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Abstract

The problem of unstable coefficients in the rank-ordered logit model has

been traditionally interpreted as a sign that survey respondents fail to pro-

vide reliable ranking responses. This paper shows that the problem may

embody the inherent sensitivity of the model to stochastic misspecification

instead. Even a minor departure from the postulated random utility func-

tion can induce the problem, for instance when rank-ordered logit is esti-

mated whereas the true additive disturbance is iid normal over alternatives.

Related implications for substantive analyses and further modelling are ex-

plored. In general, a well-specified random coefficient rank-ordered logit

model can mitigate, though not eliminate, the problem and produce analyt-

ically useful results. The model can also be generalised to be more suitable

for forecasting purposes, by accommodating that stochastic misspecification

matters less for individuals with more deterministic preferences. An empir-

ical analysis using an Australian nursing job preferences survey shows that

the estimates behave in accordance with these implications.
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1 Introduction

The use of stated preference surveys has become commonplace in the discrete choice

modelling literature, as demonstrated by the lists of cited applications in popular econo-

metrics textbooks (Greene, 2008; Train, 2009). These surveys provide, often the only,

practical means to collect data for analysing consumer preferences for non-market goods

and potential market goods which are yet to be introduced (Vossler et al., 2012). Stated

preference data have extended the range of questions which can be empirically addressed

in areas characterised by the scarcity of adequate revealed preference data, including

environmental economics, health economics and transportation economics.

A rank-ordered dependent variable indicates a ranking of different objects from best

to worst, and is more commonly, though not only, encountered in stated preference

analysis than in non-experimental contexts.1 A scenario in a typical stated preference

survey comprises a small number of hypothetical alternatives with differentiated char-

acteristics. Individual respondents are usually prompted to choose one, or state the

best, alternative from each presented scenario, but can also be asked to rank all alter-

natives in the given scenario simply by modifying the prompt question. Econometric

models for rank-ordered data can be derived from the same random utility models as

their counterparts for multinomial choice data, the most popular among them being

the rank-ordered logit (ROL) model (Beggs et al., 1981) that builds on the multinomial

logit (MNL) model (McFadden, 1981). Rankings provide more information than choices

in regard to how variations in the observed characteristics influence preferences over

the alternatives, allowing more precise estimation of the underlying utility coefficients.

A long standing issue in rank-ordered data analysis has been what Foster and

Mourato (2002) term the problem of unstable coefficients across ranks in ROL. For

example, suppose that full rankings of 4 alternatives have been observed. The data

can then be recoded as though only the best alternative has been observed, or the best

and the second-best have been observed. The coefficients of a correctly specified ROL

model can be consistently estimated using any of the recoded and original responses.

As presented in several empirical studies since Chapman and Staelin (1982), however,

the ROL estimates tend to vary substantially following such recoding. In particular,

the estimates typically become attenuated monotonically as each worse-ranked alter-

1See Berry et al. (2004) and Train and Winston (2007) for examples of non-experimental rank-
ordered data.
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native is successively incorporated into the dependent variable, as if such information

increases the residual variance (Hausman and Ruud, 1987).

Over years, the problem of unstable coefficients has been explained as resulting from

intra-personal heterogeneity in respondent behaviour. Hausman and Ruud (1987) for-

mulate the heteroskedastic ROL (HROL) model, hypothesising that respondents state

better-ranked alternatives with more certainty. Ben-Akiva et al. (1992) speculate that

respondents adopt different decision protocols when stating better- and worse-ranked

alternatives, e.g. due to justification bias, and generalise HROL accordingly. Fok et al.

(2012) specify a latent class ROL model assuming that some respondents rank inferior

alternatives arbitrarily due to the lack of capabilities to discriminate among them. In a

similar vein, many studies have exploited specialised survey designs to investigate the

relative reliability of information on better- and worst-ranked alternatives, and that

of rank-ordered and choice data (see Boyle et al., 2001; Foster and Mourato, 2002;

Caparros et al., 2008; Scarpa et al., 2011; and references therein).

This paper is motivated by the rarely acknowledged distinction between the infor-

mational contents of rank-ordered data assumed by Beggs et al. (1981) and studies

addressing the problem of unstable coefficients. The former follows the microeconomic

approach to discrete choice analysis (McFadden, 1981; Anderson et al., 1992). An in-

dividual’s preference relation on alternatives is ex-ante random, and her rank-ordered

response is a realised preference relation. The data generating process for all ranks of

her response is one and the same. The latter studies typically cast a rank-ordered re-

sponse as a sequence of independent choice outcomes, constructed in a similar manner

as the top-down model of ranking behaviour from psychology (pp.69-70, Luce, 1959).

An individual probabilistically chooses the best of all alternatives, excludes it from

further consideration, and then chooses the best among the remaining alternatives to

identify her second-best, and so on. The data generating process for each rank of her

response may vary, reflecting intra-personal behavioural heterogeneity.

From the microeconomic perspective, intra-personal heterogeneity in respondent

behaviour is thus an unlikely origin of unstable coefficients across ranks, and the asso-

ciated explanations may be questioned on two grounds. First, by itself, the problem of

of unstable coefficients is simply evidence against the postulated logit utility specifica-

tion; it is not a symptom of behavioural response patterns compromising ‘consistency’

(Foster and Mourato, 2002) and ‘reliability’ (Ben-Akiva et al., 1992) of rank-ordered

data. Second, invoking the inadequate modelling of a response construction sequence as

specification error amounts to invalidating other models for rank-ordered data derived
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from the microeconomic approach, including rank-ordered probit (p.158, Train, 2009)

and nested ROL (Daksvik and Liu, 2009) models; unlike ROL, these models cannot be

motivated and therefore extended as a probabilistic model of a sequentially constructed

ranking. Such conclusion is undue when the motivating empirical regularity concerns

the ROL model alone.

This paper offers an explanation for the problem of unstable coefficients from the

microeconomic perspective, by exploring its origin within the random utility function

motivating the ROL model. Our simulated evidence exposes an empirically relevant

facet of the ROL model which, to the best of our knowledge, has not been explicitly

discussed in the literature. Specifically, a slight departure from the postulated random

utility distribution is enough to induce the coefficient estimates to become unstable

across ranks. This includes the case when the true additive error is independently and

identically distributed (iid) normal over alternatives, even though the difference between

independent normal and extreme value errors are often empirically indistinguishable

when modelling other types of limited dependent variables. One practical implication

is that unstable coefficients can be expected in almost any empirical work, regardless

of data reliability, when ROL is employed as a tractable approximation to an unknown

data generating process.

The sensitivity of the ROL model to stochastic misspecification arises from the

fact that the ranking probability becomes a product of multinomial choice probabili-

ties when the error terms are iid extreme value. This product structure embodies the

independence-of-irrelevant-alternatives (IIA) property that is not shared by ranking

probabilities derived from most other distributions (p.157, Train, 2009). In conse-

quence, a misspecified ROL model does not mimic the behaviour of a true ranking

probability model directly. Instead, it attempts to mimic that of several choice prob-

ability models using a single set of coefficients, whereas each of these models may

have different coefficients. Because a different subset of the choice probability models

is mimicked depending on how the dependent variable is recoded, the resulting sets

of ROL estimates would look as though respondents stated better- and worse-ranked

alternatives in a different manner.

Our findings analytically complement Layton’s (2000) empirically motivated con-

jecture that specifying the random coefficient or mixed ROL model would mitigate the

problem of unstable coefficients. Stochastic misspecification can result from various

sources, including unobserved preference heterogeneity. Unless such heterogeneity is

exactly incorporated and no other specification error is present, the mixed ROL model
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would produce unstable estimates across ranks because it still assumes that the residual

parts of utility are iid extreme value. Nonetheless, it can mitigate the problem because

providing a good approximation to unobserved heterogeneity increases the modelled

parts of utility relative to the residual parts, so that stochastic misspecification matters

less in predicting preference relations.

One mainly novel modelling implication follows from the likely sensitivity of the

mixed ROL to stochastic misspecification. When post-estimation analysis involving

choice probabilities is a major concern, the researcher may consider estimating a flex-

ible mixed HROL model, which allows for random heterogeneity in both coefficients

and rank-specific scale parameters. Heterogeneity in both dimensions are needed be-

cause some coefficient configurations or preferences imply more deterministic individual

behaviour than others; if the rank-specific scales account for the consequences of mis-

specifying the residuals as our analysis suggests, they should vary less across ranks for

individuals with more deterministic preferences.

We also investigate whether estimates from a real application behave in accordance

with the view that unstable coefficients result from stochastic misspecification. The

empirical analysis uses stated preference data collected as part of an ongoing longi-

tudinal survey of nursing students and graduates in Australia (Kenny et al., 2012).

Each scenario in the data includes 3 hypothetical entry-level nursing jobs, which are

differentiated by 12 characteristics and ranked from best to worst.

The initial analysis using MNL, ROL and HROL models detect a substantial degree

of coefficient attenuation across ranks. For a further analysis, each model is specified

as the kernel of a discrete mixture or latent class model. Latent class MNL and ROL

tend to highlight the key features of unobserved heterogeneity in data well (Train, 2008;

Keane and Wasi, 2012). Latent class HROL likewise can be expected to provide a good

indicator of whether the conceptualised form of joint heterogeneity in the coefficients

and rank-specific scale is present. The estimation results suggest that accounting for

coefficient heterogeneity mitigates the extent of attenuation. This finding cannot be

readily explained by supposing that respondents stated the best alternative with more

certainty; then, the composite disturbance underlying the fixed coefficient models can

be less heteroskedastic across ranks, due to the offsetting presence of the variance of

omitted coefficient heterogeneity. Moreover, the latent class HROL estimates clearly

suggest that the extent of attenuation is less when the coefficient configuration implies

more deterministic behaviour. We thus describe how this form of joint heterogeneity
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can be conveniently imposed when adapting a very flexible mixed MNL model (Fiebig

et al., 2010) for rank-ordered data analysis.

The remainder of this paper is organised as follows. Section 2 summarises the prob-

lem of unstable coefficients and related models. Section 3 presents simulated evidence

on the behaviour of ROL under pure stochastic misspecification, and discuss implica-

tions. Section 4 presents the analysis of the nursing job preferences data. Section 5

concludes.

2 The problem of unstable ROL coefficients

The usual cross-sectional setting for rank-ordered data is as follows. Agent n ∈ {1, 2, ..., N}
faces a choice set of Jn > 2 alternatives, where, for simplicity of notation, Jn is assumed

to equal J for all N agents as common in empirical applications.2 For ease of presen-

tation, the alternatives are assumed to be labelled arbitrarily and numerically so that

equations can be written as if each agent faces the choice set Ω = {1, 2, · · · , J}; this

assumption is made without loss of generality because alternative j ∈ Ω available to

agent n can be described by an agent-specific vector of K observed characteristics, xnj.

Each agent states which H out of the J alternatives she likes best where 1 < H ≤ J−1,

and ordinally ranks these H alternatives from best to worst without a tie.3

In the following formula, rnh ∈ Ω denotes agent n’s hth best alternative, and Ωn,h−1

is a collection of h − 1 alternatives she likes most. More specifically, Ωn,h−1 refers to

the empty set when h = 1 and ∪h−1i=1 {rni} when 2 ≤ h ≤ H.

The rank-ordered logit (ROL) model specifies the probability of observing agent n’s

ranking as:

Pn(β) =
H∏

h=1

exp(β · xnrnh
)

[
∑

j∈Ω\Ωn,h−1
exp(β · xnj)]

(1)

where β is a K-vector of parameters. The ROL formula is a product of multinomial

logit (MNL) formulas; for model estimation, a single observation on agent n’s ranking

is exploded into H pseudo-observations on choices, according to Train’s (p.157, 2009)

parlance. The hth pseudo-observation is constructed as an independent observation

on a choice among a set of alternatives excluding Ωn,h−1. The sample size effectively

increases H-fold, and β can be more precisely estimated than when each agent’s best

2The following discussion can be easily adapted for cases where the number of alternatives varies
across the agents, by making notations related to the choice set size agent-specific.

3In the special case when H = J − 1, all J alternatives are effectively ranked from best to worst.

5



alternative among Ω is observed alone. In the rest of this paper, the hth pseudo-choice

data refer to the set of all agents’ hth pseudo-observations.

From the perspective of microeconomic consumer theory, ROL describes the prob-

ability of (partially) observing a strict preference relation on Ω which arises from the

process of solving a random utility maximisation problem. Specifically, assume that

agent n obtains utility Unj from alternative j ∈ Ω:

Unj = β · xnj + εnj (2)

where the ex-ante random disturbance εnj is iid type I extreme value (EV1) over alter-

natives.4 At the time of decision making, εnj is realised for each alternative, allowing

all J alternatives to be ranked unambiguously in descending order of realised utility

indices. If agent n chooses or states her first-ranked (ie utility-maximising) alterna-

tive, the probability of a choice response becomes MNL (McFadden, 1981), whereas

if she states her top H-ranked alternatives, the probability of a rank-ordered response

becomes ROL (Beggs et al., 1981). (2) is called the logit utility function hereafter.

Each respondent’s ranking can be always recoded as if H had been smaller, and

the ROL formula suggests that β may be consistently estimated by using any one of

response variables detailing the top Q ranks, where 1 ≤ Q ≤ H. Its product structure

implies that when the model is correctly specified, discarding some of available pseudo-

choice datasets leads to only efficiency loss. Note that ROL reduces to MNL when the

observed rankings are recoded as choices (Q = 1).

Several empirical studies since Chapman and Staelin (1982), however, have noticed

what Foster and Mourato (2002) call ‘the problem of unstable coefficients across ranks’.

The ROL estimates tend to vary systematically as Q varies. In particular, as Hausman

and Ruud (1987) first emphasised, the estimated coefficients usually become attenuated

monotonically as Q is increased successively from 1 to H, as though worse-ranked

alternatives have been stated more erratically.

Hausman and Ruud formulate the heteroskedastic rank-ordered logit (HROL) model

that incorporates the key empirical regularity by modelling the probability correspond-

4Following McFadden (pp.205-206, 1981), our discussion associates the disturbance term with ran-
dom fluctuations in the decision maker’s state of mind concerning the utility she derives from each
alternative. In stated preferences applications, all relevant attributes are observed, and it is less nat-
ural to describe the disturbance term as those attributes which are known to the decision maker but
unobserved by the researcher.
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ing to equation (1) as:

Pn(β,σ) =
H∏

h=1

exp(σhβ · xnrnh
)

[
∑

j∈Ω\Ωn,h−1
exp(σhβ · xnj)]

(3)

where σ = [σ2, · · · , σH ] is a vector of H − 1 non-negative scalar parameters, with σh

measuring the scale of coefficients for the hth pseudo-choice data when σ1 is normalised

to 1. Maintaining that HROL is true, the pattern of attenuating coefficients can result

from constraining all σh to be identical, whereas in reality 1 > σ2 > · · · > σH .

Hausman and Ruud also introduce a behavioural model from which HROL can be

derived. This model parallels the top-down model of ranking behaviour from psychology

(pp.69-70, Luce, 1959), and assumes that the observed ranking is a constructed response

to the survey, instead of an ex-ante random preference relation on Ω realised during the

search for the utility-maximising alternative. Accordingly, it requires a more detailed

statement about each agent’s survey reporting behaviour.

Specifically, suppose that agent n constructs her response by solving H independent

random utility maximisation problems in sequence. The choice set at the hth problem

is Ω\Ωn,h−1, and the utility-maximising alternative in this set is ranked hth best in her

response. The probability of a rank-ordered response becomes HROL if agent n derives

utility Unj,h from each alternative j ∈ Ω\Ωn,h−1:

Unj,h = β · xnj + εnj,h/σh (4)

where the disturbance εnj,h is independent across h, and iid EV1 over alternatives for

each h. Now the inequalities 1 > σ2 > · · · > σH can be said to hold when the agent

states better-ranked alternatives with more certainty.

Over years, the problem of unstable coefficients has been mainly understood as a

data problem, originating from manners in which individuals construct their responses

sequentially. It has motivated many studies investigating the relative reliability of in-

formation on better- and worse-ranked alternatives (Foster and Mourato, 2002; Scarpa

et al., 2011) and that of rank-ordered and choice data (Boyle et al., 2001; Caparros

et al., 2008). A driving concern appears to be that the reliability of rank-ordered re-

sponses may be compromised by the cognitive difficulty associated with making choices

among inferior alternatives. Additional modelling approaches have also been proposed

to describe the response construction sequence more generally. Ben-Akiva et al. (1992)
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extend HROL by allowing a subset of coefficients to change disproportionately across

the sequence, hypothesising that some attributes are not traded off to the same extent

during earlier and later maximisation problems. Fok et al. (2012) model σ as a discrete

random vector, speculating that different latent segments of respondents start making

arbitrary decisions at different points in the sequence.

From the microeconomic perspective, however, the prevailing views on the origin of

unstable coefficients appear rather unnatural. First, the problem of unstable coefficients

in ROL implies that the logit utility function has been misspecified for an application at

hand; it is not, by itself, a symptom of unreliable responses. Second, the microeconomic

approach to rank-ordered data analysis postulates a random utility function, Unj =

β · xnj + εnj, and derives the probability of a particular preference relation consistent

with random utility maximisation:

Pr(Unrn1 > Unrn2 > · · · > UnrnH
> max(Uni for i ∈ Ω\Ωn,H)|xn1,xn2, · · · ,xnJ) (5)

where the disturbance terms εn = (εn1, εn2, · · · , εnJ) need not be iid extreme value,

and other notations are as defined earlier. Invoking the inadequate modelling of a

response construction sequence as a form of misspecification amounts to invalidating

this approach generally, not only its special case involving the logit utility function that

has produced the empirical problem of interest. The ROL model’s product-of-MNL

structure embodies the independence-of-irrelevant-alternatives (IIA) property induced

by the iid extreme value disturbance terms. Most of econometric models consistent

with (5) for some distributions of εn do not simplify to a product of multinomial choice

models; they must be imposing wrong structures if a rank-ordered response needs to

be modelled as a sequence of independently made choices in manner of (4).5

Section 3 explores the origin of unstable coefficients within the logit utility function,

(2), itself without discrediting rank-ordered data and the microeconomic approach to

analyse them. Two previous studies motivate the ensuing analysis. Hausman and

Ruud (1987), in a less cited contribution, demonstrate how to estimate a subset of

ROL coefficients using a procedure partially robust to stochastic misspecification in the

5For example, the rank-ordered probit model (p.158, Train, 2009) and the nested ROL model
(Daksvik and Liu, 2009) can be derived by respectively assuming that εn follow a normal distribution
and a correlated extreme value distribution. Now for simplicity, suppose that J=3. (5) can then be
expressed as Pr(Unrn2

> Unrn3
|xn1,xn2,xn3) × Pr(Unrn1

> max(Unrn2
, Unrn3

)|xn1,xn2,xn3, Unrn2
>

Unrn3
). Conditioning on Unrn2

> Unrn3
can be omitted when εn are iid extreme value (Beggs et al.,

1981) but not generally (p.157, Train, 2009).
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logit utility function. Layton (2000) speculates that the problem may originate from

the IIA property of the ROL model, though he does not investigate this issue in detail.

3 Implications of stochastic misspecification for ROL

3.1 Simulated evidence on misspecified disturbance to utility

The logit utility function, (2), can be misspecified in behaviourally important ways.

The systematic component, β · xnj, ignores potential interpersonal variation in taste,

due to unobserved heterogeneity in β and sometimes demographic interaction terms

omitted from xnj. The unsystematic component, εnj, potentially ignores the residual

parts of utility that are heteroskedastic and/or correlated over alternatives; such parts

may be produced by misspecification in β · xnj and/or exist naturally.

The logit utility function can be also subject to a subtle form of misspecification

with minimal behavioural implications. In particular, the additive disturbance term

may vary as an iid random variable, which is similar but not identical to an extreme

value variable. At least this much of stochastic misspecification cannot be ruled out in

an empirical study, when ROL is employed as a tractable approximation to an unknown

data generating process (DGP).

Simulated examples in this subsection expose an empirically relevant facet of the

ROL model which, to the best of our knowledge, has not been explicitly discussed in

the literature. The problem of unstable coefficients can result from misspecifying the

residual parts as iid extreme value, even when the true disturbance is almost iid extreme

value and no other specification error is present. Each example uses 100 datasets

generated from a specific DGP represented by a random utility function.

In Example 1, each dataset includes a random sample of 3000 agents who rank 5

different alternatives according to the following utility:

Unj = xnj,1 + xnj,2 + enj (6)

n = 1, 2, · · · , 3000 j = 1, 2, 3, 4, 5

where each of the observed attributes, xnj1 and xnj2, is generated from the standard

normal distribution, and the unobserved disturbance enj is iid normal with mean 0 and

variance π2/6. There is no correlation among the three terms. The observed response

variable indicates each agent’s ranking of all presented alternatives from best to worst
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(ie H = 4 as per notation in Section 2). ROL is a very slightly misspecified model for

the resulting rank-ordered data, in the sense that the true disturbance distribution has

a similar shape and the same variance as the EV1 distribution.

For each simulated sample, ROL is estimated using each of (recoded) response

variables detailing the top Q ranks where Q varies from 1 to 4. The results over 100

datasets are summarised in Table 4 of Appendix 1; the estimated coefficients become

successively attenuated across ranks, the average of each coefficient declining from 1.11

when Q = 1 to 0.89 when Q = 4.

Figure 1.A provides a related graphical summary. Here, HROL is estimated and

the rank-specific scale parameters, σ, are plotted separately for each dataset. Marker

sh corresponds to σh. All estimated scales are significantly less than 1 (corresponding

to no attenuation) at the 1% level, and suggest that the inequalities 1 > σ2 > σ3 > σ4

hold in every sample. The results look exactly as though simulated agents have stated

better-ranked alternatives with more certainty, whereas in truth every one of them has

stated an ordinal preference relation arising from random utility maximisation.

Figure 1: HROL scale estimates - Example 1 & its variants
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Examples 2 and 3 are intended to show that the same problem occurs in a more

empirically plausible environment. For either example, MNL is initially estimated using

an actual dataset. Then, each artificial dataset is generated as a random sample of N
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agents ranking J alternatives according to the following utility:

Unj = b · xnj + enj (7)

n = 1, 2, · · · , N j = 1, 2, · · · , J

where the iid disturbance enj is drawn from the same normal distribution as in Example

1, and the K-vectors xnj and b respectively collect the observed attributes and the

corresponding MNL coefficients. Within each new example, N , J , K and xnj are the

same across all 100 artificial datasets. The observed response variable indicates each

agent’s ranking of all alternatives from best to worst (H = J − 1).6

Example 2 uses the dataset accompanying Stata module -mixlogit- (Hole, 2007),

which is a subset of the electricity supplier choice data analysed in Huber and Train

(2001). Here, N = 1195, J = 4 and K = 6; see Hole (2007) for a detailed data

description. Example 3 uses the nursing job ranking data to be described and analysed

in Section 4. The original responses are rank-ordered but recoded as choices for MNL

estimation. Now, N = 4208, J = 3 and K = 12.

Figures 2.A and 3.A respectively plot the estimated HROL scales for Examples 2

and 3, all of which are again significantly less than 1. Moreover, Figure 2.A repeats

that when J ≥ 3, the attenuation pattern would look as though agents state better

alternatives with more certainty; the inequalities 1 > σ2 > σ3 hold in all but two

(45th and 68th) of 100 replications. The ROL estimates from Examples 2 and 3 are

respectively summarised in Table 5 and Table 6 of Appendix 1, and likewise show the

pattern of attenuating coefficients across ranks.

When modelling multinomial choices, iid extreme value and iid normal disturbances

often turn out to be empirically indistinguishable in terms of the resulting model be-

haviour. When modelling rank-ordered responses, their distinction can effect the well-

known regularity suggestive of a specific response construction process because the

maximum likelihood estimator (MLE) interprets pseudo-choice datasets as actual choice

datasets. Put another way, when ROL or HROL is specified, MLE interprets a rank-

ordered response as a sequence of independently made choices in manner of (4), with σh

being constrained to 1 for all h in the case of ROL. But the rank-ordered probit (ROP)

formula always involves a multivariate normal distribution function, which does not

6The actual datasets used here include repeated observations on the same respondents over different
choice scenarios. Agent n in equation (7) corresponds to a distinct pair of a respondent and a scenario,
not a distinct respondent.
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Figure 2: HROL scale estimates - Example 2 & its variants
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Figure 3: HROL scale estimates - Example 3 & its variants
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simplify to a product of unconditional choice probabilities even when the disturbance

is iid normal (p.158, Train, 2009). In consequence, the misspecified ROL model does

not mimic the behaviour of the true ROP model directly; the ROL attempts to do so
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by mimicking that of a product of multinomial probit (MNP) models describing choices

among successively smaller choice sets.

For a more specific discussion, consider Example 3 involving 3 alternatives per choice

set. From MLE’s perspective, each artificial dataset is a merged set of trinomial choice

data (the first pseudo-choice data) and binomial choice data (the second pseudo-choice

data), and there are trinomial and binomial probit models to be approximated by ROL.

The trinomial probit coefficients are a suitably normalised version of b in DGP, and

shared by a binomial probit model for randomly selected pairs of alternatives from the

trinomial data. But the mimicked binomial probit model describes a choice between two

least attractive alternatives; it is likely to have smaller coefficients because alternative

pairs with a small difference in systematic utility components tend to be dispropor-

tionately included in the second pseudo-choice data, pushing the choice probabilities

towards 0.5. Seeming heteroskedasticity across ranks results because the two mimicked

MNP models do not share the same coefficients. This heuristic explanation can be

extended to examples involving more alternatives.

ROL can be expected to exhibit unstable coefficients across ranks, not only when

the true disturbance is iid normal. That a ranking probability can be specified as a

product of sequential choice probabilities embodies the IIA property, that is not pos-

sessed by response probabilities derived from most disturbance distributions. It would

be generally inappropriate to use one set of coefficients to describe how all multiplied

choice probabilities vary as the observed attributes vary.

Figures 1-3 also plot the HROL scales estimated after replacing the normal dis-

turbance distribution in each example with other commonly encountered distributions.

The variance of each distribution has been set equal or similar to that of the EV1 distri-

bution: logistic with the variance of π2/6, uniform over [−0.50.5π, 0.50.5π] and student-t

with 5 degrees-of-freedom. Overall, these results again suggest that the problem of

unstable coefficients needs not be tied to the unreliability of rank-ordered responses,

or inadequacy of the microeconomic approach to rank-ordered data analysis. Since the

uniform distribution has an equally probable and bounded support, it deviates more

from the extreme value distribution than other bell-shaped distributions with unre-

stricted supports. Figures 1.C, 2.C and 3.C show that when the disturbance is iid

uniform, the scale does not decline monotonically across ranks. The ROL estimates
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nevertheless become monotonically attenuated across ranks, because σh is less than the

unity for each h ≥ 2.7

3.2 Interplay with preference heterogeneity

When analysing models derived from the logit utility function, (2), several researchers

closely follow the empirical strategy described in Train (p.143, 2009). The systematic

component, β · xnj, is specified to capture the parts of utility that are correlated or

heteroskedastic over alternatives (preference heterogeneity hereafter),8 through random

parameterisation of β and augmentation of xnj by suitable constant and interaction

terms. The objective is to bring the variation of all residual parts reasonably close to

that of an iid extreme value random variable.

This strategy allows describing the behaviour of utility-maximising agents more

realistically, while partially exploiting the computational convenience of logit functional

forms. The resulting mixed MNL model (McFadden and Train, 2000) is now well known,

and the mixed ROL model has also been applied in both stated (Layton, 2000; Calfee et

al., 2001; Siikamaki and Layton, 2007; Train, 2008) and revealed (Train and Winston,

2007) preference analyses.

Subsection 3.1 highlights that the problem of unstable coefficients would be present

unless the residual parts of utility are exactly iid extreme value. The associated re-

sults thus provide a useful background for discussing potential limitations and possible

generalisations of a flexibly specified mixed ROL model.

It is now possible to provide analytic details to Layton’s (2000) empirically moti-

vated conjecture that mixed ROL would help mitigating the problem of unstable coef-

ficients by relaxing the IIA property of ROL. To facilitate discussion, we recapitulate

the sense in which the IIA property is relaxed. The unconditional ranking probability,

Ln(θ), of a mixed ROL model generalising equation (1) is:

Ln(θ) =

∫
Pn(β)f(β|θ)dβ =

∫ [
H∏

h=1

exp(β · xnrnh
)

[
∑

j∈Ω\Ωn,h−1
exp(β · xnj)]

]
f(β|θ)dβ (8)

7A summary of the ROL estimates for the non-normal disturbance examples is available upon
request.

8Unobserved interpersonal heterogeneity in taste or β can induce such correlation and heteroskedas-
ticity. The genuine covariances among the true disturbance terms can be accommodated as hetero-
geneity in β too, with a suitable augmentation of xnj (McFadden and Train, 2000).
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where density f(β|θ) specifies the population distribution of coefficients β using param-

eters θ. In this context, Pn(β) is the ranking probability conditional on a particular β.

When f(β|θ) is degenerate with β = θ, the original ROL is obtained; Ln(θ) and Pn(β)

are one and the same, both subject to IIA. When f(β|θ) is non-degenerate, Ln(θ) is

no longer subject to IIA while Pn(β) still is.

The last statement matters much more substantively than a similar statement con-

cerning mixed MNL. The IIA property of Pn(β) refers to the very product structure that

render coefficients unstable across ranks when stochastic misspecification is present. In

consequence, the use of mixed ROL does not obviate the problem, except when the

residual parts were not iid extreme value initially only because of omitted preference

heterogeneity, which is exactly described by the density f(β|θ) that the researcher has

specified now.

More often than not, mixed ROL can be expected to experience the problem of

unstable coefficients. Not only there is little reason to expect the true disturbance to be

iid extreme value, but also the exact modelling of preference heterogeneity is a practical

impossibility due to computational and informational constraints. Any imperfectly

captured heterogeneity, however minor, induces non-extreme value residuals, if only

because a sum of random variables does not give an extreme value variable.

For a concrete example, suppose that the true random utility function is the same as

in Example 1, except that the coefficients on xnj1 and xnj2 are draws from a multivariate

normal distribution. A mixed ROL model with normal mixing would not mimic the

behaviour of the true random coefficient ROP model directly; instead, it would mimic

that of a sequence of random coefficient MNP models, using a single set of coefficient

mean and covariance parameters, θ. The problem of unstable coefficients would now

show up as attenuation of these parameters across ranks.

Nonetheless, mixed ROL can be generally expected to mitigate the problem in one

important way. Incorporating preference heterogeneity increases the modelled parts

of utility relative to the residual parts. Instability in coefficients across ranks, which

results from misspecifying the latter as iid extreme value, would be lessened as the

misspecified parts matter less for the postulated economic behaviour.

To illustrate the last point, Figure 4 plots the estimated HROL scales from Example

1, along with the corresponding estimates for two other variants of the same example.

DGPs for these variants are identical to equation (6), except that the systematic com-

ponent is larger (2xnj,1 + 2xnj,2) and smaller (0.5xnj,1 + 0.5xnj,2) respectively. For each
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Figure 4: HROL scale estimates - Example 1 & its new variants
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rank h and across all 100 replications, σh tends to be closer to 1 (no attenuation) when

the simulated agent’s random utility function becomes more deterministic.

Suppose now that the logit utility function has been flexibly specified so that the

residual parts can be reasonably approximated as an iid extreme value variable. An im-

portant practical issue is whether coefficient attenuation due to potential approximation

error may affect substantive conclusions from an analysis.

A mixed ROL derived from such utility function would suffice when the substantive

results of interest do not depend on the scale of coefficients. For example, the researcher

may be primarily interested in identifying the key patterns of preference heterogeneity

(Train, 2008), or computing willingness-to-pay for different attributes (Calfee et al.,

2001). In all simulated datasets underlying Figures 1-4, the relative magnitudes of

coefficients remain robust across different sets of ROL estimates obtained using different

(recoded) response variables. Related details are available upon request but information

in Appendix 1 is fairly suggestive. This form of robustness resonates with what Calfee

et al. (2001) find in their rank-ordered data involving 13 alternatives and and our own

empirical findings in subsection 4.2, on top of the well-known behaviour of binary logit

estimates given stochastic misspecification (Cramer, 2007).
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Coefficient attenuation across ranks is not innocuous when the analytic objective

includes predicting the probability that an alternative is chosen or ranked first. From the

microeconomic perspective, mixed ROL estimates can be plugged into the mixed MNL

formula for demand forecasting, because both models are grounded in the same utility

maximising behaviour. It is thus discomforting to know that slightly misspecifying the

iid disturbance can bias choice probabilities towards 1/J . Even when the forecasting

objective is own and cross partial effects of attribute changes on choice probabilities,

the present problem is far less innocuous than attenuation in binary logit coefficients

due to neglected orthogonal regressors (Cramer, 2007). The usual MNL derivative

expressions (p.58 & p.141, Train, 2009) suggest that when J > 2, decreased disparity

among choice probabilities would not always offset the decreased scale of coefficients in

such calculations.9

A mixed HROL model, which augments the preferred mixed ROL model with rank-

scale specific parameters, σ, may provide a convenient approach to address the biased

forecasting issue. In all simulated datasets underlying Figures 1-4, the HROL coefficient

estimates are practically identical to the MNL estimates (ie the ROL estimates using the

first pseudo-choice data); again detailed results are omitted for brevity but Appendix

1 provides informative summary statistics.

Such mixed HROL would need to be specified with the view that σ captures the

consequences of misspecifying the iid disturbance, instead of specific behavioural com-

ponents. Thus, σ should be modelled as random parameters when coefficients in β are,

because the joint distribution of β and σ should have the property that for a realisa-

tion of β implying more deterministic choice behaviour, each σh ∈ σ is closer to 1; the

misspecified residual parts matter less for agents with such preferences. Section 4 intro-

duces how this modelling implication can be implemented within discrete (subsection

4.1) and continuous (subsection 4.2) mixture contexts.

The mixed HROL model described thus far is fundamentally different from the

HROL model with non-random β and random σ due to Fok et al. (2012). In their

model, σ is a discrete random vector. Each of its mass points has a distinct number

of leading 1s followed by 0s, and represents a latent segment following a particular

response construction process (see Section 2). When the microeconomic perspective is

maintained as in our analysis, there is no reason to impose such selection of mass points

(see Figures 1-4), and consider heterogeneity of σ in isolation from that of β.

9For example, given a realised β, coefficient attenuation leads to attenuation in own partial effects
when the choice probability would lie between 1/J and 1/2 without coefficient attenuation.
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The mixed HROL model has a conceptual limitation. While it accounts for the im-

plication of an almost inevitable form of misspecification in the logit utility function, it

cannot be directly derived from any utility function using the microeconomic approach.

Another possibility which does not have this limitation is to estimate mixed MNL us-

ing the first pseudo-choice data. But when estimating random coefficient models, such

approach may not only entail efficiency loss but also a reduction in model flexibility.

The number of repeated observations per individual crucially affects both theoretical

and empirical identification of mixed logit model parameters (Walker et al., 2007; Hess

and Train, 2011), and an MNL version of the preferred mixed ROL model may not be

estimable; rank-ordered data effectively provide H times as many repeated observations

as recoded choice data. Subsection 4.1 reports a related empirical finding.

4 Empirical analysis

Section 3 suggests that the problem of unstable coefficients can be conceptualised as re-

sulting from stochastic misspecification in the logit utility function, (2). Subsection 3.2

has discussed the related modelling implications and expected behaviour of estimates.

This section investigates how such expectation plays out empirically, using rank-

ordered data collected as part of an ongoing longitudinal survey of Australian nursing

students and graduates. Kenny et al. (2012) review the first wave of the survey in detail.

Doiron et al. (2011) and Yoo and Doiron (2012) use these data with distinct objectives

from the present analysis. In line with the main objective of the survey, the first

paper focuses on discovering the key determinants of nursing job choices to formulate

informed policy recommendations. The latter study examines the comparability of

preferences elicited by a best-worst alternative experiment and a best-worst attribute-

level experiment.10

4.1 Data and methods

The estimation sample consists of 526 respondents who completed an online survey

between September 2009 and September 2010. They were recruited from the Bachelor of

Nursing (BN) degree students enrolled at two large Australian universities during 2008-

10The best-worst alternative experiment is described shortly. In the best-worst attribute-level ex-
periment, respondents see one nursing job described by several characteristics set at specific levels,
and state the best characteristic and the worst characteristic.
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2010: the University of Technology Sydney and the University of New England. The

sample consists of nursing students in each year of the 3-year program and graduates

within 12 months of completion.

In the stated preference component of the survey, each respondent faces 8 different

scenarios or choice sets. Each scenario consists of 3 hypothetical jobs -labelled A, B

and C- differentiated by salary and eleven non-salary attributes. The respondent then

states the best job and the worst job of each presented scenario, effectively ranking all

3 jobs from most to least preferred.11

Table 1 lists 4 different levels of salary and 2 different levels of each non-salary

attribute used for the job specification. The selection of attributes reflect characteristics

that have been shown to matter in the quitting decision and job satisfaction of nurses

(Seago et al., 2001; Naude and McCabe, 2005). The levels of the attributes reflect

those found in entry-level jobs as registered nurses in Australia. The feedback from

an earlier pilot study involving 60 students indicates that the attributes and levels are

appropriate for the intended context.

The scenarios are constructed from an initial set of 16 jobs which form a resolution

3 fractional factorial design. The other two jobs in each scenario are determined by

the addition of two generators, chosen so that the resulting set of 16 scenarios of size

3 is D-optimal when all coefficients in the standard MNL model are zero. Two sets

of 16 scenarios are constructed using two different resolution 3 fractions so that a

larger proportion of the sample space is covered. Each set is divided into two subsets or

versions of 8 scenarios, and each person is randomised to one of the resulting 4 versions.

We now redefine notations to suit these data. Respondent n ∈ {1, 2, · · · , N} ranks 3

alternatives in Ω = {A,B,C} over T different scenarios. Alternative j ∈ Ω in scenario

t ∈ {1, 2, · · ·T} presented to respondent n is described by vector xnjt collecting K

attributes. rnth ∈ Ω denotes respondent n’s hth best alternative in scenario t. In the

present context, N = 526, T = 8 and K = 12.

xnjt includes a binary indicator of one level of each non-salary attribute (11 in total)

and the natural logarithm of salary.12 As the job labelling is arbitrary, most, if not all,

of covariances in utility over alternatives would operate through heterogeneous tastes

for these attributes.

11This elicitation format has been advocated as being cognitively easier than directly asking respon-
dents to rank alternatives; see Scarpa et al.(2011).

12The logarithmic transformation allows capturing parsimoniously the decreasing marginal utility of
salary, found in a preliminary analysis involving three binary salary-level indicators.
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Each rank-ordered response {rnt1, rnt2} is assumed to reflect a preference relation

on Ω realised from maximising random utility Unjt = β · xnjt + εnjt, where β is a

K-vector of utility weights. The random disturbance εnjt is assumed to be iid EV1,

as an approximation to an unknown disturbance distribution. To account for poten-

tial approximation error, the probability of observing respondent n’s responses over T

scenarios is specified as HROL:

Pn(β, σ) =
T∏
t=1

exp(β · xnrnt1t)

[
∑

j∈Ω exp(β · xnjt)]

exp(σβ · xnrnt2t)

[
∑

j∈Ω\{rnt1} exp(σβ · xnjt)]
(9)

for a given β and scalar parameter σ, where the latter accommodates a scale change

in the second pseudo-observations. Such change can result from exploding the data

despite stochastic misspecification.

To capture interpersonal taste variation, β are treated as random parameters. Since

the misspecified disturbance matters to varying extents for individuals with different

preferences, σ is also specified as a random parameter. Density g(β,σ|δ) describes

the joint distribution of β and σ as a function of δ. The current literature tends to

investigate heterogeneity in β (eg. Calfee et al., 2001 ) and in σ (Fok et al., 2012) sepa-

rately, depending on whether the microeconomic approach or the constructed response

approach is taken.

The unconditional probability of observing respondent n’s responses, Ln(δ), is ob-

tained by integrating Pn(β, σ) over g(β,σ|δ):

Ln(δ) =

∫ ∫
Pn(β, σ)g(β, σ|δ)dβdσ (10)

and maximised with respect to δ.

To obtain a tractable functional form, g(β,σ|δ) is specified as a discrete distribution

with C mass points at (βc, σc) for c = 1, 2, · · · , C. The relative frequency of each point

is denoted πc, where 0 < πc < 1 and
∑C

c=1 πc = 1. Adopting the parlance for a

latent class model, each point corresponds to a class and πc is the population share of

class c. Train (2008) highlights that discrete mixture models have a non-parametric

approximation property in relation to an arbitrary mixture model. Available evidence

shows that discrete mixture or latent class ROL (Train, 2008) and MNL (Keane and

Wasi, 2012) models tend to provide a good summary of unobserved heterogeneity in

data.
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The unconditional probability becomes:

Ln(δ) =
∑C

c=1
πcPn(βc, σc) (11)

where the parameters to be estimated, δ, include βc, σc and πc for each class, except π1

which is set to 1−
∑C

c=2 πc for identification. (11) is called latent class HROL (LHROL)

hereafter.

LHROL is both computationally simple and analytically useful. Even with a large

C, it can be easily estimated by adapting Train’s (2008) EM algorithm for latent class

MNL, by replacing the MNL kernel with the HROL kernel. Since each class has its own

βc and σc, it is also easy to inspect whether σ is indeed closer to 1 when β implies more

systematic behaviour. Note that LHROL does not impose, but allows data to speak if

the conceptualised form of joint heterogeneity in β and σ is present.

Other models analysed below can be viewed as special cases of (11). C-LHROL is

obtained by constraining σc to be identical across classes. Latent class ROL (LROL)

is obtained by further constraining σc to 1 for each c. LHROL gives the same log-

likelihood as the usual latent class MNL (LMNL) up to a constant summand when

σc = 0 for each c.13 MNL, ROL and HROL are nested in their namesake latent class

models, occurring when only one class is specified (C = 1).

To choose the number of classes, we follow a procedure similar to Train’s (2008).

Each model is estimated several times via the EM algorithm, with a successively in-

creasing number of classes from 2 through 10, and the number that yields the smallest

Bayesian Information Criterion (BIC) is selected for the final specification. The fol-

lowing analysis specifies 3 classes for LMNL and 4 classes for other models (LROL,

C-LHROL and LHROL).

The final results have been obtained via the Newton algorithm, using the EM esti-

mates as starting values.14 Each model’s Hessian becomes singular when classes increase

beyond the BIC optimal number found in the EM procedure, even when alternative

gradient-based algorithms and convergence criteria are used. The immediate impli-

cation is that moving from mixed ROL (LROL) to mixed MNL (LMNL) involves a

reduction in model flexibility in the present application.15

13We do not include this summand, 4208× log(0.5), in the reported log-likelihood and BIC.
14All latent class models have been estimated using TSP International 5.1. Basic MNL, ROL and

HROL have been estimated using Stata 11.2/IC.
15Also see the end of subsection 3.2.
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4.2 Main findings16

To anticipate results from models accounting for preference heterogeneity, we initially

analyse MNL, ROL and HROL. The first three columns of Table 2 report corresponding

estimates. A severe problem of unstable coefficients is present, despite the survey

presents only 3 jobs per choice set, and adopts the best-worst elicitation format to

reduce cognitive burden on respondents.

All MNL and ROL coefficients are precisely estimated yet mostly disagree on the

first significance figures, exhibiting the usual attenuation pattern across ranks. The

HROL scale, σ, likewise suggests that the coefficient vector, β, is scaled by 0.563 in the

second rank. A behavioural interpretation in accordance with (4) would suggest that

the disturbance variance increases 3 times (0.563-2 >3) across the response construction

sequence.

From the perspective of Section 3, however, there is little reason to find the MNL

estimates more credible than the ROL estimates. Both MNL and ROL are consis-

tent with the same logit utility function with homogeneous coefficients, and coefficient

attenuation can result even when this utility function is only slightly misspecified.

The last three columns of Table 2 report the proportion of salary a person is willing

to give up to obtain each attribute-level. It is computed as [exp(bk/blog salary) − 1]

where bk is the point estimate of the coefficient on attribute k, and hence should be

the same across ranks when bk/blog salary behaves as in the datasets underlying Figure

3. Some variation exists across the three models, suggesting that it is not only the

iid disturbance that has been misspecified. Nonetheless, the extent of variation never

exceeds 3 percentage points, except excell care (excellent quality of care) for which the

MNL and ROL results are 0.34 and 0.39 respectively.

Figure 5 plots the probabilities of choosing the first-ranked alternatives (choice prob-

abilities hereafter) predicted by ROL and HROL against those predicted by MNL. The

former two predictions would lie on the 45 degree line if they coincide with the MNL pre-

dictions. Due to coefficient attenuation, the ROL prediction tends to lie above (below)

this line when the MNL prediction is less (greater) than 1/3. The HROL estimates are

adjusted for attenuation and resulting predictions are clustered around the 45 degree

line, almost coinciding with the MNL predictions in all 4208 choice sets.

16All statistical tests in this subsection have been conducted at the 1% level. As we use designed
survey data, the model estimates tend to be very precise.
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Table 2: Detailed estimation results - basic models

Parameter estimates Willingness-to-pay

MNL ROL HROL MNL ROL HROL

public hosp 0.239 0.130 0.204 0.085 0.059 0.075
(0.039) (0.028) (0.034)

3 rotations 0.212 0.153 0.182 0.076 0.070 0.067
(0.039) (0.027) (0.034)

flex hours 0.138 0.0756 0.119 0.049 0.034 0.043
(0.036) (0.027) (0.032)

flex rost 0.568 0.390 0.526 0.202 0.177 0.192
(0.043) (0.031) (0.039)

well staff 0.409 0.360 0.426 0.146 0.164 0.156
(0.037) (0.029) (0.034)

supp mgt 1.032 0.828 1.024 0.368 0.377 0.375
(0.049) (0.039) (0.049)

well equip 0.375 0.349 0.391 0.134 0.159 0.143
(0.039) (0.029) (0.035)

encourage 0.545 0.440 0.558 0.194 0.200 0.204
(0.045) (0.034) (0.042)

abund park 0.0809 0.0738 0.0963 0.029 0.034 0.035
(0.038) (0.028) (0.033)

app resp 0.462 0.376 0.460 0.165 0.171 0.169
(0.046) (0.035) (0.043)

excell care 0.822 0.730 0.858 0.293 0.332 0.314
(0.049) (0.038) (0.046)

log salary 2.807 2.199 2.732
(0.170) (0.126) (0.164)

σ 0.563
(0.031)

log-likelihood -3497.6 -6211.9 -6149.0
bic 7108.5 12543.3 12427.4
parameters 12 12 13

Standard errors in parentheses have been adjusted for clustering at the
respondent level. All utility weights are significant at the 1% level. σ is
significantly less than the unity at the 1% level.
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Figure 5: Choice probabilities predicted by basic models

Overall the basic models show a fair amount of agreement on substantive results,

despite omitted preference heterogeneity. We take this as a sign that there is no other

behaviourally important misspecification in the utility function, and proceed to an anal-

ysis of latent class models (LMNL, LROL, C-LHROL, LHROL).17 These models involve

several class-specific parameters, without direct correspondence among classes across

models. For succinct comparisons, we focus on the weighted average estimates using

class shares as the weights, graphical comparisons of identified preference segments,

and the in-sample predictive performance of each model.

Table 3 reports the average estimates from each latent class model. LROL obviates

the IIA property of the unconditional probability but maintains that of the conditional

probability. More often that not, it would experience coefficient attenuation (see sub-

section 3.2), and as expected, the average LROL estimates tend to have the smallest

magnitudes. More directly, the estimated C-LHROL scale, σ, is 0.615 and significantly

less than 1. The average scale in LHROL is similar.

Accounting for preference heterogeneity, however, mitigates coefficient attenuation

found in ROL via two different routes in the present application. First, the misspecified

residual parts matter relatively less now, making σ increase from 0.563 in HROL to 0.615

17Had the substantive results disagreed a lot, it would have been worthwhile investigating more
sophisticated parametric form specifications of the systematic utility component first.
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Table 3: Average parameter estimates - latent class models

LMNL LROL C-LHROL LHROL

public hosp 0.288 0.164 0.250 0.242
(0.049) (0.050) (0.052) (0.051)

3 rotations 0.307 0.235 0.318 0.291
(0.050) (0.052) (0.054) (0.055)

flex hours 0.195 0.104 0.151 0.150
(0.045) (0.032) (0.039) (0.038)

flex rost 0.660 0.453 0.579 0.578
(0.048) (0.034) (0.043) (0.042)

well staff 0.499 0.413 0.508 0.486
(0.048) (0.035) (0.042) (0.041)

supp mgt 1.129 1.116 1.393 1.323
(0.054) (0.071) (0.094) (0.093)

well equip 0.497 0.461 0.578 0.550
(0.052) (0.053) (0.058) (0.059)

encourage 0.587 0.550 0.679 0.659
(0.046) (0.040) (0.056) (0.052)

abund park 0.117 0.120 0.150 0.149
(0.046) (0.033) (0.040) (0.039)

app resp 0.553 0.538 0.626 0.618
(0.050) (0.047) (0.054) (0.050)

excell care 1.003 0.926 1.113 1.089
(0.066) (0.050) (0.067) (0.066)

log salary 3.153 2.695 3.280 3.102
(0.223) (0.173) (0.220) (0.204)

σ 0.615 0.619
(0.032) (0.035)

log-likelihood -3315.88 -5785.35 -5738.36 -5730.03
bic 6869.84 11890.24 11802.5 11804.64
parameters 38 51 52 55

Standard errors in parentheses have been adjusted for clus-
tering at the respondent level. All average utility weights are
significant at the 1% level σ is significantly less than the unity
at the 1% level.
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in C-LHROL. This increase is equivalent to a 16% decrease in the heteroskedasticity

of the disturbance variance across ranks, if we adopt the behavioural interpretation of

σ momentarily to aid interpretation. Second, LROL is subject to a smaller error in

approximating the unknown taste distribution than LMNL for which one fewer class is

empirically identified. The relative disparity of the average LROL and LMNL estimates

is thus less pronounced than that of the basic ROL and MNL estimates.

That σ is larger in C-LHROL than in HROL deserves a further comment. This

result is just as expected from subsection 3.2. It cannot be, however, readily explained

by conceptualising instead that respondents construct responses in accordance with

(4). The residual variance for HROL would then comprise the variance of the true

additive disturbance that is heteroskedastic across ranks, and that of omitted preference

heterogeneity. The latter mitigates heteroskedasticity as long as it is not larger at

the second maximisation problem, and is likely to be smaller for the second problem

involving one fewer nursing job. As a result, accounting for preference heterogeneity

can be expected to lead to a decline, instead of an increase, in σ.

Figure 6 plots class-specific utility weights from LHROL. Statistics p and s next to

each class label respectively report the population share (πc) and the rank-specific scale

(σc) of that class. Table 7 of Appendix 2 provides detailed estimation results for all

latent class models.

All estimated scales are statistically and practically larger than 0, the smallest

being 0.514 (Class 4). In other words, no class exhibits the lack of ranking capabilities

conceptualised by Fok et al. (2012). Instead, the results empirically illustrate the form

of joint heterogeneity conceptualised in subsection 3.2; σc tends to be closer 1 when βc

implies more deterministic preferences.

The degree of coefficient attenuation is the least for Classes 2 and 3, the scales

of which are 0.923 and 0.816 respectively. Respondents in Class 2 are very salary-

sensitive, with an extremely large coefficient on log salary. Their responses can be very

easily predicted using the observed attributes, as they would tend to rank jobs in order

of salary levels. Respondents in Class 3 rank jobs on the basis of trade-offs among

different attributes, to a larger extent than respondents in Classes 1 and 4. Several

utility weights, on supp mgt (supportive management) in particular, are much larger

for Class 3, while others are similar or not as smaller.

Class 4 experiences the largest attenuation (σ4 = 0.514) followed by Class 1 (σ1 =

0.585). The residual parts matter the most for Class 4. While this class has the second

largest utility weight on log salary (2.558), it is not large enough to make up for the
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Figure 6: LHROL utility weight estimates
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other small weights; the utility index would change only by 1.142 in response to the

maximum possible salary increase from $800 to $1250. Unless the choice set contains a

clearly superior job and a clearly inferior job, it is relatively hard to predict which jobs

respondents in Class 4 would rank best and worst. The utility weights for Class 1 also

tend to be small, except the weight on excell care (2.493) which is the largest among

all classes. Their behaviour is somewhat easier to predict because, given a set of jobs

similarly attractive otherwise, they are highly likely to rank jobs with excell care = 1

better when available.

Figures 7 and 8 respectively plot class-specific utility weights from LROL and

LMNL. The C-LHROL results are omitted because they deviate a little from the

LHROL estimates, even though the underlying constraints (σ1 = σ2 = σ3 = σ4) are

rejected using a LR test statistic (16.66).

The estimated pattern of preference heterogeneity is remarkably robust across LHROL

and LROL. Each coefficient vector, βc, in LROL looks almost like an attenuated version

of a coefficient vector in LHROL. Put another way, it would not be overly wrong to

summarise that LHROL scales up the given LROL estimates so that the new estimates

are more suitable for forecasting purposes.
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Figure 7: LROL utility weight estimates
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Figure 8: LMNL utility weight estimates
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LMNL relatively understates the amount of preference heterogeneity as one fewer

class is empirically identified without using the second pseudo-choice data. A major
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Figure 9: Choice probabilities predicted by latent class models

consequence seems to be the loss of clear distinction between respondents who trade off

among several attributes more and less systematically, like Classes 3 and 4 in LHROL.

Figure 9 is a latent class model analogue to Figure 5. It plots unconditional (that

is, class share weighted average) choice probabilities predicted by LROL and LHROL

against those predicted by LMNL. As the LMNL predictions deviate from 1/3, the

LROL predictions stay closer to the 45 degree line than the ROL predictions do when

the MNL predictions deviate likewise in Figure 5. This change illustrates the benefit

of mitigated coefficient attenuation from modelling preference heterogeneity. Two ex-

planations can be offered as to why the more flexible LHROL does not improve upon

the LMNL predictions noticeably. First, the LMNL parameters have been estimated so

that the model fits the first pseudo-choice data the best. Second, since only one fewer

class is identified for LMNL and the consequentially blurred distinction is primarily

about the extent of systematic trade-offs among many attributes, the loss of flexibility

does not influence the weighted average predictions much.

Subsection 3.2 suggests that the form of joint heterogeneity in β and σ found in

the present application can be generally expected in other applications too. As a

concluding remark, we discuss a convenient approach to impose and implement it within

a continuous mixture model.
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Fiebig et al. (2010) formulate the Generalised MNL (GMNL) model that directly

extends mixed MNL models which specify β as multivariate normal random param-

eters. To this end, a scalar random parameter λ is introduced, and the systematic

component of utility is written as λβ · xnjt.
18 λ serves several purposes, one of which

is operationalising interpersonal variation in the overall scale of utility. It is specified

as a log-normal random variable independent of β: log λ ∼ N(−τ 2/2, τ 2) where τ is a

parameter to be estimated.

Now suppose that GMNL is augmented by a non-random rank-specific scale pa-

rameter σ as in HROL or C-LHROL, and fitted to rank-ordered data. Then, for each

draw of λ, the effective scale in the second rank becomes λσ. Even though σ itself

is non-random, the resulting model effectively exhibits interpersonal variation in the

rank-specific scale through λ; in fact, the effect is equivalent to introducing a partic-

ular form of heterogeneity in σ directly. Moreover, the effective rank-specific scale is

necessarily larger when λ is larger or the preferences are more deterministic.

σ-augmented GMNL would be appropriate for rank-ordered data analysis, also be-

cause random scaling by λ allows approximating various patterns of preference hetero-

geneity that usual mixed logit models fail to capture (Fiebig et al., 2010; Keane and

Wasi, 2012). With such flexibility, the researcher can assume more safely that the un-

derlying form of misspecification is purely related to the iid disturbance term. Doiron

et al. (2011) have implemented this modelling approach, though their conceptual mo-

tivation is quite different and more straightforward; they interpret the resulting model

as following from a GMNL version of the response construction process (4).

5 Discussion

The problem of unstable coefficients in the rank-ordered logit model has been tradition-

ally interpreted as a sign that survey respondents fail to provide reliable rank-ordered

responses. This paper shows that it may originate from the inherent sensitivity of the

model to stochastic misspecification instead. Even a minor departure from the postu-

lated random utility distribution can induce the coefficients to become unstable across

ranks. The problem thus can be expected in almost any empirical work, regardless of

data reliability, when rank-ordered logit is employed as a tractable approximation to

an unknown data generating process. As we discuss and partly demonstrate, flexibly

18Our description actually corresponds to GMNL-II, which is the easiest version of GMNL to sum-
marise. See Fiebig et al. (2010) for other variations.
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specified mixed rank-ordered logit and mixed heteroskedastic rank-ordered logit models

would deliver analytically useful results nevertheless.

The use of stated preference experiments has become commonplace in environmental

economics, health economics and other research areas characterised by the scarcity of

readily available non-experimental data. A typical experiment asks each respondent

to make a choice among several alternatives, though the effective sample size can be

conveniently increased by asking her to rank the presented alternatives. The trade-offs

between choice and ranking experiments deserve reassessment, to the extent that the

problem of unstable coefficients has contributed to the perception that rank-ordered

responses are less reliable. On a related issue, Caparros et al. (2008) collect both rank-

ordered and choice data using exactly the same survey design, and find that the same

estimates are obtained when the rank-ordered responses are recoded as choices.

This paper has not addressed misspecified rank-ordered logit analysis involving la-

belled alternatives. For example, in Caparros et al., each choice set comprises two

reforestation programs and the status quo, requiring an alternative-specific intercept

distinguishing the last. Such intercept may not react to the misspecified disturbance

in the same way as other coefficients, since the best fitting intercept can vary much

more dramatically across pseudo-choice datasets, potentially changing in signs. While

detailed implications are left for future research, we note that the rank-ordered logit

model with changing decision protocols, implemented by Ben-Akiva et al. (1992), is

but a heteroskedastic rank-ordered logit model in which alternative-specific intercepts

are allowed to shift freely across ranks.

The primary message this paper (re)affirms is that an econometric analysis of rank-

ordered data can proceed from the same microeconomic standpoint as that of choice

data. The object to be modelled can be conceptualised as the behaviour of random util-

ity maximisers, in terms of which applied economists are accustomed to think, instead

of the actual cognitive process of ranking survey respondents, which is a much less fa-

miliar terrain. This message mirrors the standard textbook treatment of rank-ordered

data modelling (pp.764-770, Ruud, 2000; pp.156-159, Train, 2009) but has not been

duly attended in the empirical literature, possibly due to the intuitive appeal of psy-

chological explanations for the problem of unstable coefficients. Berry et al. (2004) and

Train (2008) may serve as a guide for future econometric research using rank-ordered

data. In these studies, the extra information rankings provide is exploited to estimate

models featuring richer economic behaviour, instead of survey response strategies.
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Appendices

Appendix 1. A summary of main simulated examples

Each table in this appendix reports the mean (outside the brackets) and the range

(inside the brackets) of each parameter estimate over 100 artificial datasets. Column

DGP lists the true utility weights on the observed attributes that have been used to

simulate the utility of each alternative. Column Q=q summarises the ROL estimates

obtained by using the response variable detailing the top q ranks.

Table 4: Example 1 - summarised estimation results

DGP ROL HROL

Q=1 Q=2 Q=3 Q=4

x1 1 1.109 1.001 0.934 0.889 1.110
[1.019,1.179] [0.946,1.047] [0.892,0.970] [0.847,0.930] [1.047,1.185]

x2 1 1.108 0.998 0.930 0.887 1.106
[1.046,1.177] [0.948,1.049] [0.890,0.962] [0.851,0.925] [1.021,1.171]

σ2 0.798
[0.741,0.881]

σ3 0.687
[0.634,0.779]

σ4 0.589
[0.521,0.657]

Table 5: Example 2 - summarised estimation results

DGP ROL HROL

Q=1 Q=2 Q=3

price -0.635 -0.664 -0.598 -0.563 -0.664
[-0.789,-0.543] [-0.709,-0.505] [-0.628,-0.473] [-0.780,-0.547]

contract -0.140 -0.155 -0.135 -0.122 -0.155
[-0.202,-0.115] [-0.165,-0.107] [-0.152,-0.099] [-0.188,-0.127]

local 1.431 1.556 1.363 1.250 1.561
[1.306,1.749] [1.182,1.507] [1.113,1.385] [1.316,1.771]

wknown 1.055 1.149 1.008 0.908 1.162
[0.877,1.331] [0.860,1.192] [0.795,1.037] [0.961,1.374]

tod -5.699 -5.971 -5.360 -5.040 -5.957
[-7.160,-4.838] [-6.211,-4.621] [-5.634,-4.323] [-6.983,-4.928]

seasonal -5.900 -6.171 -5.550 -5.210 -6.174
[-7.249,-5.080] [-6.395,-4.740] [-5.811,-4.424] [-7.268,-5.138]

σ2 0.740
[0.638,0.874]

σ3 0.589
[0.421,0.780]
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Table 6: Example 3 - summarised estimation results

DGP ROL HROL

Q=1 Q=2

public hosp 0.239 0.247 0.200 2.430
[0.154,0.348] [0.126,0.282] [0.158,0.333]

3 rotations 0.212 0.221 0.206 0.220
[0.130,0.287] [0.138,0.260] [0.145,0.278]

flex hours 0.138 0.149 0.125 0.151
[0.048,0.244] [0.060,0.197] [0.074,0.228]

flex rost 0.568 0.588 0.512 0.590
[0.463,0.688] [0.432,0.594] [0.496,0.692]

well staff 0.409 0.410 0.381 0.421
[0.312,0.540] [0.307,0.489] [0.344,0.539]

supp mgt 1.032 1.049 0.938 1.050
[0.937,1.156] [0.865,1.026] [0.967,1.142]

well equip 0.375 0.373 0.350 0.376
[0.241,0.490] [0.244,0.453] [0.257,0.493]

encourage 0.545 0.568 0.496 0.572
[0.484,0.656] [0.419,0.568] [0.489,0.641]

abund park 0.081 0.094 0.067 0.087
[0.000,0.192] [-0.003,0.144] [0.005,0.166]

app resp 0.462 0.469 0.410 0.461
[0.372,0.570] [0.340,0.489] [0.379,0.557]

excell care 0.822 0.829 0.743 0.825
[0.746,0.950] [0.677,0.838] [0.754,0.930]

log salary 2.807 2.887 2.573 2.894
[2.644,3.292] [2.373,2.820] [2.598,3.154]

σ2 0.735
[0.665,0.823]
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Appendix 2. Detailed estimation results - latent class models

Table 7: Detailed estimation results - latent class models

LMNL LROL

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 4

public hosp 0.306∗∗ 0.245∗ 0.294 0.079 0.006 0.293 0.205∗∗

(0.066) (0.123) (0.185) (0.087) (0.114) (0.343) (0.044)
3 rotations 0.317∗∗ 0.388∗∗ 0.157 0.089 0.129 0.600 0.223∗∗

(0.067) (0.139) (0.175) (0.086) (0.117) (0.392) (0.043)
flex hours 0.110 0.417∗∗ 0.163∗ 0.102 0.121 0.034 0.120∗∗

(0.057) (0.139) (0.168) (0.085) (0.112) (0.120) (0.043)
flex rost 0.616∗∗ 0.905∗∗ 0.459∗∗ 0.289∗∗ 0.094 0.518∗∗ 0.598∗∗

(0.069) (0.157) (0.186) (0.096) (0.135) (0.120) (0.046)
well staff 0.384∗∗ 0.578∗∗ 0.763∗∗ 0.379∗∗ 0.669∗∗ 0.435∗∗ 0.350∗∗

(0.059) (0.127) (0.202) (0.088) (0.123) (0.139) (0.044)
supp mgt 1.404∗∗ 0.575∗∗ 1.004∗∗ 0.776∗∗ 0.585∗∗ 3.536∗∗ 0.738∗∗

(0.092) (0.155) (0.200) (0.109) (0.141) (0.742) (0.074)
well equip 0.534∗∗ 0.226 0.754∗∗ 0.526∗∗ 0.251∗ 0.936∗ 0.364∗∗

(0.073) (0.135) (0.190) (0.092) (0.119) (0.405) (0.044)
encourage 0.629∗∗ 0.613∗∗ 0.413∗∗ 0.366∗∗ 0.361∗∗ 1.239∗∗ 0.487∗∗

(0.069) (0.132) (0.158) (0.087) (0.122) (0.237) (0.050)
abund park 0.039 0.119 0.372∗ 0.200∗ 0.139 0.015∗ 0.112∗∗

(0.058) (0.120) (0.174) (0.089) (0.125) (0.118) (0.045)
app resp 0.599∗∗ 0.382∗∗ 0.642∗∗ 0.562∗∗ 0.400∗∗ 1.098∗∗ 0.413∗∗

(0.076) (0.138) (0.188) (0.110) (0.118) (0.246) (0.049)
excell care 0.615∗∗ 0.488∗∗ 3.005∗∗ 2.211∗∗ 0.578∗∗ 1.341∗∗ 0.400∗∗

(0.091) (0.133) (0.337) (0.157) (0.108) (0.301) (0.057)
log salary 1.324∗∗ 8.356∗∗ 1.834∗∗ 1.481∗∗ 9.766∗∗ 0.886 1.737∗∗

(0.336) (1.073) (0.695) (0.345) (0.646) (0.502) (0.168)
πc 0.577∗∗ 0.247∗∗ 0.175∗∗ 0.204∗∗ 0.141∗∗ 0.140∗∗ 0.515∗∗

(0.053) (0.050) (0.032) (0.033) (0.018) (0.040) (0.042)

log-likelihood -3315.88 -5785.35
bic 6869.84 11890.24
parameters 38 51

(Continued on next page)
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Table 7. (Continued)

C-LHROL LHROL

Class 1 Class 2 Class 3 Class 4 Class 1 Class 2 Class 3 Class 4

public hosp 0.128 0.016 0.641∗∗ 0.282∗∗ 0.136 0.010 0.484 0.295∗∗

(0.096) (0.146) (0.359) (0.052) (0.097) (0.125) (0.362) (0.054)
3 rotations 0.131 0.162 1.102∗∗ 0.272∗∗ 0.132 0.112 0.837∗ 0.286∗∗

(0.099) (0.150) (0.378) (0.052) (0.101) (0.128) (0.405) (0.055)
flex hours 0.155 0.211 0.054 0.155∗∗ 0.163 0.143 0.007 0.179∗∗

(0.096) (0.140) (0.152) (0.050) (0.098) (0.124) (0.134) (0.052)
flex rost 0.374∗∗ 0.181 0.646∗∗ 0.764∗∗ 0.381∗∗ 0.042 0.536∗∗ 0.813∗∗

(0.103) (0.163) (0.170) (0.056) (0.104) (0.150) (0.161) (0.059)
well staff 0.471∗∗ 0.799∗∗ 0.661∗∗ 0.414∗∗ 0.479∗∗ 0.693∗∗ 0.535∗∗ 0.426∗∗

(0.100) (0.152) (0.184) (0.052) (0.102) (0.138) (0.176) (0.054)
supp mgt 1.041∗∗ 0.751∗∗ 5.088∗∗ 0.913∗∗ 1.060∗∗ 0.624∗∗ 4.334∗∗ 0.939∗∗

(0.116) (0.186) (0.770) (0.074) (0.121) (0.161) (0.864) (0.074)
well equip 0.614∗∗ 0.270 1.619∗∗ 0.416∗∗ 0.625∗∗ 0.266∗ 1.269∗∗ 0.425∗∗

(0.101) (0.155) (0.403) (0.053) (0.104) (0.134) (0.460) (0.054)
encourage 0.480∗∗ 0.450∗∗ 1.790∗∗ 0.588∗∗ 0.493∗∗ 0.387∗∗ 1.550∗∗ 0.603∗∗

(0.097) (0.152) (0.399) (0.057) (0.099) (0.136) (0.372) (0.059)
abund park 0.230∗ 0.271 -0.066 0.129∗ 0.221∗ 0.198 -0.024 0.142∗∗

(0.094) (0.161) (0.152) (0.051) (0.095) (0.139) (0.133) (0.053)
app resp 0.818∗∗ 0.445∗∗ 1.174∗∗ 0.465∗∗ 0.841∗∗ 0.417∗∗ 1.083∗∗ 0.461∗∗

(0.112) (0.153) (0.339) (0.058) (0.114) (0.132) (0.285) (0.059)
excell care 2.472∗∗ 0.658∗∗ 1.929∗∗ 0.434∗∗ 2.493∗∗ 0.578∗∗ 1.614∗∗ 0.456∗∗

(0.154) (0.136) (0.494) (0.064) (0.169) (0.119) (0.439) (0.066)
log salary 1.245∗∗ 11.875∗∗ 1.412∗ 2.324∗∗ 1.120∗∗ 10.553∗∗ 1.018 2.558∗∗

(0.343) (0.956) (0.693) (0.215) (0.344) (0.824) (0.619) (0.224)
πc 0.235∗∗ 0.137∗∗ 0.113∗∗ 0.514∗∗ 0.237∗∗ 0.131∗∗ 0.117∗∗ 0.516∗∗

(0.030) (0.019) (0.023) (0.035) (0.030) (0.017) (0.025) (0.035)
σc 0.615† 0.585† 0.923 0.816 0.514†

(0.032) (0.059) (0.115) (0.147) (0.045)

log-likelihood -5738.36 -5730.03
bic 11802.50 11804.64
parameters 52 55

Standard errors in parentheses have been adjusted for clustering at the respondent level. ∗ significant
at the 5% level; ∗∗ significant at the 1% level; † significantly less than the unity at the 1% level.
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