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SCORING RULES: A GAME-THEORETICAL ANALYSIS

FRANCESCO DE SINOPOLIa, GIOVANNA IANNANTUONIb, AND CARLOS PIMIENTAc

Abstract. We prove two results on the generic determinacy of Nash equilibrium
in voting games. The first one is for negative plurality games. The second one is
for approval games under the condition that the number of candidates is equal to
three. These results are combined with the analogous one obtained in De Sinop-
oli (2001) for plurality rule to show that, for generic utilities, three of the most
well-known scoring rules, plurality, negative plurality and approval, induce fi-
nite sets of equilibrium outcomes in their corresponding derived games—at least
when the number of candidates is equal to three. This is a necessary requirement
for the development of a systematic comparison amongst these three voting rules
and a useful aid to compute the stable sets of equilibria (Mertens, 1989) of the
induced voting games. To conclude, we provide some examples of voting envi-
ronments with three candidates where we carry out this this comparison.

Keywords: Approval voting, Plurality voting, Negative plurality, Sophisticated
voting, Mertens Stability.
JEL Classification Numbers: C72, D72.

1. Introduction

The Gibbard-Satterthwaite Theorem teaches us that we must limit the number
of desirable properties that we can ask for to our voting systems. But collective
decisions still need to be made whose outcome is legitimized by the participation
in the decision process of all the individuals that will be affected by its outcome.
This paper is a contribution to a positive research agenda that aims at understanding
how the electoral system determines the political outcome.

An electoral system must be judged in terms of how it maps the constituency’s
preferences into the set of possible political outcomes. For this reason, it is impor-
tant to describe the incentives created by the different voting games generated by
the different electoral systems and to characterize, in as much detail as possible,
their sets of equilibrium outcomes. The first step of this process is to qualify what
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we mean by equilibrium. Often voting games have unreasonable Nash equilib-
ria that do not successfully capture plausible voting behavior. Farquharson (1969)
suggested the sophisticated voting principle: reasonable equilibria must survive
iterative deletion of dominated strategies. Within the more general framework of
finite games, the literature on equilibrium refinements has proposed a number of
other equilibrium concepts and rationality requirements.1 It seems that Mertens’
stability (Mertens, 1989) is the equilibrium concept that satisfies the most com-
prehensive list of desirable game theoretical properties, including stability against
iterative deletion of dominated strategies. Therefore, it appears to be the most suit-
able tool to make equilibrium analysis in voting games.

Of course, the task of comparing voting procedures would be much more amena-
ble if the set of (stable) equilibrium outcomes was always unique. Unfortunately,
it is often the case that uniqueness can only be obtained after imposing restrictive
assumptions that are not necessarily compelling in every voting situation. Thus,
it seems that we have to put up with multiplicity of equilibria if we want to deal
with a broader realm of voting environments and that we should, at best, hope for
finiteness in the set equilibrium outcomes. However, this is again impossible if we
do not put restrictions on the set of possible preference profiles that the electorate
can have. We have to, at least, restrict attention to generic preferences to obtain
an appealing terrain where we can analyze voting systems and make comparisons
amongst them.

Indeed, De Sinopoli (2001) shows that, for generic plurality games, the set of
Nash equilibrium outcomes is finite. (Under plurality, each voter votes for just one
candidate, the candidate with the most votes wins the election and ties are broken
randomly.) In this paper, we first obtain an analogous result for negative plurality.2

(Under negative plurality, each voter casts a negative vote for just one candidate,
the candidate with the least negative votes wins the election and ties are broken
randomly.) Secondly, we prove that under approval voting and generic utilities
the set of equilibrium distributions with at most three candidates in its support is
finite. (Under approval voting, each voter casts a ballot that gives one and only one
approval vote to as many candidates as she wants, the candidate with most approval
votes wins the election and ties are broken randomly.) These results imply that,
if utilities are generic, each of the stable sets of the voting games generated by
plurality, negative plurality and approval (with three candidates) map into a unique
outcome. Ideally, we would like to obtain the general result for approval for an
arbitrary number of candidates. We hope that our detailed analysis of negative
plurality and the partial result for approval help shed light to this general case.

1 See van Damme (1991) for an excellent review.
2 For simplicity, we focus on winner-takes-all elections.
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We then use these results to compare plurality, negative plurality and approval in
some generic voting environments with three candidates. We first briefly consider
those voting environments where the normal-form game induced by each voting
system is dominance solvable. As we have already mentioned, stable sets satisfy
iterated deletion of dominated strategies (and the specific order of deletion does not
matter), i.e. each stable set contains a stable set of the game obtained by deleting
dominated strategies. Therefore, proving that, for generic preferences, each stable
set maps into a unique outcome implies that, generically, a dominance solvable
game has a unique stable outcome.

Uniqueness of equilibrium outcomes is an important property in voting scenar-
ios. It is argued by Myerson and Weber (1993) that the number of equilibrium
outcomes has political significance because the larger the number of equilibria,
the wider is the scope for focal manipulation by political leaders. Moreover, there
already are results available that give sufficient conditions so that plurality, nega-
tive plurality and approval voting games are dominance solvable (e.g. Dhillon and
Lockwood (2004) and Buenrostro et al. (in print)) that can therefore be read as
sufficient conditions so that those voting games have a unique stable set that maps
into a unique outcome. It follows that the set of voting games that are dominance
solvable is quite relevant because they generate a unique stable outcome whose
computation is very tractable. To get some feeling of which voting system gen-
erates a unique stable outcome “more often”, in Table 1 we present some actual
computations showing how many voting games generated by each voting system
are dominance solvable.

Voting games can also be compared when they have multiplicity of equilibria by
comparing the nature of the corresponding equilibrium outcomes. Using Poisson
games, Myerson (2002) compares plurality, negative plurality and approval vot-
ing and finds that plurality generates too many discriminatory equilibria (equilibria
where one candidate is not considered a serious contender) while negative plurality
does not generate enough. Myerson (2002) argues that approval seems to provide
a good balance between the two. We show how analogous results can be obtained
using normal-form games and their stable sets of equilibria. We present some gen-
eral voting environments where plurality generates discriminatory equilibria where
a universally preferred candidate is not regarded as a serious contender. We also
present voting environments where negative plurality generates too few discrimi-
natory equilibria, further implying that in every equilibrium outcome, a universally
disliked candidate is considered a serious contender. Again, approval voting solves
those problems in the voting environment considered.

Approval voting seems to come out in an advantageous position from these com-
parisons. Hence, we submit it to further scrutiny by considering generic voting
environments where either plurality or negative plurality seem to produce better
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results. In our view, these generic voting environments demonstrate that none of
the scoring rules is unambiguously superior to the the others. In any case, these
environments must also be considered even if one argues that approval voting is
the best voting system available as these examples, and more of its kind, must be
weighted by their relevance against the benefits of approval in any such argument.

In the next section we introduce the voting model in general terms. It can be
easily specialized to approval, plurality and negative plurality voting. Section 3
proves the generic finiteness of Nash equilibrium distributions for negative plural-
ity games. Section 4 proves a similar result for approval: for generic preferences
the number of admissible Nash equilibrium distributions that elect with positive
probability at most three candidates is necessarily finite. In Section 5 we introduce
some basic properties of stable sets (Mertens, 1989) and combine them with the
previous results to derive some results about the stable set of equilibria in plurality,
negative plurality and approval voting games. These are used in the last section to
study several simple examples that show some of the fundamental ways in which
the set of equilibrium outcomes varies as we change the voting system.

2. The VotingModel

We consider an election with electorate N ≡ {1, . . . , n} and set of candidates
K ≡ {1, . . . , k}. Each voter i ∈ N casts a ballot vi ∈ Vi ≡ V ⊂ Zk, where V is
the set of ballots allowed by the electoral system. A ballot vi = (v1

i , . . . , v
k
i ) is a

vector with as many entries as candidates where, for every candidate c ∈ K, vc
i is

the number of votes given by voter i to candidate c.
An electoral system must specify the set V of permissible ballots and an election

rule that selects a winning candidate from K for each ballot profile v = (v1, . . . , vn) ∈∏n
i=1 Vi ≡ V . For example, in an election with three candidates, the set of possi-

ble ballots Vp allowed by plurality rule consists of four elements, namely, (1, 0, 0),
(0, 1, 0), (0, 0, 1) and (0, 0, 0)—the zero vector corresponds to abstention. The set
of ballots Va allowed by approval voting is obtained by enlarging the set ballots
allowed by plurality rule with (1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1).3 In turn,
Borda count provides the set Vb that consists of (0, 1, 2), (2, 0, 1), (1, 2, 0), (0, 2, 1),
(1, 0, 2), (2, 1, 0) and (0, 0, 0). Finally, the set of ballots available under negative
plurality is Vnp ≡

{
(−1, 0, 0), (0,−1, 0), (0, 0,−1), (0, 0, 0)

}
.

It is reasonable to choose an election rule p : V → ∆(K) that makes the candi-
dates that obtain more support more likely to win. Given a voting profile v ∈ V , the
set of winning candidates is

W(v) =

c ∈ K :
n∑

i=1

vc
i ≥

n∑
i=1

vd
i for all d ∈ K

 . (2.1)

3 Given the election rule below, (1,1,1) is equivalent to abstention (0, 0, 0).
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And the probability p(c | v) that candidate c wins the election if voters cast the
ballot profile v is

p(c | v) ≡

0 if c < W(v),

1/#W(v) if c ∈ W(v).

Voter i’s set of mixed strategies is Σi ≡ ∆(V ). As usual, Σ ≡
∏n

i=1 Σi is the
set of mixed strategy profiles. The probability attached to the ballot profile v =

(v1, . . . , vn) by the mixed strategy profile σ = (σ1, . . . , σn) is σ(v) ≡
∏n

i=1 σi(vi).
Therefore, the probability that candidate c is elected when voters use the mixed
strategy profile σ is p(c | σ) ≡

∑
v∈V σ(v)p(c | v).

Within this framework, a voting system (V , p) together with a utility vector u
defines a voting game (V , p, u). The utility vector specifies for each voter i and
each candidate c, the utility ui(c) to voter i if candidate c gets elected. Therefore,
once the electoral system is fixed, a voting game is given by a point in u ∈ U ≡

Rnk. The expected utility derived by voter i, if voters play according to the mixed
strategy profile σ, is computed in the usual manner Ui(σ) ≡

∑
c∈K p(c | σ)ui(c).

Given a voting game (V , p, u), a Nash equilibrium is a strategy profile σ such
that for every voter i and every ballot vi,

Ui(σ) ≥ Ui(σ−i, vi).

The next section is concerned with negative plurality. Henceforth, for every
i ∈ N we fix the set of pure strategy profiles to be equal to

Vi ≡ Vnp ≡

(v1, . . . , vk) ∈ {0,−1}k :
∑
c∈K

vc ∈ {0,−1}

 . (2.2)

With slight abuse of notation we denote by c both candidate c ∈ K and the ballot
that gives a negative vote to candidate c. When that is the case, we say that a voter
casts a negative vote against c or, simply, that she votes against c. The symbol 0
represents abstention. Therefore, we may write Vnp = {0} ∪ K.

3. Generic Determinacy of Equilibria in Negative Plurality Games

In this section we show that, for generic negative plurality games, the set of
probability distributions induced by Nash equilibria is finite. Here we use the
term “generic subset” meaning that its complement is a closed, lower-dimensional,
semi-algebraic subset of U .4 We say that a point is generic if it resides in a generic
subset.

Before getting into the proof, we first point out one complication of the analysis
of negative plurality. Even if more than one candidate wins with positive probabil-
ity, abstention can be a best response for some voters. Note that the same is not true

4 A set is semi-algebraic if it is defined by a finite system of polynomial inequalities. A function or
a correspondence is semi-algebraic if its graph is a semi-algebraic set. Every set and correspondence
defined in this paper is semi-algebraic.
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with plurality or approval because voting for the most preferred candidate among
those who win with positive probability always yields a strictly larger payoff than
abstention (as long as utilities are generic).

Example 1. Consider a negative plurality voting game with set of voters N =

{1, 2, 3, 4} and set of candidates K = {a, b, c, d}. Writing voter i’s utility vector as
ui = (ui(a), ui(b), ui(c), ui(d)), voter i’s preferences are given by:

u1 = (0, 0,−1, 0), u2 = (4, 3, 0, 6), u3 = (6, 3, 0, 4), u4 = (0,−ε,−1, 0).

where ε > 0 is a suitable small number. A Nash equilibrium of this voting game
is σ = (c, 1

2 a + 1
2 b, 1

2 b + 1
2 d, 0). Under this Nash equilibrium, candidates a and

d win with probability 3/8, and candidate b wins with probability 1/4. Note that
for voter 4, voting against b, her least preferred candidate among those who win
with positive probability, is not a best response. The reason is that if voter 4 votes
against b then candidate c, her least preferred candidate overall, wins with positive
probability. Moreover, this is a generic example. Every game in a neighborhood
has a close by Nash equilibrium with the same characteristics.

Nevertheless, we must point out that both abstention and voting against can-
didate c are best responses for voter 4 and that abstaining is always a dominated
strategy (by voting against the least preferred candidate overall) when voting is
costless.5

Thus, in a Nash equilibrium, a voter may find it optimal to abstain even in close
races. It should also be clear that voting against a candidate that wins with zero
probability is “similar” to abstention in the sense that, once we fix the behavior of
the rest of the voters, it does not affect the probability distribution over winning
candidates.

Taking this caveat into account, we focus on Nash equilibria where more than
one candidate wins with positive probability. Formally, if p(σ) = (p(c | σ))c∈K

denotes the probability distribution on candidates induced by the strategy profile σ,
the set of nondegenerate equilibria is defined as:

Definition 1. The Nash equilibrium σ is nondegenerate if p(σ) is not a vertex of
∆(K). In other words, p(c | σ) < 1 for every c ∈ K.

Given that the set of probability distributions where only one candidate wins
with positive probability is necessarily finite, it is enough to prove that the set of
equilibrium distributions induced by nondegenerate equilibria is finite.

For any strategy profile σ we let C (σ) ≡ {v : σ(v) > 0} denote the carrier
of σ. Note that C (σ) has a product structure. Any strategy profile σ with carrier C

5 If voting is costly and that cost is small enough then σ is also Nash equilibrium of the resulting
game. This feature should be taken into account when interpreting turnout if the electoral rule is
negative plurality.
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satisfies p(c | σ) < 1 for every c ∈ K if and only if #
(⋃

v∈C W(v)
)
> 1. This

implies that we can meaningfully say that a carrier C is nondegenerate. Given a
nondegenerate carrier C, we can construct the set of candidates that cannot win if
voter i abstains. Every ballot in Ci that consists of a negative vote against one of
such candidates is analogous to abstention. That set of ballots is denoted Ai(C). In
symbols, Ai(C) = Ci \

⋃
v−i∈C−i W(v−i).

Insofar as we aim to establish a result that holds for generic utilities, we can
restrict the analysis to utility vectors where no player is indifferent between two
candidates. The set of all such utility vectors is denoted Ũ . The set Ũ is obtained
removing a finite number of lower-dimensional hyperplanes from U and its closure
coincides with U .

Assumption 1. For every voter i ∈ N and every pair of candidates c, d ∈ K we have
ui(c) , ui(d).

For the time being, we fix a negative plurality voting game u ∈ Ũ , a nondegen-
erate carrier C and a Nash equilibrium σ such that C (σ) = C. Take an arbitrary
ballot profile v∗ ∈ C that satisfies v∗i ∈ Ai(C) whenever Ai(C) , ∅ (otherwise v∗i is
an arbitrary element of Ci). For each i ∈ N, let K̂i ≡ Ci \

(
Ai(C) ∪ {v∗i }

)
. For each

voter i ∈ N and each pure strategy c ∈ K̂i, the following equality holds:∑
d∈K

p(d | σ−i, c)ui(d) =
∑
d∈K

p(d | σ−i, v
∗
i )ui(d).

Subtracting from both sides voter i’s expected utility if she abstains and letting
π(d | σ−i, c) ≡ p(d | σ−i, c) − p(d | σ−i, 0), we can rewrite the previous equality as:∑

d∈K

π(d | σ−i, c)ui(d) =
∑
d∈K

π(d | σ−i, v
∗
i )ui(d). (3.1)

Rearranging (3.1), for each voter i and each ballot c ∈ K̂i we obtain:

−
∑
d∈K̂i

[
π(d | σ−i, c) − π(d | σ−i, v

∗
i )
]

ui(d) =

∑
d<K̂i

[
π(d | σ−i, c) − π(d | σ−i, v

∗
i )
]

ui(d). (3.2)

Therefore, for each voter i ∈ N we have k̂i ≡ #K̂i equalities. Suppose that we
know the values assumed by ui over candidates in K \ K̂i. We call this vector u∗i .
We can interpret the k̂i equalities as a system of k̂i equations in k̂i unknowns; the
set of unknowns being the values assumed by u over candidates in K̂i. Let us call
this vector of unknowns uo

i so that ui = (uo
i , u
∗
i ). We let XC

i denote the k̂i × k̂i matrix
of coefficients of this system of equations. Hence, the (c, d)-th entry of XC

i is

XC
i (c, d) = −π(d | σ−i, c) + π(d | σ−i, v

∗
i ). (3.3)

It is also convenient to denote by ΠC
i the matrix whose (c, d)-th element is −π(d |

σ−i, c).
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Lemma 1. The following assertions hold:

(i) Every nondiagonal element of ΠC
i is weakly negative.

(ii) Every diagonal element of ΠC
i is strictly positive.

(iii) Every row in ΠC
i adds up to some weakly positive number.

(iv) Every element of the vector (π(c | σ−i, v
∗
i ))c∈K̂i

is weakly positive.

Proof. Part (i) merely states that a negative vote against candidate c can never
decrease the probability that some other candidate d , c gets elected.

To prove part (ii) we need to show that a negative vote against a candidate al-
ways decreases the probability that she wins the election. If c ∈ K̂i there exists a
ballot profile v−i ∈ C−i such that c is the candidate that collects the least number
of negative votes under (v−i, 0). Since C−i has a product structure, starting from
the ballot profile v−i and changing one coordinate at a time we can obtain another
ballot profile v′

−i ∈ C−i where some other candidate c′ , c obtains the least number
of negative votes under (v′

−i, 0). During this transition we must go through some
ballot profile v′′

−i ∈ C−i such that, under (v′′
−i, 0), candidate c either obtains the same

number of negative votes as some other winning candidate or wins the election out-
right but collecting just one negative vote less than the next candidate. Given that
every ballot profile in C−i receives positive probability under σ−i, we immediately
obtain p(c | σ−i, c) < p(c | σ−i, 0).

Part (iii) follows because the decrease in the probability π(c | σ−i, c) that candi-
date c gets elected when player i votes negatively for c is necessarily equal to the
increase in probability that candidate c is not elected. That is,

−π(c | σ−i, c) =
∑

d∈K\{c}

π(d | σ−i, c) ≥
∑

d∈K̂i\{c}

π(d | σ−i, c),

with strict inequality whenever π(d′ | σ−i, c) > 0 for some candidate d′ < K̂i.
Finally, if v∗i < Ai(C) then Part (iv) is a consequence of the argument given in the

the proof of Part (i). Note that if v∗i ∈ Ai(C) then π(c | σ−i, v
∗
i ) = 0 for every c. �

If we want to use the system of equations (3.2) to find out uo
i we need to show

that the matrix XC
i is nonsingular. To this end, we use the following result proved

in Ostrowski (1955, p. 97).

Lemma 2. Let Π be an n × n M-matrix and let π = (π1, . . . , π j, . . . , πn) be a non
negative vector. The determinant of the n × n matrix X whose (i, j)-th element is
given by Xij = Πij + π j is strictly positive.

By virtue of Lemma 1(iv) we only need to show that ΠC
i is an M-matrix. M-

matrices can be characterized as square matrices with nonpositive nondiagonal
elements whose (real) eigenvalues are all strictly positive. Lemma 1(i) says that
every nondiagonal element of ΠC

i is nonpositive. We now proceed to showing that
every eigenvalue of ΠC

i is strictly positive.
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The Gershgorin Circle Theorem (Gershgorin, 1931) tells us that every eigen-
value of a square matrix A = (acd) can be found in one of the closed disks D(acc,Rc)
with center acc and radius Rc =

∑
d,c |acd |. Therefore, Lemma 1(i)–(ii) imply that

every eigenvalue of ΠC
i lies in some closed disk with center −π(c | σ−i, c) and ra-

dius
∑

d∈K̂i
π(d | σ−i, c). As a consequence, Lemma 1(ii)–(iii) establish that every

eigenvalue of ΠC
i is weakly positive. In order to prove that every eigenvalue is

strictly positive we now show that ΠC
i is nonsingular.

Lemma 1(i)–(iii) show that ΠC
i is a dominant diagonal matrix. Recall that a

matrix A = (acd) is dominant diagonal if |acc| ≥
∑

d,c |acd | for every row c. Price
(1951) gives the following bound on the determinant |A| of a dominant diagonal
matrix: ∏

c

|acc| −
∑
d>c

|acd |

 ≤ |A|. (3.4)

Now we can prove:

Lemma 3. The matrix ΠC
i in nonsingular and, therefore, the matrix XC

i is also
nonsingular.

Proof. Reorder the rows and columns of ΠC
i so that columns (rows) correspond-

ing to more preferred candidates appear before columns (rows) corresponding to
less preferred candidates. With this reordering of the matrix, if −π(c | σ−i, c) =∑

d>c π(d | σ−i, c) then the decrease in the probability that candidate c is elected
is equal to the increase in the probability that candidates worse than c (according
to voter i’s preferences) win the election. This provides a contradiction because,
using Assumption 1, voter i’s utility from voting against c would be strictly lower
than under abstention. Consequently, −π(c | σ−i, c) >

∑
d>c π(d | σ−i, c) for every

candidate c.
In light of Lemma 1(i)–(ii) we can apply equation (3.4) to ΠC

i knowing that
every term on the left-hand side is strictly positive. Therefore, ΠC

i is nonsingular
and, given that we already established that every eigenvalue of this matrix is weakly
positive, ΠC

i is also an M-matrix. We can now apply Lemma 2 to conclude that XC
i

is nonsingular. �

Therefore, if for each voter i we know u∗i then we can reconstruct the entire
vector of utilities u using the strategy profile σ and the system of equations (3.2).
This allows us to construct a continuous function from the set of Nash equilibria
with carrier C to the set of utility vectors Ũ . The generic determinacy of the set of
Nash equilibria is a direct consequence of applying the following result to such a
function.

Lemma 4. Let f : X → Y be a continuous semi-algebraic function. If dim(X) ≤
dim(Y) then, for generic y ∈ Y, f −1(y) is a finite or empty set.
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Lemma 4 follows from the Generic Local Triviality Theorem (Bochnak et al.,
1998) and it is taken from Govindan and Wilson (2001). We now have all the
necessary ingredients to prove:

Theorem 1. For generic negative plurality games, the set of probability distribu-
tions on candidates induced by Nash equilibria is finite.

Proof. If only one candidate can win under the carrier C (i.e. if #
(⋃

v∈C W(v)
)

= 1)
then the set of equilibrium distributions induced by Nash equilibria with carrier C
is necessarily finite. Thus, let the carrier C be nondegenerate.

Recall that given the carrier C, the set of ballots equivalent to abstention for
voter i is Ai(C). We write Ki(C) = Ci \ Ai(C) for the subset of remaining ballots
in Ci. Letting K(C) = K1(C) × · · · × Kn(C) and A (C) = A1(C) × · · · × An(C)
we can decompose the set ΣC of mixed strategy profiles with carrier C as ΣC =

ΣK(C) × ΣA (C) × {0}, where ΣK(C) and ΣA (C) are the obvious subspaces of ΣC and 0
is the zero vector of appropriate dimension.

The graph of the Nash equilibrium sub-correspondence that contains only Nash
equilibria with carrier C is

GNEC ≡
{
(σ, u) ∈ ΣC × Ũ : σ ∈ NE(u)

}
.

Write NEK(C) for the projection of the set GNEC on ΣK(C) × Ũ . There exists a
correspondence HC : NEK(C) → ΣA (C) defined by

HC(σk, u) =
{
σa ∈ ΣA (C) : (σk, σa, 0, u) ∈ GNEC

}
.

The correspondence HC is semi-algebraic with nonempty values. Hence, it ad-
mits a semi-algebraic selection function hC (Schanuel et al., 1991, Section 2). Now
write GhC for the graph of the function hC and call EC the projection of GhC on
ΣC and on those coordinates of Ũ where the subvector u∗ = (u∗1, . . . , u

∗
n) lives.

Lemma 3 implies that there is a continuous function f C : EC → Ũ mapping (u∗, σ)
into u = (uo, u∗). The function f C is also semi-algebraic. Since dim(Ũ ) = nk, in
view of Lemma 4, the only thing remaining to show is dim(EC) ≤ nk.

Proposition 2.8.7 in Bochnak et al. (1998) implies dim(GhC) = dim(NEK(C)).
Furthermore, for each voter i, if Ai(C) = ∅ then dim(ΣK(C)

i ) = #Ci − 1 = k̂i.
If otherwise Ai(C) , ∅ then dim(ΣK(C)

i ) = #Ki(C) = k̂i. We conclude that
dim(GhC) ≤

∑
k̂i + nk. Consequently,

dim
(
EC

)
≤ dim

(
GhC

)
−

∑
i∈N

k̂i ≤
∑
i∈N

k̂i + nk −
∑
i∈N

k̂i = nk.

Applying Lemma 4 to the function f C : EC → Ũ shows that for generic games
u ∈ Ũ the set of Nash equilibria with carrier C such that the distribution of weights
in A (C) is determined by the function hC is finite. Given that the probability distri-
bution on candidates induced by the profiles (σk, σa, 0) and (σk, σ̃a, 0) coincide for
every two σa, σ̃a ∈ HC(σk, u) ⊂ ΣA (C), the set probability distributions induced by
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Nash equilibria with nondegenerate carrier C is finite. The desired result follows
from the finiteness in the number of possible carriers. �

4. Approval Voting and Three Candidates

This section deals with the generic determinacy of equilibria in approval games.
Namely, if utilities over candidates are generic, we show that: (1) when the number
of candidates is equal to three, every Nash equilibrium that induces a completely
mixed strategy over candidates is regular (Harsanyi, 1973); and that (2) the set of
equilibrium distributions that put a strictly positive weight to at most three candi-
dates is finite. Whether a similar results holds in the general case with more than
three candidates remains an open problem.

We start this section fixing the set of candidates K with #K = 3 , the set of
voters N, and a utility vector u that satisfies Assumption 1. Each player set’s of
pure strategies is equal to Va (see Section 2). Take a strategy profile σ whose
carrier C = C (σ) satisfies K =

⋃
v∈C W(v). We denote as Bi = PBRi(σ) player i’s

set of pure best responses against σ−i and let B =
∏

i∈N Bi. Suppose that C ⊂ B so
that σ is a Nash equilibrium. We describe how B looks like. To that end, we write
c∗(i) to denote voter i’s top-ranked candidate and c(i) to denote voter i’s second-
ranked candidate. We also let v∗i be the ballot that approves both c∗(i) and c(i).
With slight abuse of notation, we denote by c∗(i) both the candidate and the ballot
that only approves candidate c∗(i).

Lemma 5. Take an approval voting game where #K = 3 and Assumption 1 holds.
Let C = C (σ), B = PBR(σ) and C ⊂ B. If K =

⋃
v∈C W(v) then either Bi = {c∗(i)}

or Bi = {c∗(i), v∗i }.

Proof. Since K =
⋃
v∈C W(v) every candidate wins with positive probability un-

der σ. No player is indifferent between two candidates, therefore, in equilibrium,
every voter approves her most preferred candidate and does not approve her least
preferred one. �

Let N̂ = {i ∈ N : #Bi = 2}. If i ∈ N̂ we can write∑
d∈K

p(d | σ−i, c∗(i))ui(d) =
∑
d∈K

p(d | σ−i, v
∗
i )ui(d)

and rearranging[
p(c(i) | σ−i, v

∗
i ) − p(c(i) | σ−i, c∗(i))

]
ui(c(i)) =

−
∑

d,c(i)

[
p(d | σ−i, v

∗
i ) − p(d | σ−i, c∗(i))

]
ui(d).

Candidate c(i) wins with positive probability underσ so, using a similar logic to the
proof of Lemma 1(ii), it must be the case that p(c(i) | σ−i, v

∗
i ) > p(c(i) | σ−i, c∗(i)).

Thus, if we know the utility derived by voter i from her top- and bottom-ranked



12

candidates then we can recover the utility that she derives from her second-ranked
candidate.6

Analogously to the previous section, the graph of the Nash equilibrium sub-
correspondence that contains only Nash equilibria with carrier C and set of pure
best responses B is

GNEC,B ≡
{
(σ, u) ∈ ΣC × Ũ : B = PBR(σ) and C ⊂ B

}
.

Let us decompose the utility vector u = (û, uo) so that û = (ui(c(i)))i∈N̂ . Write Û

and Ũ o for the projections of Ũ on the corresponding coordinates so that û ∈ Û

and uo ∈ Ũ o. Project GNEC,B on the strategy space and on Ũ o. If EC,B is such
a projection there is a continuous function f C,B : EC,B → Ũ that takes uo and a
Nash equilibrium strategy and reconstructs the whole utility vector u = (û, uo). We
can now prove:

Proposition 1. For generic approval voting games with three candidates every
Nash equilibrium that induces a completely mixed probability distribution on the
set of candidates is regular.

Proof. Suppose first that C ⊂ B and C , B. In such a case, the equilibrium is
not regular because it is not quasi-strict (see van Damme (1991, Corollary 2.5.3)).
Noting that the strict inclusion of C in B implies

∑
i∈N [#Ci − 1] < #N̂, we can use

Theorem 2.8.8 in Bochnak et al. (1998) to show that

dim
(

f C,B
(
EC,B

))
≤ dim

(
EC,B

)
=

∑
i∈N

[
#Ci − 1

]
+ nk − #N̂ < nk.

That is, the set of approval games (such that #K = 3 and utilities are in Ũ ) with
equilibria that is not quasi-strict is a lower-dimensional semi-algebraic set.

Thus, let C = B so that the equilibrium is quasi-strict and, therefore, regular if
and only if the Jacobian of the map F(· | v∗i ) : Σ→ R7n defined by

Fvi(x | v∗i ) = xi(vi)
[
Ui(x−i, vi) − Ui(x−i, v

∗
i )
]
, for all vi ∈ K \ v∗i , for all i ∈ N,

Fv∗i (x | v∗i ) =
∑
vi∈V

xi(vi) − 1, for all i ∈ N,

and evaluated at x = σ is nonsingular.7 But this Jacobian is nonsingular if and only
if the matrix

∂ f C,B(x, uo)
∂x

∣∣∣∣∣∣
x=σ

is nonsingular.

6 In this case the system of equations is quite simple. For each voter whose set of pure best
responses has two elements we only have one equation and one unknown.

7 Note that with three candidates every voter has seven different pure strategies in the approval
voting game.
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The semi-algebraic version of Sard theorem (Bochnak et al., 1998, Theorem
9.5.2) ensures that the set of critical values of f C,B is a lower-dimensional semi-
algebraic set, thus, completing the proof. �

Take now an arbitrary set of candidates K and a Nash equilibrium σ that induces
a probability distribution that gives positive probability to just three candidates, say,
c1, c2 and c3. Construct a three-candidate approval game by choosing those three
candidates. Interpreting ballots under approval as subsets of candidates, we define
the strategy profile σ′ of the three-candidate game by σ′i(v

′
i) =

∑
{vi:v′i⊂vi} σi(vi) for

every i ∈ N.8 It is not difficult to see that σ′ is a Nash equilibrium of the three-
candidate approval game. It follows that:

Corollary 1. For every generic approval voting game the set of probability distri-
butions on three or fewer candidates induced by Nash equilibria is finite.

Proof. The discussion leading to the corollary shows the result when just three
candidates receive positive probability. Given that approval coincides with plural-
ity when #K = 2, a similar argument applied to the result in De Sinopoli (2001)
proves the case where two candidates receive positive probability. To conclude,
we only note that the set of degenerate distributions on candidates is necessarily
finite. �

Remark 1. Analogously to Proposition 1, if voters have generic utilities over can-
didates then one can prove that every Nash equilibrium of the negative plurality
game that induces a completely mixed probability distribution on the set of candi-
dates K is a regular equilibrium (although this time, this is true regardless of the
cardinality of K). However, we cannot derive generic finiteness of Nash equilibria
in negative plurality games from such a result. On one hand, given a Nash equi-
librium σ of a negative plurality game with k − 1 candidates, a straightforward
extension of σ to a negative plurality game with k candidates would induce a dif-
ferent outcome because the kth candidate receives no negative vote. On the other
hand, a Nash equilibrium where k̃ candidates win with positive probability may
be supported by the existence of another candidate that wins with probability zero
and that, with positive probability, receives just one negative vote more than the
winning candidates. The Nash equilibrium analyzed in Example 1 is of this sort.

Remark 2. As we have already mentioned, a general proof of the generic finiteness
of equilibrium distribution in approval voting games would be desirable. The prob-
lem that we encounter when we want to apply a proof along the lines of the ones
presented above is that when the number of candidates is equal to k the number of

8 The strategy σ′ is well defined. Candidates c1, c2 and c3, and only them, win with positive
probability under σ. Hence, if σ is an equilibrium, every voter approves at least one of them in every
pure strategy that is played with positive probability.
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pure strategies is equal to 2k − 1. Classifying strategies into equivalence classes, as
we do in negative plurality with abstention and voting against a candidate that has
no chance of winning, could potentially alleviate the problem. However, even if we
solved this dimensionality problem, the matrix that we would obtain in place of the
one in equation (3.3) would not necessarily decompose into a dominant diagonal
matrix.

5. Strategic Stability in Voting Games

In the next section, we analyze the voting games generated by plurality, negative
plurality and approval using the notion of stability developed by Mertens (1989).
The resulting stability concept is set valued, meaning that a set of equilibria (poten-
tially generating a continuum of probability distributions on outcomes, see Govin-
dan and McLennan (2001)) can be considered as equivalent members of the same
solution. Mertens’ stable sets satisfy a number of desirable properties that make
them an appealing concept to analyze, among others, voting games. We need the
following properties (cf. Mertens (1989)):

(α) Every game has a stable set.
(β) Stable sets are connected sets of normal form perfect equilibria.
(γ) A stable set contains a stable set of every game that is obtained after delet-

ing a strategy that is at minimum probability in any ε-perfect equilibrium
close to the stable set.

In light of Theorem 1 we can see that (β) implies that for generic negative plu-
rality games, every stable set generates a unique probability distribution on candi-
dates. A similar conclusion can be reached about generic approval voting games
with three candidates.

It is well-known that the reduced game that is obtained after applying iterated
deletion of dominated strategies depends on the order of elimination. Farquharson
(1969) gets rid of this problem when defining sophisticated voting by imposing
stability only against iterated elimination of all dominated strategies at each round.
Following De Sinopoli (2000), we drop that constraint and define the sophisticated
outcome as the outcome that is isolated by at least one order of elimination. The
following proposition is a generalization of a result contained in De Sinopoli (2000)
about plurality rule.

Proposition 2. If a voting game has finitely many Nash equilibrium outcomes and
a sophisticated outcome exists then it is unique and it coincides with the unique
stable outcome of the game.

Proof. Consider a voting game with finitely many Nash equilibrium outcomes.
Property (β) ensures that every point of each stable set generates the same out-
come. In turn, property (γ) implies that every stable set contains a stable set of



15

any game that is obtained after deleting a dominated strategy. Therefore, if the so-
phisticated outcome exists it is contained in every stable set, making it the unique
stable outcome.9 �

The counterexample offered by Govindan and McLennan (2001) shows that
once we fix the function mapping pure strategy profiles into outcomes we may
run into continua of equilibrium outcomes even if preferences are generic. The
generic finiteness results proved here and in De Sinopoli (2001) imply that we can
apply Proposition 2 to generic voting environments when the voting system is plu-
rality or negative plurality. Additionally, it can also be applied to approval as long
as the number of candidates is equal to three.

6. Comparing Voting Systems

In this section, we use the results obtained above to compute the stable sets of
equilibria in some simple examples and to show some of the fundamental ways
in which the electoral system determines the political outcome. In this series of
examples, we will take the viewpoint that the Condorcet winner, whenever it exists,
is the most desirable alternative from a social perspective and that the Condorcet
loser is the least desirable alternative. We begin with the formal definitions:

Definition 2 (Condorcet Winner). A candidate c ∈ K is the Condorcet winner if

#
{
i ∈ N : ui(c) > ui(d)

}
> #

{
i ∈ N : ui(c) < ui(d)

}
for all d , c.

Furthermore, we say that a candidate c ∈ K is a weak-Condorcet winner if

#
{
i ∈ N : ui(c) > ui(d)

}
≥ #

{
i ∈ N : ui(c) < ui(d)

}
for all d ∈ K, and

#
{
i ∈ N : ui(c) > ui(d′)

}
> #

{
i ∈ N : ui(c) < ui(d′)

}
for some d′ , c.

If the Condorcet winner exists then it is unique. On the other hand, if there
is a weak-Condorcet winner then it may not be the only one. The definitions of
Condorcet loser and weak-Condorcet loser are the obvious ones.

In what follows, we consider voting environments with three candidates that are
always labelled a, b and c. Note that, with three candidates, each voter has only
two undominated strategies: under approval, (1) approving their best candidate and
(2) approving their two best candidates; under plurality, (1) voting for their best
candidate and (2) voting for their second-best candidate; under negative plurality,
(1) voting against their worst candidate and (2) voting against their second-best
candidate. To economize on notation, we may say that a voter has preferences
u = (ua, ub, uc) if the utility value that she derives when candidate a, b or c wins
the election is, respectively, ua, ub and uc.

9 Note that the proposition also holds if we defined the sophisticated outcome as Nash equilibrium
outcome that is isolated after some order of elimination of dominated strategies.
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Before continuing we remark that every voting environment that we consider has
a neighborhood that is contained in the generic set of utilities where the plurality,
negative plurality and approval voting games generate a finite set of equilibrium
outcomes.

6.1. Sophisticated Voting

Our discussion in the previous section allows us to easily compute the unique
stable outcome of those voting games that are dominance solvable.10 To start get-
ting a feel for the different strategic incentives generated by plurality, negative
plurality and approval, we can do a simple exercise of computing and reporting
those stable outcomes. Consider three candidates, a, b and c, and let the number
of voters vary from three to fifteen.11 Take the set of all possible preference or-
derings such that the Condorcet winner is candidate a and candidate b wins or ties
with candidate c in a pairwise contest. Then eliminate “nongeneric” preference
orderings where some voter is indifferent between two candidates or between her
middle-ranked candidate and the lottery 1/3a + 1/3b + 1/3c. This leaves us with
2,590,345 ordering profiles, each of which can be represented by a generic utility
vector. Using those generic utility vectors and for each voting system, we report
in Table 1 the number of dominance solvable games that, consequently, have a
unique stable outcome. We also report how many times the unique stable outcome
assumes each one of its possible values. Outcome bc, for instance, means that can-
didates b and c both win the election and the final candidate is elected by a fair
lottery (the outcomes ab and ac never occur).

6.2. Above the Fray

Using Poisson games, Myerson (2002) studies voting rules in terms of their
tendency to admit discriminatory equilibria in which voters disregard a candidate
as not a serious contender. He finds that plurality rule tends to generate too many
discriminatory equilibria.

In the same vein, we show how a universally liked candidate can win with prob-
ability zero in a stable set of a plurality game. We borrow Myerson’s terminology
“above the fray” to indicate candidate a’s privileged position in the election.

10 Dhillon and Lockwood (2004) provide sufficient conditions for a plurality voting game to be
dominance solvable. Sufficient conditions for dominance solvability of other scoring rules, including
approval, are offered in Buenrostro et al. (in print). Given the results in the current paper, whenever
applicable, those conditions can be seen as sufficient conditions so that the relevant voting game has
a unique stable outcome.

11We wrote a MATLAB program (available upon request) to apply iterated deletion of dominated
strategies in the current setting. The computation slows down considerably when the number of
voters is above fifteen.
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Table 1. Dominance solvable voting games with generic utilities,
with a unique Condorcet winner and where the number of voters
varies from 3 to 15. The total number of preference profiles con-
sidered (modulo renaming of the candidates) is 2,590,345.

System Dom. Solvable a b c bc abc

Approval 1,745,797 1,745,479 0 0 0 318
Plurality 513,650 513,644 1∗ 0 0 5
Negative 25,720 8∗ 17,837 3,482 1,142 3,251

∗ These outcomes are obtained when the number of voters is equal to three.

Example 2. There are three candidates a, b and c and, for some integer m, 2m
voters grouped in two subsets. The first subset has m voters with preferences a �
b � c. Voters in the second subset have preferences a � c � b. From a social
perspective it is clear that candidate a is the most preferred alternative. However,
the plurality game has an stable set where voters in the first subset vote for b and
voters in the second subset vote for c. It is easy to see that this strategy combination
is a strict Nash equilibrium and, therefore, a singleton stable set.

It should be noted that with the same preferences as in the previous example, the
approval game is dominance solvable. Therefore, by Proposition 2, it has a unique
stable set. This stable set leads to the election of candidate a with probability
one. It can also be proven that, once we eliminate dominated strategies, every
Nash equilibrium of the negative plurality game leads to the election of candidate
a too.12 By properties (α), (β) and (γ), candidate a wins with probability one in the
unique stable outcome of the negative plurality game.

6.3. One Bad Apple

We have just illustrated how negative plurality may eliminate discriminatory
equilibria. Paralleling Myerson (2002) we now show that negative plurality may,
in fact, generate too few discriminatory equilibria, which can also be harmful.

We show how a universally disliked candidate can win with positive probability
in a stable set of the negative plurality game. Again, we borrow the phrase “one bad
apple” from Myerson to express the idea that the existence of one bad candidate
can spoil the whole election.

Example 3. There are three candidates a, b and c and, for some integer m, 3m
voters that are grouped into three equally sized subsets. Voters in the first subset
have preferences (3, 1, 0), voters in the second subset have preferences (1, 3, 0) and

12 That is, a is the sophisticated outcome even though the negative plurality game is not domi-
nance solvable. Thus, the figures given in Table 1 should be taken with appropriate care.
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voters in the third subset have preferences that are either a � b � c or b � a � c.
It should be clear that from a social perspective, candidate c should not win the
election. The negative plurality game has a stable set such that voters in the first
subset vote against b, voters in the second subset vote against a and voters in the
third subset vote against c. The strategy profile is a strict Nash equilibrium and,
therefore, a singleton stable set.

With the same preferences as before, both the approval voting game and the
plurality game are dominance solvable. The unique sophisticated equilibrium leads
to the election of the Condorcet winner in both games (in this example this could
be candidate a, b, or both could be weak-Condorcet winners). By Proposition 2
this is the unique stable outcome under both plurality and approval.

6.4. Electing Condorcet Losers

We now show a striking property of negative plurality. In an election where the
Condorcet loser exists, negative plurality may select it with probability one.

Example 4 (Negative plurality selects the Condorcet loser with probability one).
Take five voters with preferences

u1 = u2 = (3, 0, 1)

u3 = u4 = (0, 3, 1)

u5 = (3, 2, 0).

Candidate a is the Condorcet winner and candidate c is the Condorcet loser. The
negative plurality game is dominance solvable. First, eliminate every dominated
strategy in the game. In the reduced game, voter 3 and 4’s dominant strategy is
to vote against a. Given that, voter 5’s dominant strategy is to vote against c. In
the last round of elimination we find that voters 1 and 2 vote against candidate
b. Therefore, in the unique stable outcome of the negative plurality game, the
Condorcet loser wins the election.

With the same preferences, consider approval voting. In the first round of elim-
ination, keep only the strategies where every voter approves her most preferred
candidate and does not approve her least preferred one. In the next round, we find
that voter 1 and 2’s dominant strategy is to approve only candidate a. Given that,
voters 2 and 3 approve only candidate b. Finally, voter 5 approves candidate a,
which makes a the winner of the election.

In Example 2, we have seen how plurality rule generates stable outcomes where
the set of weak Condorcet losers wins with probability one. Again, in that example
approval voting keeps inducing the “right” outcome. However, we can now see
that approval voting suffers from a similar flaw too.
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Example 5. Take six voters with preferences

u1 = u2 = (1, 3, 0)

u3 = u4 = (1, 0, 3)

u5 = (3, 2, 0)

u6 = (3, 0, 2).

Candidate a is the Condorcet winner and candidates b and c are the weak Con-
dorcet losers. Consider the strategy profile σ = (b, b, c, c, ab, ac) which yields the
probability distribution 1/2b+1/2c. We prove that σ is an absorbing retract (Kalai
and Samet, 1984) and, therefore, contains a stable set (Mertens, 1992, p. 562).13

Voters 1 through 4 are playing a strict best response. Therefore, they are also
playing a best response against every sufficiently close strategy profile. A similar
argument applies for voters 5 and 6. If they do not approve their second-best candi-
date their utility strictly decreases. Thus, this also holds for every sufficiently close
strategy profile. On the other hand, if they play an undominated strategy then they
must approve their best candidate. We conclude that the indicated strategy profile
is a singleton stable set of the approval game.

6.5. More on Approval Voting

Approval voting has received a lot attention by the literature on political econ-
omy, see for instance Brams and Fishburn (1978), Fishburn and Brams (1981), or
more recently, Brams and Sanver (2006). The computations given in Table 1 sug-
gest that approval voting could potentially improve upon other voting systems (cf.
Buenrostro et al. (in print)). However, there are generic examples where approval
voting does not behave as one would like (e.g. see De Sinopoli et al. (2006)). As
we show below there are also generic voting environments where approval seems
to be outperformed by plurality or even negative plurality. Even if one decides
to advocate for approval voting over other voting systems, it is important to un-
derstand its limitations and the kind of situations where it is not the ideal voting
system. In any case, we think that these examples prove that none of the voting
systems considered here is unambiguously superior to the rest.

In this section we provide three new examples. In the first two we compare ap-
proval with plurality and in the third we compare approval with negative plurality.
We begin with an example where approval selects the Condorcet winner and the
Condorcet loser with the same probability in the unique stable set. Meanwhile,
plurality selects the Condorcet winner with probability one.

13 A strategy combination is an absorbing retract if it is a best reply to all sufficiently close
strategy combinations.
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Example 6. For any integer m > 0, define a voting environment with 3m+2 voters
and preferences:

number of voters preferences

m + 1 (3, 1, 0)

m (1, 3, 0)

m (1, 0, 3)

1 (0, 3, 2)

As usual, candidate a is the Condorcet winner and candidate c is the Condorcet
loser. The approval game is dominance solvable and gives, as unique outcome, a
three way lottery where the Condorcet winner and the Condorcet loser are elected
with the same probability. The plurality game is also dominance solvable and the
Condorcet winner is elected with probability one.

In the next example, the Condorcet winner exists and the unique stable outcome
of the approval game varies continuously with the utility values of the voters—but
their preference orderings over candidates remain constant. This example shows
that for any ε > 0, there exists an open set of utilities such that approval voting
selects the Condorcet winner with probability smaller than ε. On the other hand,
plurality selects the Condorcet winner with probability one.

Example 7. Consider five voters with preferences:

u1 = u2 = (1, 3, 0)

u3 = (3α, 0, 3)

u4 = (3, 3β, 0)

u5 = (3, 0, 2)

where 0 < α < 1/2 and 1/2 < β < 1. Candidate a is the Condorcet winner. Apply
iterated deletion of dominated strategies until the game is reduced to a two-player
game between voter 4 and voter 5. This reduced game has a unique equilibrium that
determines the unique stable set of the approval game. Such a stable set consists of
the strategy profile

σ∗ =

(
b, b,

3 − 3β
1 + β

c +
4β − 2
1 + β

ac,
3α

2 − α
a +

4β − 2
1 + b

ab, ac
)
.

The probability that the Condorcet winner wins the election is p(a | σ∗) = (αβ +

α+ 4β− 2)/(2 + 2β−α−αβ). This probability is arbitrarily close to zero when α is
close enough to 0 and β is close enough to 1/2. On the other hand, this probability
is arbitrarily close to one when α is close enough to 1/2 and β is close enough to 1.
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The plurality game is dominance solvable and leads to a unique stable outcome
where candidate a wins with probability one no matter what the values of 0 < α <
1/2 and 1/2 < β < 1 are.

In our last example, we compare approval voting with negative plurality. In this
example, there is a unique weak-Condorcet winner and a unique weak-Condorcet
loser. Moreover, every voter prefers the weak-Condorcet winner to the weak-
Condorcet loser. In the unique stable set of the approval game both candidates
are elected with the same probability. In the negative plurality game, the unique
stable set has the weak-Condorcet winner being elected with probability one.

Example 8. Take six voters with preferences:

u1 = u2 = u3 = (1, 3, 0)

u4 = u5 = u6 = (3, 0, 2)

Candidate a is the unique weak-Condorcet winner: it ties with b and wins c in pair-
wise contests. Meanwhile candidate b ties with both a and c in pairwise contests.
It follows that c is the unique weak Condorcet loser.

The approval game is dominance solvable. First eliminate dominated strategies
so that voters 1, 2 and 3 are left with b and ab and voters 4, 5 and 6 are left
with a and ac. Take voter 1, she will approve candidate b for sure. But when
considering whether or not approving her second-ranked candidate a she knows
that a will receive at least 3 approval votes, that b will receive exactly 3 approval
votes (counting hers) and that c will receive at most 3 approval votes. Since the
only case in which approving a pays off for voter 1 is when a and c are the only
two candidates tied at the top and this case is impossible, approving both a and b
is dominated by approving only b. The same is true for voters 2 and 3.

Voter 4 approves candidate a anyway. It follows that she knows that both a and
b will receive exactly three approval votes and c at most 2. So the only case where
approving c matters is when it takes exactly 2 votes. In such a case, voter 4 prefers
a three-way lottery among the three candidates to a two-way lottery between can-
didates a and b. The analysis is symmetric for voters 5 and 6, hence, they all will
approve both a and c.

This yields a unique stable outcome where the three candidates are elected with
probability 1/3. That is, both the weak Condorcet winner and the weak Condorcet
loser are elected with the same probability even though every voter strictly prefers
a to c. On the other hand, the negative plurality game is also dominance solvable
(we leave the analysis to the reader) and leads to a unique stable outcome where
candidate a is elected with probability one.
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