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Abstract

I propose a new estimation method for �nite sequential games that is e¢ cient,

computationally attractive, and applicable to a fairly general class of �nite sequential

games that is beyond the scope of existing studies. The major challenge is computa-

tion of high-dimensional truncated integration whose domain is complicated by strate-

gic interaction. This complication resolves when unobserved o¤-the-equilibrium-path

strategies are controlled for. Separately evaluating the likelihood contribution of each

subgame perfect equilibrium that generates the observed outcome allows the use of the

GHK simulator, a widely used importance-sampling probit simulator. Monte Carlo

experiments demonstrate the performance and robustness of the proposed method.
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1 INTRODUCTION

In this paper, I study the structural estimation of �nite sequential games and propose a new

estimation method that is e¢ cient, computationally attractive, and applicable to a fairly

general class of �nite sequential games that is beyond the scope of existing studies. Existing

empirical studies that consider sequential games (at least as an addition to simultaneous

games) range over the entry of �rms (Bresnahan and Reiss, 1991; Berry, 1992; Mazzeo, 2002;

Maruyama, 2011), technology adoption (Schmidt-Dengler, 2006), the labor participation of

couples (Kooreman, 1994; Hiedeman, 1998), the retirement behavior of elderly couples (Jia,

2005), the location choice of siblings (Konrad et al., 2002; Johar and Maruyama, 2012),

political science and international relations (Signorino and Tarar, 2006; Bas et al., 2008),

tax competition (Redoano, 2007), and the validity of subgame perfection in experimental

economics (Andreoni and Blanchard, 2006). All of the existing literature on sequential games

has so far focused on simple cases where: the number of players is very small (two in most

cases); the game structure is very simple (e.g. a binary choice symmetric game); or emphasis

is not on the structural estimation of strategic e¤ect.1

The class of games I study in this paper is �nite sequential games, i.e., �nite-horizon

1Exceptions are Maruyama (2011) and Johar and Maruyama (2012), which are based on the approach
outlined in this paper.
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pure-strategy discrete-choice sequential games with perfect information, in which each player

makes a decision in publicly known exogenous decision order. The econometrician knows

the decision order and uses data on players and their decisions to estimate a parametric

model of payo¤s and random components. The random components serve as structural

errors that are observed by players, but not by the econometrician. Conceptually, solving

such sequential games is straightforward by backward induction. When the random errors

follow continuous distribution, such as multivariate normal distribution, the game becomes

even simpler to solve, because ties occur with probability measure zero and there always

exists a unique subgame perfect equilibrium. Once the relationship from realized values of

the random errors to a unique equilibrium outcome is established, the remaining task is

simply to seek parameter values that minimize a certain distance between the predicted and

observed game outcomes. Computationally, however, except for extremely simple games,

estimating sequential games is challenging. Even for a fairly simple game in which four

players sequentially make binary decisions, the standard maximum likelihood method is

not feasible because the likelihood function does not have an analytical solution due to

high-dimensional integration. Maximum likelihood based on simulation techniques is an

alternative, but its computation is a daunting task; the game needs to be solved for each

observation of game plays for each simulation draw for each set of candidate parameter

values.

The proposed method in this paper relies on two ideas. First, I propose the use of the

Geweke-Hajivassiliou-Keane (GHK) simulator, the most popular solution for approximating
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high-dimensional truncated integrals in standard probit models. This importance-sampling

simulator recursively truncates the multivariate normal probability density function, by de-

composing the multivariate normal distribution into a set of univariate normal distribution

using Cholesky triangularization.2

Sequential strategic interaction, however, complicates high-dimensional truncated inte-

gration in the probit framework, causing interdependence of truncation thresholds, which

undermines the ground of the GHK�s recursive conditioning approach. As the second build-

ing block of the proposed method, I propose the use of the GHK simulator not for the

observed equilibrium outcome per se, but separately for each of all the subgame perfect

strategy pro�les that rationalize the observed equilibrium outcome. In the sequential game

framework, the observed equilibrium outcome arises according to the underlying subgame

perfect equilibrium, but the econometrician does not observe the underlying equilibrium,

because an equilibrium strategy consists of a complete contingent plan, which includes o¤-

the-equilibrium-path strategies as unobserved counterfactuals. Even if a unique subgame

perfect equilibrium is guaranteed, from the econometrician�s viewpoint, there may exist dif-

ferent realizations of unobservables that lead to di¤erent subgame perfect equilibria that

generate an observationally equivalent game outcome.

The use of subgame perfection allows us to uniquely determine the corresponding sub-

game perfect equilibrium for each realization of random components. I show that the separate

evaluation of likelihood contribution for each subgame perfect strategy pro�le allows us to

2Although the use of the GHK requires the assumption of normal distribution for the random components,
its �exibility in the covariance structure allows us to deal with a fairly broad class of sequential games.
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control for the unobserved o¤-the-equilibrium-path strategies so that the recursive condition-

ing of the GHK works by making the domain of Monte Carlo integration (hyper-)rectangular.

The econometrician then obtains the probability of the observed outcome by summing the

probabilities of each subgame perfect equilibrium that rationalizes the observed outcome,

and the use of maximum likelihood follows.

Section 2 positions the proposed method in the empirical game literature and discusses

the potential usefulness of the method. After formally presenting the setup in Section 3,

I explain in Section 4 how the GHK simulator can aid high-dimensional integration under

subgame perfection. In Section 5, to demonstrate the performance and robustness of the pro-

posed estimation method, I conduct Monte Carlo experiments. Section 6 discusses potential

extension and computation issues.

2 RELATIONTOTHE LITERATUREANDAPPLICA-

BILITY

This paper builds on a line of research on the estimation of non-cooperative discrete games,

initiated by Bjorn and Vuong (1984) and Bresnahan and Reiss (1991). Recent development

in this literature has mostly centered around two issues: the identi�cation problem due to

multiple equilibria3 and the computation problem. This paper contributes to the latter by

providing a direction di¤erent from recent developments. There is a very active literature

3For example, see Chernozhukov et al. (2007), Ciliberto and Tamer (2009), and Pakes et al. (2011).
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on the estimation of dynamic discrete games. Recent work by Pesendorfer and Schmidt-

Dengler (2003), Pakes et al. (2007), Aguirregabiria and Mira (2007), and Bajari et al.

(2007) is based on a computationally convenient two-step approach, developed by Hotz and

Miller (1993), which exploits the mapping in discrete choice problems between conditional

choice probabilities and "choice-speci�c" value functions. The computational advantage of

this type of method comes from the fact that it only uses necessary conditions of equilibrium

and does not explicitly compute equilibrium. Two general drawbacks to these estimators

are the information loss that may lead to substantial �nite sample bias and the di¢ culty of

conducting counterfactual simulations. The approach proposed in this paper does not have

these drawbacks as it is based on the explicit calculation of equilibrium.

The recent work by Jia (2008) on the location choice of discount chains has some simi-

larities to this paper in that she studies a discrete simultaneous complete-information game

with a large choice set. Her innovative approach to the dimensionality problem relies on the

lattice theory. For her approach to work, however, the model has to satisfy several strong

restrictions.4 Similarly, the literature on incomplete information static games computes equi-

librium by using �xed point theorem (e.g. Seim, 2007). The �xed point algorithm works

well as long as the underlying assumptions are satis�ed. My approach, on the other hand,

relies on the backward induction algorithm to �nd equilibrium, a conceptually much simpler

approach, which works in a fairly general class of �nite sequential games.

Whether sequentiality is a reasonable assumption to make depends on each application.

4In Jia�s setup, externality across markets must be positive and the number of players cannot exceed two.
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In entry games, for example, there may not be an explicit sequence in the �rst place. It may

be natural that the recent empirical game literature has centered around the identi�cation

issue under the possibility of multiple equilibria. The sequential game assumption allows

this paper to circumvent the issue of multiple equilibria but the validity of the assumption

needs to be warranted in each application.

More important, the sequential game framework is not merely a technical assumption to

avoid multiple equilibria but a tool to investigate sequential strategic interaction, such as

the �rst-mover (dis-)advantage and preemptive behavior to deter a rival�s action. Sequential

interaction is observed in a wide range of real world phenomena: heavily regulated industries,

organizational decision making, labor disputes, judicial cases, decisions among siblings, drafts

in sports leagues, parlor and TV show games, and so on. Innumerable theoretical studies on

sequential games exist, but there has been little empirical work devoted to quantifying the

relevance and implications of sequential interaction.

It is worthwhile to point out that the proposed method does not fully resolve the high

dimensionality problem. The GHK signi�cantly facilitates high-dimensional integration, but

as the game size increases, the number of possible strategy pro�les increases exponentially.

Although there are ways to further improve computational e¢ ciency, as discussed in the last

section, computational practicality remains a challenge when a game is very large.5

The bene�t of the proposed method will be fully exploited when an application focuses

on sequential interaction in a middle-sized game, which is not overly large but if larger than

5The maximum size of the game a researcher can practically estimate depends on various factors, such
as imposed game structures, the sample size, and the availability of high performance computing.
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the two-player binary-choice game. On one hand, the two-player Stackelberg game, which

has been widely studied in the theoretical literature, has limited use in empirical research.

On the other hand, an application with a game played by a large number of players may

entail less value in inference on sequential interaction; other empirical frameworks such as a

simultaneous game may be more appropriate.

The paper by Johar and Maruyama (2012) o¤ers an example of the intended use of

the proposed method. The paper concerns the location choice of adult siblings. In our

setup, adult siblings make location decisions in their birth order� the order they �nish their

schooling� while the well-being of their elderly parents is their shared concern. This setting

creates a public good problem and sequential strategic interaction. The game is not large: we

consider families with up to four siblings and the decision is binary� whether to live far away

from the parent or not.6 The model, instead, features very rich structures. The error term

has a complex covariance structure in which correlation among siblings depends on their

characteristics, such as age and gender di¤erences. We do not impose a priori assumption on

strategic complementarity; instead the model allows for heterogeneous strategic e¤ect across

players and families. Our full model involves 38 parameters. The data set constructed

from the US Health and Retirement Study includes more than ten thousand adult children.

The proposed algorithm performs very well, leading us to �nd economically insigni�cant

sequential interaction but a signi�cant public good problem.

6We set the upper limit at four because of our empirical focus, not due to computational feasibility.
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3 MODEL

3.1 The Sequential Game

The model is a �nite sequential game with perfect information. There are i = 1; :::; N players,

each makes a decision in publicly known exogenous order. The game can be set up so that

players take multiple turns alternately. Each player chooses an "action" ai from a �nite set

of actions Ai, e.g. ("left", "right") and ("enter", "not enter").7 De�ne A � �iAi and let

a � (a1; :::; aN) denote a generic element of A. Player i�s payo¤, such as utility or pro�t,

from action ai depends on a�i, the vector of actions taken by the other players. The payo¤

function of player i, �i : A! R, is

�i (a; x; "i; �1) = �i (a; x; �1) + "
ai
i ; (1)

where �1 is a vector of parameters and vector x contains exogenous characteristics that

describe the players and the environment in which the game is played. The �rst term,

�i (a; x; �1), is an assumed parametric function of mean payo¤s. The second term, "
ai
i 2 R, is

a random preference shock player i incurs when ai is chosen. De�ne a vector, "i � f"aii gai2Ai

and " � ("1; :::; "N). " follows continuous parametric density function, g ("; �2), where �2

is a vector of parameters.8,9 Both x and " are common knowledge to the players, but the

7Allowing the choice set to vary across decision nodes is possible by de�ning Ai as a union of available
alternatives at each decision node.

8g ("; �2) may depend on x; for example, the error terms of players with similar characteristics may be
positively correlated.

9I assume the additive separability of the random shock term following much of the existing literature,
such as Bresnahan and Reiss (1991). In the following discussion, this assumption is not essential as long as
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econometrician observes only x.

All the game theoretical concepts used in this paper are textbook standard, except for

"action pro�le", a, de�ned above, which records decisions made on the equilibrium path and

corresponds to what the econometrician observes as a game outcome in data, whether the

game is sequential or simultaneous. An extensive form game is a perfect information game if

every information set is a singleton decision node. With perfect information, every decision

made earlier is observable for the following players. Player i�s (pure) strategy, si 2 Si,

speci�es her decision at each decision node.10 De�ne S � �iSi and let s � (s1; :::; sN) 2 S

denote a strategy pro�le. Since s uniquely determines a game outcome, de�ne a (s) : S ! A

and ai (s) : S ! Ai. In the example of a two player sequential entry game, if sleader = ("In")

and sfollower = ("In" if leader stays out; "Out" if leader enters), then a (s) = (In;Out).

Given the primitives de�ned above, each player chooses the option that maximizes the

payo¤ taking rivals�behavior as given. The solution concept of the game in this paper is

subgame perfection, which is a re�nement of Nash equilibrium to exclude certain strategies

such as noncredible threat. A subgame of an extensive form game with perfect information

is a subset of the game that begins with a single decision node, contains all the decision

nodes that are successors of this node, and contains only these nodes. A subgame perfect

equilibrium, se, is a strategy pro�le in which each player�s strategy is the best response to

the strategies of the other players in every subgame. It is a well-known fact that every

the identi�cation of parameter estimates is established.
10Incorporating mixed strategies in the present framework is computationally impractical and beyond the

scope of this paper.
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�nite game with perfect information has a pure strategy subgame perfect equilibrium (Zer-

melo�s theorem). Furthermore, in the current setup, the game almost surely has a unique

equilibrium, because ties occur with probability measure zero. Denote this subgame per-

fect equilibrium, se (x; "; �1), and its i�th component, sei (x; "; �1). An equilibrium outcome

function is also de�ned as ae (x; "; �1) � a (se (x; "; �1)), with its i�th component, aei (x; "; �1).

Given (x; "; �1), the game can be solved to obtain se by backward induction. In other words,

given (x; �1), each realization of " results in a unique subgame perfect equilibrium.

3.2 Data

The econometrician observes T independent realizations of the game, (�1; :::;�T ), e.g., T

di¤erent markets, T di¤erent families, and T periods of time. Each realization of the game

is indexed by t = 1; :::; T . The structure and environment of the game may vary across t in

terms of the number and identity of players, the choice set of each player, the decision order,

and covariates x. The parametric forms of �i (at; xt; "it; �1) and gi ("
ait
i ; �2) and parameters,

� � (�1; �2), are assumed to be invariant across t to draw statistical inferences. In each t,

the econometrician observes equilibrium outcome aot and covariate vector xt. Equilibrium

strategy seit is not observed as it contains counterfactuals. The econometrician knows the

structure of game �t, such as the number of players and the decision order either from

institutional knowledge, by assumption, or from observation of data. In the following, I drop

the subscript for each game, t, when no ambiguity arises.
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To utilize a probit simulator below, I assume a normal distribution for "t as

"t � N (0;
) : (2)

Covariance matrix 
 has a dimension of �Ni=1 [the number of action alternatives for i] and is

parameterized by �2. For the parameterization of 
, the usual identi�cation conditions of

probit models apply. In particular, the fact that payo¤ �it is an unobserved latent construct

means that what the econometrician can infer from observed decisions concerns only the

relative comparison of payo¤s among alternatives and, consequently, two types of normal-

ization for " are required. First, the random shock of an alternative is normalized to zero so

that the interpretation of "t is the relative di¤erence in random shocks between the normal-

ized alternative and the other alternatives. Second, the variance of " is also not identi�ed.

Following the convention, it is normalized to one.11 Below, I abuse notation and use " and


 to denote the error structure after normalization.

3.3 Estimation and the High-Dimensional Integration

The task of the econometrician is to make statistical inferences on � based on the structure

of game �t and the assumed parametric forms of �i (a; x; "i; �1) and gi ("
ai
i ; �2). Since the

distribution of " is speci�ed fully parametrically, the estimation procedure relies on maximum

11In applications with more model structures, information on the level of payo¤s may be available and
aid identi�cation, making the normalization of the variance of error terms unnecessary. For example, in the
analysis of entry decisions of health insurance plans, Maruyama (2011) uses equilibrium variable pro�ts that
are recovered from the demand estimation and the level of �xed costs is identi�ed.
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likelihood. Game �t is the unit for which individual likelihood is de�ned. The individual

likelihood is de�ned as

l (�;xt; a
o
t ) = Pr [a

o
t = a

e
t (xt; "t; �1) j�2] . (3)

This leads to the following maximum likelihood problem:

b�ML = argmax
�

"
1

T

TX
t

ln l (�;xt; a
o
t )

#
. (4)

The challenge in this maximum likelihood framework is that the probability term in (3)

involves high-dimensional integrals and generally does not have an analytical solution. The

dimension depends on the number of players and the number of alternatives each player

has.12 There are several cases where this likelihood function is easily computed. First is the

two dimensional case (Stackelberg games), which arises, for example, if the number of players

is two and the decision to be made is binary. The econometrician can then solve the two

threshold values for ("1t; "2t) in accordance with the observed equilibrium outcome, aot . The

bivariate normal distribution function then produces an analytical solution for the probability

term. If the dimension of integration increases to three, an analytical solution is generally

not available, but the quadrature method enables numerical approximation. Another special

case is when each stochastic component in "t follows an independent univariate normal

distribution. In this case, though the game still needs to be solved for an equilibrium, once

12The dimension also depends on the number of turns each player has, if multiple decisions are assumed.

13



it is solved, obtaining an analytical solution is trivial. In most applications, however, the

independent normal assumption is fairly restrictive. It implies no game speci�c error (e.g.

market speci�c random component). When the choice set is larger than the binary case, it

also implies a quite restrictive substitution pattern among alternatives.

For high-dimensional integration, the literature has developed the maximum simulated

likelihood (MSL) method, which utilizes Monte Carlo integration.13 The most straightfor-

ward simulator for MSL is the crude frequency simulator, �rst proposed by Lerman and

Manski (1981). The simulator for the current setup is given by

b�CF = argmax
�

(
1

T

TX
t=1

lnblCFR (�;xt; a
o
t )

)

� argmax
�

(
1

T

TX
t=1

ln
1

R

RX
r=1

I [aot = a
e
t (xt;e"rt ; �1)j�2]

)
; (5)

where I [ ] denotes an indicator function. The simulation procedure takes R sets of random

draws from the assumed distribution. For each random draw e"rt , an equilibrium outcome

aet is solved by backward induction. The probability simulator is based on how many times

the predicted equilibrium outcome coincides with the observed equilibrium outcome out of

R times repetition of simulation draws. Although this simulator provides estimates that

are consistent with R and T , it has two major limitations. First, the simulated probabil-

ity is a discontinuous function of the parameters and is not bounded away from 0 and 1.

13The method of simulated moments (MSM) and the method of simulated scores (MSS) are alternative
options. These may improve the �nite sample property of estimators by removing the simulation bias that
results from the logarithm in the log likelihood function (Hajivassiliou and McFadden, 1998), though Geweke
et al. (1994) do not �nd such an advantage of MSM over MSL.
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Second, the use of the indicator function makes the variance of this simulator quite large,

especially in high-dimensional cases. As a result of these problems, Lerman and Manski

(1981) �nd that their estimator requires a very large number of simulations for satisfactory

performance. McFadden (1989) develops smoothed simulators that solve the discontinuity

problem. Smoothed simulators simplify the iterative computation of the estimator, allowing

researchers to use an optimization method that relies on the di¤erentiability of the optimand.

McFadden�s (1989) smoothed simulators, however, do not address the large variance prob-

lem in high-dimensional cases. Since a likelihood evaluation of relatively large asymmetric

extensive form games tends to be particularly expensive, these simulators are practically

infeasible.

3.4 The GHK Simulator

For high-dimensional integration over a region of the multivariate normal, the most pop-

ular simulator is the GHK simulator (Geweke, 1992; Hajivassiliou and McFadden, 1994;

and Keane, 1994). The GHK simulator recursively truncates the multivariate normal prob-

ability density function. Its algorithm draws recursively from truncated univariate normal

distributions, and relies on Cholesky triangularization to decompose the multivariate normal

distribution into a set of univariate normal distributions. The combination of the recursive

conditioning approach and the algorithm to generate a smooth univariate truncated variate

produces an unbiased and smooth importance-sampling simulator. Importance sampling

aims to achieve higher e¢ ciency by adjusting the weight or "importance" of di¤erent points
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in the sample space. Compared with the frequency simulator, the GHK simulator requires

remarkably fewer draws for alternatives with low probability of being chosen. A number

of studies have con�rmed its usefulness and relative accuracy, especially when considering

the low computational e¤ort required (Börsch-Supan and Hajivassiliou, 1993; Geweke et al.,

1994; Hajivassiliou et al., 1996; Hajivassiliou and McFadden, 1998).

The complication in using the GHK simulator for empirical games arises from the recur-

sive conditioning approach. The GHK algorithm repeats recursive simulation draws from

truncated univariate normal distributions so that the resulting random shocks, e"r, generate
the observed equilibrium outcome, ao. The requirement for this recursive conditioning is

that, in the " space, the truncation threshold for each simulation draw is independent of

other simulation draws and hence, the truncation thresholds are orthogonal to each other.

However, because of sequential strategic interaction, the truncation threshold for a draw may

depend on other simulation draws, and recursive conditioning simulation breaks down.

4 USING THE GHK SIMULATOR

The problem of interdependent truncation thresholds arises as a result of changes in un-

observed o¤-the-equilibrium-path strategies. This point is best illustrated by an example

entry game that is played by two players, �rm 1 and �rm 2.14 Firm 1 is the Stackelberg

leader. Having observed �rm 1�s entry decision, �rm 2 makes its entry decision. Firms 1

14This two-player entry game is only for explanation purposes, as its likelihood function can easily be
solved analytically.
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Figure 1: TWO PLAYER STACKELBERG ENTRY GAME

and 2 incur random shocks "1 and "2 respectively in their pro�t functions. For illustration

purposes, assume that the rival�s entry reduces payo¤ (this is not essential for the framework

proposed in this paper). Each �rm enters the market when it expects nonnegative pro�ts

from entry. If it does not enter, a �rm earns zero pro�t. Given the assumed payo¤ functions,

the realized values of "1 and "2 determine which market outcome occurs (Figure 1). A �rm

with a larger random shock is more likely to enter the market. However, the e¤ects of "1 and

"2 are not symmetric and the decisions of the two �rms are not independent of each other,

due to the sequential nature of the game. The center part of Figure 1 shows the asymmetry;

when neither "1 nor "2 has dominant in�uence, only �rm 1, the leader with the �rst mover

advantage, enters.
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(In,In)

(Out,In)

(In,Out)
(Out,Out)

ε1

ε2

Figure 2: INTEGRATION WITH NORMAL DENSITY FUNCTION

The goal here is to establish a computationally practical Monte Carlo integration method

to evaluate the probability for each market outcome in the likelihood function. Figure 2

illustrates this task by superimposing the probability density function of "1 and "2. In

this example, market con�guration (Out,In) does not allow the use of the standard GHK

simulator, because the domain of integration is not a rectangle, and thus drawing "1 cannot

be conditional on "2 and vice-versa.

The notion of subgame perfection solves this dependency. Indeed, this non-rectangular

shaped domain of integration stems from a behavioral change in an o¤-the-equilibrium path.

The strategic interaction in this sequential game is illustrated by its extensive form (Figure

3). With perfect information, �rm 2 has two singleton decision nodes, and the choice set
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of �rm 2 consists of four strategies: "never enter", "imitate", "preempted", and "always

enter". Assuming "Out" for �rm 1, Figure 3 shows four possible equilibrium pro�les. The

extensive form highlights several important facts. First, subgame perfection implies that

�rm 2 chooses the best option based on its random shock, "2, irrespective of "1. Facing a

large negative shock, �rm 2 chooses "never enter". For a large positive shock, �rm 2 chooses

"always enter". For a medium value of "2, �rm 2 chooses "preempted", i.e. it enters the

market only if �rm 1 does not.15 Thus, "1 does not a¤ect the thresholds of "2 that determine

the choice of �rm 2. Second, di¤erent strategy pro�les may generate game outcomes that

are observationally equivalent to the econometrician. In Figure 3, strategy pro�les (3) and

(4) both result in (Out,In). However, the two strategies of �rm 2 under (3) and (4) have

di¤erent implications for �rm 1�s decision. When preemption is possible, the entry threshold

for �rm 1 is lower and the integration domain of "1 is larger.

Figure 4 incorporates these considerations into the ("1; "2) space. Now the (Out,In) area is

divided into two rectangles, each representing di¤erent strategy pro�les, i.e. (3) "preempted"

and (4) "always enter" as named in Figure 3. The standard GHK procedure works as long

as the domain of integration is rectangular, or hyperrectangular in a general n-dimensional

space, and therefore, we can simulate the likelihood function by evaluating each subgame

perfect equilibrium separately.

To formalize the discussion so far in the general n-dimensional case, let s�i denote the

subvector of strategy pro�le s that excludes component i, and let sBRi (x; "i; s�i; �1) denote

15Firm 2 never chooses the "imitate" strategy, due to the assumed negative impact of a rival�s entry.
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(Out,Out)

In

imitate

InIn

Out

Out Out

Firm 1

Firm 2

always enterpreemptednever enter

(1) (2) (3) (4)

(Out,Out) (Out,In) (Out,In)

Firm 2's
Strategy:

Game Outcome:

Figure 3: STRATEGIES AND OUTCOMES IN THE EXTENSIVE FORM WHEN FIRM
1 CHOOSES "OUT"

ε2

ε1

(In,Out)

(Out,In)(4)(Out,Out)

(In,In)

Firm 2: never enter preempted always enter

(Out,In)(3)

Figure 4: DIVIDING AN OBSERVED MARKET OUTCOME INTO STRATEGY PRO-
FILES

20



the function that determines the best response strategy of player i given x; "i; and s�i. Given

(x; "i; s�i), the best response strategy of player i is uniquely determined almost surely by

comparing payo¤s at each decision node. Then, the following result holds.

Proposition 1 For any strategy pro�le s� 2 S, if there exists a set of f"g that rationalizes

s� as a subgame perfect strategy pro�le given x and �1, then

f"jse (x; "; �1) = s�g = �i
�
"ijsBRi

�
x; "i; s

�
�i; �1

�
= s�i

	
:

In words, the set of " under which s� solves the game as a subgame perfect equilibrium can be

written as a Cartesian product of each player�s set of "i under which s�i is the best response

strategy to s��i.

Proof. In a �nite sequential game with continuous random unobservables, player i�s best

response strategy is uniquely determined by s�i; x; and "i almost surely. Thus, given s��i

and x, the set of "i under which s�i is the best response strategy to s
�
�i does not depend on

another player�s component of ". Then the proposition follows trivially.

The logic underlying this proposition comes directly from the Nash equilibrium concept,

not speci�cally from subgame perfection. However, for this result to hold, the best response

needs to be uniquely determined. The subgame perfection (and hence the assumption of

a sequential game) plays the key role in avoiding indeterminacy from the " space to each

player�s best response.16

16Without subgame perfection, indeterminancy arises in o¤-the-equilibrium paths and makes Monte Carlo
integration impossible.
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The main virtue of the proposition is that for any observed market outcome, ao, by di-

viding the integration problem into the subgame perfect equilibria that rationalize ao, the

interdependency of integral intervals across players resolves and the standard GHK proce-

dure can be used. When the econometrician ignores subgame perfection and only considers

observed actions, ao, the realized value of "j may change player j�s o¤-the-equilibrium-path

decisions, which in turn a¤ects the set of "i under which player i chooses aoi on her equilib-

rium path. The proposition clari�es that this interdependency across players does not occur

as far as each subgame perfect equilibrium is concerned.

Speci�cally, to obtain b�ML using Monte Carlo integration, the estimation procedure eval-

uates the GHK simulator for every strategy pro�le that rationalizes observed outcome aot .

Let So (a) � fs 2 Sja (s) = ag. Rewrite the individual likelihood in the original maximum

likelihood problem, (3), as

l (�;x; ao) = Pr [ao = ae(x; "; �1)j�2]

=
X

s2So(ao)

Pr [s = se(x; "; �1)j�2] .

The second equality holds owing to the fact that any " leads to a unique subgame perfect

equilibrium. Given the discussion so far, using the GHK simulator for each subgame perfect

equilibrium is trivial. The rest of this section sets out this standard procedure to evalu-

ate Pr [s = se(x; "; �1)j�2] for each s 2 So (ao). Readers familiar with the standard GHK

procedure can turn directly to the Monte Carlo experiments.

The probability that the event, s = se(x; "; �1), occurs can be rewritten using an integral.
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Let n (";
) denote the probability density function of the multivariate normal variates, ";

with zero mean and covariance matrix 
. Then

Pr [s = se(x; "; �1)j�2] =
Z
I [s = se(x; "; �1)]n (";
 (�2)) d"

=

Z Y
i

I
�
si = s

BR
i (x; "i; s�i; �1)

�
n (";
 (�2)) d".

The last equality holds from the proposition. Covariance matrix 
 (�2) takes a parametric

form of �2 that allows identi�cation. De�ning a set�i (x; s; �1) �
�
"ijsBRi (x; "i; s�i; �1) = si

	
;

Pr [s = se(x; "; �1)j�2] =
Z Y

i

I ["i 2 �i(x; s; �1)]n (";
 (�2)) d".

The set �i(x; s; �1) represents the conditions that random shocks "i needs to satisfy for si

to be player i�s best response given s�1. The derivation of �i(x; s; �1) is based on �nding

thresholds of "i by comparing payo¤s across available strategies given s�1. There may be

a strategy that is dominated by another strategy regardless of the value of "i. For such a

dominated strategy si, �i(x; si; s�i; �1) = ;, and strategy pro�le s that contains si occurs

with probability zero. De�ne S
o
(ao; �1) � So (ao) as the set of strategy pro�les each element

of which leads to market outcome ao and occurs with positive probability. Then the likelihood
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function becomes

l (�;x; ao) =
X

s2So(ao)

Pr [s = se(x; "; �1)j�2]

=
X

s2So(ao;�1)

Pr [s = se(x; "; �1)j�2] .

In the following I focus on S
o
(ao; �1) so that �i(x; s; �1) is not the empty set.

Before applying the GHK simulator, I introduce Cholesky decomposition. For the sim-

plicity of exposition, assume the choice set of player i = 1; :::; N is binary. Then, after

normalization, " 2 RN and 
 (�2) is a N �N matrix. Allowing more than two alternatives

is straightforward under the GHK procedure. Denote the lower-triangular Cholesky factor

of 
 (�2) as L so that LL0 = 
(�2). Denote � = (�1; :::; �N) an N -dimensional multivariate

standard normal vector; � � N (0; IN). Hence we can write " = L� � N (0;
 (�2)). I intro-

duce notation to simplify the following presentation. For a vector of indexes (1; :::; N), the

notation "< i" denotes the subvector (1; :::; i� 1) and "� i" denotes the subvector (1; :::; i).

Thus, for a vector ", "<i is the subvector of the �rst i�1 components, and "�i is the subvector

excluding component i. For a matrix L; Lii is the i-th diagonal elements of L, and Li;<i and

Li;�i denote vectors containing the �rst i � 1 and i elements of row i, respectively. Using

this notation, "i = Li;�i��i.

24



Then the probability expression becomes

Pr [s = se(x; "; �1)j�2] =
Z
<N

Y
i

I ["i 2 �i(x; s; �1)]n (";
 (�2)) d"

=

Z
<N

"Y
i

I
�
Li;�i��i 2 �i(x; s; �1)

�#
�
"Y

i

�(�i)

#
d� (6)

=

Z
<N

Y
i

�
I
�
Li;�i��i 2 �i(x; s; �1)

�
� � (�i)

�
d�;

where �() is the probability density function of the univariate standard normal distribution.

The simulated likelihood with the GHK simulator is constructed as follows. For each

simulation, r = (1; :::; R), prepare an N -dimensional vector of independent uniform (0; 1)

random variables, eur = (eur1; :::; eurN). For u 2 (0; 1) and a non-empty set � � R, de�ne

an inverse distribution function q (u;�) which is a mapping that takes u into a truncated

standard normal distribution which ranges over �. For example, if � = (�1; a], then q (�)

is a mapping into a standard normal random variate that is right-hand truncated at a, i.e.

q (u; (�1; a]) = ��1 (� (a) � u), where � (a) is the standard normal distribution function.

For given x; s; �1; L, and eur, recursively de�ne a sequence of simulated e�ri so as to satisfy
si = s

BR
i (x; "i; s�i; �1) for i = 1; :::; N as

e�r1 � q (eur1; f�1jL1;1�1 2 �1 (x; s; �1)g)

e�r2 � q (eur2; f�2jL2;1e�r1 + L2;2�2 2 �2 (x; s; �1)g)

:::

e�rN � q (eurN ; f�N jLN;<Ne�r<N + LN;N�N 2 �N (x; s; �1)g) :
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After obtaining simulated e�r, the probability for "i to satisfy si = sBRi (x; "i; s�i; �1), which I

denote Qsi , is recursively calculated. For � � R, de�ne 	(�) �
R
�
� (�) d�. For example, if

� = (�1; a], then 	(�) = � (a). Then

Qs1 � 	(f�1jL1;1�1 2 �1 (x; s; �1)g)

Qs2 (e�r<2) � 	(f�2jL2;1e�r1 + L2;2�2 2 �2 (x; s; �1)g)

:::

QsN (e�r<N) � 	(f�N jLN;<Ne�r<N + LN;N�N 2 �N (x; s; �1)g) :

Repeat this simulation R times for each element of S
o
(ao; �1) and de�ne the likelihood

simulator as

blGHKR (�;x; ao) �
X

s2So(ao;�1)

1

R

RX
r=1

"
Qs1 �

NY
i=2

Qsi (e�r<i)
#
:

Using this simulator, the estimation procedure solves the following maximum simulated

likelihood problem,

b�MSL�GHK = argmax
�

(
1

T

TX
t

lnblGHKR (�;xt; a
o
t )

)
.

This maximum likelihood problem is solved using numerical derivatives. In searching b�, each
iteration should use the same simulation draws

�eu1; :::; euR� to minimize standard errors.
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5 MONTE CARLO EXPERIMENTS

5.1 Experimental Design

In this section, I conduct Monte Carlo experiments and demonstrate the performance and

robustness of the estimation method presented in this paper. I pay particular attention to

potential simulation bias in the Monte Carlo integration and robustness with respect to the

decision order. The latter is especially important, as the precise decision order may not

be available in many empirical applications. Inspired by Berry (1992), I employ a simple

binary-choice entry game in the passenger airline industry, in which at most 6 heterogeneous

airline �rms compete to serve di¤erent markets.

A market, de�ned as a city pair route that connects major U.S. cities, constitutes the unit

of observation. The six largest national carriers of di¤ering sizes (as de�ned by the number

of existing served routes) non-cooperatively play a sequential entry game independently in

each market, based on predicted pro�tability in the market. The number of players in each

market varies from 1 to 6. Following the early literature on static entry games, I assume

a one-shot game and make no distinction between entry by new entrants and "entry" by

incumbent �rms. The econometrician observes the list of "potential entrants" and which

�rms choose to enter each market in the following year. Also available are variables in the

base period that explain the potential pro�tability from entry. These variables are either at

the market level, �rm level, or market-�rm level. In the base model, potential entrants are

assumed to make their decisions in order of size, possibly re�ecting advantages of access to
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the regulation bureaucracy and airport infrastructure.

Ten arti�cial data sets are generated using pseudo-random numbers. Each data set

consists of 3,000 market observations and around 8,300 market-�rm observations and contains

information on the list of potential entrants, covariates, and generated random shocks in

each market. Throughout all the experiments conducted below, I use the same ten data

sets for better compatibility of the simulation results. The experiments I conduct vary in

three aspects. First, I investigate the e¤ects of changes in strategic e¤ect and decision order.

These changes in the data generating process alter market outcomes in the data, i.e. the entry

decision of each �rm in each market, which is generated by solving the game. Second, to check

the computational performance, I examine the e¤ects of changing the simulation framework,

such as the number of simulation draws. Third, to study the e¤ect of misspeci�cation, I

impose restrictions on estimated models.

5.2 Model and Data Generating Process

In market t, Nt �rms play the entry game, where Nt 2 f1; : : : ; 6g. Firm i in market t chooses

to enter if it expects a non-negative pro�t. The expected pro�t from entry, �it, is

�it (n) = x
0

it� � � ln (n) + "it

where xit is a vector of covariates that are speci�c to either market t, �rm i, or �rm-market

pair (i; t), "it is the �rm-market speci�c random component, and n is the number of �rms

that choose to enter market t. The key parameter, �, captures the strategic e¤ect. For
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simplicity, the strategic e¤ect is assumed to depend only on the number of competitors, not

their identity. The random term "it is not observed by the econometrician but is known to

every �rm, and follows a multivariate normal distribution: "t = ("1t; :::; "Nt;t)
0 � N (0;
t).

The payo¤ when a �rm does not enter is normalized to 0. The econometrician desires to

learn about �; �; and 
 based on observed entry decisions and xit.

The covariate vector contains the following variables: two market-speci�c continuous

variables, population (pop) and distance (dist); a �rm-market speci�c continuous variable,

past pro�tability in neighboring markets (pastp); a �rm-market level dummy variable that

indicates the �rm�s presence at both airports of the route in the previous period, city2; and

nroute, a �rm-speci�c variable for the number of existing routes in the country (in 100�s)

that indicates the size of each �rm and determines the decision order.

Data on the pool of entrants and covariates are generated using pseudo-random num-

bers. For each of 3,000 markets, I �rst generate market population, pop, the number of

potential entrants, NCity1, and the number of potential entrants with a presence at two

airports, NCity2 based on trivariate normal distribution. These three variables are assumed

to be positively correlated with covariance matrix

26666664
1:0 0:3 0:3

0:3 1:0 0:6

0:3 0:6 1:0

37777775 : For pop, generated
normal variable values are transformed to a log-normal variable with mean 4.0 and standard

deviation 1.0. To constrain the number of players in each market between 1 and 6, the

two generated normal variables are transformed into truncated normal distributions. For

NCity1, the generated normal variable is transformed to a truncated normal variable with

29



mean 3.0 and standard deviation 1.5 and with the truncation points at 1.0 and 7.0. Like-

wise, for NCity2, the third generated normal variable is transformed to a truncated normal

variable with mean 1.5 and standard deviation 1.0 with truncation points at 0.0 and 7.0.

Both variables are then rounded down to integers. To guarantee NCity2 � NCity1, NCity2

is replaced with the value of NCity1 where NCity2 > NCity1. The numbers of existing

routes, nroute, are set as (2:8; 2:5; 2:0; 1:7; 1:1; 0:75) for the six airlines. In each market,

potential entrants are randomly chosen up to the number of NCity1 with probabilities pro-

portional to nroute: This determines the list of players in each market. Potential entrants

with a presence at both airports of the market are also randomly chosen up to the number

of NCity2 (each �rm with same probability). This generates the dummy variable, city2.

The two remaining variables, dist and pastp are independently generated from the standard

normal distribution.

The error component "it is generated for the ten data sets and is kept �xed throughout

all experiments. The covariance matrix of the error component, 
t, is assumed to be a

Nt � Nt matrix with diagonal elements, 1.0, and o¤-diagonal elements, �2. In other words,

"it consists of two independent standard normal errors, (�it; �t), as

"it =
p
(1� �2)�it + ��t

where � is a correlation among the error terms within a market and �t measures a market-

speci�c factor that makes entry more attractive for all �rms in the market. The correlation,

�, is set to be 0.7, which implies �it and �t have about the same weights in the error term.
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The coe¢ cients on (constant, pop; dist; pastp; city2; nroute) are set to be (�5:0, 1:2, 0:0,

0:4, 1:5, 0:0). To highlight the misspeci�cation bias, the coe¢ cient on �rm size, nroute, is

set to zero so that the �rm size a¤ects pro�ts not directly, only via the decision order. Once

I specify these parameter values, the value of strategic e¤ect parameter, �, and the decision

order, I can solve the game by backward induction and obtain data on market outcome. The

default speci�cation is � = 2:0 and assumes that �rms make decisions in order of nroute. I

also conduct experiments with � = 1:0 to study the e¤ect of the degree of strategic e¤ect

and experiments with randomized decision order to study the robustness of the proposed

method with respect to decision order.

Tables 1 and 2 report descriptive numbers from one of the 10 arti�cial data sets as an

example. Similar patterns are observed in the other data sets. The equilibrium number of

entrants presented in the tables is generated with two di¤erent values of �, 1.0 and 2.0. The

majority of the 3,000 markets have two or three potential entrants. A monopoly is the most

frequent outcome, with no entrant being the second likely outcome. The higher value of �

magni�es the competitive e¤ect and leads to fewer entrants.

Since the pool of potential entrants is constructed randomly but with probability propor-

tional to �rm size, �rm 1 appears in the data set most frequently and �rm 6 least frequently.

When � = 1:0, the early-mover advantages are smaller, so the entry propensity does not

vary much across �rms, whereas when � = 2:0, the larger early-mover advantages reduce the

entry propensity of followers.
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Table 1: EXAMPLE OF DATA SET: DISTRIBUTION OF MARKETS BY NUMBER OF
ENTRANTS

Outcome number Number of potential entrants
of entrants 1 2 3 4 5 6 Total

Total 556 794 846 528 215 61 3,000
(a) � = 1:0 0 317 244 176 59 14 6 766

1 239 368 296 161 64 8 1,201
2 0 182 230 140 55 9 612
3 0 0 144 92 40 11 272
4 0 0 0 76 24 8 104
5 0 0 0 0 18 8 34
6 0 0 0 0 0 11 11

(b) � = 2:0 0 317 244 176 59 14 6 816
1 239 442 429 250 102 15 1,477
2 0 108 187 149 66 21 531
3 0 0 54 52 20 10 136
4 0 0 0 18 12 4 34
5 0 0 0 0 1 3 4
6 0 0 0 0 0 2 2

5.3 Results of the Experiments

The �rst set of Monte Carlo experiments is based on the correct model speci�cation and

concerns about the size of potential simulation bias inherent in the method of simulated

likelihood for a small number of simulation draws. A debate exists in the literature on

the choice between the method of simulated likelihood and the method of simulated mo-

Table 2: EXAMPLE OF DATA SET: NUMBER OF OBSERVATIONS AND ENTRY
PROFITABILITY BY AIRLINES

Airline ID Number of Entry frequency
observations � = 1:0 � = 2:0

1 2,091 1,005 48.1% 930 44.5%
2 1,931 934 48.4% 779 40.3%
3 1,589 724 45.6% 565 35.6%
4 1,379 628 45.5% 448 32.5%
5 803 361 45.0% 249 31.0%
6 442 205 46.4% 144 32.6%

Total 8,235 3,857 46.8% 3,115 37.8%
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ments. While the method of simulated likelihood may su¤er from simulation bias given a

�xed number of simulation draws, it is simple to implement, numerically stable, and po-

tentially e¢ cient under the correct speci�cation. Geweke et al. (1997) and McFadden and

Ruud (1994) provide evidence of the instability of the method of simulated moment esti-

mator. Nevertheless, the number of simulation draws that will lead to a su¢ ciently small

bias is an empirical question speci�c to each application, and in particular depends on the

complexity of the covariance structure of error terms. Table 3 compares the estimates of

four di¤erent simulation draw settings. The data generating process assumes � = 2:0. The

�rst experiment makes 20 independent simulation draws, while the second experiment uses

antithetic sampling to make 20 simulation draws, i.e. 10 symmetric replications of 10 in-

dependent pseudo-random draws to make simulation draws more systematic. The results

show that, �rst, even with only 20 independent simulation draws, the comparison of the

true parameter values and estimated values indicates overall accuracy given the estimated

standard errors. Second, the use of antithetic sampling improves the model �t in terms

of the average log likelihood value. Third, increasing the number of draws to 40 and 300

shows a further improvement in the �t, though the improvement is small. This pattern is

consistently observed in simulations with di¤erent values of parameters and di¤erent seeds

of pseudo-random number generator. Since the covariance structure in the present model is

rather simple, the result shows accuracy even with a very small number of simulation draws,

albeit a small simulation bias is observed. Though not shown here, for a smaller value of

�, i.e. a smaller market level random e¤ect, the number of simulation draws required to
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generate the same level of accuracy is even smaller, since the distribution of each random

error is closer to the univariate standard normal distribution.

Table 3: POTENTIAL SIMULATION BIAS: � = 2.0
20 draws no antithetics 20 draws 40 draws 300 draws

� DGP b� ASE MSE b� ASE MSE b� ASE MSE b� ASE MSE
cons �5:0 �4:990 0:145 0:140 �4:982 0:146 0:142 �4:978 0:146 0:144 �4:977 0:147 0:145
pop 1:2 1:193 0:032 0:024 1:197 0:033 0:023 1:197 0:033 0:022 1:198 0:033 0:023
dist 0:0 0:001 0:011 0:010 0:001 0:011 0:010 0:001 0:011 0:010 0:001 0:011 0:010
pastp 0:4 0:389 0:018 0:023 0:388 0:018 0:023 0:388 0:018 0:023 0:388 0:018 0:023
city2 1:5 1:502 0:041 0:033 1:496 0:041 0:034 1:495 0:041 0:034 1:494 0:041 0:034
nroute 0:0 0:004 0:032 0:035 �0:002 0:032 0:036 �0:003 0:032 0:036 �0:004 0:032 0:036
� 2:0 1:992 0:074 0:068 2:009 0:075 0:067 2:012 0:075 0:070 2:016 0:075 0:069
� 0:7 0:691 0:028 0:031 0:701 0:027 0:030 0:703 0:027 0:030 0:705 0:027 0:031
LogL �3145:26 �3141:20 �3140:96 �3140:57

Note: � � parameter, DGP � data generating value, b� � average parameter estimate, ASE � average asymptotic
standard error, MSE � root mean square error, LogL � average log likelihood value.

The next series of experiments examines the e¤ect of misspeci�cation by imposing re-

strictions on the correctly speci�ed model (Table 4). The data generating process assumes

� = 2:0 and each estimation makes 40 simulation draws using antithetic sampling. The

�rst restricted model assumes that the econometrician has no correct knowledge about the

decision order thus estimates the model by imposing a completely random decision order.

The lack of decision order information reduces the model �t and leads to signi�cant bias of

most estimates. The serious underestimation of � and � and the overestimation of nroute are

particularly notable. In the data generating process, early movers enjoy their advantages,

but without correct information on the decision order, these advantages are not captured as

a strategic e¤ect in � and instead are captured in the positive coe¢ cient of nroute, which

determines the decision order but has no direct e¤ect on payo¤ in the true data generating

process. Inability to well explain the entry decision of each �rm results in higher weights on
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individual random components, which leads to the underestimation of �. The two variables

that have no correlation with the decision order, dist and pastp, are nevertheless precisely

estimated, which is the case for all the experiments conducted below. The next restricted

model assumes the correct speci�cation of the decision order but imposes zero market level

random e¤ect, � = 0. Since this restriction removes the correlation between multivari-

ate normal variates, high-dimensional integration is no longer necessary and the estimation

procedure is signi�cantly simpli�ed. This misspeci�cation, however, leads to considerable

reduction in the model �t and signi�cant bias of estimates. The strategic e¤ect, �, is under-

estimated because ignoring market random errors that generate correlation between entry

decisions of �rms blurs the true harshness of strategic interaction. The last restricted model

assumes no market error and no interaction e¤ect (� = 0 and � = 0). These restrictions

degenerate the model to a probit model. The model �t is the worst in this table. Ignoring

early mover advantages again leads to a spurious positive estimate of the size e¤ect.

Table 4: RESTRICTED MODELS: � = 2.0, 40 SIMULATION DRAWS
Full Model No Order Info No Market Error Probit

� DGP b� ASE MSE b� ASE MSE b� ASE MSE b� ASE MSE
cons �5:0 �4:978 0:146 0:144 �5:338 0:140 0:359 �5:167 0:128 0:217 �4:425 0:125 0:588
pop 1:2 1:197 0:033 0:022 1:070 0:031 0:132 1:060 0:026 0:142 0:623 0:021 0:577
dist 0:0 0:001 0:011 0:010 0:001 0:010 0:009 0:000 0:008 0:010 0:001 0:010 0:007
pastp 0:4 0:388 0:018 0:023 0:402 0:019 0:016 0:416 0:019 0:025 0:385 0:018 0:023
city2 1:5 1:495 0:041 0:034 1:565 0:038 0:072 1:619 0:038 0:124 1:560 0:036 0:066
nroute 0:0 �0:003 0:032 0:036 0:269 0:028 0:270 0:173 0:031 0:175 0:371 0:027 0:372
� 2:0 2:012 0:075 0:070 1:472 0:070 0:531 1:394 0:052 0:609
� 0:7 0:703 0:027 0:030 0:488 0:039 0:214
LogL / BIC �3140:96 / 6350.32 �3226:62 / 6521.64 �3211:20 / 6483.21 �3598:46 / 7250.13
Note: � � parameter, DGP � data generating value, b� � avg parameter estimate, ASE � avg asymptotic standard
error, MSE � root mean square error, LogL � avg log likelihood value, BIC � avg Bayesian information criterion.

Table 5 reports the results of the same comparison for � = 1:0, which re�ects a weaker
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strategic e¤ect. Overall the results are consistent with the previous table. One notable

di¤erence is that misspecifying and ignoring the sequential interaction leads to much less

reduction in the model �t.

Table 5: RESTRICTED MODELS: � = 1.0, 40 SIMULATION DRAWS
Full Model No Order Info No Market Error Probit

� DGP b� ASE MSE b� ASE MSE b� ASE MSE b� ASE MSE
cons �5:0 �4:863 0:133 0:163 �5:003 0:131 0:096 �4:876 0:119 0:161 �4:739 0:126 0:288
pop 1:2 1:171 0:030 0:037 1:143 0:030 0:060 1:026 0:024 0:175 0:893 0:022 0:308
dist 0:0 0:001 0:010 0:011 0:001 0:010 0:011 0:001 0:008 0:011 0:001 0:008 0:010
pastp 0:4 0:391 0:018 0:021 0:398 0:018 0:018 0:417 0:018 0:025 0:421 0:019 0:028
city2 1:5 1:472 0:041 0:044 1:510 0:039 0:033 1:597 0:037 0:102 1:638 0:038 0:144
nroute 0:0 �0:005 0:028 0:026 0:073 0:026 0:077 0:098 0:029 0:102 0:151 0:028 0:154
� 1:0 1:016 0:064 0:039 0:888 0:059 0:118 0:462 0:036 0:539
� 0:7 0:699 0:027 0:020 0:650 0:028 0:056
LogL / BIC �3368:05 / 6804:50 �3376:77 / 6821:95 �3447:04 / 6954:89 �3432:56 / 6918:33
Note: � � parameter, DGP � data generating value, b� � avg parameter estimate, ASE � avg asymptotic standard
error, MSE � root mean square error, LogL � avg log likelihood value, BIC � avg Bayesian information criterion.

The last set of experiments introduces various degrees of randomness in the decision

order. In many potential applications, the econometrician may have a priori information

that re�ects the true decision order only approximately. This limited knowledge about the

true decision order motivates this experiment. Speci�cally, while the estimated models still

assume that �rms make decisions in order of nroute, I modify the data generating process

in such a way that the true decision order is determined by a weighted sum of nroute and

a random variable that follows a uniform distribution with the same mean and variance as

nroute. Thus, the weight of this uniform random variable captures the level of imprecision

of the decision order information used in the estimation. Table 6 reports the results for

di¤erent degrees of randomness. The results show that when the econometrician correctly

speci�es more than 90 percent of the decision order, the di¤erences between the estimated
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coe¢ cients and their population values tend to be smaller than the estimated standard error.

Table 6: EFFECT OF RANDOMNESS IN DECISION ORDER
Randomness misspeci�ed � (�0 = 2:0) � (�0 = 0:7)

in sequence order (%) b� ASE MSE b� ASE MSE LogL
0% 0.0% 2:012 0:075 0:070 0:703 0:027 0:030 �3140:96
10% 0.0% 2:012 0:075 0:070 0:703 0:027 0:030 �3140:96
20% 1.9% 2:006 0:075 0:065 0:699 0:028 0:028 �3141:24
30% 13.4% 1:939 0:075 0:098 0:667 0:030 0:047 �3162:22
40% 26.0% 1:876 0:076 0:140 0:640 0:032 0:069 �3188:38
50% 37.1% 1:823 0:076 0:192 0:623 0:032 0:086 �3209:99
60% 45.7% 1:786 0:077 0:220 0:608 0:033 0:097 �3228:39
70% 52.0% 1:737 0:077 0:266 0:590 0:034 0:115 �3245:10
80% 56.9% 1:701 0:077 0:304 0:571 0:036 0:133 �3264:87
90% 60.7% 1:685 0:077 0:321 0:568 0:036 0:137 �3272:85
100% 63.7% 1:682 0:077 0:323 0:570 0:036 0:135 �3275:09

Note: misspeci�ed order indicates how many observations are assigned with di¤erent

decision order. b�;b� � avg parameter estimate, ASE � avg asymptotic standard error,
MSE � root mean square error, LogL � avg log likelihood value, 40 simulation draws
using antithetic sampling.

6 DISCUSSION AND EXTENSIONS

6.1 The Perfect Information Assumption

The perfect information assumption plays a key role in guaranteeing a unique subgame

perfect equilibrium. The uniqueness is necessary to specify the domain of integration in

the " space for each strategy pro�le that rationalizes the observed game outcome, without

making a strong (often ad hoc) assumption on the equilibrium selection mechanism. The

perfect information assumption, however, may be too strong in many applications. The

assumption does not hold when some players have private information, when players move

simultaneously, and when "nature" may bring in uncertainty. Relaxing the perfect informa-
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tion assumption is possible as long as the uniqueness of an equilibrium is guaranteed for any

possible values of random shocks, ". In general the following approaches potentially help to

relax the perfect information assumption. First, we can specify the game and payo¤ function

in such a way that a unique subgame perfect equilibrium is guaranteed. Second, focusing

on a set of equilibria might provide uniqueness. An example is an entry game in which the

identity of entering �rms is not uniquely determined but the number of entrants is uniquely

determined (Berry, 1992). Third, an equilibrium concept that is stronger than subgame per-

fection may help to avoid the multiplicity of equilibria. For example, sequential equilibrium

(Kreps and Wilson, 1982) may reduce the set of subgame perfect equilibrium strategy pro-

�les when decision nodes that are never reached exist (Litan and Pimienta, 2008). Fourth,

some equilibrium selection mechanism can be assumed. The use of the notions of Pareto

and risk-dominance may provide a reasonable option if it leads to a unique equilibrium.

6.2 Decision Order

The entry game example in the previous section assumes that each �rm makes a one-shot

decision sequentially. In general, the proposed method allows players to take multiple turns

alternately. In simulating the likelihood function, all turns of player i must be simulated at

once, as the strategy of each player consists of a decision at every decision node.

A more fundamental issue on decision order is the empirical analogue of decision order.

The proposed method utilizes a publicly known exogenous decision order. In some applica-

tions, even if sequential interaction appears likely, such decision order may not be available
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or may be endogenously determined. The above Monte Carlo experiments illustrate that

misspecifying the true decision order may lead to a signi�cantly biased estimate of strategic

e¤ect. At the same time, if the game is correctly speci�ed except for decision order, we can

draw an inference about not only structural parameters but also decision order. Speci�cally,

the econometrician can estimate di¤erent models, each with a di¤erent imposed decision

order, then conduct a model selection test for non-nested speci�cations. Advancing this idea

further, estimation of the population decision order by selecting the decision order that max-

imizes the likelihood function may be a possibility. The statistical properties of an estimated

decision order and how to deal with the discontinuity that arises from maximization over

decision orders are left for future research.17

6.3 Computational Feasibility

For applications with relatively simple games, the computation burden of the proposed

estimation procedure is fairly manageable. This is due to the high performance of the GHK

simulator. For example, conducting all the Monte Carlo experiments shown in this paper

requires less than a half day with a standard stand-alone desktop computer.

However, as the number of players, the number of turns, or the number of alternatives

increases, the size of the game tree increases exponentially and computation quickly be-

17Endogenizing the order of decision is another possible extension. This class of games is called a leadership
game or a commitment game (Hamilton and Slutsky, 1990) and has attracted some theoretical applications
(e.g. Kempf and Rota-Graziosi, 2010). These games endogenize the order by introducing a pre-play stage
that determines the order of decision. Consequently, these games are no longer perfect information games, but
as long as a unique outcome is secured, estimation may be possible, as discussed in the previous subsection.
However, the empirical analogue of leadership games seems to be rather unclear.
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comes infeasible. Though this exponential computational burden is inherent in the nature

of sequential games, the following computation techniques may signi�cantly reduce compu-

tational burden. First, structures of payo¤ function and strategic interaction implied by

assumed economic theory can be utilized to skip the unnecessary part of the calculation in

the backward induction algorithm. In the above entry game example, the assumed negative

e¤ect of a rival�s entry excludes one strategy ("imitate" in Figure 3) from the simulation pro-

cedure. In Maruyama (2011), I exploit the non-increasing property of the pro�t function in

the number of entering rival �rms; imposing this structure dramatically reduces the compu-

tation time. As a result, in the estimation of sequential games with at most 16 heterogeneous

�rms, the computational burden is not found to be a signi�cant problem.

Second, given the assumed independence across each game play, parallel computing is a

promising way to reduce computational burden; the parallelization of the maximum likeli-

hood evaluation loop is straightforward. Third, variance reduction techniques will enhance

the performance of the simulator. The Monte Carlo experiments above show the gain from

antithetic sampling. Instead of using pseudo-random numbers, systematic simulation draws

by quasi-Monte Carlo sampling, such as Halton sequences, and sampling methods based on

orthogonal arrays will produce better performance (Train, 2003; Sándor and András, 2004).

Lastly another potential avenue is the use of a more e¢ cient importance-sampling algorithm

to enhance the GHK simulator (Liesenfeld and Richard, 2010).
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