simply integrate to get: μ(x) = [(1− φ) · φ−1] · x+ yN(θ).

Wealth (x)

R
et
u
rn
s
(μ
)

N(x)

Γ(x, μ) > 0

Γ(x, μ) < 0

x0

μ0

Figure 1: Properties of μ: A Sketch of the Direction Field associated with Γ(x, μ)

Result 4. The initial values problem has a solution in which μ is non-decreasing on
X, and this solution is unique.

Notice that μ is completely independent of i) the distribution of types, and ii) any
cost parameters. Furthermore, note that once the generalized CES form is applied,
we have:

Γ(x, μ) =
1− φ

φ
− 1

φ
· 1− α

α
· f

′(x)
q′(μ)

, (12)

which is independent of ρ. Since the Nash investments are also independent of ρ, we
have the following.

Result 5. The solution to the initial values problem is independent of ρ.

The result relies on the CES form, however, it indicates that ‘complementarity’ (as
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captured by ρ) is not of first-order significance.7 What is important is the degree of
spillovers, φ.

Once we have the return function, the equilibrium investment functions can be
derived from another implication of the first-order conditions. In particular, if the
equilibrium wealth for a family of type θ is x, then their optimal parental investment
is given by ŷ(x, θ), where ŷ(x, θ) satisfies:

α · hy (ŷ(x, θ), ŷ(x, θ)) = cT (x+ ŷ(x, θ), θ) .

The function ŷ(x, θ) is decreasing in x and increasing in θ. Figure 2 depicts ŷ(x, θ) in
(y, x) space for three different values of θ. The equilibrium return function derived
above is superimposed on this space also, since consistency of beliefs, condition (4),
requires that μ(x(θ)) = y(θ). The equilibrium investments therefore are given by the
points of intersection of ŷ(x, θ) and μ(x), as depicted. The fact that ŷ(x, θ) never starts
below the Nash parental investment (and starts strictly above it when α < 1), and
equals zero for some finite wealth level, implies that the curves cross exactly once.

The final step in establishing the existence and uniqueness of a separating equi-
librium is to show that that the first-order necessary conditions are also sufficient. To
do this, I show that the objective function is globally concave when evaluated using a
candidate return function (see the Appendix). To conclude this section, we therefore
have the following.

Proposition 2. A separating equilibrium exists, and it is (essentially) unique. More-
over, the separating equilibrium is independent of ρ.

The qualification ‘essentially’ reflects the fact that one could specify alternative
off-equilibrium values for μ that would not disrupt investment behaviour.

3 Analysis

3.1 Efficiency

A theme common to papers that study this kind of environment in full-information
settings (e.g. Peters and Siow (2002) and Cole, Mailath, and Postlewaite (2001)) is that

7The general condition required of h is as follows. Suppose that h depends on parameters, ξ, so that
we can write h = h(y, y′; ξ). For the separating equilibrium to be independent of ξ, we need hy(y, y; ξ)

and hy′(y, y; ξ) to both be independent of ξ for all y.
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Figure 2: Derivation of Equilibrium Investments
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the competition for partners helps remedy the inefficiency surrounding the externality
associated with parental investment. This is not the case here.

Proposition 3. Investments are inefficient in the separating equilibrium. In partic-
ular, wealth is weakly greater and parental investments are weakly lower than the
corresponding Nash investments.

A geometric proof is offered in Figure 3. In (x, y) space, the figure shows the locus of

ŷ(x, θ)

y(x)

N(x)

A

B

Wealth (x)

P
ar
en
ta
l
In
ve
st
m
en
t
(y
)

Figure 3: Geometric Proof of Proposition 3

Nash investments, N(x), and equilibrium investments, y(x), in the case of α < 1. The
locus of Nash investments is implicitly defined by (1 − α) · fx(x) = α · [hy(N(x), N(x))]

as described above. The equilibrium investments are given by y(x) = μ(x) as de-
rived above. In addition to these, the first-order condition that describes the optimal
choice of y given any particular x, is plotted. This is given by α · hy(ŷ(x, θ), ŷ(x, θ)) =

cT (x + ŷ(x, θ), θ). The figure clearly shows that the equilibrium investments (point B)
are ‘southeast’ of the Nash investments (point A). When α = 1, the locus of Nash
investments coincides with the y axis. The ŷ(x, θ) curve is still well-defined, and the
conclusion remains.
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3.2 Total Investment

If, in a separating equilibrium, incentives to invest in wealth are too great, and incen-
tives to make parental investments too small, then what about total investment? Let
TE(θ) ≡ x(θ)+y(θ) denote the total investment made by a type θ family in a separating
equilibrium. Let T ∗(θ) and TN(θ) represent the total investment in the efficient and
Nash cases, respectively.

Proposition 4. For all θ ∈ Θ, TN(θ) ≤ min{TE(θ), T ∗(θ)}. If q is linear, then TN(θ) =

TE(θ) < T ∗(θ).

The second illustration described below assumes a form in which q is strictly con-
cave, and derives an equilibrium in which TN < TE = T ∗. Thus, we can be sure that
the pattern of inequalities identified in the result do not hold for all q.

3.3 An Alternative Benchmark: Random Matching

Equilibrium outcomes are compared to the Nash outcomes, which can be interpreted
as the investments that would arise if agents matched on type (rather than wealth).
Another reasonable benchmark may be the investments that arise if agents were ran-
domly matched. This corresponds to a setting in which all of the agents’ characteris-
tics are hidden. In certain cases, the two benchmarks display the same (aggregate)
qualities.

Proposition 5. If ρ = 1, then investments in the ‘random matching’ benchmark are
identical to the investments in the Nash benchmark. Average welfare is the same across
the benchmarks, although the lower types prefer random matching, and higher types
prefer Nash.

This follows simply from the observation that h is additively separable if ρ = 1,
which in turn implies that the Nash investment is independent of the type of partner
that a family is matched with (and therefore to any mixture, including random match-
ing). The latter part of the proposition simply reflects the fact lower types get a better
quality partner on average under random matching.

To make some progress with more general results, assume α = 1 for clarity. Equi-
librium with random matching requires that each type equalizes the marginal cost
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of parental investment with the expected marginal return.8 Suppose that all fami-
lies made the Nash investments. For lower types, the expected marginal return is
higher than the marginal return with perfect segregation (since they are matched with
higher types on average), whereas the opposite is true for higher types. Thus, lower
types have incentives to invest more than their Nash level, and higher types have
incentives to invest less. To supplement this intuition, one can show that parental in-
vestment can not be decreasing in ρ for all types.9 Furthermore, optimal investments
with random matching will be sensitive to the distribution of types. Explicit solutions
are difficult to obtain when ρ < 1, however, a Cobb-Douglas (ρ→ 0) example is solved
in the Appendix.

4 Simple Illustration

The purpose of this section is to provide a simple demonstration of how to calculate
and analyze equilibria. I assume perfect altruism, which implies that both pooling
and separating equilibria exist. Comparing welfare across these equilibria will be a
central concern.

Assume perfect altruism (α = 1), and let the human capital and cost functions take
the following forms:

h(y, y′) = (1− φ) · y + φ · y′

c(x+ y, θ) =
1

2θ
(x+ y)2 .

Under this specification parents derive no intrinsic value from wealth and parental
investments are substitutes where φ > 0 captures the degree to which there are
spillovers in parental investments. In terms of the generalized CES formulation, q
is the identity function and ρ = 1.

4.1 Efficient Investments

Since h is separable, the definition of the efficient investments is independent of the
actual matching pattern. The efficient parental investment (wealth is efficiently zero)

8 For ρ < 1, the marginal return to parental investment will depend on who the family happens to
be matched with.

9This is shown by treating investments as a function of ρ, and totally differentiating the first order
condition.
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satisfies:

y∗(θ) = argmax y − c(y, θ),

implying that y∗(θ) = θ. If a family matches with a family of type θ′, then the family’s
welfare is:

W ∗(θ, θ′) =
1

2
· θ + φ (θ′ − θ) .

Thus, average welfare is:

W ∗ ≡
∫

Θ

W ∗(θ)dΨ(θ) =
1

2
· E [θ] ,

since E[E[θ′ | θ]] = E[θ] for any matching pattern.

4.2 Pooling Equilibrium

There is a pooling equilibrium under this specification, since having no wealth is a
best response to all other families having no wealth. In this equilibrium matching
is random because all families appear equally attractive. An implication of this is
that each family recognizes that increasing their wealth above zero will not affect the
expected parental investment made by their match. The objective facing families is:

max
x,y

(1− φ) · y + φ · E[y′]− c(x+ y, θ).

There is clearly no incentive to acquire wealth, so that xP (θ) = 0. The optimal level of
parental investment is yP (θ) = (1− φ) · θ. If a family of type θ ends up being matched
with a family of type θ′, then the family’s payoff is:

W P (θ, θ′) =
(1− φ)2

2
· θ + φ · (1− φ) · θ′,

and the expected welfare of a family of type θ in the pooling equilibrium is therefore:

W P (θ) =
(1− φ)2

2
· θ + φ · (1− φ) · E [θ] ,

since once again E[E[θ′ | θ]] = E[θ]. Average welfare is therefore:

W P ≡
∫

Θ

W P (θ) = (1− φ2) · 1
2
· E [θ] .

This is less than W ∗ as expected, and is monotonically declining in φ.
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4.3 Separating Equilibrium

Given that all agents believe that a wealth of x will lead to finding a match that has
μ(x) units of parental investment, agent i’s objective function is:

V (x, y, μ(x), θ) = (1− φ) · y + φ · μ(x)− c(x+ y, θ).

The first-order conditions are:

φ · μx(x(θ)) = (1− φ) =
y(θ) + x(θ)

θ
.

The first equality (i.e. equating the investments’ marginal returns) gives us a partic-
ularly simple differential equation:

μx(x) =
1− φ

φ
.

Integrating both sides gives us the equilibrium return function:

μ(x) =
1− φ

φ
· x+ y0.

Since xN(θ) = xP (θ) = 0, the value of y0 is given by yN(θ) = yP (θ) = (1 − φ) · θ, so that
we have:

μ(x) =
1− φ

φ
· x+ (1− φ) · θ. (13)

The second equation we need, ŷ(x, θ), is found by using the second equality in the
first-order conditions:

ŷ(x, θ) + x = (1− φ) · θ. (14)

Since consistency requires μ(x(θ)) = y(θ), we can determine the equilibrium invest-
ments by using (13) and (14):

yS(θ) = (1− φ)2 · θ + φ · (1− φ) · θ
xS(θ) = φ · (1− φ) · [θ − θ] .

The equilibrium welfare for a type θ family is:

W S(θ, θ′) =W S(θ) =
(1− φ)2

2
· θ + φ · (1− φ) · θ,

since θ′ = θ in equilibrium (due to positive assortative matching). Average welfare is:

W S ≡
∫

Θ

W S(θ) =
(1− φ)2

2
· E [θ] + φ · (1− φ) · θ.
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4.4 Results

A comparison of the expressions for average welfare reveals that W S ≤ W P ≤ W ∗,
where the inequalities hold with equality if and only if there are no spillovers (φ = 0).
The difference between welfare in either equilibrium and the first-best welfare grows
monotonically in spillovers. These results could be anticipated given the general re-
sults discussed in the previous section, however there are stronger welfare results
generated in this setting.

First, all agents find that the expected payoff is greater in the pooling equilibrium
than in the separating equilibrium.

Result 6. The pooling equilibrium ‘strictly ex-ante Pareto dominates’ the separating
equilibrium: W S(θ) < W P (θ) for all θ ∈ Θ.

A brief inspection of the relevant expressions reveals that W P (θ) −W S(θ) = φ(1 −
φ) · [E(θ) − θ], which is clearly positive. There is an even stronger result than this.
All agents get a greater payoff in the pooling equilibrium than in the separating equi-
librium, regardless of which family they end up being matched with in the pooling
equilibrium.

Result 7. The pooling equilibrium ‘ex-post Pareto dominates’ the separating equilib-
rium: W S(θ) ≤ minθ′{W P (θ, θ′)} for all θ ∈ Θ.

One may conjecture that this result reflects the fact that although some agents get
lower-quality matches, they have lower investment costs. This is the logic behind the
analogous result in standard signaling models. This is not the case here, because it is
straightforward to verify that total investment for a family of type θ equals (1− φ) · θ
in both the pooling and separating equilibria.10 Since investment costs are the same
across equilibria, the following must apply.

Result 8. The realized human capital level any given child realizes in the pooling
equilibrium is never less than their human capital level in a separating equilibrium.

To verify this, note that if a child with parents of ability θ is matched with a family
of ability θ′ in a pooling equilibrium, then their human capital level is (1 − φ) · [(1 −

10This is largely a consequence of y entering in a linear manner, since the first-order condition for
parental investment (in both equilibria) is c(T, θ) = (1 − φ), which automatically pins down T for each
θ. With imperfect altruism (α < 1), such linear specifications must be abandoned if we are to ensure
that optimal parental investments are interior (for all possible types).
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φ) · θ + φ · θ′], whereas their human capital level in the separating equilibrium is
(1−φ) · [(1−φ) · θ+φ · θ]. The difference between these, (1−φ)φ · [θ′− θ], is also clearly
never negative.

To summarize, the pooling equilibrium welfare-dominates the separating equilib-
rium in a very strong sense (under the specification considered here). To paraphrase
Result 7, the very lowest payoff that a family can receive in the pooling equilibrium is
never lower than the best payoff that they can receive in the separating equilibrium.
Unlike standard signaling models, this has nothing to do with different investment
costs across the equilibria, but rather, arises from the fact that the pooling equilibrium
does not encourage a diversion of family resources away from parental investment.

Given this strong welfare dominance, it seems quite reasonable to conjecture that
the vast majority of societies will be characterized by norms consistent with the pool-
ing equilibrium. For instance, there would be no impetus to acquire wealth in order
to secure a desirable environment for a child’s development, and there would be lit-
tle segregation - at least along wealth lines. This is hardly an accurate description
of most modern societies. These observations can be reconciled by the fact that the
existence of pooling equilibria is much less robust than is the existence of separating
equilibria. Indeed, if consumption is valued at all then the pooling equilibrium will
not exist. Intuitively, all families would ‘naturally’ have different wealth levels, re-
flecting differences in endowed abilities. Further, those with high wealth levels would
also be the ones with high investments in human capital. Thus, it is relatively easy to
identify the desirable families, but each family recognizes that in order to convince a
desirable family to match with them, they must ‘masquerade’ as a high-wealth fam-
ily. Any pooling behaviour therefore unravels. The following section analyzes a model
with imperfect altruism - and therefore, with no pooling equilibrium.

5 An Extended Illustration

The point of this section is to derive equilibrium variables for a more detailed economy.
The functional forms are chosen so that the extension considered in the section is more
readily analyzed. I assume non-perfect altruism, which implies that pooling equilibria
fail to exist. This allows me to focus on the separating equilibrium, which in turn
allows me to analyze the effect of spillovers, altruism, and the distribution of types.
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The assumed functional forms are as follows:

f(x) = lnx

h(y, y′) = (1− φ) · ln y + φ · ln y′

c(x+ y, θ) =
1

θ

(x+ y)1+η

1 + η
,

where α ∈ (0, 1) is the altruism parameter, φ ∈ [0, 1] is the spillover parameter, and
η ≥ 0 describes the degree to which there is ‘crowding out effects’. The functional form
for h is obtained from the generalized form by letting q be the natural log and setting
ρ = 1.

To begin, the symmetric Nash investments are given by:

xN(θ) =

[
(1− α)

[1− αφ]
η

1+η

]
· θ 1

1+η ,

yN(θ) =

[
α(1− φ)

[1− αφ]
η

1+η

]
· θ 1

1+η .

Note that i) total investment equals [(1 − αφ)θ][1/(1+η)], which is decreasing in both
altruism and spillovers, however ii) the relative amount allocated to parental invest-
ment, yN(θ)/xN(θ), is equal to α(1 − φ)/(1 − α), which is increasing in altruism and
decreasing in spillovers.

Since the symmetric Nash investments coincide with the investments that would
be made if matching were random, the fact that xN(θ) is strictly increasing in θ implies
that there can not be a pooling equilibrium. Out of interest, the efficient investments
are given by:

x∗(θ) = (1− α) · θ 1
1+η ,

y∗(θ) = α · θ 1
1+η .

In order to calculate the separating equilibrium, we begin by deriving the initial
values problem.

μ′(x) =
1

φ

[
(1− φ)− 1− α

α

μ(x)

x

]

μ
(
xN(θ)

)
= yN(θ).

This is an ordinary linear differential equation which has the following solution:

μ(x) = Z · x− 1−α
αφ + δ · x, (15)

24



where

δ ≡ α(1− φ)

1− α(1− φ)

and Z adjusts so that the initial condition is satisfied. In other words, Z satisfies:

yN(θ) = Z · xN(θ)−
1−α
αφ + δ · xN(θ).

Re-arranging to get Z, then substituting into (15), we get:

μ(x) =

(
xN(θ)

x

) 1−α
αφ [

yN(θ)− δ · xN(θ)
]
+ δ · x (16)

This gives us the equilibrium matching return function. The other equation we need,
ŷ(x, θ), is given by the first-order condition for the optimal choice of y:

α · (1− φ)

ŷ(x, θ)
=
1

θ
[x+ ŷ(x, θ)]η . (17)

Using the fact that y(θ) = μ(x(θ)), equation (16) describes parental investment as
an increasing function of x (for x ≥ xN(θ)), whereas (17) describes y as a decreasing
function of x. When plotted in (x, y) space, the two curves intersect exactly once,
in a manner similar to that depicted in Figure 2 above. The effect of altruism and
spillovers on investment can be determined by manipulating the two curves. However,
explicit solutions are readily computed for the case in which θ = 0:

μ(x) =

[
α(1− φ)

1− α(1− φ)

]
· x

x(θ) = [1− α(1− φ)] · θ 1
1+η

y(θ) = α(1− φ) · θ 1
1+η

Note that total equilibrium investment in this case is θ[1/(1+η)], which is the same as
the total efficient investment. This is not general - it only holds when θ = 0 (otherwise
total efficient investment is greater). The existence of spillovers, however, distorts the
composition of this investment. Welfare for a type θ family is:

W (θ) =
1

1 + η
· [ln θ − 1]+

(1− α) · ln(1− α(1− φ)) + α · ln(α(1− φ)).

The first term is independent of both spillovers and altruism, and the remaining terms
are independent of type and cost externalities. The difference between equilibrium
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welfare and efficient welfare therefore depends only on the latter term. This term is
plotted as a function of α for various values of φ in Figure 4. The case in which φ = 0

corresponds to the efficient welfare. The figure shows how equilibrium welfare departs
from efficient welfare as altruism increases, and this occurs to a greater extent when
spillovers are greater.
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Figure 4: Welfare: The Effect of Altruism and Spillovers

A striking (general) feature of the above analysis is that the only relevant aspect of
the distribution of types is the level of the lowest ability. In particular, the equilibrium
investments of a type θ agent approaches the Nash investments as θ approaches θ.
That is, all agents obtain a higher payoff as the lowest ability is raised.

The fact that the equilibrium is insensitive to other qualities of the distribution
of types, such as mean and variance, does not seem plausible. The following section
demonstrates that this is a consequence of the assumption that wealth is perfectly
observed, whereas parental investment is imperfectly observed (but not that parental
investment in unobserved).
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6 Imperfectly Observed Investments

The model so far has worked with the seemingly extreme assumption that wealth is
perfectly observed, whereas parental investments are unobserved. This section makes
an attempt at relaxing this assumption by supposing that both wealth and parental
investments are observed with some noise. In this setting the distribution of abilities
will become relevant since this information will be incorporated into the process of
Bayesian updating. To make some progress, fairly particular functional forms are
imposed. First, assume that the distribution of types is log-normal:

ln θi = ln θ + εθ
i , εθ

i ∼ N
[
0, σ2

θ

]
. (18)

Assume also that investments are observed with noise as follows:

ln x̃i = lnxi + εx
i , εx

i ∼ N
[
0, σ2

x

]
(19)

ln ỹi = ln yi + εy
i , εy

i ∼ N
[
0, σ2

y

]
. (20)

The log structure ensures that all random variables are positive. If the investment
functions happen to be of the form: y(θ) = βyθ

γ and x(θ) = βxθ
γ, then it turns out (see

the Appendix for a derivation) that:

μ(x̃i, ỹi) ≡ E [ln yi | x̃i, ỹi] = λx · ln x̃i + λy · ln ỹi + constants, (21)

where

λx ≡
σ2

yγ
2σ2

θ[
σ2

y + σ2
x

]
γ2σ2

θ + σ2
yσ

2
x

(22)

λy ≡ σ2
xγ

2σ2
θ[

σ2
y + σ2

x

]
γ2σ2

θ + σ2
yσ

2
x

(23)

These expressions appear messy, but they are quite intuitive. For a fixed γ2σ2
θ , λx is

increasing in σ2
y and decreasing in σ2

x: the more noisy the signal of y relative to x the
more weight that one should put on the signal of x. The same intuition applies for λy.
For a fixed σ2

x and σ2
y, both λx and λy are increasing in γ2σθ: as the distribution of types

becomes more dispersed, then more weight should be placed on the signals, and less
on one’s prior.

Since μ is increasing in both arguments, all families find those with high values
of μ more attractive, and as such, families will match assortitatively on μ. Note that
when there is no noise on wealth (i.e. σ2

x = 0) but an arbitrarily small amount of noise
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on parenting investment (i.e. σ2
y > 0) families match assortitatively on wealth (i.e.

λx = 1 and λy = 0).
This equilibrium matching pattern implies that if family i is matched with family

j in equilibrium, then μ(x̃j, ỹj) = μ(x̃i, ỹi), so that once the noise on the signals are
realized, agent i’s expected utility is:

v(xi, yi; θ) = (1− α) · lnxi + α(1− φ) · ln yi + αφ · μ(x̃i, ỹi)− c(xi + yi; θ). (24)

It is straightforward to show that this implies the ex-ante expected utility can be
written as:

V (xi, yi; θ) = ξ · lnxi + ζ · ln yi − c(xi + yi; θ) + constants, (25)

where

ξ ≡ (1− α) + αφλx, and ζ ≡ α(1− φ) + αφλy. (26)

Maximizing this with respect to x and y produces the equilibrium investment func-
tions, which are indeed of the form conjectured, where:

βy =
ζ

[ζ + ξ]
η

1+η

=
α [1− φ(1− λy)]

[1− αφ [1− λx − λy]]
η

1+η

(27)

βx =
ξ

[ζ + ξ]
η

1+η

=
1− α(1− φλx)

[1− αφ [1− λx − λy]]
η

1+η

(28)

γ =
1

1 + η
. (29)

To verify this result, consider what happens as σ2
y → ∞. In this case λx → 1 and

λy → 0, which means that βy → [α(1− φ)] and βx → [1− α(1− φ)], as derived above for
the case in which θ = 0. This is true for any finite σ2

x, which implies the above analysis
does not at all rely on wealth being perfectly observed (as long as parenting effort is
not observed).

On the other hand, if wealth is perfectly observed and parenting investments are
imperfectly observed (i.e. σ2

x = 0 and σ2
y > 0), then we end up with the same results as

those derived in the case in which parenting effort is not observed at all (since λx = 1

and λy = 0 in this case). Note that this holds for an arbitrarily small amount of noise
contained in the signal of parenting effort.

In summary, the qualitative results from the above analysis (in which wealth is
perfectly observed and parental investment is unobserved) carries through to cases
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in which i) wealth is imperfectly observed and parenting effort is unobserved, and ii)
wealth is perfectly observed and parenting effort is (arbitrarily) imperfectly observed.

The opposite case - in which parental investments are better observed than wealth
- is, in the limit, reminiscent of Peters and Siow (2002). Investments do indeed ap-
proach the efficient investments in the limit (since λy → 1 and λx → 0, implying βy → α

and βx → (1− α)).
It may also be of interest to note that if both investments are imperfectly observed,

then the equilibrium investments depend upon the distribution of abilities. In partic-
ular, investments approach the Nash investments as the distribution of types becomes
degenerate around the mean (i.e. both λx and λy go to zero as σ2

θ goes to zero). Intu-
itively, equilibrium behaviour approaches Nash behaviour as the population becomes
more homogeneous.

7 Conclusions

The paper has aimed to illuminate the consequences of peer effects in a model of
human capital development in the presence of the promise of social mobility. The
key features of the model are i) parents care about the human capital of their child,
as well as consumption, ii) human capital depends on parental investment and peer
group spillovers, iii) peer groups are endogenously determined on the basis of wealth,
and iv) that parental investment and wealth accumulation place competing demands
on parents’ resources. The central message is that competition for desirable peer
groups can induce detrimental incentives to undertake (socially productive) parental
investment.

I have shown that pooling equilibria generally have superior welfare properties to
separating equilibria, but do not exist in general. A unique separating equilibrium
always exists, and delivers an average welfare lower than that associated with Nash
outcomes (which are themselves inefficient). One surprising result is that the sepa-
rating equilibrium is invariant to the CES substitution parameter. Various properties
of equilibrium are illustrated through the employment of functional forms, and an
extension is provided in which both investments are observed with noise. Although
specialized, the extension demonstrates how the distribution of types matters and
provides a connection between the base model and related models in the literature.

I hope the model proves useful as a starting point for research on pre-match in-
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vestment with multiple investments. For instance, I see value in generalizing the ex-
tension presented in Section 6, and in embedding the model within a dynamic search
framework.
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Appendix

A Complementarities: Separating Equilibrium vs Ran-
dom Matching

Consider an alternative benchmark in which all characteristics are hidden, thereby
requiring that partners are randomly assigned. For simplicity, assume perfect altru-
ism (α = 1). This allows us to focus on incentives to make parental investments in
isolation (since wealth will optimally be zero for all families). In contrast to the illus-
trations used in the text, this illustration assumes that ρ < 1. In particular, as ρ→ 0,
h approaches the Cobb-Douglas form:

h = q(y)1−φ · q(y′)φ.

I use this functional form, with q being the identity function, and assume that costs
are given by c(y, θ) = (1/2) · y2/θ.

There is always an equilibrium in which all agents invest zero. There is also a
more interesting equilibrium in which positive investments are made. The first-order
condition, once re-arranged, is:

(1− φ) ·
∫
[yR(τ)]φdΨ(τ) =

[yR(θ)]1+φ

θ
.

The left-side is a constant (from the perspective of a particular family). If this is
denoted by A, then equating this to the right side, we have:

yR(θ) = A
1

1+φ · θ 1
1+φ .

Using this form in the left side, we have that the value of A satisfies:

A = φ ·
∫
A

φ
1+φ · τ φ

1+φdΨ(τ),

thereby implying that:

A
1

1+φ ≡ (1− φ) ·
∫
τ

φ
1+φdΨ(τ).

The optimal investment under random matching is therefore:

yR(θ) = (1− φ) ·
[∫

τ
φ

1+φdΨ(τ)

]
· θ 1

1+φ .
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It is straightforward to show that the Nash investments are yN(θ) = (1− φ) · θ. There-
fore, comparing these we get:

yR(θ)

yN(θ)
=

∫ [τ
θ

] φ
1+φ

dΨ(τ).

The term on the right is continuous and strictly decreasing in θ, strictly greater than
one at θ = θ, and strictly less than one at θ = θ. Thus, there is a critical type θ′ ∈ (θ, θ)
such that all families with θ < θ′ invest more than their Nash level, and all families
with θ > θ′ invest less than their Nash level.

Although investments made by individual families can not be unambiguously ranked
across the benchmarks, average investment can be. Average investment with random
matching is

E[yR] = (1− φ) ·
[∫

τ
φ

1+φdΨ(τ)

]
·
[∫

θ
1

1+φdΨ(θ)

]
, (30)

whereas average Nash investment is:

E[yN ] = (1− φ) ·
∫
θdΨ(τ).

Jensen’s inequality implies that the average Nash investment is greater than the
average investment with random matching, since:

E[yR] = (1− φ) · E
[
θ

φ
1+φ

]
· E

[
θ

1
1+φ

]
< (1− φ) · E [θ] = E[yN ].

In terms of human capital, the random matching environment does even worse: not
only is the average parental investment lower, matches are formed in a less efficient
manner. Average human capital under random matching is:

E[hR] = E[(yR)1−φ] · E[(yR)φ], (31)

which, again by Jensen’s inequality, is less than E[(yR)]. Average human capital in
the Nash environment is simply E[(yN)], which we have already established is greater
than E[(yR)]. Thus, average human capital is greater in the Nash environment. Fi-
nally, since average Nash investment is less than average efficient investment, we
also know that average welfare in the Nash benchmark is greater than the average
welfare in the random matching benchmark.
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A.1 Comparison with Separating Equilibrium

The fact that the separating equilibrium is independent of ρ means that we can use
the equilibrium values derived in Section 4. Average welfare in the separating equi-
librium is:

W S = (1− φ) ·
[
1− φ

2
· E[θ] + φ · θ

]
.

After a few algebra steps, the expected welfare in the random matching setting is:

WR = (1− φ) · 1 + φ

2
· E

[
θ

φ
1+φ

]2

· E
[
θ

1−φ
1+φ

]
.

Unlike the Nash benchmark, the welfare rank is ambiguous (in the sense that it de-
pends on the distribution of types). Simple manipulation shows the following.

Proposition 6. Welfare is greater in the separating equilibrium than under random
matching if and only if:

1− φ

1 + φ
≥

E

[
θ

φ
1+φ

]2

· E
[
θ

1−φ
1+φ

]
E [θ]

− 2 · φ

1 + φ
· θ

E[θ]
.

One unusual feature of this is that the rank depends on how low the lowest type
is relative to the mean. The above condition becomes easier to satisfy as the gap
between the lowest type and the mean shrinks. This reflects the fact that distortions
in the separating equilibrium are made more severe as the lowest type falls.

To illustrate, suppose that types are log-normally distributed: ln θ ∼ N(m,σ2), then
it turns out that:

WR =
(1− φ)(1 + φ)

2
· exp

[
m+

σ2

2
·
[
2φ2 + (1− φ)2

(1 + φ)2

]]

W S =
(1− φ)(1− φ)

2
· exp

[
m+

σ2

2

]
,

so that the separating equilibrium provides the greater welfare if and only if:

1− φ

1 + φ
≥ exp

(
−σ2 · φ(2− φ)

(1 + φ)2

)
.

In other words, if:

σ2 ≥ S(φ) ≡ ln

(
1 + φ

1− φ

)
· (1 + φ)2

φ(2− φ)
.
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The function S(φ) is strictly increasing on [0, 1] with limφ→0 S(φ) = 1 and limφ→1 S(φ) =

∞. Three main properties emerge. First, the mean of the distribution of log-types
plays no role. Second, the separating equilibrium produces greater welfare than ran-
dom matching for sufficiently large σ2, whereas the opposite is true for sufficiently
small σ2. Third, random matching always produces a greater welfare for φ sufficiently
close to one.

Of even greater significance is the possibility that average human capital under
random matching is greater than in the separating equilibrium. This never occurs
when human capital is treated as fixed, since the matching arrangement under the
separating is more efficient. Average human capital in the separating equilibrium is:

E[hS] = (1− φ)2 · E[θ] + φ(1 + φ) · θ,

whereas average human capital under random matching is:

E[hR] = (1− φ) · E[θ φ
1+φ ]2 · E[θ 1−φ

1+φ ]

For simplicity, let θ = 0 so that the average human capital level in the separating
equilibrium is greater than under random matching if:

E[θ
φ

1+φ ]2 · E[θ 1−φ
1+φ ] ≤ (1− φ) · E[θ].

Using the log-normal example again, this requires that:

exp

(
m+

σ2

2
·
[
2φ2 + (1− φ)2

(1 + φ)2

])
≤ (1− φ) · exp

(
m+

σ2

2

)
,

or, once simplified:

exp

(
−σ2 · φ(2− φ)

(1 + φ)2

)
≤ (1− φ).

In other words, if

σ2 ≥ S∗(φ) ≡ ln

(
1

1− φ

)
· (1 + φ)2

φ(2− φ)
.

The properties of S∗(φ) are similar to those of S(φ). Figure 5 depicts both S(φ) and
S∗(φ).

When (φ, σ2) lies in region A, average human capital is greater in the separating
equilibrium. This is the standard result. When (φ, σ2) lies in region C, we have that
average human capital is actually greater under random matching: despite the fact
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36



that matches are formed less efficiently under random matching, parental investment
is greater. In region B, average human capital is greater in the separating equilibrium
but average welfare is greater under random matching (i.e. the superior matching
pattern in the separating equilibrium does not compensate for the extra costs involved
in achieving separation).

B Proofs

B.1 Proof of Proposition 1

Proof. Suppose to the contrary that a pooling equilibrium exists, and yet α < 1. The
first-order conditions (the assumptions on f and h, along with the fact that α ∈ (0, 1),
guarantee that the solution is interior) imply that:

(1− α) · fx(x) = α ·Hy(y) = cT (x+ y, θ).

Since x is a constant across types in a pooling equilibrium (by definition), the first
equality implies that y will also be a constant across types (since Hy(y) is strictly
increasing). The final inequality then implies that the marginal cost is constant across
types, which is contradicted by the fact that cTθ(·) < 0.

B.2 Proof of Result 1

Proof. The first part comes from the condition that μ(x(θ)) = y(θ). If x(·) is increasing
(decreasing), then y(·) is weakly increasing (decreasing). That total investment is
increasing in type comes from noting that the payoff function can be expressed as
V (x, y, μ(x), θ) = U(x, y) − c(x + y, θ), and applying a revealed preference argument to
two different types, θ < θ′, gives:

U(x′, y′)− c(x′ + y′, θ′) ≥ U(x, y)− c(x+ y, θ′)

and

U(x, y)− c(x+ y, θ) ≥ U(x′, y′)− c(x′ + y′, θ).

Adding these, re-arranging, and defining T = x+ y and T ′ = x′ + y′ gives

c(T ′, θ)− c(T, θ) ≥ c(T ′, θ′)− c(T, θ′).
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The fact that cTθ(·) > 0 implies that this inequality can only hold if T ′ > T .
The assumptions on V ensure that optimal parental investment is positive, and,

since V (x, y, μ, θ) is differentiable (and concave) in y, optimal parental investment
must be characterized by the first-order condition: Vy(x(θ), y(θ), μ(x(θ)), θ) = 0. Again
using the equilibrium condition that μ(x(θ)) = y(θ) indicates that y(θ) is implicitly de-
fined by Vy(x(θ), y(θ), y(θ), θ) = 0. Since Vy is differentiable in all arguments and x(·) is
differentiable by assumption, the derivative of y(·) exists and is given by −[Vyxx

′(θ) +

Vyθ]/[Vyy + Vyy′ ] (the denominator is ensured to be non-zero by the regularity assump-
tion that hyy + hyy′ ≤ 0.

B.3 Proof of Proposition 2

Proof. The proof demonstrates that the first-order conditions are sufficient for a maxi-
mum by showing that the objective function is globally concave when evaluated using
a candidate return function, μ(x). That is, I prove that v(x, y) ≡ (1 − α) · f(x) + α ·
h(y, μ(x)) is concave. I need to show that vxx ≤ 0, vyy ≤ 0, and vxxvyy ≥ v2

xy. These are
given by:

vxx = (1− α) · fxx + α · [hy′μxx + hy′y′(μx)
2] ≤ 0 (32)

vyy = α · hyy ≤ 0 (33)

vxxvyy − v2
xy = vxxvyy − (α · hyy′μx)

2 ≥ 0, (34)

for arbitrary values of {x, y}. It is immediate that (33) is satisfied. To make progress
with (32), note that we can determine hy′μxx as follows:

hy′μxx = hy′ · ∂
∂x
{Γ(μ(x), x)} = hy′ [Γμμx + Γx]

=

[
1− α

α

fx

q′(μ)
q′′(μ)

]
· μx − 1− α

α
· fxx.

Once substituted into (32), the condition becomes:

vxx = α ·
[
1− α

α

fx

q′(μ)
q′′(μ) · μx + hy′y′(μx)

2

]
,

which is non-positive, since q′ > 0, q′′ ≤ 0, μx ≥ 0, and hy′y′ ≤ 0.
Turning to (34), after expanding and simplifying we end up with:

vxxvyy − v2
xy = α2 · hyy · μx ·

[
1− α

α
fx
q′′

q′

]

+ (α · μx)
2 · [hyyhy′y′ − h2

yy′ ],
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which is non-negative since it is the sum of two non-negative terms (the latter is non-
negative since h is concave), and therefore (34) is also satisfied. I conclude that v is a
concave function. Since −c(x+ y, θ) is a also a concave function, the objective function
is concave, and the first-order conditions are sufficient for a global maximum.

B.4 Proof of Proposition 4

Proof. Consider the problem:

max
x,y

{F (x, y)} subject to x+ y ≤ T, (35)

where F is such that the ‘y’ solution is strictly positive: y(T ) > 0. Let F (T ) be the
associated maximum value function, and consider the problem:

max
T
{F (T )− c(T, θ)} . (36)

Consider two different functions, F and F̂ . The associated solutions, T ∗ and T̂ ∗ will
satisfy T ∗ > T̂ ∗ if it happened to be the case that F ′(T ) > F̂ ′(T ) for all T . Since T

only enters the constraint in the original problem, the envelope theorem can be used
to show that this holds if

Fy(x(T ), y(T )) > F̂y(x̂(T ), ŷ(T )). (37)

If we let F be the objective function facing the social planner, and F̂ be the objective
function facing an agent in equilibrium, then Fy = α·q′(y(T )) and F̂y = α·(1−φ)q′(ŷ(T )).
If q is linear, then q′(y(T )) = q′(ŷ(T )) and F̂y(z

′)/Fy(z) = (1 − φ) < 1 for any (z, z′), im-
plying that T ∗ > T . By interpreting F̂ as the objective function facing a Nash investor,
the same expressions apply (since the marginal return to parental investment is the
same in the Nash and equilibrium settings). This observation implies both i) that
total efficient investment is strictly greater than total Nash investment, and ii) total
Nash investment equals total equilibrium investment.

C Derivation: Investments with Noise

The following uses the fact that if x ∼ N(y, a) and y ∼ N(b, d), then y | x ∼ N(λx+ (1−
λ)b, v), where λ ≡ d/(d+ a) and v ≡ ad/(a+ d).
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Since

ln yi = ln βy + γ ln θi = ln βy + γ ln θ + γεθ
i ,

the prior is given by

ln y ∼ N(ln βy + γ ln θ, γ2σ2
θ). (38)

The structure of the noise implies that:

ln ỹ ∼ N(ln y, σ2
y). (39)

However, note that we also have:

lnxi = ln βx + γ ln θi = ln(βx/βy) + ln yi.

By adding noise to this, we have:

ln x̃+ ln(βy/βx) = ln yi + εx
i .

Therefore, we also have:

ln x̃+ ln(βy/βx) ∼ N(ln y, σ2
x). (40)

Updating the prior (eqn (38)) with the information contained in the signal of parental
investment (eqn (39)) gives:

ln y |ỹ ∼ N
(
λ · ln ỹ + (1− λ) · A1, σ

2
1

)
, (41)

where A1 ≡ [ln βy + γ ln θ] is a constant and

λ ≡ γ2σ2
θ

γ2σ2
θ + σ2

y

and σ2
1 ≡

γ2σ2
θσ

2
y

γ2σ2
θ + σ2

y

. (42)

This posterior forms the new prior when using the information contained in the signal
of wealth (eqn (40)). Using the same results, we have:

ln y |ỹ, x̃ ∼ N
(
λ′ · ln x̃+ (1− λ′)λ · ln ỹ + A2, σ

2
2

)
, (43)

where A2 ≡ λ′ ln(βy/βx) + (1− λ′)(1− λ) · A1 is a constant and

λ′ ≡ σ2
1

σ2
1 + σ2

x

and σ2
2 ≡

σ2
1σ

2
x

σ2
1 + σ2

x

. (44)

Then, it follows that:

E[ln y | x̃, ỹ] =
[

σ2
1

σ2
1 + σ2

x

]
· ln x̃+

[
σ2

x

σ2
1 + σ2

x

γ2σ2
θ

γ2σ2
θ + σ2

y

]
· ln ỹ + constants, (45)

where, after simplification, the two bracketed coefficients correspond to λx and λy

given in the text.
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