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ON THE RISK RETURN RELATIONSHIP 
Jianxin Wang1  and  Minxian Yang2 

Abstract 

While the risk return trade-off theory suggests a positive relationship between the expected 

return and the conditional volatility, the volatility feedback theory implies a channel that 

allows the conditional volatility to negatively affect the expected return. We examine the 

effects of the risk return trade-off and the volatility feedback in a model where both the return 

and its volatility are influenced by news arrivals. Our empirical analysis shows that the two 

effects have approximately the same size with opposite signs for the daily excess returns of 

seven major developed markets. For the same data set, we also find that a linear relationship 

between the expected return and the conditional standard deviation is preferable to 

polynomial-type nonlinear specifications. 
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1. INTRODUCTION 

The risk return trade-off is a fundamental relationship in finance, which suggests that the 

expected excess return is positively related to the conditional variance. However the 

empirical evidence based on index return series has been mixed in the context of GARCH-in-

mean models. A positive relationship between the expected excess return and the conditional 

variance is documented by French, Schwert and Stambaugh (1987), Chou (1988), Campbell 

and Hentschel (1993), and Lundblad (2007) among others, whereas a negative relationship is 

found by Nelson (1991), Glosten, Jagannathan and Runkle (1993) and Jensen and Lunde 

(2001) among others. Outside the GARCH-in-mean framework, the results from alternative 

models are not clear-cut either, see Campbell (1987), Pagan and Hong (1991), Harrison and 

Zhang (1999), Bandt and Kang (2004) and Ghysels, Santa-Clara and Valkanov (2005) among 

others.  

Various explanations for the lack of a consensus in the empirical results are offered.  

Lundblad (2007) reasons that the sample sizes used in the literature are typically too small to 

accurately estimate the risk return relationship. Ghysels et al (2005) suggest that exploring 

data at various frequencies can sharpen the estimates of the conditional variance and its effect 

on the expected return. Rossi and Timmermann (2010) point out that the relationship between 

the expected return and the conditional volatility may be non-monotonic that cannot be 

correctly revealed by the models used in the literature. Yang (2011) argues that the volatility 

feedback effect proposed by French et al (1987) should be accounted for when quantifying 

the risk return trade-off in the GARCH-in-mean framework. 

 In the current paper, we consider two questions in the framework of GARCH-in-mean 

to further our understanding of the risk return relationship. First, when the volatility feedback 

is accounted for, does the conditional volatility still have a significant effect on the expected 

return? Second, is the relationship between the expected return and the conditional volatility 

nonlinear? The first question is interesting because, once the volatility feedback is taken into 

account, the relationship between the expected return and the conditional volatility is the sum 

of the risk return trade-off effect and the volatility feedback effect. This sum can no longer be 

interpreted as a risk premium and there is no reason to expect the conditional volatility to 

positively influence the expected return. The answer to this question quantifies the predictive 

power of the conditional volatility for the returns, shedding some light on the sources of the 

return predictability. The second question is interesting because its answer addresses, to some 

extent, the issue of non-monotonicity in the relationship between the expected return and the 
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conditional volatility. As Rossi and Timmermann (2010) point out, theoretical pricing models 

do not generally imply that this relationship is linear. Indeed, in the GARCH-in-mean 

literature, some authors specify that the expected return is linearly related to the conditional 

variance (see French et al (1987), Nelsen (1991), Campbell and Hentschel (1992), Glosten et 

al (1993) and Lundblad (2007). Others specify that it is linearly related to the conditional 

standard deviation (French eta al (1987), Jensen and Lunde (2001) and Yang (2011)). Adding 

to the previous studies, we examine this issue in a model where the volatility feedback effect 

is accounted for and the polynomial-type nonlinearity is allowed.  

Our model is an extension of Yang (2011), where there are two effects with opposite 

signs, risk return trade-off and volatility feedback, for the conditional volatility to influence 

the expected return. The contemporaneous correlation (CC) between the return and volatility 

is interpreted as the effect of volatility feedback and the reasoning of volatility feedback 

implies that CC should be negative. We examine the empirical validity of this interpretation 

by exploring the fact that the volatility feedback relies on the risk return trade-off. The 

interpretation will be invalid if the CC is observed without the presence of the risk return 

trade-off. In the event that this interpretation is incorrect, the “volatility feedback effect” 

mentioned elsewhere in this paper is understood to be the effect of the CC.  

 Our model is built on a general premise that both the return and its volatility are 

contemporaneously influenced by news arrivals. We show that it leads to a reduced-form 

GARCH-in-mean model where the conditional distribution is a mixture of the distributions of 

the return shock and the volatility shock. Our benchmark model follows the normal inverse 

Gaussian (NIG) mixture of Barndorff-Nielsen (1997) with the conditional variance being the 

asymmetric power ARCH of Ding, Granger and Engle (1993). We demonstrate that it is the 

mixture structure (not necessarily NIG mixture) that facilitates the separate identification of 

the risk return trade-off and the volatility feedback. Our data set consists of the daily excess 

return series computed from the MSCI price indices of seven developed markets. From the 

estimation results, we find little evidence against the hypothesis that the effects of risk return 

trade-off and volatility feedback sum up to zero in the expected return and the hypothesis that 

the conditional mean is linearly related to the conditional volatility (standard deviation). For 

all the markets, except Japan, the risk return trade-off effect and the volatility feedback effect 

are individually significant with opposite signs. Further, in the empirical results, there is little 

evidence against the interpretation of the CC as the volatility feedback. 



4 
 

 In the rest of this paper, Section 2 gives the details of our model. Section 3, with three 

subsections, contains data descriptions, estimation results and robustness checks. Concluding 

remarks are given in Section 4. 

 

2. MODEL 

The model below is an extension of Yang (2011). It covers a class of conditional distributions 

for the return and a class of nonlinear specifications for the conditional mean. Let 𝑥𝑡 be the 

excess return (the change of log asset price minus the risk-free rate) of an asset at the end of 

date 𝑡 and ℱ𝑡 be the information set generated by {𝑥𝑡, 𝑥𝑡−1, … }. The risk premium of the asset 

for given ℱ𝑡−1 is specified as  

(1) 𝜇𝑡 = 𝑚0 + 𝑚1ℎ𝑡, ℎ𝑡2 = var(𝑥𝑡|ℱ𝑡−1). 

Here the coefficient 𝑚1 is interpreted as the risk return trade-off effect, i.e., the effect in the 

absence of the contemporaneous correlation between the return shock and volatility shock 

(see below). This is our benchmark specification and its nonlinear extension will be 

considered at the end of this section. We allow news or information arrivals to influence both 

the return and its volatility. Let 𝑠𝑡 > 0 be the innovation3 to the volatility and be independent 

of ℱ𝑡−1 . Define the instantaneous variance as 𝜎𝑡2 = var(𝑥𝑡|ℱ𝑡−1, 𝑠𝑡) = 𝑐22ℎ𝑡2𝑠𝑡2 , where the 

positive constant 𝑐2 depends of the mean and variance of 𝑠𝑡2 and will be determined shortly. 

The innovation 𝑠𝑡 is labelled as the volatility shock since it controls the magnitude (large or 

small) of the unexpected price change. For example, for given ℱ𝑡−1, a large instantaneous 

volatility 𝜎𝑡 results from a large volatility shock 𝑠𝑡. On the other hand, the standardised score 

𝜀𝑡 = (𝑥𝑡 − 𝜇𝑡)/(𝑐2ℎ𝑡𝑠𝑡) is called the return shock as it sets the direction (up or down) of the 

unexpected price change. In terms the volatility and return shocks, the excess return may be 

expressed as 

(2) 𝑥𝑡 = 𝜇𝑡 + 𝑐2ℎ𝑡𝑠𝑡𝜀𝑡, 

where 𝜇𝑡 and ℎ𝑡 are functions of the information set ℱ𝑡−1. As the return and volatility shocks 

are a manifestation of news arrivals, we assume that 𝜀𝑡 and 𝑠𝑡 are independent of ℱ𝑡−1. To 

capture the possible correlation between 𝜀𝑡 and 𝑠𝑡, the return shock is decomposed as  

(3) 𝜀𝑡 = 𝜉𝑡 + 𝛽𝑠𝑡, 

                                                
3 Alternatively, one may think of 𝜂𝑡 = log(𝑠𝑡) − 𝐸[log(𝑠𝑡)] as a “deeper level” shock that is centered at zero. In 
that case, the innovation 𝑠𝑡 can be expressed as a constant multiple of exp (𝜂𝑡). 
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where 𝜉𝑡  is independent of 𝑠𝑡  with 𝐸(𝜉𝑡) = 0 and var(𝜉𝑡) = 1 . The constant parameter 𝛽 

dictates the sign of the covariance cov(𝜀𝑡, 𝑠𝑡) = 𝛽var(𝑠𝑡). The shocks 𝜀𝑡 and 𝑠𝑡, driven by 

unobserved news arrivals, represent the impacts of the news on the direction and the 

magnitude of the unexpected prices change. In this framework, the hypothesis that bad news 

is associated with high volatility can be formulated as 𝛽 < 0.  

 By (2) and (3), the constant 𝑐2 must satisfy 

ℎ𝑡2 = var(𝑥𝑡|ℱ𝑡−1) = var(𝑐2ℎ𝑡𝑠𝑡𝜀𝑡|ℱ𝑡−1) = 𝑐22ℎ𝑡2var(𝑠𝑡𝜀𝑡) 

     = 𝑐22ℎ𝑡2[𝛽2var(𝑠𝑡2) + 𝐸(𝑠𝑡2)]. 

It follows that   

(4) 𝑐2 = 1/�var(𝑠𝑡𝜀𝑡) = 1/�𝛽2var(𝑠𝑡2) + 𝐸(𝑠𝑡2). 

Further, (2) and (3) imply 

(5) 𝑥𝑡 = 𝜇𝑡 + 𝛽𝑐2ℎ𝑡𝑠𝑡2 + 𝑐2ℎ𝑡𝑠𝑡𝜉𝑡, 

which, conditional on ℱ𝑡−1 , follows the mixture distribution defined by 𝜉𝑡  and 𝑠𝑡2 . In 

particular, 𝑥𝑡|(ℱ𝑡−1, 𝑐22𝑠𝑡2) ∼ N[𝜇𝑡 + (𝛽/𝑐2/ℎ𝑡)𝑐22ℎ𝑡2𝑠𝑡2, 𝑐22ℎ𝑡2𝑠𝑡2]  when 𝜉𝑡 ∼ N(0,1) . From 

(5), the contemporaneous correlation between 𝑥𝑡 and 𝜎𝑡2 = 𝑐22ℎ𝑡2𝑠𝑡2 is found to be 

(6) corr(𝑥𝑡 ,𝜎𝑡2|ℱ𝑡−1) = 𝛽/�𝛽2 + 𝐸(𝑠𝑡2)/var(𝑠𝑡2) 

and its sign is determined by 𝛽. To be consistent with the usual ARCH-type model, we define 

the overall shock in (2) as the standardised 𝜀𝑡𝑠𝑡  

(7) 𝑣𝑡 = �𝜀𝑡𝑠𝑡 − 𝐸(𝜀𝑡𝑠𝑡)�/�𝑣𝑎𝑟(𝜀𝑡𝑠𝑡) = 𝑐2�𝜀𝑡𝑠𝑡 − 𝛽𝐸(𝑠𝑡2)� , 

which obviously satisfies 𝐸(𝑣𝑡) = 0 and var(𝑣𝑡) = 1. It is the mixture of the distributions of 

𝜉𝑡 and 𝑠𝑡2. By (2) and (7), the excess return in (2) may also be written as  

(8) 𝑥𝑡 = 𝜇𝑡 + 𝛽𝑐2𝐸(𝑠𝑡2)ℎ𝑡 + ℎ𝑡𝑣𝑡  

which is clearly a GARCH-in-mean model when ℎ𝑡 follows a GARCH process. 

It can be seen that (3) and (5) nest some frequently-used conditional distributions. In 

particular, when 𝛽 = 0 , the conditional distribution of 𝑥𝑡  in (5) is determined by the 

distribution of 𝑐2𝑠𝑡𝜉𝑡 . When 𝛽 = 0  and 𝜉𝑡  is normal, 𝑥𝑡|ℱ𝑡−1  is normal if 𝑠𝑡 ≡ 1 ; and 

𝑥𝑡|ℱ𝑡−1is Student’s t if  𝑠𝑡2  follows the inverted Gamma-2 distribution. When 𝛽 ≠ 0, the 

setup here not only covers the mixture distributions used by Jensen and Lund (2001) and 
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Yang (2011) but also other types of mixtures. For instance, when ln(𝑠𝑡2) ∼ 𝑁(0, 𝛾) with a 

positive parameter 𝛾  and 𝜉𝑡 ∼ 𝑁(0,1) , the conditional distribution of 𝑥𝑡  is a normal log 

normal mixture. These mixture distributions all have the capacity to capture the skewness and 

excess kurtosis in the data. 

While there is a variety of choices for the distribution of (𝜉𝑡, 𝑠𝑡2), our benchmark 

specification in this paper is 

(9) 𝜉𝑡 ~ 𝑖𝑖𝑑 N(0,1),         𝑠𝑡2 ~ 𝑖𝑖𝑑 IG(1, 𝛾),  

where IG is the inverse Gaussian distribution4 with 𝛾 being a positive parameter. Under (9), it 

is known that 𝐸(𝑠𝑡2) = 1/𝛾 ,  var(𝑠𝑡2) = 1/𝛾3  and 𝑐2 = 𝛾3/2/�𝛾2 + 𝛽2  (see Jensen and 

Lunde (2001) and Yang (2011) among others). For (9), the overall shock in (7) specialises to 

(10) 𝑣𝑡 = 𝑐2(𝑠𝑡𝜀𝑡 − 𝛽/𝛾) = −𝛽𝑐1 + (𝛽 𝑐2⁄ )𝑐22𝑠𝑡2 + 𝑐2𝑠𝑡𝜉𝑡    with     𝑐1 = 𝑐2/𝛾. 

The distribution of 𝑣𝑡  is known as the normal inverse Gaussian (NIG) mixture with the 

invariant parameterisation5. We denote this distribution by NIG𝐼(𝛾, 𝛽, −𝛽𝑐1, 𝑐2), which is 

the mix of 𝑣𝑡|𝑐22𝑠𝑡2 ~ N(−𝛽𝑐1 + (𝛽 𝑐2⁄ )𝑐22𝑠𝑡2, 𝑐22𝑠𝑡2)  and 𝑐22𝑠𝑡2 ~ IG(𝑐2, 𝛾 𝑐2⁄ ) . The NIG 

mixture is a member of the generalised hyperbolic (GH) distribution of Barndorff-Nielsen 

(1997) and possesses desirable properties for fitting speculative return series. In particular, 

the skewness and kurtosis of 𝑣𝑡 are given by (see Jensen and Lunde (2001)), 

(11) Skew(𝑣𝑡) = 3𝛽/�(𝛽2 + 𝛾2)𝛾,        Kurt(𝑣𝑡) = 3 + 3(1 + 4𝛽2/(𝛽2 + 𝛾2))/𝛾. 

For any finite 𝛾 and non-zero 𝛽, the NIG is thick-tailed and skewed, where the skewness 

direction is determined by the sign of 𝛽. Its capacity to accommodate skewness and thick 

tails in data is a major advantage over the normal and other symmetric distributions. Indeed, 

the normal distribution N(0,1)  is the special case of the NIG when 𝛽 = 0  and 𝛾 → ∞ . 

Further, the NIG is computationally easier to implement than other mixture distributions. 

For the specification (9), the excess return in (8) becomes 

(12) 𝑥𝑡 = 𝜇𝑡 + 𝛽𝑐1ℎ𝑡 + ℎ𝑡𝑣𝑡 

    = 𝑚0 + (𝑚1 + 𝛽𝑐1)ℎ𝑡 + ℎ𝑡𝑣𝑡, 𝑣𝑡~ 𝑖𝑖𝑑 NIG𝐼(𝛾,𝛽,−𝛽𝑐1, 𝑐2), 

                                                
4  For 𝑌 ~ IG(𝛿, 𝛾) , where 𝛿  and 𝛾  are positive parameters, its probability density function is pdf𝑌(𝑦) =
(2𝜋)−1/2𝛿3/2𝑦−3/2exp {𝛿𝛾 − .5(𝛿2𝑦−1 + 𝛾2𝑦)}  with 𝐸(𝑌) = 𝛿/𝛾  and var(𝑌) = 𝛿2/𝛾3 . If 𝑌 ~ IG(𝛿, 𝛾) , then 
𝑐2𝑌 ~ 𝐼𝐺(𝛿𝑐, 𝛾/𝑐) for any positive constant 𝑐. 
5 If 𝑋|𝑌 ~ N(𝜇 + (𝛽/𝛿)𝑌,𝑌) and 𝑌 ~ IG(𝛿, 𝛾/𝛿) for positive parameters 𝛿 and 𝛾, then the marginal distribution 
of 𝑋 is NIG𝐼(𝛾,𝛽, 𝜇, 𝛿). Note that the parameters (𝛾,𝛽) here are equivalent to the invariant parameters  (�̅�, �̅� ) 
of Barndorff-Nielsen (1997). 
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where 𝑐1 = 𝑐2/𝛾. While (12) is a GARCH-in-mean process when ℎ𝑡 is a GARCH process, 

the risk return trad-off effect (𝑚1) and the contemporaneous correlation effect (𝛽𝑐1) are 

clearly separated in the conditional mean. To complete the model, we specify ℎ𝑡  as the 

asymmetric power ARCH (APARCH ) of Ding et al (1993),  

(13) ℎ𝑡𝜗 = 𝜔 + 𝑎(|𝑢𝑡−1| − 𝜏𝑢𝑡−1)𝜗 + 𝑏ℎ𝑡−1𝜗 ,        𝑢𝑡 = ℎ𝑡𝑣𝑡, 

where (𝜔, 𝜏,𝑎, 𝑏,𝜗) are parameters satisfying 𝜔 > 0, |𝜏| < 1, 𝑎 > 0, 𝑏 ≥ 0 and 𝜗 > 0. The 

parameter 𝜏  captures the asymmetric effect of 𝑢𝑡−1  on ℎ𝑡  (negative shocks predict higher 

volatility than positive ones when 𝜏 > 0). The merits of the APARCH include the capacities 

of: (a) capturing asymmetric responses of the conditional variance to 𝑢𝑡−1; (b) allowing a 

data-determined flexible functional form via the Box-Cox transformation parameter 𝜗; (c) 

nesting a number of popular GARCH formulations such as that of Glosten et al (1993) (see 

Ding et al (1993), Jensen and Lunde (2001) and Yang (2011) among others). It can be 

verified from (5) and (9) that 𝑥𝑡|ℱ𝑡−1 ~ NIG𝐼(𝛾,𝛽, 𝜇𝑡, 𝑐2ℎ𝑡) with the conditional density 

(14) pdf(𝑥𝑡|ℱ𝑡−1) = �𝛽2+𝛾2

𝜋𝑐2ℎ𝑡
𝑞 �𝑥𝑡−𝜇𝑡

𝑐2ℎ𝑡
�
−1
𝐾1 ��𝛽2 + 𝛾2 𝑞 �𝑥𝑡−𝜇𝑡

𝑐2ℎ𝑡
�� exp �𝛾 + 𝛽 𝑥𝑡−𝜇𝑡

𝑐2ℎ𝑡
�, 

where 𝑞(⋅) = �1 + (⋅)2 and 𝐾1(⋅) is the modified Bessel function of third kind with index 1. 

The conditional density (14), together with (13) and (1) is the basis for the maximum 

likelihood (ML) estimation of the parameters (𝑚0,𝑚1,𝜔, 𝜏,𝑎, 𝑏, 𝛾,𝛽,𝜗). Note that 𝑐1 = 𝑐2/𝛾 

and 𝑐2 = 𝛾3/2/�𝛾2 + 𝛽2 are not free parameters. 

 In (12), the total GARCH-in-mean effect is (𝑚1 + 𝛽𝑐1), where 𝑚1  represents the risk 

return trade-off and is expected to be positive as a high expected volatility should be 

compensated by a high expected return. The term 𝛽𝑐1 is induced by the contemporaneous 

correlation (CC) between the volatility shock and the return shock. The two parameters in 

(𝑚1 + 𝛽𝑐1) are jointly identified by the conditional (on ℱ𝑡−1) mean of 𝑥𝑡 and the shape of 

the conditional distribution of 𝑥𝑡. In general, restricting either of 𝑚1 and 𝛽 to be zero without 

justification may lead to an inconsistent estimate of the other. Hypotheses about 𝑚1 and 𝛽𝑐1 

can be easily tested in (12). In particular, we are interested in the hypothesis that the CC 

cancels out the risk return trade-off in the conditional mean: 𝑚1 + 𝛽𝑐1 = 0. It is of interest 

because the sum (𝑚1 + 𝛽𝑐1) cannot be regarded as the risk return trade-off effect and there is 

no reason to expect it to be positive. The test provides an insight on the contribution of the 

conditional volatility to the predictability of the return. To control for the predictability 
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induced by other factors, we include the lag of 𝑥𝑡 in the conditional mean for our empirical 

analysis.  

 Yang (2011) interprets a negative CC as the volatility feedback effect suggested by 

French et al (1987). The volatility feedback may be summarised as follows: (i) a large 

volatility shock induces an upward revision of the expected volatility, which in turn leads to 

an increase in the expected return and the discount rate for future cash flows; (ii) the increase 

in the discount rate reduces the present value of future cash flows and causes the current price 

to fall; (iii) consequently, price falls (bad news) tend to be contemporaneously associated 

with high volatility. Clearly, in (i), the volatility feedback relies on the return risk trade-off 

and the volatility clustering (i.e., a high/low volatility is likely followed by a high/low 

volatility). It follows that the volatility feedback cannot stand alone without the presence of 

the return risk trade-off. Hence, the validity of the interpretation of 𝛽𝑐1  as the volatility 

feedback effect can be empirically examined: the interpretation would be invalid for cases 

where 𝛽𝑐1 < 0 but 𝑚1 = 0. In such cases, the phrase “volatility feedback effect” mentioned 

elsewhere should be understood to be the CC effect.  

 Recently, Rossi and Timmermann (2010) suggest that the relationship between the 

conditional volatility and the expected return may be non-monotonic such that the conditional 

volatility may have a positive (negative) impact on the expected return when the volatility is 

low (high). In our framework, non-monotonicity amounts to 𝜇𝑡 being a nonlinear function of 

ℎ𝑡. To address this issue, we also extend (1) to the cases where 𝜇𝑡 is a polynomial of ℎ𝑡  

(15) 𝜇𝑡 = 𝑚0 + ∑ 𝑚𝑖ℎ𝑡𝑖𝑙
𝑖=1 , 𝑙 = 2,3,  

which can accommodate many different non-monotonic relationships between 𝜇𝑡 and ℎ𝑡. To 

investigate the monotonicity issue and provide further evidence on the functional form 

between the expected return and the conditional volatility, we also test the hypothesis that 

𝑚2 = 𝑚3 = 0.  

 

3. EMPIRICAL RESULTS 

3.1 DATA 

We consider the returns of seven major developed markets including Canada, France, 

Germany, Italy, Japan, UK and US. The returns are based on the MSCI price indices of these 

markets. While treasury bill rates are usually used to proxy the risk free interest rates in the 
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literature, they are not available for some markets. Table 1 lists the rates used. The lengths of 

these series are determined by the availability of interest rates as well as genuine daily 

observations on the MISC indices. All data are obtained from Datastream. 

 The summary statistics of the excess returns are listed in Table 2. The usual features 

of index return series are apparent: near-zero means, large standard deviations, large kurtosis, 

negative skewness, and fairly strong autocorrelations (large Ljung-Box Q-statistics). While 

the mean excess returns should be positive theoretically, that of Japan turns out to be negative 

for the periods considered (restricted by data availability). The magnitude of Japan’s 

skewness is much smaller than other markets. 

3.2 MAIN RESULTS 

The model outlined in Section 2 is estimated for the seven markets. In this implementation, 

the lag of 𝑥𝑡 is also included in the conditional mean to account for the autocorrelation that is 

not induced by the conditional volatility. The ML estimation results are presented in Table 3, 

where the standard errors are computed using the robust “sandwich” formula (see Theorems 

3.2 and 3.4 of White (1982) and Bollerslev and Wooldridge (1992)). The standard errors of 

derived parameters 𝛽𝑐1  and 𝑚1 + 𝛽𝑐1  are obtained using the “delta” method (see section 

5.2.4 of Greene (2003)). 

 The usual characteristics in ARCH-type models for market indices are evident: 

clustering (𝑎 being positive), persistence (𝑏 being close to unity), asymmetric news curves (𝜏 

being positive), and fat-tails (𝛾 being finite). Interestingly, the estimates of 𝜗 suggest that the 

original GARCH formulation 𝜗 = 2 is strongly rejected by all the markets. In particular, the 

data does not reject the hypothesis of 𝜗 = 1 for the US market. The Ljung-Box Q30statistics 

for the standardised residuals and their squares in Table 3 are low in comparison to those of 

the returns in Table 1, indicating that the model is able to capture the main dynamic features 

of the data. 

 Regarding the risk return trade-off effect  𝑚1, all the markets, except Japan, exhibit 

significantly positive estimates of 𝑚1 at the 2% level of significance. These estimates are also 

economically significant in comparison against the sample means and standard deviations in 

Table 2. For Japan, the p-value of the estimate of 𝑚1  is about 0.085. Regarding the 

contemporaneous correlation parameter 𝛽  and the volatility feedback effect 𝛽𝑐1 , the 

estimates from all the markets, except Japan, are significantly negative at the 1% level. For 
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Japan, the p-value of the estimate of 𝛽𝑐1 is about 0.112. Notice that for each of these markets, 

the estimated 𝑚1 and 𝛽𝑐1 have opposite signs with similar magnitudes. 

 The null hypothesis 𝐻0: 𝑚1 + 𝛽𝑐1 = 0 cannot be rejected for all the markets. The 

magnitudes of 𝑚1 + 𝛽𝑐1 are much smaller than those of 𝑚1 or 𝛽𝑐1 for all the markets but 

Japan. The conditional volatility appears to have little predictive power for the expected 

return, as the risk return trade-off and the volatility feedback cancel out each other in the 

conditional mean. Further, as mentioned earlier, the cases with significant 𝛽𝑐1  and 

insignificant 𝑚1  represent evidence against the interpretation of the CC as the volatility 

feedback. In Table 3, no estimates fall into this category and there is no evidence against this 

interpretation. 

 The effects of restricting either 𝛽 = 0 (no volatility feedback) or 𝑚1 = 0 (no risk 

return trade-off) are presented in Table 4. While these restrictions are rejected (except Japan) 

according to Table 3, their full impacts can only be seen in Table 4. The likelihood ratio (LR) 

statistics strongly reject 𝛽 = 0 (or 𝑚1 = 0) for all the markets but Japan and the restricted 

estimates of 𝑚1 (or 𝛽𝑐1) are either insignificant or with much smaller magnitudes than the 

unrestricted estimates in Table 3. Further, the last column of Table 4 is about restricting the 

conditional distribution to be normal, where the huge LR statistics convincingly reject the 

normality restriction for all the markets. The main difference between our model and the 

models in the literature is that our model allows the contemporaneous correlation (interpreted 

as volatility feedback) between the volatility shock and return shock. The results in Table 4 

demonstrate that omitting this allowance can have serious impact on the estimates of the 

return risk relationship. 

 The extended specification (15) is used to check whether or not the expected return is 

linearly related to the conditional volatility (standard deviation). The linearity is rejected if a 

large improvement in the log likelihood is observed for the extended specification. The 

estimation results for the case with 𝑙 = 2  are presented in Table 5. Clearly, the main 

conclusions drawn from Table 4 also hold for Table 5. In fact, the estimates of 𝑚2  are 

insignificant for all the markets and the LR tests on the restriction 𝑚2 = 0 provide no support 

for the extended specification with 𝑙 = 2. For the extension (15) with 𝑙 = 3, the LR statistics 

for the restrictions 𝑚2 = 𝑚3 = 0 are presented in the last row of Table 5, which again do not 

support for the extended specification. This exercise confirms that the linear specification (1) 
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is preferred for our data set and there is little evidence to support the nonlinear relationship 

specified in (15).  

3.3 ROBUSTNESS CHECKS 

In this subsection, we check the robustness of the results documented in Section 3.2 by 

estimating the models for the following variations on the benchmark model in Table 3, ceteris 

paribus. 

Choice of Risk-free Rates 

There are many possible but similar proxies for the risk-free rates. However, because the 

magnitudes of variations in the raw returns are much larger, the impact of the choice of risk-

free rates on the main results is negligible. To confirm this claim, we estimate the model with 

the raw returns of the seven market indices and present the results in Table 6. Apparently, 

there are no major differences between Tables 3 and 6. 

GARCH Forms 

Among possible GARCH specifications, APARCH in (13) is used for the main results in 

Section 3.2 because of its flexibility. We also estimate the models with the GJR formulation 

(Glosten et al (1993)) and the original GARCH formulation, which amount to restricting 

𝜗 = 2 and (𝜗, 𝜏) = (2,0) respectively. The estimates for the key parameters (𝑚1,𝛽𝑐1) do not 

materially differ from those in Table 3 and therefore are not reported. 

Distributional Specifications 

The model described in Section 2 covers various specifications for the return shock 𝜀𝑡 and 

volatility shock 𝑠𝑡 in (3), in addition to our choice (9) for the main results in Section 3.2. To 

check whether the main results in Table 3 are sensitive to the distributional specification, we 

consider the alternative specification 𝜉𝑡 ∼ 𝑖𝑖𝑑 N(0,1) and ln(𝑠𝑡2) ∼ 𝑖𝑖𝑑 N(0, 𝛾). For this case, 

according to (4), 𝑐2 = 1/�𝛽2𝑒𝛾(𝑒𝛾 − 1) + 𝑒𝛾/2 . The overall shock 𝑣𝑡  in (7) follows the 

normal log normal (NLN) mixture NLN(𝛾,𝛽,−𝛽𝑐1, 𝑐2) defined by 

(16) 𝑣𝑡|𝑐22𝑠𝑡2 ∼ 𝑖𝑖𝑑 N(−𝛽𝑐1 + (𝛽/𝑐2)𝑐22𝑠𝑡2 , 𝑐22𝑠𝑡2),      ln(𝑐22𝑠𝑡2) ∼ 𝑖𝑖𝑑 N(ln(𝑐22) , 𝛾), 

where 𝑐1 = 𝑐2𝑒𝛾/2. The expression 𝑥𝑡 = 𝑚0 + (𝑚1 + 𝛽𝑐1)ℎ𝑡 + ℎ𝑡𝑣𝑡 in (12) is valid for the 

𝑐2 and 𝑐1 defined here. The estimation results for the NLN mixture is presented in Table 7, 

where the estimates for the key parameters (𝑚1,𝛽𝑐1) are qualitatively the same as those of 

Table 3. This exercise shows that it is the mixture structure (not necessarily the NIG mixture 
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specification) that is important for characterising the impact of news arrivals on the return 

and for separating the volatility feedback effect from the risk return trade-off effect.  

Time Aggregation 

Although our focus is on the short-term risk return relationships, it is of interest to check 

whether or not the main short-term results obtained in Section 3.2 remain true for weekly 

data. The results for weekly excess return series (end-of-Friday return) are presented in Table 

8. The main conclusion drawn from Table 3 largely hold for the weekly returns series except 

UK. For UK, the estimate of 𝑚1 for the weekly series becomes less sharp with a p-value 

being about 0.083. Nonetheless, it appears that a moderate change in the data frequency does 

not alter our main conclusions in Section 3.2.  

 In summary, the results in Section 3.2 are insensitive to the variations considered 

here. The computation of all the empirical results is carried out in the R Environment (2011). 

  

4. CONCLUSION 

We analyse the relationship between the market index return and its volatility in a GARCH-

in-mean model with the normal inverse Gaussian mixture distribution, taking into account the 

volatility feedback effect. The hypothesis that the volatility feedback effect cancels out the 

risk premium effect in the expected return cannot be rejected for the market index returns of 

seven major developed economies. The hypothesis that the relationship between the expected 

return and the conditional standard deviation is linear cannot be rejected either. We also 

consider a set of variations on the conditional mean, conditional variance, and conditional 

distribution. The main results are robust to these variations. For our data set, the results 

indicate that the conditional volatility has little predictive power for the expected return. 

 Our results are obtained primarily for daily return series and largely hold for weekly 

return series. Ghysels et al (2005) and Lundblad (2007) find positive relationships between 

the expected return and the conditional variance at the monthly frequency. It is of interest to 

investigate whether or not the volatility feedback effect exists in monthly return series. As 

there are ten parameters in our model, reasonably-accurate estimates require long time series 

(see Lundblad (2007)). For our data set, however, the length of the monthly return series is at 

most 371. For this reason, monthly return series are not analysed in the current paper. 
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Table 1. Sources of Interest Rates 

Market Interest Rate 
Canada CANADA TREASURY BILL 3 MONTH - MIDDLE RATE 
France FRANCE EU-FRANC 3M (FT/ICAP/TR) - MIDDLE RATE 
Germany GERMANY EU-MARK 3M (FT/ICAP/TR) - MIDDLE RATE 
Italy ITALY EURO-LIRE 3M (FT/ICAP/TR) - MIDDLE RATE 
Japan JAPAN AVG.TIME DEP. 10+ MIL.YEN 3MTH - MIDDLE RATE 
United Kingdom UK TREASURY BILL TENDER 3M - MIDDLE RATE 
United States US T-BILL SEC MARKET 3 MONTH (D) - MIDDLE RATE 

 

 

 

 

Table 2. Summary Statistics 

Market Mean StdDev Skewness Kurtosis Q30(𝑥) no.Obs Start Date 

Canada 0.009 1.055 -0.695 14.823 96.105 8173 1980-01-02 

France 0.012 1.265 -0.286 9.742 94.009 8173 1980-01-02 

Germany 0.013 1.316 -0.361 10.625 72.864 8173 1980-01-02 

Italy 0.010 1.386 -0.241 8.434 157.323 8173 1980-01-02 

Japan -0.016 1.359 -0.110 9.298 72.615 5197 1991-05-30 

UK 0.007 1.100 -0.496 13.066 131.352 6866 1985-01-04 

USA 0.017 1.124 -1.218 31.875 71.677 8173 1980-01-02 

All series end at the end of April 2011. Q30(𝑥) is the Ljung-Box Q-statistics at lag 30 for the excess 
return.  
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Table 3. Results for Benchmark Model 

𝑥𝑡 − 𝜑𝑥𝑡−1 = 𝑚0 + (𝑚1 + 𝛽𝑐1)ℎ𝑡 + ℎ𝑡𝑣𝑡,        𝑣𝑡 ∼ 𝑖𝑖𝑑 NIG𝐼(𝛾,𝛽,−𝛽𝑐1, 𝑐2), 

ℎ𝑡𝜗 = 𝜔 + 𝑎(|𝑢𝑡−1|− 𝜏𝑢𝑡−1)𝜗 + 𝑏ℎ𝑡−1𝜗 ,        𝑢𝑡 = ℎ𝑡𝑣𝑡, 

𝑐2 = 𝛾3/2/�𝛾2 + 𝛽2,        𝑐1 = 𝑐2/𝛾. 

 
Canada France Germany Italy Japan UK USA 

𝑚1 0.199 0.134 0.271 0.116 0.100 0.328 0.146 

 
0.045 0.056 0.055 0.047 0.058 0.084 0.043 

𝛽𝑐1 -0.150 -0.124 -0.240 -0.095 -0.060 -0.301 -0.113 

 
0.032 0.042 0.046 0.035 0.037 0.074 0.027 

𝑚1 + 𝛽𝑐1 0.050 0.010 0.032 0.021 0.040 0.027 0.033 

 
0.033 0.038 0.032 0.032 0.049 0.041 0.035 

𝛾 1.911 2.700 2.655 2.100 1.786 3.988 1.601 

 
0.206 0.390 0.458 0.257 0.246 0.787 0.187 

𝛽 -0.208 -0.205 -0.395 -0.139 -0.080 -0.609 -0.144 

 
0.049 0.073 0.096 0.053 0.051 0.190 0.037 

𝜗 1.641 1.471 1.324 1.391 1.431 1.520 1.187 

 
0.154 0.142 0.108 0.117 0.152 0.194 0.103 

𝜏 0.197 0.404 0.318 0.230 0.484 0.382 0.639 

 
0.047 0.055 0.051 0.039 0.085 0.071 0.077 

𝑎 0.074 0.082 0.085 0.094 0.082 0.074 0.059 

 
0.009 0.008 0.007 0.009 0.009 0.008 0.006 

𝑏 0.924 0.906 0.916 0.910 0.904 0.915 0.939 

 
0.010 0.010 0.008 0.009 0.012 0.010 0.007 

𝜔 0.010 0.027 0.018 0.020 0.037 0.017 0.013 

 
0.002 0.005 0.003 0.005 0.008 0.003 0.003 

𝑚0 -0.028 0.009 -0.009 -0.011 -0.063 -0.011 -0.011 

 
0.024 0.037 0.030 0.033 0.053 0.034 0.029 

𝜑 0.128 0.066 0.019 0.085 0.031 0.021 -0.001 

 
0.011 0.011 0.011 0.011 0.013 0.012 0.010 

logL -9885.15 -12019.49 -12010.09 -12844.27 -8196.83 -9006.93 -10658.62 
Q30(𝑣) 41.68 47.86 56.49 65.87 23.07 37.74 39.34 

Q30(𝑣2) 34.17 14.79 6.54 16.00 33.40 36.45 15.42 

Here 𝑥𝑡 is the excess return at the end of day 𝑡. The black rows are ML estimates of parameters. The 
blue rows are the standard errors computed with the robust “sandwich” formula (see White (1982) and 
Bollerslev and Wooldridge (1992)). The standard errors for 𝛽𝑐1 and 𝑚1 + 𝛽𝑐1 are obtained by using 
the delta method (see section 5.2.4 of Greene (2003)). The “logL” row contains the log likelihood 
values. Q30(𝑣) and Q30(𝑣2) are the Ljung-Box Q-statistics at lag 30 for the standardized residual 
(from the benchmark model) and squared standardized residual respectively.  
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Table 4. Restricted Estimation Results 

 

Restricted 
Benchmark Model: 
𝛽 = 0 

Restricted 
Benchmark Model: 
𝑚1 = 0 

Restricted 
Benchmark Model: 
𝛽 = 0, 𝛾 = ∞ 

 
𝑚1 LR-stat 𝛽𝑐1 LR-stat 𝑚1 LR-stat 

Canada 0.064 22.39 -0.052 21.34 0.035 434.82 

 
0.033 

 
0.023 

 
0.036  

France 0.017 9.73 -0.051 6.42 0.019 304.03 

 
0.038 

 
0.028 

 
0.048  

Germany 0.047 36.53 -0.073 30.46 0.034 510.79 

 
0.031 

 
0.028 

 
0.033  

Italy 0.028 7.95 -0.033 6.78 0.029 404.48 

 
0.031 

 
0.024 

 
0.035  

Japan 0.046 2.59 -0.023 2.97 0.031 224.82 

 
0.049 

 
0.030 

 
0.053  

UK 0.037 27.45 -0.082 22.30 0.027 213.06 

 
0.041 

 
0.035 

 
0.042  

USA 0.046 15.89 -0.052 12.29 0.051 517.74 

 
0.034 

 
0.023 

 
0.040  

The blue rows are the standard errors computed with the robust “sandwich” formula (see White 
(1982) and Bollerslev and Wooldridge (1992)). The likelihood ratio, LR-stat, under the restriction, is 
asymptotically distributed as 𝜒2(1) for the second and third column and 𝜒2(2) for the last column. 
The 5% and 1% critical values are 3.84 and 6.63 for 𝜒2(1) respectively. The 5% and 1% critical 
values are 5.59 and 9.21 for 𝜒2(2) respectively. 
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Table 5. Results for Extended Model 

𝑥𝑡 − 𝜑𝑥𝑡−1 = 𝑚0 + (𝑚1 + 𝛽𝑐1)ℎ𝑡 + 𝑚2ℎ𝑡2 + ℎ𝑡𝑣𝑡,        𝑣𝑡 ∼ 𝑖𝑖𝑑 NIG𝐼(𝛾,𝛽,−𝛽𝑐1, 𝑐2), 

ℎ𝑡𝜗 = 𝜔 + 𝑎(|𝑢𝑡−1|− 𝜏𝑢𝑡−1)𝜗 + 𝑏ℎ𝑡−1𝜗 ,        𝑢𝑡 = ℎ𝑡𝑣𝑡, 

𝑐2 = 𝛾3/2/�𝛾2 + 𝛽2,        𝑐1 = 𝑐2/𝛾. 

 
Canada France Germany Italy Japan UK USA 

𝑚1 0.243 0.125 0.392 0.107 0.015 0.376 0.163 

 
0.092 0.123 0.118 0.094 0.101 0.127 0.072 

𝛽𝑐1 -0.151 -0.124 -0.238 -0.096 -0.061 -0.302 -0.113 

 
0.032 0.042 0.044 0.035 0.038 0.074 0.027 

𝑚1 + 𝛽𝑐1 0.092 0.001 0.154 0.012 -0.046 0.074 0.050 

 
0.086 0.115 0.110 0.086 0.096 0.103 0.067 

𝑚2 -0.019 0.003 -0.046 0.003 0.030 -0.020 -0.007 

 
0.035 0.041 0.041 0.031 0.029 0.042 0.027 

𝛾 1.913 2.701 2.639 2.101 1.776 3.992 1.606 

 
0.208 0.391 0.442 0.258 0.245 0.794 0.186 

𝛽 -0.210 -0.205 -0.391 -0.139 -0.081 -0.610 -0.144 

 
0.049 0.073 0.090 0.052 0.052 0.192 0.037 

𝜗 1.645 1.468 1.324 1.391 1.423 1.540 1.194 

 
0.154 0.149 0.106 0.117 0.154 0.204 0.106 

𝜏 0.196 0.405 0.313 0.230 0.489 0.379 0.645 

 
0.047 0.057 0.050 0.039 0.087 0.072 0.077 

𝑎 0.073 0.082 0.085 0.094 0.082 0.073 0.059 

 
0.009 0.008 0.007 0.009 0.009 0.008 0.006 

𝑏 0.924 0.906 0.916 0.910 0.903 0.915 0.939 

 
0.010 0.010 0.008 0.009 0.012 0.010 0.007 

𝜔 0.010 0.027 0.017 0.020 0.037 0.017 0.013 

 
0.002 0.005 0.003 0.005 0.009 0.003 0.003 

𝑚0 -0.047 0.015 -0.077 -0.006 -0.008 -0.035 -0.019 

 
0.044 0.073 0.065 0.057 0.074 0.058 0.039 

𝜑 0.128 0.066 0.019 0.085 0.030 0.021 -0.001 

 
0.011 0.011 0.011 0.011 0.013 0.012 0.010 

logL -9884.99 -12019.48 -12009.15 -12844.26 -8196.50 -9006.80 -10658.59 
LR(𝑚2 = 0) 0.33 0.01 1.89 0.01 0.67 0.26 0.06 
LR(𝑚2 = 𝑚3 = 0)     0.33 1.10 4.42 0.31 2.42 3.34 0.07 

Here 𝑥𝑡 is the excess return at the end of day 𝑡. The black rows are ML estimates of parameters. The 
blue rows are the standard errors computed with the robust “sandwich” formula (see White (1982) and 
Bollerslev and Wooldridge (1992)). The standard errors for 𝛽𝑐1 and 𝑚1 + 𝛽𝑐1 are obtained by using 
the delta method (see section 5.2.4 of Greene (2003)). The “logL” row contains the log likelihood 
values. The LR(⋅) rows are the likelihood ratio statistics for testing the restriction specified in the 
brackets. The LR(𝑚2 = 0) statistic is asymptotically 𝜒2(1) distribution under the restriction. The 
LR(𝑚2 = 0,𝑚3 = 0) statistic is asymptotically 𝜒2(2) distribution under the restriction.  
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Table 6. Results for Benchmark Model: Raw Return Series 

Market 𝑚1 𝛽𝑐1 𝑚1 + 𝛽𝑐1 𝛾 𝛽 𝜗 𝜏 𝑎 𝑏 𝜔 

Canada 0.198 -0.152 0.046 1.909 -0.211 1.632 0.202 0.074 0.924 0.010 

 
0.045 0.032 0.033 0.207 0.049 0.153 0.048 0.009 0.010 0.002 

France 0.129 -0.124 0.005 2.682 -0.204 1.471 0.404 0.082 0.906 0.027 

 
0.056 0.041 0.038 0.385 0.072 0.141 0.055 0.008 0.010 0.005 

Germany 0.265 -0.240 0.025 2.644 -0.395 1.311 0.327 0.085 0.916 0.018 

 
0.055 0.045 0.031 0.450 0.094 0.109 0.052 0.007 0.008 0.003 

Italy 0.123 -0.095 0.027 2.090 -0.138 1.408 0.222 0.094 0.909 0.020 

 
0.046 0.035 0.032 0.256 0.052 0.117 0.039 0.009 0.010 0.005 

Japan 0.100 -0.061 0.039 1.779 -0.082 1.431 0.485 0.082 0.904 0.037 

 
0.059 0.038 0.049 0.245 0.052 0.154 0.085 0.009 0.012 0.008 

UK 0.330 -0.302 0.028 4.000 -0.611 1.524 0.373 0.074 0.914 0.018 

 
0.085 0.075 0.041 0.796 0.194 0.194 0.070 0.008 0.010 0.003 

USA 0.150 -0.112 0.038 1.596 -0.142 1.174 0.644 0.060 0.939 0.014 
  0.041 0.027 0.033 0.184 0.036 0.104 0.078 0.006 0.007 0.003 

 

 

 

 

Table 7. Results for Benchmark Model: Normal Log Normal Mixture 

𝑥𝑡 − 𝜑𝑥𝑡−1 = 𝑚0 + (𝑚1 + 𝛽𝑐1)ℎ𝑡 + 𝑚2ℎ𝑡2 + ℎ𝑡𝑣𝑡,        𝑣𝑡 ∼ 𝑖𝑖𝑑 NLN(𝛾,𝛽,−𝛽𝑐1, 𝑐2), 

ℎ𝑡𝜗 = 𝜔 + 𝑎(|𝑢𝑡−1|− 𝜏𝑢𝑡−1)𝜗 + 𝑏ℎ𝑡−1𝜗 ,        𝑢𝑡 = ℎ𝑡𝑣𝑡, 

𝑐2 = 1/�𝛽2𝑒𝛾(𝑒𝛾 − 1) + 𝑒𝛾/2,        𝑐1 = 𝑐2𝑒𝛾/2. 

Market 𝑚1 𝛽𝑐1 𝑚1 + 𝛽𝑐1 𝛾 𝛽 𝜗 𝜏 𝑎 𝑏 𝜔 

Canada 0.197 -0.148 0.050 0.433 -0.133 1.638 0.195 0.073 0.924 0.010 

 
0.044 0.032 0.033 0.037 0.031 0.160 0.046 0.007 0.007 0.002 

France 0.130 -0.121 0.009 0.323 -0.112 1.460 0.405 0.082 0.906 0.027 

 
0.054 0.041 0.038 0.033 0.039 0.137 0.055 0.007 0.008 0.004 

Germany 0.269 -0.237 0.032 0.324 -0.221 1.335 0.313 0.085 0.916 0.017 

 
0.052 0.046 0.031 0.032 0.043 0.113 0.046 0.007 0.007 0.003 

Italy 0.113 -0.093 0.020 0.401 -0.084 1.394 0.230 0.094 0.909 0.020 

 
0.045 0.035 0.032 0.035 0.031 0.124 0.038 0.008 0.008 0.004 

Japan 0.094 -0.056 0.038 0.475 -0.050 1.432 0.483 0.082 0.904 0.037 

 
0.057 0.036 0.049 0.052 0.033 0.159 0.076 0.009 0.010 0.007 

UK 0.329 -0.301 0.028 0.225 -0.288 1.528 0.379 0.073 0.915 0.017 

 
0.077 0.075 0.041 0.029 0.066 0.164 0.063 0.007 0.008 0.003 

USA 0.141 -0.108 0.032 0.515 -0.096 1.187 0.640 0.058 0.940 0.013 
  0.042 0.026 0.035 0.043 0.026 0.105 0.080 0.005 0.005 0.002 
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Table 8. Results for Benchmark Model: Weekly Excess Return Series 

Market 𝑚1 𝛽𝑐1 𝑚1 + 𝛽𝑐1 𝛾 𝛽 𝜗 𝜏 𝑎 𝑏 𝜔 

Canada 0.354 -0.337 0.017 2.575 -0.553 1.499 0.267 0.097 0.880 0.117 

 
0.143 0.102 0.106 0.622 0.218 0.387 0.115 0.020 0.030 0.066 

France 0.511 -0.556 -0.044 4.305 -1.197 1.305 0.341 0.100 0.874 0.151 

 
0.129 0.136 0.088 1.656 0.487 0.327 0.119 0.017 0.023 0.071 

Germany 0.951 -0.959 -0.008 6.276 -2.602 1.550 0.294 0.121 0.846 0.202 

 
0.339 0.323 0.093 2.618 1.434 0.342 0.100 0.019 0.024 0.077 

Italy 0.274 -0.266 0.008 2.920 -0.460 1.504 0.119 0.130 0.862 0.163 

 
0.130 0.105 0.087 0.781 0.211 0.340 0.070 0.021 0.026 0.092 

Japan 0.397 -0.403 -0.006 4.605 -0.880 1.225 0.488 0.087 0.846 0.279 

 
0.235 0.151 0.206 1.709 0.418 0.358 0.235 0.050 0.118 0.318 

UK 0.516 -0.527 -0.011 3.557 -1.035 1.365 0.631 0.085 0.875 0.144 

 
0.298 0.220 0.125 1.619 0.651 0.218 0.168 0.018 0.024 0.051 

USA 0.694 -0.681 0.013 4.355 -1.504 0.856 0.586 0.100 0.883 0.079 
  0.084 0.053 0.054 0.638 0.219 0.201 0.122 0.020 0.029 0.033 
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