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STABILITY IN A THREE-SECTOR DYNAMIC GROWTH MODEL

WITH ENDOGENOUS LABOR SUPPLY

LORETTI DOBRESCU,∗ MIHAELA NEAMTU,† DUMITRU OPRIS‡

Abstract

Abstract. This paper explores the stability of the stationary state for a dynamic

growth model with wealth and human capital accumulation. Knowledge is created

through research and learning-by-doing, while the time allocation between labor and

leisure is endogenized. We analyze the model in both its deterministic and stochastic

versions. First, we describe the deterministic model and analyze the stationary state.

Second, using the stationary state, we define the stochastic perturbation and study the

mean and squared mean values of the system states for the linearized model. Third,

we prove that for certain parameters, the stationary state is asymptotically stable both

in the deterministic and the stochastic model. Finally, we perform the comparative

dynamic analysis for the propensities to save and to enjoy leisure, the tax rates used

to finance research, and the knowledge utilization effi ciency.
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1 Introduction

The economic literature has long noted the importance of time allocation between labor and

leisure (Ladrón-de-Guevara et al., 1997). Unfortunately, even a simple model of growth with

labor dynamics tends to lead to analytically intractable dynamic systems (Barro and Sala-

I-Martin, 1995; Gong et al., 2004; Blankenau and Simpson, 2004). These technical issues

have long prevented the economic literature from exploring more complex models featuring
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endogenous labour. For example, Zhang (2009) proposed a rich three-sector growth model

with endogenous labor and knowledge. However, due to the model’s complexity, the dynamic

properties of the system were examined only numerically. For certain initial values of the

stock of capital and knowledge, the author also found the stationary state (equilibrium) to

be unique and stable. In this paper, we look at a similar class of growth models with multiple

sectors and endogenous labour. Our aim is to provide a more rigorous characterization of

the dynamic properties of such models. Once established, the same methodology could be

easily implemented in finance, demography and social sciences in general, allowing literature

advances in these fields.

Up to our best knowledge, this is the first analysis that employs complex mathematical

methods to study the stability of multi-sector dynamic economic systems to its full extent.

The contribution of this paper is threefold. First, in an endogenous capital and knowledge

dynamic growth model à la Zhang, we prove that the stationary state is always stable. In

other words, the equilibrium is unique and stable for any initial values of the capital and

knowledge stock. Second, we extend the analysis of labor supply dynamics in the economic

growth theory with endogenous knowledge (Jones et al., 1993, Novales and Ruiz, 2002,

Zhang, 2005), by developing the stochastic version of this model. The stochastic model uses

the stationary state of the deterministic system and, based on this deterministic system,

it considers a stochastic perturbation. We also provide a complete analysis of the dynamic

properties of the stochastic model using the method in Lei and Mackey (2007), i.e., the mean

and quadratic mean values of the state variables for the stochastic model liniarization. As

for the deterministic model, we show the equilibrium to be stable, regardless of the initial

levels of capital of knowledge. Third, we perform a comparative dynamic analysis for certain

parameters of the stochastic model and derive the economic implications for the stock of

capital and knowledge, as well as for labor and savings.

The paper is organized as follows. The remaining of Section 1 presents the relation to

the economic growth literature. Section 2 describes the three-sector growth model with

endogenous labor supply, savings and consumption, and examines the dynamic properties of

the deterministic model. Section 3 defines the stochastic perturbation of the deterministic
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model and analyzes the squared mean values of the state variables. In section 4 we show

the numerical simulations and prove that the stationary states of the deterministic and

stochastic models are asymptotically stable. We also present results on the comparative

dynamic analysis for the propensities to use leisure time and save, the tax rates that finances

the research, as well as for the knowledge utilization effi ciency rates. Section 5 concludes.

1.1 Relation to Literature

Our paper contributes to the broader literature on growth with endogenous capital and

knowledge. The model builds on the main features of the Solow (1957), Arrow (1962),

Uzawa (1965), and Uzawa-Lucas (1988) models. In 1957, Solow developed the neoclassical

model of growth based on the assumption of diminishing returns of factors of production.

Due to this assumption, the model predicted that per capita income would stabilize at the

steady state, and sustainable economic growth would be impossible. This was implausible

and further research that considered both physical and human capital emerged. First, Arrow

(1962) introduced knowledge accumulation through learning-by-doing. His model assumed

that an increase in capital can boost the stock of knowledge (public good in the economy)

and enable a firm to produce more effi ciently. The same positive effects for the production

sector productivity were predicted by the Uzawa (1965) model, which formally introduced

the knowledge sector that uses labor and the existing stock of knowledge to produce new

knowledge.

Based on these models, Romer (1986) and Lucas (1988) laid the foundations of the en-

dogenous growth theory. Romer (1986) used Arrow (1962) to develop a model with learning-

by-doing and knowledge spillover. Lucas (1988) built on Romer (1986) and Uzawa (1965)

and developed a two-sectors model with human capital defined to include both workers’skills

and abstract knowledge. There is a final good sector, where the combination of physical and

human capital results in a final good, which can be consumed or invested (changed into

capital). Also, there is a sector of production and accumulation of capital, with produc-

tion of physical and human capital occurring differently. Importantly, this model assumed

non-diminishing returns in the production of human capital, because growth was driven by
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this sector. This unrealistic assumption led to include technological progress (Romer, 1987,

1990; Grossman and Helpman, 1991; Aghion and Howitt, 1992, 1998).

Technological progress occurs through knowledge created as a result of R&D activity, and

governments can significantly affect economic growth by advancing the knowledge through

taxation, providing infrastructures, etc. Technology could make a combination of production

factors more effective, and therefore the same amount of labor and capital could increase

output. Alternatively, the same amount of output could be obtained with less labor or

physical capital. Indeed, recent work on the decline of hours worked point to one underlying

driving force, namely technological progress. Greenwood and Vandenbroucke (2005), and

Aguiar and Hurst (2007) confirm that better technology is reflected in higher wage rate and

more abundant goods consumption. This enhances the marginal value of leisure and induces

more consumption of leisure, in spite of its higher price.

2 The deterministic three-sector model

To fix notation, we first present the three-sector growth model with endogenous time alloca-

tion between labor and leisure à la Zhang. Second, we define the stationary state and obtain

the characteristic equation needed to perform the stability analysis.

The economic system consists of three sectors: capital goods, consumption goods and

research goods. Like in the Uzawa-Lucas two-sector growth model, we assume that con-

sumption and capital goods are different commodities, produced in two different production

sectors. There is only one capital good, which depreciates at a constant exponential rate δ1,

independent of the manner of use. Labor is considered constant and homogeneous. Capital

and labor are smoothly substitutable for each other in each sector and are freely transferable

from one sector to another.

The output in the two production sectors is obtained using knowledge, a single type of

capital good and a single grade of labor. Knowledge growth occurs through learning-by-

doing (in the production sectors) and through R&D activities (by the university). For the

production of research goods, the university is financially supported through public funds

raised by the government, by taxing the two production sectors.
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The population consists of workers (agents working in the capital and consumption goods

sectors) and scientists (agents working in the university). We denote by j ∈ {1, 2, 3} the

capital, consumption and research goods sectors respectively.

The output level of the productive sectors each point of time t is given by the following

production function:

Fj(t) = AjZ(t)mj(t)Kj(t)
αjNj(t)

βj , for j = {1, 2} and αj, βj > 0, αj + βj = 1,

where Aj > 0 is the labor augmenting technical progress, Z(t) > 0 captures the total

knowledge stock at time t and mj represents a measure of sector j’s knowledge utilization

effi ciency.

The capital stock in the economy at time t is denoted byK(t). The termsKj(t) andNj(t)

are the capital stock and total labor time in sector j, j ∈ {1, 2, 3}. Markets are competitive

(i.e., firms earn zero profits), and capital and labor earn their marginal products (interest

rate r(t), and wage rate w(t), respectively). For an individual firm, r(t) and w(t) are given

at each point of time.

The production sector j chooses Kj(t) and Nj(t) to maximize the profit. Optimality in

the productive sectors requires that

r(t) + δ1 = τ 11A1(t)α1Z(t)m1k1(t)−β1 = τ 22A2(t)α2p(t)Z(t)m2k2(t)−β2

and

w(t) = τ 11A1(t)β1Z(t)m1k1(t)α1 = τ 22A2(t)β2p(t)Z(t)m2k2(t)α2 ,

where

k1(t) =
K1(t)

N1(t)
, k2(t) =

K2(t)

N2(t)
, τ 11 = 1− τ 1, τ 22 = 1− τ 2

and τ j is the tax rate on the productive sector j, j ∈ {1, 2}.

Using
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fj(t) = Fj(t)/Nj(t) = AjZ(t)mjkj(t)
αj , for j ∈ {1, 2} ,

the above expressions become

r(t) + δ1 = τ 11α1f1(t)/k1(t) = τ 22α2p(t)f2(t)/k2(t),

w(t) = τ 11β1f1(t) = τ 22β2p(t)f2(t). (1)

On the other hand, households choose consumption and leisure time, as well as the

amount of savings. There are several ways to finance consumption. First, households can

use their per capita current income y(t), from the interest payments r(t)k(t) and the wage

payments w(t)T (t), as follows

y(t) = r(t)k(t) + w(t)T (t),

where k(t) represents the wealth owned per capita and T (t) is the total work time. Second,

households can decumulate their wealth, up to the maximum level of wealth owned k(t).

Note that this implies a no-borrowing constraint, i.e., agents cannot borrow to finance their

current consumption. Therefore, per capita disposable income of the household is defined as

the sum of the current income and the wealth available for financing consumption c(t) and

savings s(t),

y1(t) = y(t) + k(t) = (1 + r(t))k(t) + w(t)T (t). (2)

Therefore, the budget constraint is given by

y1(t) = p(t)c(t) + s(t), (3)

where p(t) represents the price of consumption goods.

The time constraint is expressed by
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T (t) + T3(t) = T0,

where T3(t) represents the leisure time and T0 is the total available time (for work and

leisure). Substituting this function into equations (2) and (3), we get

w(t)T3(t) + p(t)c(t) + s(t) = y2(t) = (1 + r(t))k(t) + w(t)T0. (4)

We assume that utility U(t) depends on consumption c(t), leisure time T3(t) and savings

s(t), as follows:

U(t) = c(t)ζ0T3(t)σ0s(t)λ0 , with ζ0, σ0, λ0 > 0. (5)

where ζ0, σ0 and λ0 represent the propensities to consume, enjoy leisure and own wealth

respectively. For consumers, the wage rate w(t) and the rate of interest r(t) are given, while

wealth k(t) is given at the beginning of the period, before the decision occurs.

Maximizing U(t) in (5) subject to the budget constraint yields

p(t)c(t) = ζy2(t),

w(t)T3(t) =σy2(t), (6)

s(t) =λy2(t),

where

ζ = ρζ0, σ = ρσ0, λ = ρλ0, ρ = 1/(σ0 + ζ0 + λ0).

To obtain the capital accumulation equation, note that each period, the change in the

household’s wealth is given by

dk(t)/dt = s(t)− k(t). (7)

Denoting by N0 the total household population, the output of the consumption goods sector

is consumed according to
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c(t)N0 = F2(t), (8)

while the output of the capital goods sector is equal to the sum of net savings and capital

stock depreciation,

[S(t)−K(t)] + δ1K(t) = F1(t), (9)

where S(t) = s(t)N0.

Following Arrow’s learning-by-doing model and Uzawa-Lucas’s education model, we as-

sume the knowledge is produced in the productive sectors, as well as in the university sector.

Total knowledge therefore evolves according to:

dZ(t)/dt = τ 01F1(t)/ (Z(t)ε1) + τ 02F2(t)/ (Z(t)ε2) + τ 03Z(t)ε3K3(t)α3N3(t)β3 − δ3Z(t), (10)

in which δ3 is the depreciation rate of knowledge, and τ 0j, εj, α3 and β3 are non-negative

(j ∈ {1, 2, 3}). The parameter ε3 can be either positive (an increasing knowledge stock may

imply the university using more effectively the existing research to create new knowledge) or

negative (an increasing knowledge stock may make discovery of new knowledge diffi cult). The

first two terms in equation (10) represent the contribution to knowledge through learning-by-

doing in the capital and consumption sectors, respectively. The last two terms capture the

contribution to knowledge creation through research, net of the knowledge stock depreciation.

Finally, the research carried by the university is funded by the government through

taxation. The tax is levied on the value of the two productive sectors output,

Y3(t) = τ 1F1(t) + τ 2p(t)F2(t),

and used by the university to pay the interest (r(t) + δ1)K3(t) for the capital employed and

the wage w(t)N3(t) for scientists,

(r(t) + δ1)K3(t) + w(t)N3(t) = Y3(t). (11)
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Conditional on obtaining the research funds Y3(t) the university chooses the amount of

equipment K3(t) and the number of scientists N3(t) that maximize the output (i.e., the

contribution to knowledge growth):

Max τ 03Z(t)ε3K3(t)α3N3(t)β3 ,

s.t. Y3(t) = (r(t) + δ1)K3(t) + w(t)N3(t).

Optimality in the research sector requires that

K3(t) =α4Y3(t)/(r(t) + δ1),

N3(t) = β4Y3(t)/w(t),

where

α4 = α3/(α3 + β3), β4 = β3/(α3 + β3).

As expected, note that the amount of capital and labor university employs into research

increases with tax income, and therefore with the output of the two productive sectors, and

decreases with the price of the two production factors.

As full employment of capital and labor is assumed, we have

K1(t) +K2(t) +K3(t) =K(t) = k(t)N0,

N1(t) +N2(t) +N3(t) =T (t)N0.

The dynamics of the economy is characterized by the following differential equations

system in k1(t) and Z(t):

dk1(t)/dt=G1(k1(t), Z(t)),

dZ(t)/dt=G2(k1(t), Z(t)), (12)

where G1(k1(t), Z(t)) and G2(k1(t), Z(t)) are unique functions of k1(t) and Z(t) at any
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point of time, given by

G1(k1(t), Z(t)) = k1(t)

(
d1

k1(t)
+

αd2

f1(t)

)−1

 d11f1(t)
k1(t)N0Λ(t)

−
d11σ1f1(t)
N0k1(t)

+σδ−λτ11β1T0f1(t)
Λ(t)(

σ−λτ11β1N0
d12

)
Λ(t)

−

− δ1

Λ(t)
−m1d2

G2(k1(t),Z(t))
f1(t)Z(t)

 , (13)

G2(k1(t), Z(t)) = τ 01f1(t)N1(t)/Z(t)ε1 + τ 02f2(t)N2(t)/Z(t)ε2 − δ3Z(t) +

+τ 03α
α3
6 β

α3
6 k1(t)α3(N1(t) + τp0N2(t))(α3+β3)Z(t)ε3 , (14)

where

α5 =
α2β1

α1β2

, α6 =
α4τ 1

τ 11α1

,

τ 3 =
τ 11A1

τ 22A2

(
α1

α2

)α2
(
β1

β2

)β2

, τ 4 = τ 2/τ 1,

β5 =
τ 1β4

τ 11β1

, p0 =
τ 11β1

τ 22β2

,

D1 =
N0

(1 + α6)(1 + β5τ 4p0)− (1 + β5)(α5 + α6τ 4p0)
,

d11 = (1 + β5τ 4p0)D1, d12 = (α5 + α6τ 4p0)D1,

d21 = (1 + β5)D1, d22 = (1 + α6)D1,

d3 =

(
d22p0λ/ζ + d12

d12σ/N0 − λτ 11β1

)
, d1 =

d11d3σ/N0 − d11 − d21p0λ/ζ

d3λτ 11β1T0

,

d2 =
d3σδ − δN0

d3λτ 11β1T0

,

f1(t) = A1Z(t)m1k1(t)α1 , f2(t) = A2Z(t)m2k1(t)α2 ,

Λ(k1(t), Z(t)) = Λ(t) =
1

d1/k1(t) + d2/f1(t)
,

T (t) =

σd11Λ(k1(t),Z(t))
N0k1(t)

+ σδΛ(k1(t),Z(t))
f1(t)

− λτ 11β1T0

d12σ/N0 − λτ 11β1

,

N1(t) = d11Λ(k1(t), Z(t))/k1(t)− d12T (t),

N2(t) = −d21Λ(k1(t), Z(t))/k1(t) + d22T. (15)
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Let (k10, Z0) be a stationary state of the system (12), solution for the system

G1(k1, Z) = 0

G2(k1, Z) = 0
. (16)

The linearization of system (12) in (k10, Z0) is:

du1(t)/dt= a11u1(t) + a12u2(t),

du2(t)/dt= a21u1(t) + a22u2(t), (17)

where

a11 = ∂G1(k1,Z)
∂k1

|(k10, Z0), a12 = ∂G1(k1,Z)
∂Z

|(k10, Z0),

a21 = ∂G2(k1,Z)
∂k1

|(k10, Z0), a22 = ∂G2(k1,Z)
∂Z

|(k10, Z0).

The characteristic equation of system (16) is

x2 − (a11 + a22)x+ a11a22 − a12a22 = 0. (18)

If the roots of the above equation have a negative real part, then the stationary state is

asymptotically stable. We perform the stability analysis in Section 4.

3 The stochastic three-sector model

Interestingly, a stochastic model can have a stable stationary state even if the corresponding

deterministic model does not. In this section we, develop the stochastic version of the model

presented previously and obtain the characteristic equation of the new system. As before,

the stationary state is asymptotically stable if the roots of this equation have a negative real

part.

Let (Ω, F (t), P ) be a given probability space, and B(t) ∈ R be a scale Wiener process de-

fined onΩ, having independent stationary Gauss increments withB(0) = 0 andE(B(t)B(s)) =
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min(t, s), where E denotes the mathematical expectation. The sample trajectories of B(t)

are continuous, nowhere differentiable and have infinite variation on any finite time interval

(Kloeden and Platen, 1995). We are interested in the effect of the noise perturbation of the

deterministic system (12).

The noise perturbation on the system (12) is captured by the following system of sto-

chastic differential equations:

dk1(t) =G1(k1(t), Z(t))dt+ σ1(k1(t)− k10)dB(t),

dZ(t) =G2(k1(t), Z(t))dt+ σ2(Z(t)− Z0)dB(t), (19)

where k1(t) = k1(t, ω), Z(t) = Z(t, ω), ω ∈ Ω, σ1, σ2 > 0 and (k10, Z0) is a stationary state

of the system (12).

Following Lei and Mackey (2007) and Mircea et al. (2011), we analyze the second mo-

ments of the solutions for system (19). Linearizing these expressions around the stationary

state (k10, Z0), we obtain that:

du1(t) = (a11u1(t) + a12u2(t))dt+ σ1u1(t)dB(t),

du2(t) = (a21u1(t) + a22u2(t))dt+ σ2u2(t)dB(t). (20)

To examine the stability of the second moment of u1(t) and u2(t) for the linear stochastic

differential equations in (20) we use Ito’s rule. Let

R11(t, s) =E(u1(t)u1(s)),

R12(t, s) =E(u1(t)u2(s)),

R21(t, s) =E(u2(t)u1(s)),

R22(t, s) =E(u2(t)u2(s)).
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From the system (20) it follows that :

dR11(t, t)/dt= (2a11 + σ2
1)R11(t, t) + 2a12R12(t, t),

dR12(t, t)/dt= (a11 + a22 + 2σ2)R12(t, t) + a12R22(t, t) + a21R11(t, t),

dR22(t, t)/dt= (2a22 + σ2
2)R22(t, t) + 2a21R12(t, t). (21)

The characteristic equation of the system (21) is

(2x−2a11−σ2
1)(2x−2a22−σ2

2)(2x−a11−a22−σ1σ2)−2a12a21(4x−2a11−2a22−σ2
1−σ2

2) = 0.

(22)

If σ1 = σ2 = σ, equation (22) becomes

(2x− a11 − a2 − σ2)(4x2 − 4x(a11 + a22 + σ2) + (2a11 + σ2)(2a22 + σ2)− 4a12a21) = 0.

If the roots of the above equation have a negative real part, then the stationary state is

asymptotically stable in quadratic mean. We perform the roots analysis in the next section.

4 Calibration

Due to its complexity, the dynamics of system (16) is diffi cult to study theoretically. Using

Maple 12, we perform numerical simulations using the parameter values presented in Table

1 and find that the equilibrium value is given by (k10, Z0) = (3.388, 1.016).

Table 1. Parameter Values

N0 = 20, T0 = 1, A1 = 0.8, A2 = 0.7,

m1 = 0.3, m2 = 0.25, α1 = 0.3, α2 = 0.32,

α3 = 0.3, β3 = 0.4, τ 1 = 0.04, τ 2 = 0.04,

τ 01 = 0.01, τ 02 = 0.01, τ 03 = 0.05, δ1 = 0.08,

δ2 = 0.04, ε1 = 0.2, ε2 = 0.2, ε3 = 0.3,

ζ0 = 0.08, σ0 = 0.2, λ0 = 0.35.
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5 Numerical simulations

In this section we show the numerical simulations, for both the deterministic and stochastic

models, that prove the stability of the stationary states. Also, we perform the dynamic

analysis for the propensity to save and enjoy leisure, taxation and knowledge effi ciency

utilization.

5.1 Stability analysis

For the deterministic case, Figure 1 plots G1(k1, Z) = 0 and G2(k1, Z) = 0. Equation (18)

has the roots x1 = −0.6835483991e−1 and x2 = −.2867712542, and therefore the stationary

states are asymptotically stable. Our solution confirms Zhang’s (2009) findings that the

stationary state of the dynamic system in (16) is unique and stable, but in our model this

hold true independently of any initial conditions regarding the values of k1 and Z. Moreover,

Figure 2 - 4 below presents the trajectories (t, k1(t)), (t, k2(t)) and (t, Z(t)). As it can be

seen, the economy is converging to the equilibrium values.

Fig 1. The trajectories G1(k1, Z) = 0 and G2(k1, Z) = 0
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Fig 2. The trajectory (t, k1) Fig 3. The trajectory (t, k2) Fig 4. The trajectory (t, Z)

For the stochastic case, the characteristic equation (22) with σ1 = σ2 = 0.3 has the

roots x1 = −0.2417712541, x2 = −0.1325630470 and x3 = −0.2335483990. The squared

mean values of the state variables k1(t, ω) and Z(t, ω) are therefore asymptotically stable.

The trajectories (t, k1(t, ω)), (t, k2(t, ω)), (t, Z(t, ω)) are obtained using the Euler stochastic

method and are shown in Figure 5 - 7.

Fig 5. The trajectory (t, k1) Fig 6. The trajectory (t, k2) Fig 7. The trajectory (t, Z)

5.2 Counterfactual Experiments

Using counterfactual simulations, we now analyze how changes in different parameter values

may affect the economic system.

Consider first the case in which we increase the propensity to use leisure time σ0, by 5

percentage points (from 0.2 to 0.21). All the parameters, except σ0 remain the same as in

Table 1 above. We use the relative estimation error method employed in statistics to calculate
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the relative rate of change in k1(t, ω), k2(t, ω) and Z(t, ω) due to changes in parameter values.

We denote the rates of change by ∆k1(t, ω), ∆k2(t, ω) and ∆Z(t, ω) respectively,

∆x(n, ω) =
(x(t, ω, σ01)− x(t, ω, σ00))

x(t, ω, σ00)
∗ 100, where x = {k1, k2, Z} .

and show their simulated paths in Figure 8 - 10 below. As expected, we see that an increase

in the propensity to use leisure time will harm the economic performance. With less labor

in the economy, output decreases, making capital, labor time and, consequently, knowledge

diminish. For all three sectors, this entails a one-off negative effect on prices, namely a drop

in interest rates, wage and consumption price, but no significant long term effects.

Fig 8. The trajectory (t,∆k1) Fig 9. The trajectory (t,∆k2) Fig 10. The trajectory (t,∆Z)

Second, we examined the effects of a change in the propensity to save λ0 on the economic

system. We allow the propensity to save to increase from 0.35 to 0.37 and plot the results

in Figure 11 - 13. Unsurprisingly, increasing the saving propensity has positive effects on

both capital and consumption sectors, as the prices for consumption goods increase and

interest rate decreases. Overall, more savings will boost wealth, labor and eventually output.

Since savings are not directly taxed, the effect of an increase in the propensity to save on

knowledge will pass through the capital and consumption sectors. With higher capital in both

productive sectors, the stock of knowledge will initially benefit, but as economy stabilizes,

it will become smaller with respect to the benchmark model (i.e., the model with parameter

values presented in Table 1).
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Fig 11. The trajectory (t,∆k1) Fig 12. The trajectory (t,∆k2) Fig 13. The trajectory (t,∆Z)

Third, consider what will happen to the economy if the government encourages research

by increasing the tax rate on the two production sectors τ 1 = τ 2 from 4 to 5 percentage

points. The effects are plotted in Figure 14 - 16 below. Levying a higher tax to finance

research has a strongly positive effect on both productive sectors as interest, consumption

prices and wages increase in the long term. Capital stock is significantly higher in the first

periods, after which the series start to mildly converge to the benchmark model. Interestingly,

the input factors for the knowledge productions are also increased, but, as in the previous

case, this does not lead to a monotonic increase in knowledge with respect to the benchmark

model. Our results confirm de Hek’s (2006) finding that taxing the capital sector induces the

economy to shift resources towards human capital production and leisure. With respect to

the time allocated to leisure, this substitution effect is balanced by the corresponding income

effect. With no income tax, taxing only physical capital makes human capital accumulation

even more attractive, and this allows the long-run growth rate to raise.

Fig 14. The trajectory (t,∆k1) Fig 15. The trajectory (t,∆k2) Fig 16. The trajectory (t,∆Z)
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Fourth, an effi cient knowledge utilization implies that the input knowledge domain matches

perfectly the output knowledge requirements, with no under-utilization of knowledge. More-

over, this input-output relationship involving the knowledge is dynamic: knowledge is con-

tinually being created, extended, perfected, and it also depreciates. We are interested in the

effects of an increase in the knowledge utilization effi ciency in the capital sector m1 from 0.3

to 0.35. Figure 17 - 19 show, as expected, a positive effect on the stock of capital and knowl-

edge. This leads to an increase in wages, which in turn has two effects. On the one hand,

agents will boost their work time, while on the other hand, this will harm the consumption

sector as the price of consumption goods rises also.

Fig 17. The trajectory (t,∆k1) Fig 18. The trajectory (t,∆k2) Fig 19. The trajectory (t,∆Z)

Finally, consider increasing the knowledge utilization effi ciency in the consumption sec-

tor m2 from 0.25 to 0.27. The results are illustrated in Figure 20 - 22. A more effective

utilization of the knowledge in the consumption sector leads to a capital stock increase in

both the capital and consumption sector. However, since the existing knowledge is used

more effi ciently, this entails that the rate of producing new knowledge can decrease without

negative effects on output. As a result, we see that after an initial period of net increase, the

stock of knowledge drops below what it would have been if the consumption sector would

not have become more effi cient in using the knowledge. Overall, we can observe a positive

effect on the economy in the long run, and a similar effect on knowledge as an increase in

propensity to save by roughly 6 percentage points.
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Fig 20. The trajectory (t,∆k1) Fig 21. The trajectory (t,∆k2) Fig 22. The trajectory (t,∆Z)

6 Concluding remarks

This paper proposes a dynamic model with wealth and human capital accumulation and

analyzes it in both the deterministic and stochastic versions. First, we described the de-

terministic model and analyzed the stationary state. Second, we defined the stochastic

perturbation, using the stationary state and we analyzed the mean and squared mean values

for the system states. For certain parameter values, we showed that the stationary state is

asymptotically stable in both the deterministic and stochastic model. Numerical simulations

were performed to determine the trajectories of certain variables that characterize the sys-

tem. We also conducted a comparative dynamic analysis for the propensities to save and to

use leisure time, the tax rates that finance research, as well as for the knowledge utilization

effi ciency parameters. As expected, we found that increasing the propensity to use leisure

time has negative economic consequences, both on the short and long term. On the other

hand, a higher propensity to save has a positive economic effect, as does an increase in the

research support through higher taxation. Finally, we find that a higher knowledge utiliza-

tion effi ciency seems to have a positive impact on the capital goods sector, but mixed effects

on the consumption and knowledge patterns.
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