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Abstract 

In the aftermath of the global financial crisis, competing measures of the trend in 
macroeconomic variables such as US real GDP have featured prominently in policy debates. A 
key question is whether the large shocks to macroeconomic variables will have permanent 
effects—i.e., in econometric terms, do the data contain stochastic trends? Unobserved 
components models provide a convenient way to estimate stochastic trends for time series data, 
with their existence typically motivated by stationarity tests that allow for at most a deterministic 
trend under the null hypothesis. However, given the small sample sizes available for most 
macroeconomic variables, standard Lagrange multiplier tests of stationarity will perform poorly 
when the data are highly persistent. To address this problem, we propose the use of a likelihood 
ratio test of stationarity based directly on the unobserved components models used in estimation 
of stochastic trends. We demonstrate that a bootstrap version of this test has far better small-
sample properties for empirically-relevant data generating processes than bootstrap versions of 
the standard Lagrange multiplier tests. An application to US real GDP produces stronger support 
for the presence of large permanent shocks when using the likelihood ratio test as compared to 
the standard tests. 
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Introduction 

In the aftermath of the recent global financial crisis, macroeconomists and policymakers 

are once again debating the relative importance of permanent versus transitory shocks in driving 

macroeconomic variables.  For example, the slow recovery in US real GDP following the Great 

Recession of 2007-2009 could be due to a lower trend, persistent cyclical weakness, or some 

blend of the two. The importance of this issue has been highlighted in a recent speech by the 

Vice Chair of the Federal Reserve, Stanley Fisher, who argues that “[s]eparating out the cyclical 

from the structural, the temporary from the permanent, impacts of the Great Recession and its 

aftermath on the macroeconomy is necessary to assessing and calibrating appropriate policies 

going forward” (Fisher, 2014).  

There are many different approaches to trend/cycle decomposition considered in practice 

(e.g., linear detrending, Hodrick-Prescott filtering, and bandpass filtering). However, assuming a 

well-specified model, an unobserved components (UC) approach provides a way to estimate 

stochastic trends in time series data so as to avoid the spurious cycle phenomenon that plagues 

many of the other methods (e.g., see Nelson and Kang, 1981, Cogley and Nason, 1995, and 

Murray, 2003). As a result, UC models have become quite popular, especially in 

macroeconomics.1 Estimates from these models often imply a large role for permanent shocks in 

the overall variation of macroeconomic variables, especially when the UC models allow for 

correlation between permanent and transitory movements (see, for example, Morley, Nelson, and 

Zivot, 2003, Morley, 2007, Basistha, 2007, and Sinclair, 2009). However, a large point estimate 

for the variance of permanent shocks may occur even when the true data generating process is 
                                                 
1 See, inter alia, Harvey (1985), Watson (1986), Clark (1987), Harvey and Jaeger (1993), Kuttner (1994), Proietti 
(2002), Morley, Nelson, and Zivot (2003), Basistha (2009), Sinclair (2009), Berger and Everaert (2010), Senyuz 
(2011), Mitra and Sinclair (2012), Bradley et al. (forthcoming), and Ma and Wohar (forthcoming). 
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stationary or trend stationary (as is argued by Perron and Wada, 2009, for the results in Morley, 

Nelson, and Zivot, 2003). Thus, it is helpful to motivate the application of a UC model for 

trend/cycle decomposition by first conducting a stationarity test that allows for at most a 

deterministic trend under the null hypothesis. 

The standard approach to testing stationarity proposed by Kwiatkowski et al. (1992, 

KPSS hereafter) is to apply a Lagrange multiplier (LM) test for the presence of a random walk 

component in the residual from a regression of a time series on deterministic terms 

corresponding to either level or trend stationarity.2 Calculation of the test statistic is 

straightforward, as it only requires estimation under the null, but its asymptotic distribution is 

nonstandard and depends on the deterministic terms allowed for in estimation. KPSS propose 

accounting for serial correlation in the residuals using the Newey and West (1987) 

nonparametric estimator of the long-run variance. However, the KPSS test performs poorly in 

small samples when the data are highly persistent (see Müller, 2005, for an explanation of the 

poor size and power performance of KPSS-type tests based on local-to-unity asymptotic 

analysis). Rothman (1997) and Caner and Kilian (2001) use Monte Carlo simulation evidence to 

show massive size distortions of the KPSS test in small samples given empirically-realistic 

persistent data generating processes such as might be thought to describe many macroeconomic 

variables. They find that a bootstrap version of the KPSS test does better in terms of size, but 

suffers from low power. 

In this paper, we propose the alternative use of a likelihood ratio (LR) test of stationarity 

based on a UC model. Although maximum likelihood estimation of the UC model under the 

                                                 
2 Rothenberg (2000) and Jansson (2004) propose more efficient stationarity tests under fairly general assumptions 
about the underlying data generating process. However, our focus is on the most commonly-used stationarity tests 
and in the specific setting of parametric unobserved components models that are widely used to estimate stochastic 
trends in macroeconomic data. 
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alternative hypothesis is somewhat more complicated than OLS estimation under the null 

hypothesis, this is hardly an impediment if the main purpose of conducting the stationarity test is 

to motivate estimation of a stochastic trend using the UC model in the first place. We establish 

the validity of our proposed approach by drawing from the theoretical results in Davis, Chen, and 

Dunsmuir (1995,1996) and Davis and Dunsmuir (1996) for a moving-average (MA) unit root test 

to verify the asymptotic distribution of the LR test of stationarity based on the UC model. As 

with the KPSS test, we find Monte Carlo simulation evidence that the LR test is somewhat 

oversized in small samples for empirically-relevant persistent data generating processes. 

However, a bootstrap version of the LR test does far better in terms of size and displays higher 

power than the KPSS test for empirically-relevant alternatives. Furthermore, we show that the 

improvement in performance of the bootstrap LR test over the bootstrap KPSS test is not just the 

result of assuming the correct parametric specification for the LR test. Specifically, we also 

compare the performance to Leybourne and McCabe’s (1994, LMC hereafter) version of LM 

test, also assuming the correct parametric specification when applying this test. The LMC test 

performs somewhat better than the KPSS test, but its bootstrap version still underperforms the 

LR test both in terms of size and power. 

We apply the various stationarity tests, including the proposed LR test, to postwar 

quarterly US real GDP assuming trend stationarity under the null hypothesis. Consistent with the 

power properties found in the Monte Carlo analysis, the bootstrap LM tests do not reject the null, 

but the bootstrap LR test does reject at the 5% level. We further investigate the sensitivity of our 

results to the sample period and to allowing for structural breaks. We find that the rejection of 

the null for postwar quarterly US real GDP is robust for the bootstrap version of the LR test. 

Thus, we conclude that there is strong evidence for the existence of a stochastic trend in US real 
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GDP and, according to our UC model estimates, the stochastic trend is responsible for a large 

portion of the overall fluctuations in real economic activity, including during the Great 

Recession. 

The rest of this paper is organized as follows. In Section 2, we present the correlated UC 

model of trend/cycle processes and discuss pitfalls with using traditional stationarity tests for 

such processes given the small samples typically available for macroeconomic variables. In 

Section 3, we propose the LR test based on a correlated UC model, establish its asymptotic 

validity, and show that a bootstrap version of the LR test outperforms bootstrap versions of the 

standard tests in small samples. In Section 4, we apply the various stationarity tests to postwar 

quarterly US real GDP. Section 5 concludes. 

Section 2:  UC Models and Traditional Stationarity Tests  

A correlated UC model of a trend/cycle process assumes that an observed time series {ݕ௧}௧ୀଵ்  can be decomposed into a random walk with drift and a stationary AR(p) cycle:   

௧ݕ  = ߬௧ + ܿ௧,   t = 1,…, T. (1) 

 ߬௧ = ߤ + ߬௧ିଵ +  ௧ (2)ߟ

௧ܿ(ܮ)߶  =  ௧, (3)ߝ

where the roots of ߶(ܮ) lie strictly outside the unit circle, corresponding to stationarity of the 

cycle component. Following Morley, Nelson, and Zivot (2003), the innovations (ߟ௧	and ߝ௧) are 

assumed to be jointly normally distributed random variables with mean zero and variance-

covariance matrix Σ: 

ቂߟ௧ߝ௧ቃ ~ܰ(0, Σ), 	Σ = ൤߱ଶߪଶ ଶߪ߱ߩଶߪ߱ߩ ଶߪ ൨, 
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where ߱ ≥ 0 and ߩ ∈ [−1,1]. Restricting μ = 0 and ω = 0 corresponds to level stationarity and μ 

≠ 0 and ω = 0 corresponds to trend stationarity.  A structural break in the trend function 

corresponds to a break in μ. 

There is a vast literature on estimating stochastic trends in time series using UC models 

of trend/cycle processes. Early examples in a univariate setting include Harvey (1985), Watson 

(1986), and Clark (1987), all of which impose the correlation ρ=0 in estimation. When allowing 

for a non-zero correlation, Morley, Nelson, and Zivot (2003) find that the estimated variance of 

permanent shocks for postwar quarterly US real GDP given an AR(2) cycle is much larger than 

found when imposing a zero correlation, with the estimated correlation being about -0.9. The 

large estimate for the variance of the permanent shocks can be sensitive to allowing for a 

structural break in the deterministic trend function (see Perron and Wada, 2009).3 Meanwhile, 

Wada (2012) shows that a large magnitude for the estimated correlation should be expected even 

when the true process is stationary.4 Thus, the economic significance of large estimates of the 

variance of permanent shocks and the relevance of a highly negative correlation should be 

supported by first confirming the statistical significance of the stochastic trend via a stationarity 

test. 

In practice, standard stationarity tests have been shown to behave poorly in small 

samples when time series data are highly persistent (e.g., Rothman, 1997, and Caner and Kilian, 

2001). Müller (2005) provides a theoretical explanation for this poor performance based on 

local-to-unity asymptotic analysis. He notes that the LM test considered by KPSS concentrates 

                                                 
3 The findings of a large variance for permanent shocks to real GDP is more robust to allowing for a structural break 
in the deterministic trend function when considering multivariate UC models (see, for example, Basistha, 2007, and 
Sinclair, 2009) 
4 Specifically, Wada (2012) shows that the correlation is often 1 or -1 for an estimated correlated UC model when 
the true process for the observed series is a stationary AR model.  
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its power on detecting a stochastic trend with a small shock variance compared to a Gaussian 

white noise error that dominates movements in an observed time series. However, in this case, 

both the null and the alternative imply a high degree of mean reversion, contrary to the 

apparently high persistence observed in most macroeconomic variables to which stationarity 

tests are applied. Meanwhile, depending on the nonparametric correction for serial correlation 

when estimating the long-run variance, KPSS-type tests fail to control size or are inconsistent 

when considering local-to-unity asymptotics. 

We illustrate the small-sample problems for the KPSS test of trend stationarity given 

persistent time series processes using a Monte Carlo simulation based on estimated time series 

models for postwar quarterly US real GDP. For our size experiment, we consider a trend-

stationary AR(2) model. For our power experiment, we consider a correlated UC model that 

allows for a stochastic trend, but nests the trend-stationary AR(2) model when the variance of the 

trend shocks is zero. The parameters for the data generating processes (DGPs) are reported in 

Table 1 and correspond to estimates based on US real GDP data for the sample period of 

1947Q1-2011Q4.5 Consistent with the findings in Morley, Nelson, and Zivot (2003) for the same 

model, but shorter sample period, the estimated variance of permanent shocks for the UC model 

is large and the estimated correlation between permanent and transitory movements is strongly 

negative.6 

Table 2 reports the empirical size and power properties for the KPSS test for trend 

stationarity (and the LMC and LR tests, discussed in detail below). We consider 500 replications 

                                                 
5 The data were obtained from the FRED database for the vintage of August 29, 2012. We do not include the last 
two quarters of the vintage of data because they are based on preliminary estimates that are often heavily revised. 
6 We do not report standard errors for the parameter estimates because Wald-type inferences can be highly 
misleading in finite samples for UC models given weak identification (see Ma and Nelson, 2012). Instead, in 
Section 4 below, we consider an LR test of stationarity to evaluate the statistical significance of the variance of 
permanent shocks. 
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for our baseline Monte Carlo experiments reported in Table 2. Based on the asymptotic critical 

value of 0.146 reported in KPSS, the test is severely oversized at a nominal 5% level given a 

sample size of 260 observations.7 Similar findings have been noted by Rothman (1997) and 

Caner and Kilian (2001) in other related contexts of empirically-motivated persistent time series 

processes. Also established in those studies is an improvement in the size performance when 

considering bootstrap versions of the KPSS test. We find this improvement for a parametric 

bootstrap version of the test. However, as in the previous studies, we find that the power drops 

off dramatically when considering the bootstrap test. Note that, given the computational burden, 

we consider only up to 199 bootstrap simulations in each Monte Carlo replication.8 Full details 

of the parametric bootstrap experiments can be found in the appendix. 

One issue to note is that the KPSS test applies a nonparametric correction for serial 

correlation, even though we are assuming a parametric model for the data. Thus, we also 

consider the LMC test of trend stationarity that applies a parametric correction for serial 

correlation. For the LMC test, we estimate the AR parameters using the alternative UC model 

and apply the estimates to construct residuals that can be used to conduct the same LM test as in 

KPSS. We note that the UC model estimates of the AR parameters will be consistent under both 

the null and the alternative. Full details of both LM tests can be found in the appendix. As with 

the KPSS test, the results in Table 2 make it clear that the LMC test is oversized when based on 

the asymptotic critical value at a nominal 5% level and given a sample size of 260 observations, 

although the size distortion is not as severe as for the KPSS test. Also, the parametric bootstrap 

                                                 
7 Consistent with their asymptotic distributions, we have confirmed that all of the tests considered in this paper have 
much more accurate size given a sample size of 5000 observations. 
8 To reduce the computational burden we follow the procedure proposed in Davidson and MacKinnon (2000) that 
stops a given bootstrap experiment at fewer than 199 simulations if the estimated bootstrap p-value is significantly 
smaller or larger than the size at a 5% level. This procedure maintains the nominal size of the bootstrap test at 5%. 
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version of the LMC test has better size and weaker power, but is not as weak as with the KPSS 

test. Caner and Kilian (2001) find similar results for the LMC test in their Monte Carlo analysis. 

Table 3 presents an additional set of Monte Carlo experiments where we vary the values 

of individual parameters for the DGP.9 Table 3A presents the results of size and power 

experiments when we reduce the values of the AR parameters by 50%.  This allows us to explore 

the role of persistence in the performance of the stationarity tests we are considering.  Comparing 

the size distortions with the baseline case, we see, as expected, that they are generally smaller for 

the asymptotic tests when the persistence is lower.  

Table 3B presents two power experiments where we vary the relative importance of the 

permanent innovations by changing the value of the ω parameter (holding all other values from 

the baseline DGP constant).  In the first case we reduce the value of ω by 50%.  In the second 

case we reduce it by 90%.  The LMC and KPSS tests have improved power when ω is smaller, 

which is not surprising as they are locally best invariant tests and they maximize the power close 

to the null.10   

Table 3C presents four power experiments where we vary the size of the correlation 

between the permanent and transitory innovations by changing the value of the ρ parameter 

(holding all other values from the baseline DGP constant). We have considered four cases of 

correlation in the data generating process: zero correlation (ρ=0), low negative correlation 

(ρ=0.5ρbaseline), low positive correlation (ρ= –0.5ρbaseline), and high positive correlation (ρ= –
                                                 
9 For these results, we consider 100 replications as compared to 500 replications for the baseline case. This keeps the 
computational burden for these additional experiments manageable.   
10 The most notable case is when ω is very small (ω= 0.1ωbaseline).  KPSS and LMC should have high power in this 
case because ω is near the null, and we can see from the Table 3B that they do. The low power of the LR0 test in 
this case is due two problems. First, UC models where the true correlation is non-zero, but the correlation is 
restricted to be zero, lead to estimates of the variance of the permanent component that are biased downwards. This 
problem is discussed in Morley, Nelson, and Zivot (2003) and Oh, Zivot, and Creal (2008). Second, there is a pile-
up problem when the true variance is small, but non-zero, whereby the maximum likelihood estimate has non-zero 
probability of being equal to zero.   
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ρbaseline).  When the correlation is large in absolute magnitude in the true DGP, the bootstrap LR 

test is more powerful than the LR0 test (and also the most powerful test overall).  If the 

correlation in the DGP is zero, then the bootstrap LR0 test is more powerful, as we would expect, 

because it is always better to impose true values of parameters than to estimate them. But the loss 

of power from estimating the correlation is minimal and, of course, it would never be known in 

practice that the correlation is actually zero.  For the intermediate correlation cases, both positive 

and negative, we find that the bootstrap LR test is still the most powerful test.    

Section 3:  A Likelihood Ratio Test of Stationarity  

For the UC model in (1)-(3), stationarity corresponds to the null hypothesis that the 

variance of permanent shocks is zero, with level stationarity imposed when μ = 0 and trend 

stationarity considered otherwise.11  In terms of the model, the null hypothesis is ܪ଴:	߱ = 0 

versus the composite alternative hypotheses of positive variance, ܪ௔:	߱ > 0, corresponding to 

the presence of a stochastic trend. As discussed in Morley, Nelson, and Zivot (2003), the 

correlated UC model is only identified for AR(p) specifications of the transitory component for 

which p ≥ 2. However, assuming this constraint is satisfied, the correlated UC model can be cast 

into state-space form and the Kalman filter can be applied for maximum likelihood estimation of 

the parameters for both the restricted and unrestricted models to directly obtain the LR statistic: 

ܴܮ  = 2(݈൫ߤ௔, ߶෨௔, ,௔ߪ ߱, ൯ߩ − ݈൫ߤ଴, ߶෨଴, ,଴ߪ ߱ = 0൯, (4) 

                                                 
11 The distribution of the LR statistic does not depend on whether or not a constant is allowed.  We focus here on a 
trend stationarity test, but we could alternatively think about a test with the null being an autoregressive unit root 
process such as the well-known test by Dickey and Fuller (1979) and the more recent LR-based tests of Elliott, 
Rothenberg and Stock (1996) and Jansson and Orregaard Nielsen (2012).  Our approach is similar in spirit to that of 
Jansson and Orregaard Nielson (2012), but we focus on the null of trend stationarity rather than an autoregressive 
unit root because that is the appropriate test for the case where a researcher is considering applying a UC model to 
estimate a stochastic trend if the null is rejected.   
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where ߶෨ denotes the px1 vector of AR parameters. Because ω=0 lies on the boundary of the 

parameter space, the LR test statistic has a nonstandard distribution.12 The UC model that we 

consider here is second-order equivalent in moments to an ARIMA(p,1,p*) model under the 

alternative, and to an ARMA(p,1) model with moving average coefficient on the unit circle 

under the null. In particular, we can rewrite the model in differences:   Δݕ௧ = Δ߬௧ + Δܿ௧ (5)Δݕ௧ = μ + ௧ߟ + ܿ௧ − ܿ௧ିଵ (6)ϕ(ܮ)(Δݕ௧ − (ߤ = ϕ(L)ߟ௧ + ௧ߝ − ௧ିଵ (7)ߝ

If ω>0, the right-hand side of equation (7) is an MA process of order smaller than or equal to p. 

If ω=0, the right hand side of equation (7) is an MA process with a unit root. In Lemma 1 in the 

appendix, we show that for the empirically popular processes that we consider, the MA 

coefficient is equal to 1 if and only if ω=0.13 

In determining the distribution of the LR test statistic, we rely on the theoretical results in 

Davis, Chen, and Dunsmuir (1995) and Davis and Dunsmuir (1996) for a moving-average unit 

root test.14 Specifically, Davis, Chen, and Dunsmuir (1995) make use of the asymptotic 

                                                 
12 Interestingly, despite its appearance in (4), the correlation parameter  does not act as a nuisance parameter for 

the LR test. This is because the UC model in (1)-(3) is equivalent to a reduced-form ARIMA model. Specifically, 
assuming a diffuse prior on the initial level of the trend, the likelihoods for the UC model and the reduced-form 
ARIMA model will be identical, as found in Morley, Nelson, and Zivot (2003). Thus, the likelihood can always be 
re-parameterized in terms of ARIMA parameters that are identified under the null. We make use of this equivalence 
in the proof for the distribution of the likelihood ratio statistic.   
13 Oh, Creal, and Zivot (2008) consider a more general UC model where the cycle is allowed to have an  MA 
component. In the case of a more general model, the LR test will still have the asymptotic distribution discussed 
below, but the estimation will require a two-step approach proposed by Davis, Chen, and Dunsmuir (1996). The 
differences between the more general model and our model are discussed in the appendix.   
14 We use the approach proposed here because for the particular case when the null is that an MA process has a root 
that is on the unit circle and the other roots are not (i.e. specifically for the case of Morley, Nelson, and Zivot, 2003), 
the asymptotic distribution is fully derived by Davis and Dunsmuir. Chernoff (1954), Gouriéroux, Holly, and 
Monfort (1982) and Andrews (2001) have also studied likelihood ratio tests when parameters are on a boundary.   


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approximation of MLE based on local-to-unity analysis for an MA(1) model of the first 

differences as follows: 

 Δݕ௧ = ௧ݑ −  ௧ିଵ,, (8)ݑߠ

where ݑ௧~݅݅݀(0, (௧ସݑ)ܧ ௨ଶ) andߪ < ∞, with the likelihood ratio statistic given as 

(ߠ)݈)2  − ߠ)݈ = 1) ௗ→ܼ(ߚ෨), (9) 

where ݈(∘) denotes the log likelihood function, β = T(1 - ), and  

(ߚ)ܼ  = ∑ ఉమఞೖమగమ௞మାఉమ + ∑ ln ቀ గమ௞మగమ௞మାఉమቁ ,ஶ௞ୀଵஶ௞ୀଵ  (10) 

with ߚ෨ being the global maximizer of Z(β), χk ~ iid N(0,1), and 
ௗ→ denoting weak convergence on 

the space of continuous functions on [0, ). 

To obtain the asymptotic critical values for this test, we follow Davis and Dunsmuir 

(1996) and Gospodinov (2002) and consider the local maximizer of Z(β), given by  ߚ෨௟ = inf	{ߚ ≥ (ߚ)ᇱܼߚ	:0 = (ߚ)ᇱᇱܼߚ	݀݊ܽ	0 + ܼᇱ(ߚ) < 0}.15  The infinite series is truncated at k = 

1000 and Z(β) is computed for a given draw of the χk’s.  If Z(0)  0, we set ߚ෨௟=0 for that draw.  

Otherwise, we find the smallest nonnegative root of Z(β) by grid search. The asymptotic critical 

value at 5% for the LR test of a moving-average unit root for an MA(1) model based on 100,000 

replications is 1.89.16 

Davis, Chen, and Dunsmuir (1996) show that the distribution in (6) holds for testing a 

moving-average unit root for more complicated ARMA models. Given the close relationship 

                                                 
15 We consider the local maximizer because it is much less computationally involved than the global maximizer. 
However, as discussed in Davis, Chen, and Dunsmuir (1995), the asymptotic distributions for the LR statistic are 
very similar for the local and global maximizers. 
16 It is 0.96 for 10% and 4.42 for 1%. 


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between UC and ARMA models, we build on their result to establish the same asymptotic 

distribution for a stationarity test based on a UC model and the consistency of the test: 

Proposition 1 Assuming iid innovations with finite fourth moments, the LR statistic for a test of 

stationarity based on a correlated UC model has the asymptotic distribution given in (6) under 

the null of stationarity ܪ଴:	߱ = 0 and the test is consistent at least at rate √ܶ for alternatives 

with a stochastic trend ܪ௔:	߱ > 0. 

Remark The proposition follows directly from (i) the second-order equivalence of the UC model 

to a stationary ARMA model in first differences, (ii) Theorem 4.1 in Davis, Chen, and Dunsmuir 

(1996), (iii) Theorem 2.1 in Pötscher (1991), and (iv) the theoretical results for MLE of MA 

roots in McCabe and Leybourne (1998). See appendix for the full proof. 

Meanwhile, in terms of the bootstrap version of the LR test, first-order accuracy follows 

directly from the equivalence of stationarity to a unit MA root and the more general results in 

Gospodinov (2002) for a bootstrap LR test given a fixed null about the MA root.17 Thus, 

consideration of a bootstrap LR test is also asymptotically valid and, in principle, no worse than 

considering an LR test based on the asymptotic critical value. Unfortunately, as discussed by 

Gospodinov (2002), higher-order accuracy is difficult to determine in this setting.  

Returning to Tables 2 and 3, we find that the LR test is oversized in small samples when 

based on the asymptotic critical value at a nominal 5% level and given a sample size of 260 

observations, with the size distortion similar to the LMC test, but not as severe as for the KPSS 

test. The parametric bootstrap version of the LR test is correctly sized, with the key result being 

that the drop off in power is not nearly as dramatic as for the LM tests.  
                                                 
17 Admittedly, the model is MA(1) with a unit root only for the special case considered here.  Morley (2011) shows, 
however, that more general unobserved components models with correlated components that nest the model in 
Morley, Nelson, and Zivot (2003), such as those discussed in Oh, Creal, and Zivot (2008) and Proietti (2008), have 
the same implications in terms of the volatility of the stochastic trend. 



 14

It should be emphasized that allowing for correlation between the permanent and 

transitory movements is important for the power of our LR test.  In Tables 2 and 3 we also report 

the LR0 test where the correlation, ρ, was restricted to be 0 in estimation. This places a strong 

restriction on the estimated variability of the permanent component (specifically, that it can be 

no greater than the variability of Δݕ௧). To the extent that this restriction is false, as it is for the 

DGP considered in our baseline power experiment, the LR0 test based on an uncorrelated UC 

model has, by construction, lower power as a result of imposing the restriction.18  

Comparing across all of the experiments reported in Tables 2 and 3, we can see that our 

proposed bootstrap LR test performs well in all cases. Our test particularly outperforms the other 

tests in the empirically-relevant baseline case where the DGP was based on estimates for US real 

GDP, which are discussed in detail next. 

 

Section 4:  Application to US Real GDP  

Having considered Monte Carlo analysis to evaluate the small-sample performance of the 

various stationarity tests for DGPs based on estimates for US real GDP, we now turn to applying 

the tests to the actual data. We first present unit root tests for the actual data in Table 4.  We 

report both the traditional augmented Dickey Fuller test (Dickey and Fuller, 1979, ADF) and the 

more recent LR-based test of Elliott, Rothenberg and Stock (1996, ERS). Not surprisingly, we 

fail to reject the presence of a unit root.  However, failing to reject a unit root does not confirm 

its existence. Therefore, we move on to focus on stationarity tests. 

                                                 
18 Note that the size of the asymptotic LR test is very similar when imposing zero correlation in estimating the 
alternative model. Meanwhile, the LM tests only require estimation under the null. So, by construction, they are not 
affected by the consideration of a non-zero correlation between permanent and transitory movements under the 
alternative.     
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Table 5 reports the results of applying the bootstrap versions of the stationarity tests to 

the actual data, beginning with the same 1947Q1-2011Q4 sample period that provided estimates 

for the DGPs considered in our Monte Carlo analysis. We consider bootstrap tests based on 4999 

simulations. For this sample period, both bootstrap KPSS and LMC tests fail to reject the null of 

a trend-stationary AR(2) process in favor of the correlated UC process.19 Conversely, the more 

powerful bootstrap LR test rejects the null hypothesis at the 5% level.   

The 1947-2011 period includes the Great Recession near the end of the sample. Because 

the Great Recession corresponded to a large decline in the level of real GDP and its long-term 

implications remain unresolved, the rejection of stationarity could be driven by the inclusion of 

this (possibly incomplete) episode in the sample. Therefore, we also consider a pre-crisis sample 

period of 1947Q1-2006Q4 that ends just before the Great Recession. For the pre-crisis sample, 

all three tests reject the trend-stationary null at the 5% level. Interestingly, the test statistics are 

all (at least slightly) lower for the pre-crisis sample. However, the bootstrap critical values are 

also lower in all three cases, related to the fact that the estimated trend-stationary AR(2) model 

for the pre-crisis data implies less persistence (the sum of the AR coefficients is 0.97 instead of 

0.99). To the extent that the data display more mean reversion, we would expect the traditional 

stationarity tests to perform somewhat better, including in terms of power, than when the data are 

highly persistent (again, see Müller, 2005, on this point). 

The third case that we consider addresses Perron and Wada’s (2009) concern that the 

rejection of trend stationarity for postwar US real GDP may be due to the exclusion of known 

                                                 
19 Based on the asymptotic critical values of the tests, both the KPSS and the LMC reject the null hypothesis. But, as 
found in the Monte Carlo analysis, the asymptotic versions of these tests are massively oversized in finite samples. 
Therefore, inference should be based on the bootstrap versions of these tests given their better size properties.   
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structural breaks.20  A practical advantage of the bootstrap tests is that they can automatically 

accommodate for known structural breaks in the trend function or in the error variance (while the 

asymptotic critical values depend on such breaks).21
  For our application, we first adjust the data 

based on the 1947Q1-2011Q4 data in order to take into account two structural breaks in the 

growth rate: a break in the mean in 1973Q1 (Perron, 1989, and Perron and Wada, 2009) and a 

break in the variance in 1984Q1 (Kim and Nelson, 1999, and McConnell Perez-Quiros, 2000). 

After modelling and removing the known breaks from the data,22 we conduct the same empirical 

analysis as previously and find that all three of the test statistics are smaller than before, 

consistent with Perron and Wada’s (2009) supposition. The bootstrap LR test, however, still 

rejects the trend-stationary null, whereas the other two tests fail to reject the null. This result 

again illustrates the power benefits of the bootstrap LR test compared to the bootstrap versions of 

the LM tests of stationarity.   

Section 5:  Conclusions  

Properly separating trend and cycle movements in macroeconomic variables is important 

for policy analysis, forecasting, and testing between competing theories. An important first step 

then in conducting empirical analysis of macroeconomic data is to test for the existence of 

stochastic trends with a stationarity test.  We have investigated the small-sample properties of 

stationarity tests when the data are highly persistent and can be captured by an unobserved 

components (UC) model. Monte Carlo analysis confirms that standard asymptotic tests display 

                                                 
20 Due to considerable complication of the asymptotic analysis, we leave consideration of an unknown number of 
structural breaks at unknown breakdates for future research.   
21 We are thankful to an anonymous referee for pointing this out to us. 
22 Specifically, we standardize the growth rates allowing for the breaks in mean and variance and then reconstruct 
the level of real GDP based on the standardized growth series. This approach is equivalent to modeling the known 
structural breaks in the UC model for both the estimates and the bootstrap.   
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severe small-sample size distortions in this setting, while bootstrap versions of these tests suffer 

from weak power. We propose the alternative use of a likelihood ratio test of stationarity based 

on the UC model and demonstrate the superior power properties of a bootstrap version of this 

test. An application to postwar US real GDP supports the existence of a stochastic trend that is 

responsible for a large portion of the overall fluctuations in real economic activity, even when 

excluding the recent Great Recession or allowing for structural breaks in the mean and variance 

of the growth rate.  
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Table 1: Parameters for Monte Carlo Simulations 
 

Description AR(2) UC 
S.D. of Permanent Innovations  ωσ Restricted to be 0 1.23 
S.D. of Temporary Innovations σ 0.92 0.81 
Correlation btwn. Innovations ρ --- -0.93 

Drift μ 0.80 0.78 
1st AR parameter φ1 1.37 1.27 
2nd AR parameter φ2 -0.38 -0.66 

Note: Parameters are based on estimates from 100*ln of Quarterly Real GDP 1947Q1-2011Q4.  

 
Table 2:  Baseline Monte Carlo Results  

 
Results Based on Simulated Data with Parameters from Table 1 

Nominal Size 5% Asymptotic Bootstrap 

KPSS 78.3% 7.1% 

LMC 33.3% 6.1% 

LR0 29.0% 5.2% 

LR 25.9% 5.4% 

     

Power Asymptotic Bootstrap 

KPSS 91.2% 22.4% 

LMC 82.2% 46.4% 

LR0 52.0% 39.0% 

LR 88.6% 76.0% 
Note: Sample size is 260 observations and we consider 500 replications.   
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Table 3:  Additional Monte Carlo Results  
 

Table 3A: Results Based on Simulated Data with AR Parameters Reduced by 50% 

Nominal Size 5% Asymptotic Bootstrap 

KPSS 37% 7% 

LMC 38% 3% 

LR0 1% 2% 

LR 30% 6% 

     

Power Asymptotic Bootstrap 

KPSS 100% 70% 

LMC 83% 38% 

LR0 10% 14% 

LR 93% 64% 
Note: Sample size is 260 observations and we consider 100 replications.   
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Table 3B: Additional Power Experiments  
Changing the Relative Importance of the Permanent Innovations (ω) 

 ω= 0.5ωbaseline ω= 0.1ωbaseline 

Power AsymptoticBootstrap AsymptoticBootstrap 

KPSS 44% 58% 84% 89% 

LMC 59% 63% 100% 100% 

LR0 75% 77% 47% 59% 

LR 54% 59% 100% 100% 
Note: Sample size is 260 observations and we consider 100 replications.  All parameters are the same as the baseline 
reported in Table 1 except for restrictions noted above each column of results.  

 
Table 3C: Additional Power Experiments  

Changing the Correlation Between the Innovations (ρ) 

 ρ = 0 ρ = 0.5ρbaseline ρ =  – 0.5ρbaseline ρ =  – ρbaseline 

PowerAsymptotic Bootstrap  AsymptoticBootstrap AsymptoticBootstrap AsymptoticBootstrap 

KPSS 68% 28% 82% 22% 99% 81% 98% 98% 

LMC 77% 56% 94% 52% 81% 48% 82% 49% 

LR0 89% 58% 68% 50% 91% 41% 94% 43% 

LR 74% 56% 89% 79% 95% 94% 96% 98% 
 
Note: Sample size is 260 observations and we consider 100 replications.  All parameters are the same as the baseline 
reported in Table 1 except for restrictions noted above each column of results.  
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Table 4: Unit Root Tests for our Empirical Example 
 

Data Series ADF Statistic ERS Statistic 
Real GDP 

1947Q1 – 2011Q4 
-1.71 
(0.75) 

19.90 
 (>0.10) 

Note: p-values reported in parentheses. For the ERS statistic, the bound on the p-value is based on the 
critical value for the test at a 10% level. Tests are conducted in EViews and lag selection is based on AIC.   

 
Table 5:  Empirical Results 

 
Data Series KPSS Statistic LMC Statistic LR0 Statistic LR Statistic 
Real GDP 

1947Q1 – 2011Q4 
0.36 

(0.14) 
3.33 

(0.07) 
1.29 

(0.21) 
7.45 

(0.02) 
Real GDP 

1947Q1 – 2006Q4 
0.35 

(0.04) 
2.82 

(0.02) 
2.96 

(<0.01) 
5.54 

(0.03) 
Real GDP 

1947Q1 – 2011Q4 
drift & var break 

0.17 
(0.28) 

1.65 
(0.09) 

1.98 
(0.01) 

3.49 
(0.048) 

Note: Statistics in bold represent rejection of the null at the 5% level. Bootstrapped p-values reported in 
parentheses for all tests. 
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Appendix A: Bootstrap Procedure  

Given our focus on testing stationarity with UC models, we consider parametric 

bootstrap tests. Specifically, simulated data are based on estimated parameters and 

distributional assumptions of the models. The full bootstrap testing procedure is given as 

follows: 

1) Consistently estimate the parameters of the assumed autoregressive 

process under the null of trend stationarity and obtain the likelihood 

value. We also calculate the likelihood value under the alternative of 

the specified unobserved components process, being careful to consider 

a large number of different starting values for numerical optimization in 

order to ensure that we find the global maximum. We then construct the 

likelihood ratio test statistic for the actual or Monte Carlo data 

(depending on whether we are using the bootstrap test for actual data or 

using Monte Carlo simulated data to explore the size and power of the 

different tests). We also construct the KPSS statistic and the LMC 

statistic for the actual or Monte Carlo data, with the appropriate 

parametric assumption made when constructing the LMC statistic. 

2) Simulate bootstrap data imposing the null based on the model and 

parameters estimated in step 1.23  Again, this is fully parametric. We 

consider 4999 bootstrap simulations in our applications, while we do up 

                                                 
23 We also considered a modified bootstrap procedure proposed by an anonymous referee where we 
imposed the AR parameters estimated from the alterative and setting to zero the variance of the stochastic 
trend for constructing the bootstrap samples.  As hypothesized by the referee, this modification worked best 
in the vicinity of the null.  In that case, however, the other tests reported in Tables 2 and 3 also performed 
well.  
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to 199 bootstrap simulations in each Monte Carlo replication due to the 

computational burden. 

3) For each bootstrap simulation, estimate both the null and alternative 

models.  For the alternative models we consider a large number of 

starting values for numerical optimization in order to ensure that we 

obtain the global maximum. 

4) For each bootstrap data simulation, construct bootstrap draws of the test 

statistics based on the estimates from step 3. 

5) Calculate a bootstrapped p-value as the number of bootstrap draws of a 

given test statistic that are greater than the test statistic found from the 

actual or Monte Carlo data, divided by the total number of bootstrap 

draws (MacKinnon, 2002).   

Appendix B: The LM Statistics  

Let ݑො௧ , t = 1, …, T, be the estimated residuals from a regression of the time series 

of interest, y, on an intercept and a time trend.  Assuming that that the innovations to the 

random walk component are normally distributed and that the stationary errors are iid  

N(0, u
2), the one-sided LM statistic is the locally best invariant (LBI) statistic for the 

hypothesis that the innovations to the random walk component have a zero variance 

(Nyblom and Mäkeläinen, 1983; Nyblom, 1986; Nabeya and Tanaka, 1988; Bailey and 

Taylor, 2002).  The statistic depends on the partial sum process, St, of these residuals, and 

the estimate of the error variance from the regression, ߪଶ௨: 

ܯܮ  = ∑ ܵ௧ଶ/ߪො௨ଶ௧்ୀଵ  (B.1) 
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The nonstandard asymptotic distribution of the LM statistic can be derived based 

on the assumption of iid errors.  However, this assumption is unrealistic for most time 

series to which a stationarity test would be applied because these series are in general 

highly dependent over time. To address serial correlation in the error, KPSS take a 

nonparametric approach, whereas LMC take a parametric approach.  

B.1 KPSS Nonparametric Approach 

To allow for general forms of temporal dependence, KPSS modify the LM test 

statistic by replacing ߪො௨ଶ with a nonparametric estimator of the “long-run variance” (i.e., 

2π times the spectral density of  at frequency zero), which can be denoted as s2(l): 

ܯܮ  = ∑ ܵ௧ଶ/ݏଶ(݈)௧்ୀଵ  (B.2) 

where ݏଶ(݈) = ܶିଵ ∑ ො௧ଶݑ + 2ܶିଵ ∑ ,ݏ)ݓ ݈) ∑ ො௧ି௦௧௧ୀ௦ାଵ௟௦ୀଵ௧்ୀଵݑො௧ݑ  and ݏ)ݓ, ݈) is a 

weighting function, typically the Bartlett kernel, ݏ)ݓ, ݈)1 − ݈)/ݏ + 1).  There is a trade-

off between size distortions and test power related to the selection of the lag truncation 

parameter, l:  the larger the choice of l, the smaller the size distortion, but the lower the 

power of the test.  Setting l equal to zero is equivalent to not correcting for 

autocorrelation in the errors.  In our analysis, we use the generalized KPSS test of Hobijn, 

Franses and Ooms (2004) with the Bartlett kernel, automatic lag selection (following 

Newey and West, 1994), and initial bandwidth (n) as a function of the length of the 

series:݊ = 4]ݐ݊݅ ∗ ቀ ்ଵ଴଴ቁమవ], where int is a function that takes the integer portion.   

KPSS derive the asymptotic distribution of their statistic as an integrated 

Brownian bridge for level stationarity and an integrated second-level Brownian bridge for 

trend stationarity. Thus, in both cases, the asymptotic distribution is pivotal. 

 

u
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B.2 LMC Parametric Approach 

LMC employ a parametric version of the LM test of the null hypothesis of 

stationarity against the presence of a stochastic trend.  They address serial correlation by 

assuming an AR(p) under the null and thus they include p lagged terms of yt in their 

initial model specification.  To obtain their test statistic, they construct the series: 

∗௧ݕ  ≡ ௧ݕ − ∑ ߶෠௜ݕ௧ି௜௣௜ୀଵ  (B.3) 

where the ߶෠௜ are the maximum likelihood estimates of ߶௜ from the ARIMA(p, 1, 1) 

model:   

 Δݕ௧ = ߜ + ∑ ߶௜Δݕ௧ିଵ + ௧ݑ + ௧ିଵ௣௜ୀଵݑߠ . (B.4) 

The ARIMA(p, 1, 1) is the reduced-form representation of the unobserved components 

model LMC assume under the alternative, which is the local-level model of Harvey 

(1989).  This approach gives consistent estimates of the AR(p) parameters both when the 

null and the alternative are true.24 By contrast, if we were to estimate an AR(p) in levels, 

the estimates would be inconsistent when the alternative is true. In particular, the 

estimates would capture an autoregressive unit root, rather than converge to their true 

values, and the test would have little power, as discussed in LMC. 

Similar to KPSS, LMC calculate the residuals, ݑො௧, from a regression of ݕ௧∗ from 

equation (3) on an intercept and a time trend.  The LMC test statistic is then  

ܥܯܮ  = ොݑොᇱܸݑ , (B.5) 

                                                 
24 McCabe and Leybourne (1998) show that the marginal distribution of the maximum likelihood estimates 
of AR parameters in the case of an MA unit root is asymptotically the same as the distribution of the 
maximum likelihood estimates in a pure AR(p) model.  Therefore, if we estimate the first difference of a 
stationary model (i.e. estimating under the alternative when the null is true), the AR parameter estimates 
can be used for the null. Meanwhile, for a more complicated alternative, such as the nonstationary 
unobserved components process considered in this paper, it is straightforward to modify the reduced-form 
model to allow it to capture the full parametric structure under the alternative, while still being consistent 
when the null is true. 
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where V is a T x T matrix with ijth element equal to the minimum of i and j.  LMC derive 

the asymptotic distributions under level-stationarity and trend-stationarity of standardized 

versions of (B.5), which, like the KPSS test, depend on integrated Brownian bridges and 

are pivotal.  

Appendix C: Proof of Proposition 1  

Taking first differences of the UC model in (1)-(3), it is straightforward to show 

that is strictly equivalent in moments to a reduced-form ARIMA( ,1, ) model: 

௧ݕΔ)(ܮ)߶   − (ߤ = ௧ߟ(ܮ)߶ + (1 − ௧ߝ(ܮ =  ௧, (C.1)ݑ(ܮ)ߠ

where ݑ௧~ܰ(0,  depend on the (ܮ)ߠ ௨ଶ) and the parameters for the MA polynomialߪ

vector of AR parameters ߶,෩  ω, and ρ, with the order of the MA polynomial ݍ ≤  see) ݌

Morley, Nelson, and Zivot, 2003, on this equivalence). Strict equivalence of the models 

follows from the normality assumption for the innovations ߟ௧ and ߝ௧ in the UC model, as 

outlined in equations (5)-(7). However, the results for the likelihood ratio test rely only 

on second-order equivalence of the models, which would follow from the more general 

assumption that the innovations in the UC model and the forecast error  in the ARIMA 

model are iid with finite fourth moments. Also, even though we assume ݌ ≥ 2 for 

identification of the correlated UC model, the results for the likelihood ratio test will hold 

as long as the process is at least equivalent to a reduced-form ARIMA(0,1,1) process 

after any cancellation of roots and the specification of an ARIMA model used in 

estimation under the null and alternative is sufficiently rich enough to capture the true 

p q
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underlying process.25 As discussed in the main text, the equivalence of the UC model to 

the ARIMA model also explains why the correlation ρ does not act as an unidentified 

nuisance parameter in terms of the distribution of the likelihood ratio statistic under the 

null hypothesis. Specifically, as we make use of below, the likelihood for the UC model 

can be re-parameterized in terms of ARIMA parameters that are identified under the null 

hypothesis. 

Under the null hypothesis ܪ଴:	߱ = 0, the implied MA lag order for the 

corresponding reduced-form ARIMA model is ݍ = 1, with the coefficient in the implied 

MA polynomial (ܮ)ߠ = 1 − ߠ restricted to ܮߠ = 1. That is, the MA polynomial has a 

single root equal to 1.  

Lemma 1: Under the alternative hypothesis ܪ௔:	߱ > 0, the roots of the MA lag 

polynomial for the reduced-form ARIMA model in (C.1) corresponding to the UC model 

in (1)-(3) are strictly different than 1 (although they may be on the unit circle).  

There are two cases to consider for the alternative hypothesis. 

Case 1: If the correlation between UC innovations is less than perfect, ߩ ∈(−1,1), the variance-covariance matrix for the UC model, Σ, is strictly positive definite 

and invertibility of the MA polynomial (ܮ)ߠ follows directly from Theorem 1 in 

Teräsvirta (1977), which states that the sum of possibly correlated MA processes with 

positive definite variance-covariance matrix is invertible if and only if the MA 

polynomials have no common roots of modulus 1. Because the ߶(ܮ)ߟ௧ and (1 −  ௧ߝ(ܮ
processes in (C.1) have no common roots of modulus 1 for their lag polynomials due to 

                                                 
25 The specific result in terms of the rate of divergence of the test under the alternative hypothesis also 
requires that the model used in estimation allows for autoregressive dynamics, even if none are present in 
the true process. 
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the stationarity assumption for ߶(ܮ), the MA polynomial (ܮ)ߠ is invertible, directly 

implying that none of its roots is equal to 1. 

Case 2: If the correlation between UC innovations is perfect, ߩ = ±1, it implies 

that ߟ௧ = (ܮ)ߠ ௧. Thus, the MA polynomial isߝ߱± = (ܮ)߶߱± + (1 −  ,Note, then .(ܮ

that an MA root equal to 1 implies that the MA polynomial can be factorized as follows: (ܮ)ߠ = (1 − (ܮ)ߠ is based on the other roots. It is trivial to show from (ܮ)∗ߠ where ,(ܮ)∗ߠ(ܮ = (1 − (1)ߠ that  ,(ܮ)∗ߠ(ܮ = 0. However, if (1)ߠ = 0, then  (ܮ)ߠ = (ܮ)߶߱± + (1 − would imply that ߶(1) (ܮ = 0., which contradicts our 

assumption that ߶(ܮ) has roots that are strictly outside the unit circle. Thus, as in the 

previous case, none of the roots of (ܮ)ߠ  is equal to 1. 

Based on Lemma 1, testing stationarity for the UC model is equivalent to testing 

whether the corresponding ARIMA( ,1, ) model has a root equal to 1 for its MA 

polynomial. In terms of this test, it is again useful to factorize the MA polynomial: 

(ܮ)ߠ  =  (C.2) (ܮ)∗ߠ(ܮ)௖ߠ

where ߠ௖(ܮ) is the factor of the MA polynomial of order one or two with the single root 

or complex conjugate roots for (ܮ)ߠ that are closest to 1 and (ܮ)∗ߠ is the residual factor 

that reflects all of the other roots that are further away from 1. Denoting the root or the 

2x1 vector of roots closest to 1 as ݖ௖ and ̃ݖ௖, respectively, with ݖ௖  also being the first 

element of ̃ݖ௖, and the vector of all the other roots as̃ݖ௖∗, the hypotheses ܪ଴:	߱ = 0 and ܪ௔:	߱ > 0 for the UC model are equivalent to the respective hypotheses ܪ଴:	ݖ௖ = 0 and ܪଵ:	ݖ௖ ≠ 0 for the ARIMA model. 

To impose the null hypothesis for both the UC model and ARIMA model, we can 

estimate a trend-stationary AR(p) model in levels. Assuming the null hypothesis is true, it 

p q
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is straightforward to show that MLE for the drift, AR parameters, and variance will be 

consistent for this model. Meanwhile, if we allow for the alternative hypothesis in 

estimation, consistency of MLE for all of the ARMA model parameters, both under the 

null and alternative, follows from Pötscher (1991). Focusing on the roots of the MA 

polynomial and assuming the null hypothesis is true, but allowing for the alternative in 

estimation, it follows from McCabe and Leybourne (1998) that the implied MLE estimate 

for ݖ௖ will be T-consistent and the estimates for the elements of ̃ݖ∗ will be √ܶ-consistent 

and asymptotically normal. 

Conditional on µ,  ߶෨,  and ߪ௨ which, assuming the null hypothesis is true, will be 

consistent both when imposing the null and when allowing for the alternative in 

estimation, as discussed above and related to the approach taken in Davis, Chen, and 

Dunsmuir (1996), the likelihood ratio statistic for testing ܪ଴:	ݖ௖ = 0 vs. ܪଵ:	ݖ௖ ≠ 0 for an 

ARMA model is ܴܮ௭೎ୀଵ = 2(൫݈(ݖ௖) − ௖ݖ)݈ = 1)൯ + ൫݈(ݖ∗෩ (௖ݖ| − ෩∗ݖ)݈ = ௖ݖ|0 = 1)൯ (C.3)

Under the null hypothesis, the first term converges to the Davis and Dunsmuir 

distribution given in (6) as ܶ →∞. The second term is continuous in the neighborhood of 

zero and, from McCabe and Leybourne (1998), is of order √ܶ-, meaning that it converges 

to 0 as ܶ →∞. Thus, given the equivalence of the UC model and the ARIMA model, the 

LR statistic for testing  ܪ଴:	߱ = 0 vs. ܪ௔:	߱ > 0  has the asymptotic distribution given in 

(6) when the null hypothesis is true. 

When the alternative hypothesis is true, the estimates for߶෨ are no longer consistent 

when imposing the null in estimation, as discussed in Leybourne and McCabe (1994). In 

this case, imposing the null is equivalent to estimation of a trend-stationary AR(p) model 
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in levels when there is an autoregressive unit root. Thus, following the Phillips (1987), 

the implied MLE for ߶(1) when imposing the null converges arbitrarily close to 0 at rate 

T, even though the true ߶(1)  is strictly not equal to 0. By contrast, from Pötscher (1991), 

the implied MLE for ߶(1) when allowing for the alternative is consistent at rate √ܶ. 

Thus, based on the differences in estimates for ߶෨ alone, the LR statistic for testing 

stationarity will diverge at rate √ܶ. 

For some alternative DGPs, the LR statistic will diverge at a faster rate than √ܶ. 

There are four cases to consider.  

Case 1: If the correlation between UC innovations is less than perfect, ߩ ∈ (−1,1) 
and the MA polynomial ߠ௖(ܮ) is of order 1, the first term of the LR statistic in (C.3) 

diverges at rate T, following Davis, Chen, and Dunsmuir (1996). The second term 

diverges at rate √ܶ given the √ܶ-consistency of the roots of ݖ̃ ,(ܮ)∗ߠ∗, which follows 

from the invertibility of (ܮ)ߠ due to Theorem 1 in Teräsvirta (1977) and the consistency 

results for ARMA models in Pötscher (1991). Thus, in this case, the overall LR statistic 

in (C.3) diverges at rate T. 

Case 2: If the correlation between UC innovations is less than perfect, ߩ ∈ (−1,1) 
and the MA polynomial ߠ௖(ܮ) is of order 2 (i.e., the roots closest to 1 are complex 

conjugates), the LR statistic in (C.3) is modified as follows: ܴܮ௭೎ୀଵ = 2(൫݈(̃ݖ௖) − ௖ݖ̃)݈ = (1,0)′)൯ + ൫݈(ݖ∗෩ (௖ݖ| − ෩∗ݖ)݈ = ௖ݖ̃|0 = (1,0)′)൯ (C.4)

Because the MLE for the MA parameters are √ܶ-consistent when allowing for the 

alternative, again following from the invertibility of (ܮ)ߠ directly from Theorem 1 in 

Teräsvirta (1977) and the consistency results for ARMA models in Pötscher (1991), the 

LR statistic diverges at rate  √ܶ	in this case. 
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Case 3: If the correlation between UC innovations is perfect, ߩ = ±1, and the MA 

polynomial ߠ௖(ܮ) is of order 1, we have a similar result to Case 1. Denoting the vector of 

roots of (ܮ)ߠ as ̃ݖ, we have two subcases to consider. First, if all of the roots ̃ݖ are strictly 

off the unit circle, then we have the same result as in Case 1 that the LR statistic diverges 

at rate T. However, if some of the roots  lie on the unit circle, the estimates are 

consistent following Pötscher (1991), but at an unknown rate. If the second term in (C.3) 

diverges at a faster rate than T, then the LR statistic will diverge at a faster rate. Thus, in 

this case, the overall LR statistic diverges at least at rate T. 

Case 4: If the correlation between UC innovations is perfect, ߩ = ±1, and the MA 

polynomial ߠ௖(ܮ)  is of order 2, we have a similar result to Case 2. If all of the roots  ̃ݖ 

are strictly off the unit circle, then we have the same result as in Case 2 that the LR 

statistic in (C.4) diverges at rate √ܶ	. However, if some of the roots ̃ݖ lie on the unit 

circle, the estimates are again consistent at an unknown rate. Thus, in this case, based on 

the differences in the estimates for ߶෨, the LR statistic diverges at least at rate ̃ݖ. 

 All of the derivations above use the assumption that the cycle is an AR(p) process. If we 

consider the more general model introduced by Oh, Creal, and Zivot (2008), where ߶(ܮ)ܿ௧ = (1 +  ௧. The correlation between the trend and the cyclical shocks in thisߝ(ఌߠ

model is only identified if ߠఌ is known (in our model, we considered the empirically 

popular restricted case with ߠఌ = 0). As shown by OCZ, the variance of the permanent 

shock does not depend on the correlation ߩ, so any tests that are based on ߱ will not 

depend on the correlation. However, it is important to note that in this case the model 

does not reduce to an ARMA(2,1) with a unit root under the null, but to an ARMA(2,2) 

z
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with a single unit root. To see this, if we add an MA component to equation (3), equation 

(7) becomes 

                       ϕ(ܮ)(Δݕ௧ − (ߤ = ϕ(L)ߟ௧ + (1 + ఌ)(1ߠ −  ௧.C.5ߝ(ܮ

However, it is important to note that from Theorem 1 in Teräsvirta (1977), under the 

alternative, the MA component will have roots that are strictly different from 1 (but may 

be 1 in modulus). Under the null, the MA component will have one root equal to 1 and a 

root that is not on the unit circle. Under the assumption that ߠ௩ < 1, under the null, the 

MA component will have a root exactly equal to one if and only if ߱ = 0. Imposing ߱ = 0 imposes that exactly one root of the MA coefficient is equal to 1. This is exactly 

the case considered by Davis, Chen, and Dunsmuir (1996), who show that the likelihood 

ratio statistics for the null where we impose that exactly one root is equal to one versus 

the alternative where the roots are unrestricted still follows the DD(1995) distribution 

(and the estimates for the MA and AR coefficients will still be consistent). In this case, 

the LR tests discussed in equations (C.3 through C.4 can be directly replaced by the 

adapted version of the DD(1995) test. It is, however, important to note that if the true ߠ௩ 

is not equal to zero, and it is close to -1, this may lead to size distortions in finite samples. 


