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ON THE EQUIVALENCE BETWEEN (QUASI-)PERFECT AND
SEQUENTIAL EQUILIBRIA*

CARLOS PIMIENTA AND JIANFEI SHEN†

Abstract. We prove the generic equivalence between quasi-perfect equilibrium

and sequential equilibrium. Combining this result with Blume and Zame (1994)

shows that perfect, quasi-perfect and sequential equilibrium coincidein generic

games.

1. Introduction

Backwards induction has been implemented in the literature through several

equilibrium concepts for extensive-form games.Extensive-form perfect equilib-

rium (Selten, 1975),sequential equilibrium(Kreps and Wilson, 1982) andquasi-

perfect equilibrium(van Damme, 1984) are (together with subgame perfection)

the most prominent examples. Sequential equilibrium is the less demanding of

these three concepts. Every extensive-form perfect as well as every quasi-perfect

equilibrium is sequential. In turn, Blume and Zame (1994) show that for generic

extensive-form games every sequential equilibrium is also extensive-form perfect

(henceforth simplyperfect).

Nevertheless, there is no inclusion relationship between quasi-perfect and per-

fect equilibrium. Indeed, Mertens (1995) gives an example of a game where

quasi-perfect and perfect equilibrium select disjoint sets of strategy profiles. As

Mertens argues, since quasi-perfect equilibria are normal form perfect —which

can be understood as a strong version of admissibility— it seems that quasi-perfect

equilibrium is superior to the perfect equilibrium concept. In fact, more recently

Govindan and Wilson (2006, 2009) use quasi-perfect equilibrium as one of their

building blocks to axiomatize and characterize strategic stability.
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Figure 1. (R, l, B) is perfect but not quasi-perfect.

A standard example that is used to show that perfect equilibrium may select

unreasonable equilibria is depicted in Figure 1 (this is Example 4 in van Damme,

1984). The strategy profile (R, l, B) is a sequential and a perfect equilibrium. But

it is not an admissible strategy profile and consequently not a quasi-perfect equi-

librium. The current paper shows that this example is exceptional in the space of

games with that extensive form. More precisely, we prove that for generic extensive

form games every sequential equilibrium strategy is quasi-perfect. This,together

with the aforementioned result by Blume and Zame, implies that for generic exten-

sive form games the sets of perfect, sequential and quasi-perfect equilibria are the

same.

Throughout the paper we follow Blume and Zame (1994) very closely. In Sec-

tion 2 we introduce notation and terminology for extensive form games. Section

3 defines quasi-perfect equilibria as limit points of sequences ofε-quasi-perfect

equilibria. Instead of providing the usual definition of sequential equilibriaas se-

quentially rational consistent assessments, we give a characterization ofsequential

equilibrium strategies based onε-quasi-perfect equilibria of nearby games. This

allows a simple comparison between quasi-perfect and sequential equilibrium that

leads to proving the generic equivalence result in Section 4.

2. Preliminaries

In this section we introduce notation and definitions for finite extensive games

with perfect recall.

An extensive-formis a tupleΓ = (N ,T,≤,P,H,C, ρ). The set of players is

N = {1, . . . ,N}. Players are indexed byn = 1, . . . ,N and, as usual, the symbol−n

is used to denoteN \ {n}.

The finite set of nodesT partially ordered by≤ and contains the set of decision

nodesX and the set of final nodesZ. The set of decision nodesX is partitioned

by theplayer partition P= (P0,P1, . . . ,PN), wherePn represents the set of nodes

where playern has to move (P0 corresponds to the set of nodes where Nature

moves). Theinformation partition H = (H1, . . . ,HN) contains the information

structure of the extensive form, where for eachn, the collectionHn partitionsPn

into information sets h∈ Hn. The set ofchoicesin the extensive form isC andC(h)
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will denote the set of choices available at the information seth. Finally,ρ specifies

the probability distributions over the moves of Nature.

An extensive-form gameΓ(u) is obtained from the extensive-formΓ by specify-

ing for each playern a Bernullian payoff functionun : Z→ �. Therefore,Un = �
Z

is the space of playern’s payoffs andU =
∏

n Un = (�Z)N is the space of games

with extensive-formΓ.

Kuhn’s Theorem (Kuhn, 1953) allows us to focus on behavior strategies. A

behavior strategy sn of playern specifies for each information seth ∈ Hn where

she has to move a probability distributionsn(· | h) over the set of choicesC(h). The

set of behavior strategies for playern is Sn and its (finite) subset of pure strategies

is In ⊂ Sn. Furthermore, the set of completely mixed behavior strategies for player

n is So
n. We also writeS =

∏

n Sn, S−n =
∏

m,n Sm, So
=
∏

n So
n andSo

−n =
∏

m,n So
m for the corresponding sets of strategy profiles.

A strategy profiles ∈ S induces (together withρ) a probability distribution on

the set of final nodesZ. Let Pr{z | s} be the probability thatz ∈ Z is reached if

the strategy profiles is played. The expected utility to playern if s = (s−n, sn) is

played and the utility vector isu ∈ U is given by

vn(s−n, sn,u) =
∑

z∈Z

un(z) Pr{z | s−n, sn}.

We also need to define the expected utility that playern obtains once each one

of her information setsh ∈ Hn is reached. These expected utilities depend on the

conditional probability induced onZ by the strategy profile once the information set

has been reached. However, some information sets may be reached with probability

zero under some strategy profiles. Thus, we can only define these expected utilities

for those strategy profiles for which they are well defined. To this end, for an

information seth ∈ Hn of playern, let I (h) andS(h) define the sets of pure and

mixed strategy profiles that induce a play of the game that reaches a node inh.

Note, in particular, thatSo ⊂ S(h) for everyh. If In(h), I−n(h), Sn(h) andS−n(h)

are the corresponding projections ofI (h) andS(h) on Sn andS−n, perfect recall

implies thatI (h) = In(h) × I−n(h) andS(h) = Sn(h) × S−n(h). Moreover, letZ(h)

denote the final nodes that come after some node inh.

The expected utility to playern at the information seth when the strategy profile

s= (s−n, sn) ∈ S(h) is played is given by:

vhn(s−n, sn,u) =
∑

z∈Z(h)

un(z)
Pr{z | s−n, sn}

Pr{Z(h) | s−n, sn}
,

where the probability in the denominator is computed in the usual manner.

3. Sequential and quasi-perfect equilibrium

Before we define quasi-perfect and sequential equilibrium we need some addi-

tional notation. Ifh ∈ Hn andc ∈ C(h), we denote asIn(h, c) the subset of strategies
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in In(h) that prescribe actionc at h. Furthermore, ifc ∈ C(h) andh ∈ Hn we use

the substitution notationsn|hc to denote the strategy of playern that prescribes the

same behavior assn at every information set buth, where it assigns probability one

to choicec.

We define quasi-perfect equilibrium usingε-quasi-perfect equilibria:

Definition 1. A completely mixed strategy profilesε ∈ So is anε-quasi-perfect

equilibrium of the gameΓ(u) if for every playern ∈ N , every information set

h ∈ Hn, and every two choicesc, c′ ∈ C(h) the following holds

max
in∈In(h,c)

vhn(sε−n, in,u) < max
jn∈In(h,c′)

vhn(sε−n, jn,u) impliessεn(c | h) ≤ ε.

Definition 2. A strategy profiles ∈ S is aquasi-perfect equilibriumof the game

Γ(u) if it is the limit point asε goes to zero ofε-quasi-perfect equilibria.

Furthermore, we letQE : U → S denote the quasi-perfect equilibrium corre-

spondence.

We move to define sequential equilibrium. A sequential equilibrium is a strategy

profileanda sequence of beliefs. To compare quasi-perfect and sequential equilib-

ria we need to focus on sequential equilibrium strategies. Our starting pointis the

following useful characterization of sequential equilibrium strategies in terms of

sequences of strategy profiles and sequences of payoffs (Kreps and Wilson, 1982,

Proposition 6):

Proposition 1. A strategy profile s∈ S is a sequential equilibrium strategy of the

gameΓ(u) if and only if there is a sequence of completely mixed strategy profiles

{st}∞t=1 ⊂ So and a sequence of payoff functions{ut}∞t=1 ⊂ U such that:1

• {st}∞t=1 converges to s,{ut}∞t=1 converges to u; and

• for every index t, every player n, every information set h∈ Hn and every

two choices c, c′ ∈ C(h), if sn(c | h) > 0, then

vhn(st
−n, s

t
n|hc,ut) ≥ vhn(st

−n, s
t
n|hc′,ut).

(From now on we use the term sequential equilibrium referring only to the strat-

egy component.) We are interested in a similar characterization of sequential equi-

librium that uses theε-quasi-perfect equilibrium conditions. The following propo-

sition serves this purpose:

Proposition 2. A strategy profile s∈ S is a sequential equilibrium ofΓ(u) if and

only if there is a sequence{εt}∞t=1 ⊂ (0,1], a sequence of completely mixed strategy

profiles{st}∞t=1 ⊂ So and a sequence of payoff functions{ũt}∞t=0 ⊂ U such that:

• {εt}∞t=1 converges to 0,{st}∞t=1 converges to s,{ũt}∞t=1 converges to u, and

1 A perfect equilibrium ofΓ(u) is defined similarly. We only need to restrict the sequence of

payoff functions{ut}∞t=1 so thatut
= u for all t.
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• for every index t, st is anεt-quasi-perfect equilibrium ofΓ(ũt).

Proof. See Appendix. �

Henceforth, we letSE : U → S represent the sequential equilibrium correspon-

dence.

Proposition 2 characterizes the sequential equilibria of a game as the set oflimit

points ofε-quasi-perfect equilibria of nearby games. Intuitively, if a strategy pro-

file s is a sequential equilibrium ofΓ(u) then Proposition 1 implies that it can

be approximated by a sequence of equilibria of nearby payoff-perturbed games

(Blume and Zame, 1994, Proposition B). Of course, this does not imply that the

equilibria of the perturbed games be alsoε-quasi-perfect equilibria for someε.

However, player’s payoff vectors can be varied slightly to make it so. To conclude,

one can show that these variations in the payoffs vanish as the sequence of games

approaches the true game.

4. The result

Following Blume and Zame (1994), we exploit the semi-algebraic structure of

most game theoretical constructions. A set is semi-algebraic if it can be defined by

a finite system of polynomial equalities and inequalities. A correspondence (func-

tion) is semi-algebraic if its graph is a semi-algebraic set. The Tarski-Seidenberg

Theorem (Tarski, 1951; Seidenberg, 1954) guarantees that every first-order for-

mula (a expression involving constants, variables, the universal and existential

quantifiers and the standard algebraic operations) defines a semi-algebraic set.

Blume and Zame (1994) use the Tarski-Seidenberg Theorem to show that the Nash,

perfect and sequential equilibrium correspondences are semi-algebraic. As they

suggest, their argument can be extended to establish the semi-algebraic nature of

many equilibrium refinements. One can easily apply it here to show that the quasi-

perfect equilibrium correspondence is semi-algebraic. In fact, everyset and corre-

spondence that we consider in this paper is semi-algebraic.2

The basic result on semi-algebraic correspondences that we use is stated in

Lemma 1 below and proved in Blume and Zame (1994). But before that we need to

introduce the usual sequential characterizations of continuity for correspondences.

Definition 3. Let F : X→ Y be a compact-valued correspondence.

• F is upper-hemicontinuous atx if and only if for every sequence{xt}∞t=1 ⊂

X converging tox, the limit y of any sequence{yt}∞t=1 ⊂ Y such thatyt ∈

F(xt) for all t satisfiesy ∈ F(x).

• F is lower-hemicontinuous atx if and only if for every sequence{xt}∞t=1 ⊂ X

converging tox and for everyy ∈ F(x) there exist a subsequence{xtk}∞k=1

and a sequence{ytk}∞k=1 that converges toy such thatytk ∈ F(xtk) for all k.

2 For a detailed exposition of semi-algebraic theory the reader is referredto Bochnak et al. (1998).
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• F is continuous atx if and only if it is both upper-hemicontinuous and

lower-hemicontinuous atx.

We can now turn to the announced result on semi-algebraic correspondences:

Lemma 1. Let F : X → Y be a compact-valued and semi-algebraic correspon-

dence. Then F is continuous at every point of the complement of a (relatively)

closed, lower-dimensional, semi-algebraic subset of X.

As the perfect, quasi-perfect and sequential equilibrium correspondences are

compact-valued and semi-algebraic, Lemma 1 has important consequences tostudy

their continuity points.

Fix some ¯ε > 0, theε-quasi-perfect equilibrium correspondence is denoted by

ϕ : U×(0, ε̄] → So. LetW = Graph(ϕ) ⊂ U×(0, ε̄]×So. The strategy profiles is a

sequential equilibrium ofΓ(u) if and only if there is a sequence{(ut, εt, st)}∞t=1 ⊂W

converging to (u,0, s). If cl (W) is the closure ofW and cl(W)u = {(ε, s) : (u, ε, s) ∈

cl (W)} we can say thats is a sequential equilibrium ofΓ(u) if and only if (0, s) ∈

cl (W)u. Likewise, the strategy profiles is a quasi-perfect equilibrium ofΓ(u) if

and only if (u,0, s) is the limit point of some sequence{(u, εt, st)}∞t=1 ⊂ W. If we

let Wu = {(ε, s) : (u, ε, s) ∈ W} we can say thats is a quasi-perfect equilibrium

of Γ(u) if and only if (0, s) ∈ cl (Wu). Additionally, we define the correspondence

ψ : U → [0, ε̄] × S according toψ(u) = cl (Wu).

We begin by characterizing the set of games for which quasi-perfect and sequen-

tial equilibria coincide using the upper-hemicontinuity points ofψ.

Proposition 3. The sets of quasi-perfect and sequential equilibria coincide at u if

and only ifψ is upper-hemicontinuous at u.

Proof. Let ψ be upper-hemicontinuous atu and lets be a sequential equilibrium

of Γ(u). There is a sequence{(ut, εt, st)}∞t=0 ⊂ W converging to (u,0, s). Along this

sequence (εt, st) ∈ ψ(ut) for everyt. Upper-hemicontinuity ofψ at u implies that

(0, s) ∈ ψ(u) which in turn implies thats is a quasi-perfect equilibrium ofΓ(u).

Suppose now thatQE(u) = SE(u). The correspondencēψ : U → [0, ε̄]×S given

by ψ̄(u) = cl (W)u has a closed graph and, therefore, is upper-hemicontinuous

everywhere. Furthermore, the graphs of the correspondencesψ̄ andψ can only

differ at those points whereε = 0. That is,QE(u) = SE(u) implies ψ̄(u) = ψ(u),

from where we can conclude thatψ is upper-hemicontinuous atu. �

The correspondenceψ is semi-algebraic.3 From Lemma 1 it follows thatψ is

upper-hemicontinuous at every point of the complement of a closed lower-dimensional

3 Notice that Graph(ψ) = W ∪ {(u,0, s) : (u, s) ∈ Graph(QE)} and that both sets in the union are

semi-algebraic.
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semi-algebraic set. Therefore, Proposition 3 implies the generic equivalence be-

tween sequential and quasi-perfect equilibrium. Moreover, the analogous result in-

volving perfect and sequential equilibrium has been established by Blume and Zame

(1994, Theorem 4).4 Hence, we obtain:

Theorem 1. There is a closed, lower-dimensional semi-algebraic subset U0 ⊂ U

such that for every u∈ U \ U0 the sets of perfect, quasi-perfect and sequential

equilibria coincide.

Since quasi-perfect equilibria are always normal-form perfect we also obtain

that in the complement of a lower-dimensional semi-algebraic subset of payoffs

every extensive-form perfect equilibrium is also normal-form perfect.

Analogously to Blume and Zame (1994) we also obtain:

Corollary 1. The quasi-perfect and sequential equilibrium correspondences co-

incide at every point where the first correspondence is upper-hemicontinuous and

the second correspondence lower-hemicontinuous.

Proof. Let SEbe lower-hemicontinuous atu and lets ∈ SE(u). Take any sequence

{ut}∞t=1 converging tou and such that{ut}∞t=1 ⊂ U \U0. Lower-hemicontinuity ofSE

implies that (passing to a subsequence if necessary) we can find{st}∞t=1 converging

to s such thatst ∈ SE(ut) for all t. SinceQE(ut) = SE(ut) also holds for allt

we actually have a sequence of quasi-perfect equilibria converging tos. Upper-

hemicontinuity ofQE implies thats is a quasi-perfect equilibrium ofΓ(u). �

Appendix A. Proof of Proposition 2

The starting point of the proof is Proposition 1. Thus, before proving theresult,

we provide a definition of perfect equilibrium based on perturbed games.

A perturbation for the extensive form is a functionη : C → �++ such that
∑

c∈C(h) η(c) < 1 for every information seth. Given a perturbationη the set of

perturbed strategies of playern is

Sn(η) = {sn ∈ Sn : sn(c | h) ≥ η(c) for all c ∈ C(h),h ∈ Hn}.

Theperturbed gameΓ(u, η) is the extensive-form game with payoffsu and players

are constrained to play strategy profiles inS(η) =
∏

n Sn(η).

Definition 4. A strategy profiles ∈ S is a perfect equilibrium if there is a sequence

of perturbations{ηt}∞t=0 converging to zero and a sequence of strategy profiles{st}∞t=0

converging tossuch thatst is a Nash equilibrium ofΓ(u, ηt) for everyt.

Of course, this definition is equivalent to the one indicated in footnote 1.

4 In fact, by lettingW denote the graph of theε-perfect equilibrium correspondence we also

provide an alternative proof to the generic equivalence between sequential and perfect equilibrium.
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Proof of the “only if” part of Proposition 2.Take a sequential equilibriums of

Γ(u). By Proposition 1 we know that there is a sequence{(ut, ηt, st)}∞t=1 converging

to (u,0, s) such thatst is an equilibrium of the perturbed gameΓ(ut, ηt) for all t.

For the time being, fix a member (ut, ηt, st) of the sequence. For anyh ∈ Hn and

c ∈ C(h) construct the set:

Pt
n(h, c) = {in ∈ In(h, c) : in(c′ | h′) = 1 andh < h′ imply st

n(c′ | h′) > η(c′)}.

Furthermore, letQt
n(h, c) = In(h, c) \ Pt

n(h, c).

We define a probability measure on the set of pure continuation strategies. Let

Pr{in | h, sn} be the probability that the strategysn assigns to the set of pure strate-

gies that coincide within at every information set that followsh (includingh itself).

Formally, let Cn(h, in) = {c ∈ C : in(c | h′) = 1 andh ≤ h′} then Pr{in | h, sn} =
∏

c∈Cn(h,in) sn(c | h). In particular, note that
∑

in∈In(h,c) Pr{in | h, sn|hc} = 1 for all sn.

Therefore, if the choiced ∈ C(h) is such thatst
n(d | h) > ηt(d) we can write:

vhn(st
−n, s

t
n|hd,ut) =

∑

in∈Pt
n(h,d)

Pr{in | h, s
t
n|hd}vhn(st

−n, jn,u
t)+

∑

jn∈Qt
n(h,d)

Pr{ jn | h, s
t
n|hd}vhn(st

−n, jn,u
t).

Sincest is an equilibrium ofΓ(ut, ηt) the value of the functionvhn(st
−n, in,u

t) is the

same for everyin ∈ Pt
n(h, c). Take an arbitraryidn ∈ Pt

n(h,d) and rewrite the previous

expression

(A.1) vhn(st
−n, s

t
n|hd,ut) = vhn(st

−n, i
d
n,u

t) − ltn(h,d),

where the last terms equals

ltn(h,d) =
∑

in∈Qt
n(h,d)

Pr{in | h, s
t
n|hd}

(

vhn(st
−n, i

d
n,u

t) − vhn(st
−n, in,u

t)
)

.

Consider now a pure strategyjn ∈ I (h) that maximizesvhn(st
−n, in,u

t) over I (h).

Let st, jn
n ∈ Sn(ηt) be the perturbed strategy that is located in the vertex ofSn(ηt)

which is closest tojn. Then,Pr{in | h, s
t, jn
n } is smaller thanεt

= maxc {η
t(c)} for

every pure strategy inIn(h) that is notjn.

We can write

(A.2) vhn(st
−n, s

t, jn
n ,ut) = vhn(st

−n, jn,u
t) − Lt

n(h),

where the last terms equals

Lt
n(h) =

∑

in∈In(h)\{ jn}

Pr{in | h, s
t, jn
n }
(

vhn(st
−n, jn,u

t) − vhn(st
−n, in,u

t)
)

.

We have the following inequalities:

vhn(st
−n, s

t
n|hd,ut) ≥ vhn(st

−n, s
t
n,u

t) ≥ vhn(st
−n, s

t, jn
n ,ut),
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where the first inequality follows because in the the perturbed gameΓ(ut, ηt) choice

d is optimal forn’s agent at the information seth and the second inequality follows

becausest is an equilibrium of such a perturbed game.

Combining the last sequence of inequalities with (A.1) and (A.2) we obtain:

vhn(st
−n, i

d
n,u

t) +
(

Lt
n(h) − ltn(h,d)

)

≥ vhn(st
−n, jn,u

t).

To sum up, a strategy of playern that prescribes actiond at the information set

h is optimal in the perturbed gameΓ(ut, ηt). However, the strategyjn maximizes

playern’s utility at h when she does not consider her mistakes in the future. We are

going to use the last inequality to construct a payoff ũt such thatst is anεt-quasi-

perfect equilibrium ofΓ(ũt). We will later show that the new sequence{ũt}∞t=1

converges tou.

Start with an information seth ∈ Hn with no preceding information set inHn.

The setZ(h, idn) ⊂ Z(h) is the set of final nodes that come afterh and after all the

choices prescribed byidn. Add Lt
n(h) − ltn(h,d) to the utility that playern obtains

from eachz ∈ Z(h, idn).

Consider now an information seth′ ∈ Hn that followsh immediately. Letd′,

id
′

n , j′n, Lt
n(h′), andltn(h′,d′) be constructed as before and addLt

n(h′) − ltn(h′,d′) to

the utility that playern obtains from eachz ∈ Z(h′, id
′

n ). To guarantee that player

n’s optimality conditions are not affected ath, also add this perturbation to player

n’s utilities to all final nodesz ∈ Z(h, in). Continue with this procedure with each

subsequent information set and for each player. Since the game is finite, the proce-

dure ends after a finite number of steps and we obtain a gameΓ(ũt) such thatst is

anεt-quasi-perfect equilibrium ofΓ(ũt) (with εt
= maxc∈C {η

t(c)}). We can check

that the sequence of numbers{Lt
n(h) − ltn(h,d)}∞t=1 converges to zero. This proves

the result. �

Proof of the “if” part of Proposition 2. Take a sequence{(ũt, εt, st)}∞t=1 converging

to (u,0, s) where, for eacht, the strategyst is anεt-quasi-perfect equilibrium of

Γ(ũt). We have to show that for eacht we can find a new payoff vectorut and a

perturbationηt such thatst is an equilibrium of the perturbed gameΓ(ut, ηt) and

that, furthermore,{ut}∞t=1 converges tou.

By lettingηt(c) = min{st(c | h), εt} we construct the vector of perturbations. The

construction of the payoff vector for eacht follows analogous lines to the proof of

theonly if part of Proposition 2 and, hence, it is omitted. �

References

L. Blume and W. Zame. The algebraic geometry of perfect and sequential equilibrium.

Econometrica, 62(4):783–794, 1994.

J. Bochnak, M. Coste, and M. Roy.Real algebraic geometry. Springer Verlag, 1998.

S. Govindan and R. Wilson. Sufficient conditions for stable equilibria.Theoretical Eco-

nomics, 1(2):167–206, 2006.



10

S. Govindan and R. Wilson. Axiomatic equilibrium selectionfor generic two-player

games. Research Paper No. 2021, Stanford Graduate School ofBusiness, 2009.

J. Hillas, T. Kao, and A. Schiff. A semi-algebraic proof of the generic equivalence of

quasi-perfect and sequential equilibria. University of Auckland, mimeo, 2002.

D. Kreps and R. Wilson. Sequential equilibria.Econometrica, 50:863–894, 1982.

H. Kuhn. Extensive games and the problem of information. In H. Kuhn and A. Tucker,

editors,Contributions to the Theory of Games, volume 2, pages 193–216. Princeton

University Press, Princeton, 1953.

J.-F. Mertens. Two examples of strategic equilibrium.Games Econ. Behav., 8(2):378–388,

1995.

A. Seidenberg. A new decision method for elementary algebra. Annals of Mathematics,

60(2):365–374, 1954.

R. Selten. Re-examination of the perfectness concept for equilibrium points in extensive

games.Int. J. Game Theory, 4:24–55, 1975.

A. Tarski. A decision method for elementary algebra and geometry. Berkeley: University

of California Press, 2nd edition, 1951.

E. van Damme. A relation between perfect equilibria in extensive form games and proper

equilibria in normal form games.Int. J. Game Theory, 13(1):1–13, 1984.


	1. Introduction
	2. Preliminaries
	3. Sequential and quasi-perfect equilibrium
	4. The result
	Appendix A. Proof of Proposition 2
	References

