
 

www.asb.unsw.edu.au 

 
Last updated: 12/03/12    CRICOS Code: 00098G 

 

 
 
 
 

 
Australian School of Business Research Paper No. 2012 ECON 16 
 
 
 
 
The use of alternative preference elicitation methods in complex discrete choice 
experiments 
 
 
Hong il Yoo 
Denise Doiron 
 
 
 
 
 
 
 
 
 
 
 
 
 
This paper can be downloaded without charge from 
The Social Science Research Network Electronic Paper Collection: 
http://ssrn.com/abstract=2020048 
 
 
 
 
 
 
 
 
 
 

Australian School of Business 

Working Paper 
 

http://ssrn.com/abstract=2020048�


The use of alternative preference elicitation methods in complex
discrete choice experiments

Hong il Yoo,
School of Economics, University of New South Wales, Australia.

Email: h.yoo@unsw.edu.au

Denise Doiron,
School of Economics, University of New South Wales, Australia.

Email: d.doiron@unsw.edu.au

Abstract

We analyse stated preference data over nursing jobs collected from two leading types
of best-worst discrete choice experiments (DCEs): a traditional DCE involving choice
over alternative jobs (BWL) and a newly-developed DCE where respondents choose best
and worst job attributes (BWT). The latter allows identification of additional utility
parameters and is believed to be cognitively easier. Results suggest that respondents
place greater value on pecuniary over non-pecuniary gains in traditional DCE. Rather
than caused by the use of heuristics in BWL, we find that respondents find it difficult
and/or are reluctant to directly compare money with other attributes in BWT.
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1 Introduction

In many contexts, revealed preferences data with information on choices made by con-
sumers under actual market settings may not be suitable, as the choice situation of
interest may contain a currently non-existent alternative or the amount of independent
variation in attributes tends to be limited. In response, many empirical researchers have
analysed stated preferences data obtained through discrete choice experiments (DCEs)
in which respondents are asked to state their choices under hypothetical settings.

In a traditional DCE, the decision maker is asked to rank-order, either partially
or fully, hypothetical alternatives described by attributes set at different levels. For
example, in our context the respondent ranks 3 jobs, each job described by a vector
of attributes. The various levels of these attributes (e.g. salary) differentiate the jobs
from one another. The respondent’s preferences over attributes are elicited indirectly
to the extent that variations in the attribute levels influence her rankings of available
alternatives. In the remainder of the paper, we use best-worst alternative (BWL) to
denote a DCE in which respondents are asked to state their most and least preferred
alternatives.

A small but growing number of recent studies have administered another type of
DCE (Flynn et al., 2007; Lusk and Briggerman, 2009; Lusk and Natalie, 2009; Potoglou
et al., 2011) in which the decision maker is presented with one hypothetical alternative
described by attributes set at specific levels, and asked to select the best and worst
attributes. To continue with our example, the respondent is presented with one job
described by a vector of attributes set at specific levels, and asked to choose her most
and least preferred attribute. In contrast to the traditional DCE, the preferences over
attributes are elicited directly, albeit partially. We refer to this experiment as best-worst
attribute-level (BWT) to emphasise the choice task completed by the respondent.1

The proponents of BWT (Flynn et al., 2007) argue that it allows the collection of
richer and more systematic information on the decision maker’s preferences over at-
tributes. The information is richer since choices directly reflect comparisons over at-
tribute levels; in other words, the identified parameters represent normalised utility
weights on attribute levels. In models describing a traditional DCE choice task, the
identified parameters can be only used to examine whether a change in the levels of one
attribute is preferred to that of another attribute. Furthermore, in BWT the respondents
face a less cognitively demanding choice task as they are presented with one instead of
several hypothetical alternatives at a time. The resulting information is possibly more
accurate as respondents may become less prone to making mistakes or using heuristics.
This can be especially important in complex choice tasks such as ranking jobs based on a
large set of characteristics. It is worth noting though that BWT has its own drawbacks.
In particular, some comparisons may become harder to make when the context provided
by a well-defined set of alternatives is removed. At the least, models based on these
data should recognise that when left unspecified, the alternatives used by respondents
in making their choices are likely to vary based on unobservables and hence preference
heterogeneity can be magnified.

The debate over which type of DCE may be the better preference elicitation method
has been mainly one-sided as a vast majority of studies, particularly in economics, are
based on data obtained by traditional DCEs. There is rarely any discussion of potential
gains and dangers from using alternative methods such as BWT.

The slow uptake of BWT in the literature may be partly explained by the paucity of

1This type of experiment is also known as best-worst scaling in the literature.
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studies which compare preferences estimated from the two approaches. In contrast, there
have been several studies comparing estimates of willingness-to-pay obtained by direct
survey and traditional DCEs. The findings generally show that preference estimates
differ significantly across methods possibly because respondents adopt different answering
strategies (Lloyd, 2003). Likewise, preferences elicited by the BWL and BWT methods
may be structurally different, as these methods vary in terms of choice tasks as well as
the amount of information that needs to be processed to complete those tasks. To aid
an informed choice between the two methods, it is important to accumulate evidence on
the comparability of the estimated preferences and examine whether any discrepancies
emerge in different contexts.

The primary objective of this paper is to compare preferences estimated from BWL
and BWT data on the same group of respondents. In the process, we formulate a gener-
alised rank-ordered logit (ROL) specification for panel data, which incorporates hetero-
geneity in utility parameters as in mixed logit (McFadden and Train, 2000; Train, 2008)
and allows for more general forms of heterogeneity in ranking capabilities than recent
extensions of ROL (e.g. Fok et al., 2011). We also discuss how various discrete choice
models for traditional DCE data can be applied to BWT data. This is an important
extension to the current literature as these data have been almost exclusively analysed
via the max-diff model. (We describe the max-diff model in detail below.)

The analysis is based on a unique dataset involving nursing students and new gradu-
ates of nursing programs collected from two universities in New South Wales (see Doiron
et al., 2011). In the experiment, each respondent completes 8 different BWT tasks and 8
different BWL tasks. An alternative corresponds to a hypothetical nursing job described
by specific levels of salary and eleven other job characteristics. Since jobs are inher-
ently complex, many attributes are needed to describe their key aspects and the use of a
method that is cognitively easier for respondents may have pronounced effects on their
responding strategies. Hence, this survey is well-suited to the objectives of the paper.

To the best of our knowledge, Potoglou et al. (2011) is the only other study to
compare these two approaches empirically. The results in that paper favour the use of
BWT. An alternative in the Potoglou et al. study is a hypothetical living situation,
described by social care related qualities of life. The authors report that once the utility
parameters estimated from the BWT data are transformed to make them comparable to
those estimated from the traditional DCE data, most of the BWT estimates are larger
in magnitude by roughly the same proportion. In other words, preferences elicited by
BWT seem to be a less noisy version of those elicited by traditional DCEs. This result
combined with the added information provided by BWT supports the use of the richer
and less cognitively demanding method.

In this paper, we find that preferences elicited by BWT and BWL methods exhibit
an important systematic difference that cannot be ascribed to a reduced unexplained
variance in the BWT data alone. Specifically, as we move from the BWL estimates
to the BWT estimates, most of the utility coefficients associated with non-monetary
attributes are scaled up by a similar proportion. This is consistent with the results in
Potoglou et al. (2011). However, the estimates associated with salary are scaled up by
a much smaller proportion. In other words, respondents tend to place a higher value on
an increase in salary relative to an improvement in another job aspect when completing
the BWL task than the BWT task. We note that all attributes in Potoglou et al. are
non-pecuniary; hence, this comparison could not be made.

The different treatment of monetary characteristics has important implications for
empirical studies based on discrete choice methods. Researchers routinely derive a dollar
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measure of the welfare change from a policy intervention or other change affecting a non-
pecuniary attribute by using the ratio of the coefficient associated with that attribute
and the estimate attached to a monetary attribute. The latter represents the marginal
utility of money. Our findings suggest that conclusions from such studies may be sensitive
to the choice between BWT and traditional DCE methods. If a pecuniary improvement
is relatively more valued with BWL as in our study, the implied dollar value of welfare
change becomes smaller in magnitude ceteris paribus.

We examine two alternative explanations for the systematic difference between the
two sets of preference estimates. First, as the recent literature on attribute non-attendance
suggests (Cameron and DeShazo 2008; Hensher and Greene, 2010; Hole, 2011), some re-
spondents may have heuristically ranked alternatives mainly in order of salary levels to
simplify the complex BWL choice task. The same heuristic decision rule cannot be ap-
plied to the BWT choice task since the respondent is forced to make comparisons across
different attributes. Second, some respondents may inflate the value of non-salary job
characteristics when completing the BWT task due to the incentive to hide true pref-
erences or the difficulty with directly comparing salary and non-salary characteristics.
For example, out of ethical considerations, respondents may be reluctant to state that
a specific salary level, say $1100 per week, is better than providing excellent quality of
care to patients. Additionally, it may be difficult to determine whether the salary level
is preferred to the quality of care in the absence of a well-defined alternative job.

We find empirical evidence that is more in line with the latter explanation. Given the
patterns of preference heterogeneity and the magnitude of the preference weights, it is
difficult to ascribe the differences in the two sets of preference parameters to the applica-
tion of simple heuristics. In the BWL data, a majority of respondents are found to prefer
the largest possible salary gain in our survey to an improvement in any other attribute.
However, they are willing to trade off this salary gain for a simultaneous improvement in
two or more attributes. Only a small fraction of respondents are estimated to rank-order
heuristically (as defined in Hensher and Greene, 2010), placing the largest salary gain
above a simultaneous improvement in all other characteristics. The population share of
these potential users of heuristics is too small to explain the overall preference for salary
in BWL.

Further support for the second explanation is provided by an analysis using the data
from a yes-or-no question at the end of each BWT task asking respondents whether they
are willing to accept the hypothetical job. Since the alternative job is not specified, each
respondent is presumed to compare the stated BWT alternative to her outside option.
This yes-or-no task is much less complex than the BWL task and hence there is less
incentive to use simple heuristic choice rules. Yet the utility coefficients estimated from
these data are more similar to the BWL estimates than the BWT estimates, suggesting
that the difficulty with directly comparing salary to other attributes under the BWT
design is a more important driver of the pattern of differences discussed above.

In brief, our results suggest that the verdict in favor of BWT in the existing literature
may be too rosy and that the impact of the two approaches on estimated preferences
is more complex. In our results, BWT generates a fairly neutral effect in terms of
relative weights for non-monetary attributes in that coefficients are increased roughly
proportionately presumably due to a reduction in the scale or variance of random utility.
But we also find that in BWT, the relative weights between the monetary and non-
monetary characteristics of a good are distorted. Although tentative, further analysis of
our data suggests that the differences in the estimates derived from the two approaches
may reflect a reluctance or difficulty in directly comparing monetary and other attributes
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in BWT rather than the adoption of a simple decision rule (such as selection based on
the monetary attribute only) in the traditional DCE. The disproportional reduction in
the utility weights on monetary attributes in BWT is especially important given the use
of these weights in the calculation of willingness-to-pay measures.

The remainder of this paper is structured as follows. Section 2 describes the discrete
choice survey designs and estimation sample. Section 3 describes the main models to be
estimated. Section 4 discusses the results and section 5 concludes.

2 Data

We analyse discrete choice experiments collected as part of an ongoing longitudinal study
of nursing job choices described more fully in Doiron et al. (2011). The data come from
an online survey completed between September 2009 and September 2010. Our sample
was recruited from the Bachelor of Nursing (BN) degree students enrolled during 2008-
2010 at two large Australian universities: one located in a major city, the University of
Technology Sydney, and the other located in a regional centre, the University of New
England. The sample consists of nursing students in each year of the 3-year program
and new graduates (within 12 months of completing their university degree). For more
details on the sample, see Doiron et al. (2011).

As well as answering standard survey questions on demographics and labour market
experiences, each of the 526 respondents participates in two different types of DCEs
involving hypothetical entry-level nursing jobs. Each job is described in terms of salary
and eleven non-salary attributes set at specific levels. The choice of attributes is based on
the nursing literature, in particular the studies on ‘magnet hospitals’ in the US (Naude
and McCabe, 2005; Seago et al., 2001). They reflect characteristics that have been shown
to matter in the quitting decision and job satisfaction of nurses. We use 4 different levels
of salary and 2 different levels of each non-salary attribute as listed in Appendix Table I.
The levels of the attributes, in particular salary, reflect those found in current entry-level
nursing jobs in Australia. The feedback from an earlier pilot study involving 60 students
indicates that the attributes and levels are appropriate in the context of the first job as
a registered nurse in Australia.

In the first choice experiment, the best-worst attribute level (BWT), respondents ex-
amine a scenario representing one hypothetical job and pick its best and worst aspects(see
Figure 1). The second choice experiment is a traditional DCE in which respondents ex-
amine a scenario of three hypothetical jobs, labelled Job A, B and C (see Figure 2).
Respondents state which they think is the best job and which they think is the worst
job; all jobs are effectively ranked from most to least preferred. We call this experiment
the best-worst alternative (BWL).

Every respondent must complete the BWT task for eight different scenarios before
completing the BWL task for another eight different scenarios. This sequence of pre-
sentations raises a concern that the comparability of preferences elicited from the two
experiments is affected by fatigue. An earlier analysis of the BWL data (Doiron et al,
2011) finds that the utility coefficients do not vary significantly across the eight scenarios
within the BWL experiment. Moreover, our findings on the differences in the estimates
across experiments do not support the wide-spread application of simple heuristics in
the BWL tasks as one would expect in the case of respondent fatigue. We provide more
details below.

We now discuss the optimality of designs underlying these two choice experiments.
The scenarios for each experiment are constructed from an initial set of 16 jobs which
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form a resolution 3 fractional factorial design. For the BWT experiment, this set becomes
the set of scenarios and our design performs as well as the complete factorial design in
terms of the D-criterion, when all coefficients in the standard max-diff model are equal;
see Street and Knox (2012) for detailed derivations. This set of 16 jobs is then divided
into two subsets or versions of 8 scenarios and each respondent is randomised to one of
the resulting 2 versions.

For the BWL experiment, the other two jobs in each scenario are determined by the
addition of two generators, chosen so that the resulting set of 16 scenarios of size 3 is
D-optimal when all coefficients in the standard multinomial logit model are zero. Two
sets of 16 scenarios are constructed using two different resolution 3 fractions so that a
larger proportion of the sample space is covered. These fractions differ from the fraction
used in the BWT experiment design to ensure that no respondent has already examined
one of the jobs in a BWL scenario. Each set is divided into two subsets or versions of 8
scenarios and each respondent is randomised to one of the resulting 4 versions.

3 Model specification and selection

We begin by describing the basic notation used in the formulation of the choice models. n
is used to denote the respondent, n = 1, . . . , N ; t indicates the scenario or choice occasion,
t = 1, . . . , T ; k indexes an attribute, k = 1, . . . ,K, and lk refers to its particular level,
lk = 1k, 2k, ..., Lk. In our context, N = 526, T = 8 and K = 12. Each alternative or job
j is described by the K attributes set at specific levels. xlknjt is a zero-one variable which
describes the level of an attribute in a specific scenario; it equals one when attribute k
describing alternative j shown to respondent n on choice occasion t is set at level lk.

We use the term “attribute-level” to describe the pair formed by an attribute and
one of its possible levels. For example, when the attribute of interest is the quality of
care which can be either poor or excellent, there are two possible attribute-levels: poor
quality of care and excellent quality of care.

We estimate discrete mixture or latent class models which allow random coefficients
to covary freely over a finite number of mass points. The choice of a discrete instead
of continuous mixing distribution is mainly driven by practical considerations. Since
each job in our survey is described by a large number of attributes, it is difficult to
estimate a continuous mixture model without heavily restricting the correlations among
utility coefficients on different attribute-levels (Chapter 6, Train, 2009). In addition, our
analysis focuses on comparisons of preferences elicited by two different methods and it is
somewhat easier to interpret the representation of preference heterogeneity in the latent
class framework.

3.1 Models for best-worst alternative (BWL) data

In the BWL component of our survey, respondents effectively rank-order all three jobs as
they select the best and the worst out of three. We thus obtain a data structure which
is usually analysed via the rank-ordered logit model (ROL) due to Beggs et al. (1981).
A key feature of rank-ordered data is that estimated utility coefficients tend to become
attenuated as the ROL likelihood is specified to include more complete rankings of alter-
natives. To address this issue, Hausman and Ruud (1987) introduce the heteroskedastic
ROL (HROL) that parameterises shifts in error variances across ranks, while Fok et
al. (2011) formulate a latent class ROL in which some respondents are assumed to assign
completely arbitrary rankings to less preferred alternatives. Both of these approaches
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conceptualise that some respondents may be more capable of ranking alternatives that
are strongly liked.

Our BWL data set also has a panel dimension as it contains eight observations for each
respondent. For repeated data on choices of best alternative, it is now common to specify
a random parameter or “mixed” logit model (McFadden and Train, 2000) to capture
correlations across observations within each respondent and preference heterogeneity
across respondents. The same modelling approach can be adapted for the ROL framework
as demonstrated by Calfee et al. (2001) and Train (2008).

For the analysis of the BWL data, we estimate a new extension of the ROL as
discussed in Yoo (2012). The main idea is to model all parameters in Hausman and
Ruud (1987)’s HROL as individual-specific random coefficients. The resulting specifica-
tion incorporates both heterogeneity in preferences over attributes and heterogeneity in
ranking capabilities, thereby nesting the above modelling approaches as special cases.

Specifically, assume that respondent n rank-orders three available jobs in two statis-
tically independent steps indexed by r = 1, 2. In step one, she chooses the best of three
jobs, and in step 2, she chooses the best from the two remaining jobs after excluding the
job picked in step 1. The best job in each step is the one that provides the highest utility.
Following the standard random-utility framework (McFadden, 1973), the utility derived
from a job is decomposed into a systematic component associated with attribute-levels
and a random disturbance term. Specifically, for r = 1, 2

Ur
njt =

K∑
k=1

Lk∑
lk=1k

Blk
n x

lk
njt + urnjt =

K∑
k=1

Lk∑
lk=2k

βlk
n x

lk
njt + urnjt = βn · xnjt + urnjt (1)

where u1njt and u2njt are independently extreme value distributed with variances equal

to π2/6 and π2/(σ2
n6) respectively. Blk

n is the systematic utility from attribute-level lk
derived by respondent n and its scale has been implicitly normalised along with the
variance of u1njt. Because only changes in utility in response to changes in the levels of
attributes matter when choosing among alternatives, the utility from the first level of
each attribute is set to 0 definining the normalised parameters: βlk

n = Blk
n − B1k

n for
lk = 2k, ..., Lk. In consequence, βlk

n > βll
n for two different attributes k and l does not

imply Blk
n > Bll

n . βn and xnjt are vectors of parameters and attribute-level dummies,
respectively.

Let Pnt(βn, σn) denote the probability of the rank-ordering stated by respondent n on
choice occasion t. Once the utility parameters βn and the scale parameter σn are known,
this probability can be specified in the HROL form. For instance, if the respondent ranks
the three alternative jobs as (1 � 2 � 3), the probability becomes:

Pnt(βn, σn) =
exp(βn · xn1t)

[
∑3

j=1 exp(βn · xnjt)]
× exp(σnβn · xn2t)

[
∑3

j=2 exp(σnβn · xnjt)]
(2)

where σn captures heteroskedasticity across steps in the ranking. According to Hausman
and Ruud (1987), this form of heteroskedasiticity may arise as respondents feel more
certain about their most preferred alternative and hence rank the least preferred alterna-
tives less systematically. σn is expected to lie in the (0, 1) interval unless the respondent
ranks all jobs equally systematically (σn = 1) or chooses the second-best job completely
arbitrarily (σn = 0). In this context, the coefficient attenuation issue in rank-ordered
data mentioned above results from incorrectly restricting σn to 1.

To allow for preference heterogeneity across respondents, we model βn and σn as
random coefficients in a latent class framework. Specifically, we assume that there are C
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distinct sets or classes of utility and scale parameters. Since each individual in a class has
identical parameters, we use βc and σc with c = 1, ..., C to denote these parameters. The
resulting “mixing” distribution is discrete and ηc is used to denote the relative frequency
of each class c in the respondent population. The likelihood of respondent n’s sequence
of responses over the T scenarios can be written as:

Ln(β1, ..,βC ; η1, ..ηC ;σ1, ..., σC) =

C∑
c=1

ηc

T∏
t=1

Pnt(βc, σc) (3)

where ηC = 1−
∑C−1

c=1 ηc. Note that the number of classes, C, must be specified prior to
estimation to achieve identification. We call the model specification in equation (3) the
latent class HROL (LHROL). As summarised in Table I, several modelling approaches
for rank-ordered data can be shown to be nested in LHROL.

With C = 1, our model reduces to Hausman and Ruud (1987)’s heteroskedastic rank-
ordered logit which in turn reduces to the usual rank-ordered logit when there is no
rank heteroskedasticity. Also with C = 1 and σc = 0, our model is equivalent to the
mutlinomial logit that uses the data on the most preferred alternative only. With C = 2,
the LHROL nests Fok et al. (2011)’s latent class rank ordered logit as a special case
occurring when β1 = β2, σ1 = 1 and σ2 = 0. In this context, σc can be interpreted as a
ranking capability parameter and some respondents are assumed to rank the less preferred
alternatives arbitrarily because they are not familiar enough with the choice situation
to provide detailed rankings. Our specification is more general in that respondents are
assumed to possess different levels of ranking capabilities rather than either full or no
capability; i.e. each σc in our specification is a free parameter.

With C ≥ 2, the LHROL is equivalent to latent class logit (LCL) or mixed logit
with a discrete mixing distribution (Greene and Hensher, 2003) when σc = 0 for all
classes so that only the first best choice data are used to estimate βc, and reduces to
latent class ROL (Train, 2008) when σc = 1 for all classes so that all available data are
used without accounting for potential heteroskedasticity across ranks. Maintaining that
LHROL is true, the former modelling approach leads to a less efficient estimator as fewer
data are used and the latter leads to an inconsistent estimator in the presence of rank
heteroskedasticity.

Estimation results for LHROL are discussed in the next section and detailed in Ap-
pendix Table II. Our preferred specification is estimated with four classes. In choosing
the number of classes, we follow the literature on latent class logit models (Greene and
Hensher, 2003; Shen, 2009; Train, 2008; Hess et al., 2011). Initially, we estimated nine
LHROL specifications with the number of classes varying from 2 to 10 and found that
the Bayesian Information Criterion (BIC) was minimised with the use of four classes.
Note that all specifications have included alternative-specific constants (ASCs) for Job
A and Job B to capture potential heuristics based on labelling; interestingly Class 4,
which appears to rank alternatives mainly in order of salary levels, is also the only class
in which these constants are significant at the 1% level.

The following results from specification tests are based on the preferred model (LHROL
with 4 classes). The scale parameter σc is statistically different from 1 at the 1% level in
all classes. The joint hypothesis of homogeneous ranking capabilities across all classes,
that is σ1 = σ2 = σ3 = σ4, is rejected at the 4.2% level using the Wald test statistic com-
puted as 8.19. The parametric restrictions associated with LCL, σ1 = σ2 = σ3 = σ4 = 0,
and latent ROL, σ1 = σ2 = σ3 = σ4 = 1, are overwhelmingly rejected at the 1% level
using the likelihood ratio tests; the relevant test statistics are 132.24 and 926.37 respec-
tively.
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As a sensitivity check, we compared the estimation results of LCL, Train (2008)’s
latent class ROL and LHROL. In general, the class share weighted average of each co-
efficient is similar in magnitude across LCL and LHROL but more precisely estimated
in the latter. The most notable exception relates to the alternative specific constants;
the average LHROL estimates of the ASCs are less precise and much smaller than the
corresponding LCL estimates.2 This result is favourable for LHROL given that the job
labelling in our experiment is arbitrary. The average estimates from Train (2008)’s latent
class ROL have smaller magnitudes than the corresponding LHROL estimates, most of
them by 20%, qualitatively suggesting the presence of rank heteroskedasticity.

3.2 Models for best-worst attribute-level (BWT) data

In a BWT experiment, respondents examine one alternative described by K different
attributes set at specific levels, and select the best and the worst of these K attribute-
levels. In empirical applications (Flynn et al., 2007; Lusk and Briggeman, 2009; Lusk
and Natalie, 2009; Potoglous et al., 2011), the observed choice is modelled as the most
preferred option out of K(K − 1) mutually exclusive best-worst pairs of attribute-levels.

The maximum difference (max-diff) model provides a behavioural foundation for this
modelling approach. Lusk and Briggeman (2009) explain this model in a random utility
framework in the case of a BWT experiment with one level per each attribute. We
generalise their discussion to an experiment involving a potentially different number of
levels for each attribute.

Respondent n derives a systematic utility from each attribute-level, denoted byAlk
n .We

change the notation for utility weights from Blk
n to Alk

n to emphasise that their scale is
normalised with respect to a potentially different error variance. The respondent bases
her choice on the difference in utilities attainable from the candidate best and worst
attribute-levels; specifically, the respondent maximises the difference between the utility
from the best and the worst attribute-levels. This utility difference can be decomposed
into systematic and random components. Suppose that attributes q and h form the

candidate best-worst pair. The corresponding utility difference, D
{q,h}
nt , is:

D
{q,h}
nt =

Lq∑
lq=1q

Lh∑
lh=1h

(Alq
n −Alh

n )x
lq
ntx

lh
nt + e

{q,h}
nt (4)

=

Lq∑
lq=1q

Lh∑
lh=1h

(αlq
n − αlh

n )x
lq
ntx

lh
nt + e

{q,h}
nt

where the error term e
{q,h}
nt is independently type I extreme value distributed. The alter-

native subscript j is dropped from attribute-level dummies xlknjt since only one alternative
is shown in each choice occasion.

The systematic difference in utility differences across any two candidate best-worst
pairs will be unchanged when the same constant is added to each parameter Alk

n . To
achieve identification, one utility parameter needs to be normalised to 0, say for the
first level of the first attribute A11

n . Then each identified parameter is defined as αlk
n =

Alk
n − A11

n . Now αlk
n > αll

n for two different attributes k and l implies Alk
n > All

n ; recall

2The mean LHROL ASC for Job A is 0.009 (0.16) while the mean LCL ASC for Job A is 0.039
(0.50). The corresponding figures for Job B are 0.117 (2.38) and 0.231 (3.68) respectively. The numbers
in parentheses are asymptotic t statistics.
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that a similar statement cannot be made in the context of equation (1). In this sense,
with the BWT data, we can infer more about the underlying preferences than the BWL
data. More intuitively, K − 1 more utility parameters can be identified with the BWT
data because the respondent directly compares attribute levels whereas in BWL data,
alternatives are chosen based on changes in attribute levels only.

Let Fnt(αn) denote the probability of the best-worst pair actually chosen on occasion
t by respondent n. Suppose that the respondent picks q as best and h as worst. Once the
identified parameters collected in the vector αn are known, the associated probability
can be written as:

Fnt(αn) =
exp(

∑Lq

lq=1q

∑Lh

lh=1h
(α

lq
n − αlh

n )x
lq
ntx

lh
nt)

[
∑K

k=1

∑K
l=1 exp(

∑Lk

lk=1k

∑Ll

ll=1l
(αlk

n − αll
n)xlkntx

ll
nt)]−K

(5)

As in the BWL analysis, the utility parameters are modelled as random draws from
a discrete distribution with C distinct classes to capture preference heterogeneity across
respondents and correlations across the 8 observations from the same respondent. The
likelihood of respondent n’s sequence of responses is specified as a function of the relative
frequency of each class c, ρc, and the utility parameters for that class, αc:

Ln(α1, ..,αC ; ρ1, ..ρC) =

C∑
c=1

ρc

T∏
t=1

Fnt(αc) (6)

where ρC = 1−
∑C−1

c=1 ρc. As in LHROL, the number of classes, C, must be determined
a priori.

We call the model specification in equation (6) the latent class max-diff (LMD) and
discuss the results obtained with C = 7 in the next section. When the number of classes
is varied from 2 through 10, BIC is lowest at 7 classes. LMD reduces to the standard
max-diff model when only one class is specified.

The max-diff specification is the primary workhorse in the current literature on BWT.
However, when there are 12 attributes as in our survey, the decision-making process would
have respondents consider 144 best-worst pairs when making their choices. Hence, the
behavioural assumptions underlying this modelling approach seem unrealistic when the
number of attributes is larger than 3 or 4.

As a sensitivity check, we consider an alternative specification that describes a simpler
decision making process. The structure of BWT data is equivalent to that of data
obtained by a BWL experiment presenting more than three alternatives per scenario.
Accordingly, models for incomplete rankings from a traditional DCE can be reinterpreted
to analyse the BWT data. Let Qk

nt denote the utility derived by respondent n from the
attribute level k describing the job shown in scenario t:

Qk
nt =

Lk∑
lk=1k

Γlk
n x

lk
nt + vknt =

Lk∑
lk=1k

γlkn x
lk
nt + vknt (7)

where Γlk
n is the systematic utility associated with this attribute-level and vk

nt is i.i.d.
type I extreme value distributed. Note that the error term, vk

nt, is now associated with
a single attribute level. In ranking attribute levels, only differences in Qk

nt matter and
the sytematic utility from one attribute-level must be normalised. γlkn represents the
normalised utility weights with one attribute level, say Γ11

n , set to 0. As for the max-diff
model, all other parameters can be identified. Equation (7) is identical to the random
utility model motivating multinomial logit with alternative-specific constants and no
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other explanatory variables. The probability of observing q as the best attribute takes

the usual MNL expression: exp(
∑Lq

lq=1q
γ
lq
n x

lq
nt)/[

∑K
k=1 exp(

∑Lk

lk=1k
γlkn x

lk
nt)]. One can

also derive the probability of a best-worst pair {q, h} as the joint probability over all
complete rankings yielding the choice of q as best and h as worst. This is the approach
in Van Ophem et al. (1999) and can be seen as a variant of the rank ordered logit for
incomplete rankings.

The incomplete rankings probabilities with known best-worst choices based on equa-
tion (7) become algebraically cumbsersome when K is large as in our survey, and we
consider a sequential best-worst logit (SBWL) due to Lanscar and Louviere (2008) in-
stead. As the name suggests, it is assumed that the respondent sequentially chooses the
best out of K attribute-levels and the worst out of the remaining K − 1 attribute-levels.
These two steps are also assumed to be statistically independent. The probability of
observing q and h as the best-worst pair is (mis)specified as:

Gnt(γn) =
exp(

∑Lq

lq=1q
γ
lq
n x

lq
nt)

[
∑K

k=1 exp(
∑Lk

lk=1k
γlkn x

lk
nt)]
×

exp(
∑Lh

lh=1h
−γlhn x

lh
nt)

[
∑

k 6=q exp(
∑Lk

lk=1k
−γlkn xlknt)]

(8)

Since the extreme value distribution is asymmetric, the true probability that h is
chosen as worst does not equal the second ratio on the right hand side of equation (8) but
a more algebraically involved expression as derived in the Appendix to Fok et al. (2011).
The difference between these probabilities, however, tends to be small empirically as the
distribution is only slightly asymmetric.

We have estimated a latent class SBWL similar to LMD by modelling γn as draws from
a discrete distribution. The resulting estimates are negligibly different from the LMD
estimates for any number of classes varying from 1 to 10. To see why, notice that the
SBWL probability in equation (8) is algebraically similar to the max-diff probability in
equation (4) and in fact, they become identical when −K is added to the denominator of

equation (8) and
∑

k 6=q exp(
∑Lk

lk=1k
−γlkn x

lk
nt) is replaced with

∑K
l=1 exp(

∑Ll

ll=1k
−γllnx

ll
nt).

The results from the latent class SBWL model are available upon request.

3.3 Normalisation convention

In LHROL, the utility coefficient on one level of each attribute is normalised to 0. An
estimated coefficient measures how much utility changes as the level of the relevant
attribute changes from the omitted level to the reported level; for example, the coefficient
on excellent quality of care measures the utility difference between excellent and poor
qualities of care. In LMD, only the utility coefficient on the lowest level of salary ($800
per week) is normalised to 0. An estimated coefficient measures the difference in utilities
provided by the relevant attribute-level and a salary of $800 per week, and takes a
positive (negative) sign when this attribute-level is (less) preferred to $800; for example,
the coefficient on excellent quality of care is positive when it gives a higher systematic
utility than a salary of $800 per week.

Our main analysis focuses on comparisons of the two sets of estimates. For this
purpose, the LMD coefficient estimates are transformed to represent the same information
as the LHROL estimates. Specifically, the LMD coefficient on a level of each attribute
is differenced with the LMD coefficient on the base level of the same attribute, where
the base level refers to the omitted level in the LHROL estimation. For example, we
difference the LMD coefficients on the excellent quality of care and the poor quality of
care to obtain a transformed coefficient comparable to the LHROL coefficient on the
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excellent quality of care. This transformation is not required for salary, as the LMD
coefficients have been already normalised relative to $800, which is the omitted salary
level in LHROL.

4 Main findings

The proponents of best-worst attribute-level (BWT) argue that the key advantage of
this method over traditional DCEs (including BWL) is that BWT can be used to obtain
richer information on the underlying preferences. Specifically, because BWT collects
stated preferences over different attribute-levels directly, it allows estimation of models
in which a sufficient number of utility parameters are identified to infer whether a level of
one attribute is preferred to a level of another attribute. However, BWT and traditional
DCEs may also elicit structurally different information. Individuals may respond to
particular survey instruments by varying the amount of attention they expend as well
as the extent to which they state their true preferences. For instance, elsewhere in the
literature on stated preference methods, it is well known that the willingness to pay for
an improvement in an attribute as estimated by direct surveys and traditional DCEs
tend to disagree due partly to the use of different responding strategies (Lloyd, 2003).
We begin by examining whether utility parameters estimated using BWT and BWL
data lead to broadly similar inferences about the relative importance of improvements in
different attributes.

Our preferred panel data models, latent class max-diff (LMD) with seven classes for
the BWT data and latent class heteroskedastic rank-ordered logit (LHROL) with four
classes for the BWL data, assign different utility parameters for different latent classes
and there is no exact correspondence between classes across the two models. We average
utility parameter estimates across classes within each model using the estimated class
shares as weights and analyse the resulting set of averages as summary statistics for the
preferences estimated from each data set. Also, as noted in the previous subsection, the
LMD estimates are transformed to be comparable to the LHROL estimates.

The two sets of estimates may be said to be broadly similar when most of the average
LMD estimates are larger in magnitude than the corresponding LHROL estimates by
roughly the same proportion. Then a strong case can be made in favour of using BWT
over BWL because preferences elicited by BWT can be said to be both richer in the
amount of preference information provided and less noisy. In standard non-linear discrete
choice models, all identified coefficients are scaled up by the same proportion following
a decrease in the error variance, keeping the relative magnitude of any two coefficients
unchanged. Potoglou et al. (2011) find this type of similarity in their social quality of
life survey using multinomial logit and max-diff models with fixed utility parameters.3

Figure 3 plots the average LMD coefficients against the corresponding average LHROL
coefficients. (Detailed estimates are presented in Appendix Tables 2 and 3.) All but one
of the averages are significant at the 1% level, the exception being the average LMD
coefficient on public hospital (public hosp) which is significant at the 6% level only.

For comparison, Figure 4 plots corresponding estimates from fixed coefficient versions
of the max-diff and HROL models; all estimates are significant at the 1% level. The
average random parameter estimates in Figure 3 resemble closely the fixed parameter
estimates in Figure 4, the main difference being an increase in scale. This is not surprising

3The panel dimension of their data is addressed by specifying independently normally distributed
individual-specific intercepts instead of random utility coefficients on attribute-levels.
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as the explicit modelling of preference heterogeneity tends to reduce error variances
(Revelt and Train, 1998).

The broad conclusion to be drawn from Figure 3 is that the difference between pref-
erences elicited by the two methods cannot be explained simply by a smaller amount of
random variation in the BWT data. If it could, most of the points in Figure 3 would be
(1) located above the dotted line with the unit slope, indicating that the LMD averages
are bigger than their LHROL counterparts and (2) clustered around a steeper line, the
slope of which would represent the common proportion by which the max-diff coefficients
are scaled up. Only the first pattern can be clearly observed in this figure.

Figure 3 shows that the relative importance of two different non-salary characteristics
is much more robust across data sets than that of a salary level and a non-salary char-
acteristic. The bold line with the slope of 7.1 in Figure 3 is the best fit line through the
origin and the averages associated with non-salary attributes excluding “public hospital”,
the characteristic that is only marginally significant in BWT data. These averages are
closely scattered around the bold line, though they do not line up exactly, whereas the
average coefficients on salary levels are located far below it suggesting that the latter
set of averages are scaled up by a much smaller proportion than the former. In fact the
salary coefficients are very closely clustered around a line with slope equal to 3.5, approx-
imately one half of the proportion used to scale the non-salary attributes. In words, the
respondents as a group seem to value salary gains more in relative terms when complet-
ing BWL than BWT. One implication of the patterns in Figure 3 is that the rankings of
average utility gains from salary and other characteristics could be reversed depending
on which data set is analysed.

We consider whether the estimation results are consistent with the view that respon-
dents complete the BWT task more systematically as is often argued by proponents of this
approach. The recent literature on the problem of attribute non-attendance (Cameron
and DeShazo, 2008; Greene and Hensher, 2010; Hole, 2011) provides a useful link be-
tween this argument and the structural differences found above. These studies suggest
that in a traditional DCE, respondents may make choices heuristically based on a subset
of available attributes and ignore the rest to minimise the cognitive burden. For example,
in the present context, a respondent may rank alternatives in order of salary levels alone
in BWL. Similar heuristics may not be easily applied in BWT since the person needs to
compare salary with at least one other attribute to state both best and worst aspects of
a job. The presence of respondents who use heuristics in BWL may make individuals
appear as a group to value salary gains more in BWL than in BWT.

Do the differences in the two sets of estimated preferences plausibly originate from
the use of salary-based heuristics in BWL? To answer this question, we follow Hensher
and Greene (2010)’s interpretation of heuristics as a particular class of preferences, and
are interested in whether a class with very large coefficients on salary gains and small
coefficients on changes in other attributes is estimated to exist in LHROL but not in
LMD.

Figure 5 displays the LHROL coefficient estimates for its four latent classes. In each of
the four panels, the horizontal axis labels attribute-levels and the vertical axis measures
the magnitude of the coefficients. (The estimates can be found in Appendix Table II.) Of
particular interest is Class 4 which is estimated to represent 14% of decision makers. This
class represents respondents who rank alternatives mainly in the increasing order of salary
levels, paying only minimal attention to variations in other characteristics. Graphically,
we observe big spikes in the last three columns corresponding to the coefficients on salary
changes from $800 to $950, $1100 and $1250, respectively and much smaller bars in other
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columns. Statistically, six out of the eleven coefficients on non-salary attributes are
insignificant at the 5% level; the other five coefficients, along with the three coefficients
on salary gains, are significant at the 1% level.

To quantify the implications of these estimates, suppose that a decision maker in Class
4 chooses between the following two jobs. Job I pays the lowest level of salary ($800 per
week) but has the best possible combination for the other eleven characteristics: excel-
lent quality of care, an appropriate level of responsibility, supportive management and
so forth. Job II pays a higher salary but has the worst possible levels for all other char-
acteristics. When job II pays $1250 the decision maker has a 0.78 chance of choosing
it, and when it pays $1100 she is still more likely to choose it, with an estimated prob-
ability of 0.57, despite the disadvantage in all other aspects. She is less likely to choose
job II only when it offers the smallest possible salary gain to $950, in which case the
predicted probability is 0.18. If this class of preferences reflects the use of heuristics in
answering a complex BWL question, instead of indicating that many decision makers
consider salary as a much more important aspect of a job than other characteristics,
then we would expect these individuals to change their behaviour when faced with the
BWT experiment.

Figure 6 plots the transformed LMD coefficient estimates for each of its seven classes.
(The estimates are presented in Appendix Table III.) All class shares and all but a handful
of untransformed coefficients have been precisely estimated at the 1% level, even though
the specification involves 181 parameters, benefitting from a small amount of random
variations in the BWT data.

The estimates suggest that although there is a substantial amount of preference het-
erogeneity across classes, no class has an extreme preference for an improvement in a
particular attribute, including salary. Class 5, which accounts for 12% of the respondent
population, exhibits the strongest preferences for salary gains but this class does not dis-
regard other improvements to the same extent as Class 4 in LHROL does; for example
the change from “unsupportive” to “supportive” management is estimated to result in a
similar utility gain as a salary increase from $850 to $1100. In terms of classes exhibiting
signs of heuristics, the most likely type is Class 6, also with a 12% population share. The
magnitudes of all utility gains are much smaller here than in any other class, suggesting
that Class 6 tends to state their preferences much less systematically than others. One
possible interpretation is that Class 6 is similar to Class 4 in LHROL, and represents
people who try to expend minimal attention; as there is no simple rule to rank attribute-
levels within the same alternative, these respondents may state preferences after casually
examining the presented information and appear to make choices arbitrarily.

Since both datasets share the same set of respondents, we can compare the behaviour
by individuals across the two types of experiments. Specifically, we compare posterior
class membership probabilities across BWL and BWT data for respondents whose BWL
choices are best described by Class 4 in LHROL, the class highlighted as potentially using
heuristics based on salary. Posterior membership probabilities refer to the probabilities
of each respondent belonging to different classes, conditional on her observed sequence of
choices. Specifically, suppose that there are C classes in total. The posterior probability
of membership in class c is given by φcLnc/(

∑C
k=1 φkLnk) where φk is the population

share of class k and Lnk is the likelihood of observing the agent’s sequence of choices
given she is in class k.

The average of the largest posterior probability over all 526 respondents is 0.89 for
LHROL and 0.90 for LMD, suggesting that both models do well in distinguishing different
classes of preferences. In LHROL, Class 4 gives the largest posterior membership prob-
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ability for 74 respondents (the average probability across these 74 individuals is 0.91).
In which LMD classes are these 74 people most likely to belong? Interestingly, Class 5
and Class 6 in LMD are associated with the highest and second highest average posterior
probabilities, 0.28 and 0.24 respectively.4 At a disaggregated level, Class 5 and Class
6 give the highest posterior probability for 54% (or 40 respondents) of this subsample,
22 (30%) in Class 5 and 18 (24%) in Class 6 respectively. In other words, a nontrivial
fraction of respondents whose BWL choices are best summarised by extreme concerns
for salary gains (LHROL Class 4) make BWT choices consistent with the minimal ex-
penditure of attention (LMD Class 6). Yet, a big majority of them make BWT choices
implying preferences for salary gains which are strong but not extreme (LMD Class 5)
or much weaker (other five LMD classes).

The evidence so far is consistent with the hypothesis that BWT may induce some
respondents to consider non-pecuniary attributes which they would ignore in the more
complex BWL experiment. However, the relative undervaluation of salary gains in BWT
cannot be ascribed to the lessened use of heuristics alone. The group identified as poten-
tially using heuristics in BWL (Class 4 of LHROL) is estimated to represent only 14% of
the respondent population. The LHROL estimates in Figure 5 indicate that a majority
(51%) of the population belongs to Class 1 which trades off different attributes fairly
without extreme preferences for any subset of attributes. This segment of the population
still gains the highest utility from the largest possible increase in salary to $1250. By
constrast, in all classes of LMD in Figure 6 excluding Class 5, improvements of several
non-salary attributes lead to utility gains similar to or higher than what is generated by
the largest salary increase. The systematic undervaluation of salary in BWT requires
alternative explanations that can be applied to a wider segment of respondents.

What else may be driving the observed patterns of results? We conjecture two hy-
potheses related to the fundamental format of the BWT task. First, the comparison of
a salary level with a non-salary characteristic as in BWT may be much more difficult
to make than that of a salary gain with an improvement in a non-salary attribute as in
BWL, because there is no clearly good or bad level of salary. Whether a salary level is
good or not may depend on the perceived salary available in other jobs. Unlike BWL
which explicitly specifies the job choice set, BWT presents only one job per scenario and
leaves the alternatives unspecified. In contrast, with the exception of hospital type (pub-
lic vs private) and perhaps the number of clinical rotations (three vs none), non-salary
attributes in our survey have inherently good and bad levels, for instance the staffing
level being either set at well-staffed or short of staff. This feature of the survey design
may facilitate comparisons among non-salary attributes, and make their good levels more
likely to be chosen as best compared to salary levels which may be perceived as neither
good nor bad. Figures 3 and 4 show that the relative magnitudes of coefficients on non-
salary attributes with good and bad levels are much more consistent across the two sets
of data than those of coefficients on salary and non-salary attributes without good and
bad levels.

Second, respondents may tend to understate their true preferences for salary levels
over other attribute-levels in BWT out of moral concerns. It is well known that when
asked to state willingness to pay for environmental preservation, survey respondents
tend to quote an amount larger than those estimated through a traditional DCE in
which the environmental quality and income (or costs) are used to describe hypothetical
alternatives. The reverse problem may occur in BWT. To illustrate, suppose that the
respondent is presented with a job at a hospital which provides an excellent quality of

4The third highest average posterior probability is much lower at 0.13.
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care to patients and the highest possible level of salary, $1250. Even when the respondent
regards salary as the best aspect, she may be hesitant about stating so to avoid revealing
directly that she places her own monetary benefit above the welfare of the patients. This
type of consideration is less likely to influence her response in BWL where she states
preferences over alternatives varying in the levels of salary and other characteristics
simultaneously.

To investigate this issue further, we turn to a third source of data, namely the accept-
or-not question at the end of each BWT scenario. As shown in Figure 1, respondents are
asked to state whether they are willing to accept each hypothetical job after choosing its
best and worst aspects. This binary task may be cognitively easier and less subject to
salary-based heuristics than BWL because each respondent can compare the hypothetical
job she has already seen against her own opt-out option. At the same time, she may
evaluate the relative attractiveness of the job’s salary level more easily because now she
is choosing between the stated job and a well-defined alternative from her perspective.5

Also, there is less incentive to downplay preferences for salary over other attributes since
the alternative is not specified.

We are interested in whether the relative magnitudes of salary and non-salary coeffi-
cients estimated using these binary choice data are more similar to those estimated from
the BWT data or from the BWL data. The former is more likely if the use of salary-based
heuristics in BWL mainly generates differences between the two sets of results while the
latter is more likely if the design of the BWT task is the primary driver. Of course it is
possible that preferences elicited by the accept-or-not task are very different from those
elicited by either BWT or BWL, as the latter two methods assume participation in the
nursing workforce while the accept-or-not task allows the respondent’s opt-out option to
be a non-nursing job.

The accept-or-not decision is modelled as a random effects (RE) logit using job char-
acteristics as explanatory variables. The intercept is assumed to follow a normal distri-
bution to account for variations in the unobserved opt-out option across respondents.6

The RE logit estimates are plotted against the average LHROL estimates in Figure 7
and the fixed coefficient HROL estimates in Figure 8. All coefficients and the standard
deviation of the intercept in the RE logit model are significant at the 1% level, except
for those associated with three clinical rotations (3 rotations), well equipped (well equip)
and abundant parking space (abund park). As in Figures 3 and 4, the dotted line has a
slope of one. Even though the BWL task is much more complex than the accept-or-not
task, the estimated coefficients are very similar in scale whether preference heterogeneity
in the BWL data is modelled or not; the slope of the best fit line through the origin is
0.8 in Figure 7 and 1.1 in Figure 8.

We do not observe that respondents place systematically more value on an increase
in salary relative to improvements in other characteristics when answering the BWL
experiment compared to the accept-or-not type of question. Moreover, the RE logit
and LHROL estimates agree on the magnitudes of the coefficients on the two largest
salary gains (from $800 to $1100 and $1250) relative to the coefficients on major non-
salary determinants of the job choice in BWL (supportive management, excellent quality

5The survey participants have considerable knowledge or at least strong beliefs regarding entry level
jobs for RNs. Many of them have worked as nursing aides and the nursing BA includes a practicum
where students get on-the-job experience. See Doiron et.al. (2011) for more details.

6More general finite and continuous mixture models that allow for random slope coefficients as well
as a random intercept have been estimated but only very imprecisely; the data are not rich enough to
allow the disentangling of a random shift in the intercept from random variations in other coefficients.
Result are available upon request.
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of care, encourage professional development and appropriate responsibility at work);
graphically, the points corresponding to these coefficients closely line up along the bold
line, indicating that the ratio of any pair of these coefficients remains roughly constant
across the two sets of estimates.

Simply asking respondents to state whether they are willing to accept the hypothetical
job presented for BWT, without providing any additional information, leads to similar
estimated preferences as those estimated from the BWL data. Based on these compar-
isons, we conclude again that the main structural difference between the BWT data and
the BWL data, in terms of how salary changes are valued relative to variations in other
attributes, are more likely to result from the format of the BWT task than the wide use
of heuristics in BWL.

To conclude this discussion, we return to the second advantage of the BWT approach
namely the provision of richer preference data. Recall that in our max-diff model, each
identified coefficient measures the difference in utilities from the associated attribute-
level and the salary level of $800. Table II reports the weighted averages across 7 classes
of the untransformed LMD coefficients after ranking them in decreasing order.

In this case, the estimation results suggest that on average, there is a close connection
between what we can learn from the two sets of data. For instance, an analysis of the
BWL data shows that a change in the quality of care is a major determinant of job
choices while the estimates using the BWT data suggest that this is because its good
level (excellent) is the most preferred and bad level (poor) is the least preferred attribute-
level. A similar conclusion holds across the board; if the change in one attribute is the
kth most important determinant of nursing job choices according to the BWL analysis,
then its good and bad levels tend to be the kth most and kth least preferred attribute-
levels according to the BWT analysis. Of course this could be very different in another
context. Respondents could have valued the excellent quality of care less than appropriate
responsibility and at the same time shown a lot more aversion to poor quality of care
than excessive responsibility.

One motivation for our survey is the poor retention rates of nurses in Australia. An
extensive analysis using the BWL data concludes that improvement in salary, managerial
support for professional development and the quality of care at the institution is most
likely to make a job more attractive than other nursing jobs (Doiron et al., 2011). A
natural follow-up question is: what are the key characteristics of an attractive nursing
job? With the BWT analysis, we can make a conclusion that carries a stronger policy im-
plication for addressing the poor retention rates; the good levels of these three attributes
are highly valued by respondents and can be said to make the nursing job attractive in
an absolute sense. However, given the comparative results discussed earlier, we must
also bear in mind that the true ranks of the salary levels may be higher than what is
suggested by the max-diff estimates.

5 Discussion

We analyse stated preference data from two different best-worst choice experiments: a
traditional DCE involving choices over nursing jobs (BWL or best-worst alternative) and
a newer type of DCE involving choices over job attributes (BWT or best-worst attribute-
level). Our findings suggest that the two methods elicit different preference estimates;
the relative valuations of different attributes change to varying extents across the two
sets of data on the same respondents. The key structural difference is in preferences
over improvements in pecuniary and non-pecuniary attributes, with the BWL analysis
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indicating much stronger preferences for pecuniary gains. Moreover, our results suggest
that this difference is not due to the use of simple heuristics in BWL by respondents who
wish to simplify the choice task.

We acknowledge that the underspecification of choice sets, together with the identifi-
cation of additional utility parameters, may make BWT a particularly attractive alterna-
tive to traditional DCEs in some contexts. For instance, suppose that hospital managers
are considering how best to allocate a fixed budget to the design of new nursing jobs
meant to attract nurses away from non-nursing jobs. A relevant traditional DCE may
be hard to design, not least because different jobs are best described by different at-
tributes. A BWT experiment as ours provides useful input by allowing identification of
attribute-levels which make a nursing job attractive in an absolute sense.

However, in light of our findings, further accumulation of evidence on the compara-
bility of BWT and traditional DCE methods is warranted before promoting the wider
use of BWT. In particular, we recommend that future studies focus on exploring the im-
plications of underspecified choice sets for respondents’ answering strategies. Including
additional information like “similar jobs (products) pay (cost) $XXX” in a BWT exper-
iment may shed light on whether the sort of discrepancy found in our study is driven by
insufficient contextual information or the reluctance to reveal preferences over monetary
and non-monetary attribute-levels directly.
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Table I: Nested Models in the LHROL

General Specification: Latent class heteroskedastic rank ordered logit (equation 3)

Parameter restrictions Special Cases

C = 1 HROL or heteroskedastic rank ordered logit
(Hausman and Ruud, 1987)

C = 1 & σc = 1 ROL or rank ordered logit
(Beggs et al., 1981)

C = 1 & σc = 0 MNL or multinomial logit
(McFadden, 1973)

C ≥ 2 & σc = 0, c = 1, . . . , C LCL or latent class logit
(Green and Hensher, 2003)

C ≥ 2 & σc = 1, c = 1, . . . , C LCROL or latent class rank ordered logit
(Train, 2008)

C = 2, β1 = β2, σ1 = 1 & σ2 = 0 LC-ROL or latent class rank ordered logit
(Fok et al., 2011)

Notes: Both latent class logit and rank ordered logit can also be motivated directly
from McFadden’s (1973) random utility model for multinomial logit without invoking
the sequential decision making process as required for heteroskedastic rank ordered logit;
see derivations in Beggs et al. (1981) and Train (2009).
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Table II: Average LMD coefficients (BWT data)

Weighted Standard Weighted Standard
Variable Average Error Variable Average Error

Supp mgt 5.383∗∗∗ (0.197) Abund park 2.291∗∗∗ (0.230)
Sal 1250 5.290∗∗∗ (0.225) Private hosp 1.955∗∗∗ (0.226)
Excell care 5.123∗∗∗ (0.196) FT hours 0.703∗∗∗ (0.168)
Flex rost 4.474∗∗∗ (0.204) Limited park 0.570∗∗∗ (0.173)
Sal 1100 4.278∗∗∗ (0.217) No rotation 0.388∗∗ (0.187)
Encourage 4.221∗∗∗ (0.199) Sal 800 0.000
3 rotations 3.988∗∗∗ (0.219) No encourage −1.130∗∗∗ (0.153)
Well equip 3.835∗∗∗ (0.207) Excess resp −1.249∗∗∗ (0.156)
Well staff 3.777∗∗∗ (0.205) Short staff −1.274∗∗∗ (0.155)
App resp 3.421∗∗∗ (0.209) Inflex rost −1.275∗∗∗ (0.149)
Flex hours 3.267∗∗∗ (0.219) Poor equip −1.459∗∗∗ (0.151)
Sal 950 2.468∗∗∗ (0.277) Poor care −2.293∗∗∗ (0.158)
Public hosp 2.347∗∗∗ (0.174) Unsupp mgmt −2.551∗∗∗ (0.158)

Notes: These estimates are derived from the latent class max-diff model with 7 classes.
The weighted averages using class shares as weights are calculated and presented in
decreasing order. The omitted attribute level is ‘Salary 800.’ Asymptotic standard
errors are in parentheses. ∗∗∗ indicates that the parameter is significantly different from
zero at a 1% level, ∗∗ at 5% and ∗ at 10%.
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Figure 3: BWL and transformed BWT coefficients - latent class models
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Figure 4: BWL and transformed BWT coefficients - fixed coefficients
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Figure 5: LHROL estimates - BWL data
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Figure 6: LMD estimates - BWT data
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Figure 7: RE logit and latent class BWL coefficients
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Figure 8: RE logit and fixed BWL coefficients
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Appendix Table II: LHROL estimation results (BWL data)

Weighted
Variable Class 1 Class 2 Class 3 Class 4 Average

Sal 950 0.574∗∗∗ 0.466∗∗∗ 0.300 2.332∗∗∗ 0.763∗∗∗

(0.084) (0.150) (0.336) (0.351) (0.080)
Sal 1100 0.961∗∗∗ 0.541∗∗∗ 0.116 4.141∗∗∗ 1.211∗∗∗

(0.098) (0.158) (0.277) (0.472) (0.098)
Sal 1250 1.093∗∗∗ 0.617∗∗∗ 0.653∗ 5.151∗∗∗ 1.495∗∗∗

(0.106) (0.176) (0.377) (0.502) (0.112)
Supp mgt 0.976∗∗∗ 1.161∗∗∗ 4.702∗∗∗ 0.778∗∗∗ 1.393∗∗∗

(0.067) (0.126) (0.965) (0.202) (0.106)
Excell care 0.450∗∗∗ 2.704∗∗∗ 1.775∗∗∗ 0.580∗∗∗ 1.154∗∗∗

(0.069) (0.229) (0.457) (0.130) (0.076)
App resp 0.479∗∗∗ 0.897∗∗∗ 1.080∗∗∗ 0.534∗∗∗ 0.652∗∗∗

(0.063) (0.122) (0.344) (0.153) (0.055)
Flex rost 0.804∗∗∗ 0.425∗∗∗ 0.473∗∗∗ 0.138 0.585∗∗∗

(0.059) (0.108) (0.160) (0.149) (0.043)
Encourage 0.585∗∗∗ 0.503∗∗∗ 1.683∗∗∗ 0.445∗∗∗ 0.664∗∗∗

(0.059) (0.104) (0.425) (0.138) (0.056)
Well equip 0.433∗∗∗ 0.626∗∗∗ 1.488∗∗∗ 0.262∗ 0.569∗∗∗

(0.055) (0.108) (0.492) (0.148) (0.063)
Well staff 0.413∗∗∗ 0.493∗∗∗ 0.730∗∗ 0.732∗∗∗ 0.511∗∗∗

(0.054) (0.106) (0.284) (0.145) (0.047)
Public hosp 0.285∗∗∗ 0.127 0.795∗∗ 0.064 0.271∗∗∗

(0.055) (0.103) (0.391) (0.142) (0.054)
3 rotations 0.270∗∗∗ 0.115 1.035∗∗ 0.029 0.281∗∗∗

(0.056) (0.107) (0.415) (0.150) (0.058)
Flex hours 0.157∗∗∗ 0.152 −0.027 0.164 0.137∗∗∗

(0.052) (0.101) (0.129) (0.127) (0.038)
Abund park 0.129∗∗ 0.186∗ −0.049 0.145 0.126∗∗∗

(0.052) (0.098) (0.144) (0.140) (0.040)
Job B Cst 0.123∗ 0.054 −0.135 0.395∗∗ 0.117∗∗

(0.066) (0.113) (0.214) (0.173) (0.049)
Job A Cst 0.050 −0.291∗ −0.167 0.511∗∗∗ 0.009

(0.062) (0.154) (0.217) (0.169) (0.055)
σ 0.508∗∗∗ 0.504∗∗∗ 0.954∗∗∗ 0.675∗∗∗ 0.578∗∗∗

(0.045) (0.061) (0.230) (0.100) (0.038)
Class 0.513∗∗∗ 0.241∗∗∗ 0.107∗∗∗ 0.139∗∗∗

share (0.034) (0.031) (0.020) (0.019)

Number of respondents 526 Log likelihood -5706.48
Number of observations 21040 BIC 11832.74

Notes: The model is estimated via FIML using Stata 11.2/IC. The omitted level for
salary is 800; for the other attributes, the omitted levels are provided in Appendix Table
1. σ is the ratio of the variances of the errors in the first and second steps of the ranking
respectively. BIC refers to the Bayesian information criterion. Asymptotic standard
errors are in parenthesis. ∗∗∗ indicates that the parameter is significantly different from
zero at a 1% level, ∗∗ at 5% and ∗ at 10%.

29



A
p

p
en

d
ix

T
ab

le
II

I:
T

ra
n

sf
or

m
ed

L
M

D
es

ti
m

a
ti

o
n

re
su

lt
s

(B
W

T
d

a
ta

)

W
ei

g
h
te

d
V

ar
ia

b
le

C
la

ss
1

C
la

ss
2

C
la

ss
3

C
la

ss
4

C
la

ss
5

C
la

ss
6

C
la

ss
7

A
ve

ra
g
e

S
al

95
0

1.
07

7
∗

4
.9

1
3
∗∗
∗

4
.3

2
9
∗∗
∗

0
.8

1
0

4
.8

6
8
∗∗
∗

0.
6
5
8
∗∗

4.
0
3
4
∗∗
∗

2.
4
6
8
∗∗
∗

(0
.6

22
)

(0
.8

6
3
)

(0
.8

8
8
)

(0
.8

1
4
)

(0
.4

7
6
)

(0
.3

3
3
)

(1
.0

7
4
)

(0
.2

7
7
)

S
al

11
00

3.
28

7
∗∗
∗

6
.2

7
8
∗∗
∗

5
.2

6
5
∗∗
∗

3
.4

9
6
∗∗
∗

6
.3

2
0
∗∗
∗

2.
9
8
1
∗∗
∗

4.
5
4
3
∗∗
∗

4.
2
7
8
∗∗
∗

(0
.5

12
)

(0
.6

8
0
)

(0
.7

7
7
)

(0
.5

6
9
)

(0
.4

7
8
)

(0
.3

4
2
)

(1
.0

4
5
)

(0
.2

1
7
)

S
al

12
50

3.
78

5
∗∗
∗

7
.2

4
5
∗∗
∗

6
.7

7
3
∗∗
∗

4
.3

1
4
∗∗
∗

8
.4

5
4
∗∗
∗

3.
2
1
6
∗∗
∗

6.
1
1
0
∗∗
∗

5.
2
9
0
∗∗
∗

(0
.5

11
)

(0
.6

9
4
)

(0
.7

2
6
)

(0
.5

5
6
)

(0
.9

1
4
)

(0
.3

4
6
)

(0
.9

6
8
)

(0
.2

2
5
)

S
u

p
p

m
gt

8.
15

1
∗∗
∗

6
.8

3
0
∗∗
∗

8
.6

4
2
∗∗
∗

1
1
.5

8
1
∗∗
∗

6
.2

9
4
∗∗
∗

2.
3
2
8
∗∗
∗

8.
5
4
2
∗∗
∗

7.
9
3
4
∗∗
∗

(0
.3

81
)

(0
.5

6
8
)

(0
.6

1
1
)

(0
.4

1
8
)

(0
.4

1
6
)

(0
.2

8
9
)

(0
.9

2
6
)

(0
.1

9
9
)

E
x
ce

ll
ca

re
10
.9

04
∗∗
∗

6
.5

2
0
∗∗
∗

7
.1

8
7
∗∗
∗

7
.5

9
2
∗∗
∗

4
.5

8
2
∗∗
∗

3.
2
2
2
∗∗
∗

8.
0
8
7
∗∗
∗

7.
4
1
5
∗∗
∗

(0
.4

24
)

(0
.5

7
4
)

(0
.6

0
2
)

(0
.4

2
8
)

(0
.4

1
4
)

(0
.2

4
7
)

(0
.9

2
9
)

(0
.1

9
4
)

A
p

p
re

sp
3.

45
5
∗∗
∗

3
.3

3
2
∗∗
∗

5
.5

2
2
∗∗
∗

6
.7

0
9
∗∗
∗

3
.9

8
7
∗∗
∗

1.
9
8
7
∗∗
∗

6.
8
7
2
∗∗
∗

4.
6
7
0
∗∗
∗

(0
.4

74
)

(0
.7

2
1
)

(0
.6

7
5
)

(0
.4

3
6
)

(0
.4

0
6
)

(0
.2

8
1
)

(0
.9

4
0
)

(0
.1

9
8
)

F
le

x
ro

st
5.

23
0
∗∗
∗

10
.0

5
4
∗∗
∗

5
.8

7
4
∗∗
∗

6
.1

7
8
∗∗
∗

5
.0

7
0
∗∗
∗

2.
1
6
2
∗∗
∗

6.
9
2
1
∗∗
∗

5.
7
4
9
∗∗
∗

(0
.4

25
)

(0
.5

7
6
)

(0
.7

0
1
)

(0
.4

2
6
)

(0
.4

2
0
)

(0
.2

8
6
)

(0
.8

6
3
)

(0
.1

8
9
)

E
n

co
u

ra
ge

6.
01

0
∗∗
∗

4
.5

4
8
∗∗
∗

5
.5

6
1
∗∗
∗

6
.3

2
1
∗∗
∗

3
.3

7
1
∗∗
∗

2.
0
2
5
∗∗
∗

7.
8
0
7
∗∗
∗

5.
3
5
2
∗∗
∗

(0
.4

03
)

(0
.6

4
8
)

(0
.6

4
7
)

(0
.4

4
7
)

(0
.4

4
9
)

(0
.2

7
4
)

(0
.9

4
0
)

(0
.1

8
9
)

W
el

l
eq

u
ip

6.
26

6
∗∗
∗

5
.2

1
2
∗∗
∗

5
.9

1
5
∗∗
∗

5
.8

1
0
∗∗
∗

3
.2

5
5
∗∗
∗

1.
8
7
2
∗∗
∗

7.
2
9
8
∗∗
∗

5.
2
9
4
∗∗
∗

(0
.3

93
)

(0
.6

2
4
)

(0
.6

7
7
)

(0
.4

8
9
)

(0
.4

5
9
)

(0
.2

8
5
)

(0
.8

5
2
)

(0
.1

9
2
)

W
el

l
st

aff
6.

20
4
∗∗
∗

3
.6

4
7
∗∗
∗

5
.6

5
1
∗∗
∗

6
.5

1
0
∗∗
∗

3
.9

6
3
∗∗
∗

1.
7
7
2
∗∗
∗

5.
1
4
8
∗∗
∗

5.
0
5
1
∗∗
∗

(0
.4

14
)

(0
.9

0
1
)

(0
.6

6
3
)

(0
.4

2
6
)

(0
.4

4
0
)

(0
.2

9
2
)

(0
.9

2
0
)

(0
.1

9
2
)

P
u

b
li

c
h

os
p

0.
61

0
−

0.
9
4
5

1
.2

4
6
∗

0
.1

6
4

−
0
.0

1
7

−
0
.0

3
9

1.
3
8
8
∗

0.
3
9
2
∗

(0
.4

85
)

(0
.6

5
9
)

(0
.7

3
7
)

(0
.5

0
5
)

(0
.4

9
4
)

(0
.2

6
5
)

(0
.8

1
3
)

(0
.2

0
8
)

3
ro

ta
ti

on
s

3.
30

5
∗∗
∗

4
.7

9
2
∗∗
∗

9
.2

5
4
∗∗
∗

4
.6

0
0
∗∗
∗

2
.7

0
0
∗∗
∗

0.
8
1
5
∗∗
∗

1.
1
6
2

3.
6
0
0
∗∗
∗

(0
.4

63
)

(0
.7

7
6
)

(0
.5

9
6
)

(0
.5

0
7
)

(0
.5

3
9
)

(0
.2

8
4
)

(0
.8

3
6
)

(0
.2

1
0
)

F
le

x
h

ou
rs

2.
55

7
∗∗
∗

4
.5

9
7
∗∗
∗

0
.4

6
8

2
.0

1
1
∗∗
∗

1
.5

7
3
∗∗
∗

0.
3
0
9

6.
4
7
5
∗∗
∗

2.
5
6
4
∗∗
∗

(0
.4

81
)

(0
.6

1
7
)

(0
.8

7
2
)

(0
.6

2
2
)

(0
.5

0
1
)

(0
.2

7
3
)

(1
.0

4
1
)

(0
.2

1
7
)

A
b

u
n

d
p

ar
k

1.
82

6
∗∗
∗

1
.7

3
2
∗∗

1
.9

2
8
∗∗
∗

1
.3

7
0
∗∗

1
.9

0
4
∗∗
∗

0.
8
8
0
∗∗
∗

2.
5
1
3
∗∗
∗

1.
7
2
1
∗∗
∗

(0
.4

94
)

(0
.7

5
9
)

(0
.7

3
6
)

(0
.5

9
7
)

(0
.4

6
1
)

(0
.2

7
0
)

(0
.8

2
1
)

(0
.2

1
4
)

C
la

ss
0.

23
4
∗∗
∗

0
.0

8
6
∗∗
∗

0
.0

9
3
∗∗
∗

0
.2

1
0
∗∗
∗

0
.1

2
2
∗∗
∗

0.
1
1
9
∗∗
∗

0.
1
3
5
∗∗
∗

sh
ar

e
(0
.0

24
)

(0
.0

1
6
)

(0
.0

1
7
)

(0
.0

2
3
)

(0
.0

1
8
)

(0
.0

1
7
)

(0
.0

2
5
)

N
u

m
b

er
of

re
sp

on
d

en
ts

5
2
6

L
o
g

li
k
el

ih
o
o
d

-1
2
2
6
1
.5

9
N

u
m

b
er

of
ob

se
rv

at
io

n
s

55
5
4
5
6

B
IC

2
5
6
5
7
.2

0
8

N
ot

es
:

T
h

e
m

o
d

el
is

es
ti

m
at

ed
v
ia

F
IM

L
u

si
n

g
S

ta
ta

1
1
.2

/
IC

.
T

h
e

co
effi

ci
en

ts
a
re

tr
a
n

sf
o
rm

ed
fo

r
a
n

ea
si

er
co

m
p

a
ri

so
n

w
it

h
th

e
re

su
lt

s
fr

om
th

e
L

H
R

O
L

m
o
d

el
;

sp
ec

ifi
ca

ll
y,

co
effi

ci
en

ts
a
re

d
iff

er
en

ce
d

w
it

h
re

sp
ec

t
to

th
e

b
a
se

le
ve

l
fo

r
ea

ch
a
tt

ri
b

u
te

.
T

h
e

b
a
se

le
ve

l
fo

r
sa

la
ry

is
80

0;
fo

r
th

e
ot

h
er

a
tt

ri
b

u
te

s,
th

e
b

a
se

le
ve

ls
a
re

p
ro

v
id

ed
in

A
p

p
en

d
ix

T
a
b

le
1
.

B
IC

re
fe

rs
to

th
e

B
ay

es
ia

n
in

fo
rm

at
io

n
cr

it
er

io
n

.
A

sy
m

p
to

ti
c

st
a
n

d
a
rd

er
ro

rs
a
re

in
p

a
re

n
th

es
is

.
∗∗
∗

in
d

ic
a
te

s
th

a
t

th
e

p
a
ra

m
et

er
is

si
g
n

ifi
ca

n
tl

y
d

iff
er

en
t

fr
o
m

ze
ro

at
a

1%
le

v
el

,
∗∗

at
5%

an
d
∗

at
1
0
%

.

30


