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Abstract

Several empirical studies conclude that a majority of economic agents ignore

some of observed product attributes when choosing among discrete alterna-

tives. Many of these findings are based on latent class logit with partially

constrained support points wherein the share of each point is interpreted

as the probability of ignoring particular attribute(s). We note that because

the logit kernel is mixed over these points to approximate unmodeled inter-

personal taste variation during the estimation stage, the interpretation of

estimated shares is necessarily ambiguous. Using simulated examples, we

explain why common forms of unobserved consumer heterogeneity can be

confounded with attribute non-attendance.
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I. Introduction

Econometric models of discrete choice are usually specified and interpreted as if eco-

nomic agents derive utility directly from product attributes, and compare all attributes

across all available products during the utility maximization process. Such behavioral

hypothesis has been challenged by practitioners who conjecture instead that agents

may adopt various decision strategies to simplify choice tasks. For example, the well-

established literature on consideration set formation (Haab and Hicks, 1997; Chiang et

al., 1998; Gilbride and Allenby, 2004; Li and Trivedi, 2012) investigates screening rules

whereby some products are excluded from detailed evaluation as candidates for the fi-

nal choice, while a rapidly growing body of literature (Arana et al., 2008; Scarpa et al.,

2009; Hensher and Greene, 2010; Campbell, Aravena and Hutchinson, 2011; Campbell,

Hensher and Scarpa, 2011; Hole, 2011; Hensher et al., 2012; Lagarde, 2012) analyzes

attribute non-attendance (ANA) which arises when some of the attributes observable

to the modeler are ignored by agents who evaluate a given set of products.

Several extensions of multinomial logit (MNL) have been proposed in the latter lit-

erature to accommodate the incidence of ANA. A popular empirical approach involves

specification of latent classes ignoring different subsets of attributes by constraining util-

ity weights on the ignored attributes to zero, and testing the resulting model against

MNL. The population share of each class is estimated along with unconstrained utility

weights to infer from observed choices the prior probability that each subset is ignored.

The related studies have analyzed data from stated choice experiments, following much

of the recent literature on choice modeling in environmental economics, health eco-

nomics and transportation research. The estimated incidence of ANA is startling, with

some studies finding less than a 10% chance of attending to all attributes (Scarpa et

al., 2009; Hole, 2011; Campbell, Hensher and Scarpa, 2011) and many reporting sub-

stantial shares of classes non-attending to multiple attributes simultaneously. Taken at

face value, these findings warrant a further investigation into whether the prevalence of

ANA is an artefact of eliciting hypothetical choices or reflects heuristics also applied in

real-life choice situations.

This paper questions the reliability of model-based inference of ANA in the latent

class framework and discusses two potential pitfalls associated with it. First, ANA

becomes analytically indistinguishable from cases where agents attend to all attributes

but genuinely find changes in some attributes irrelevant to their choices. Second and

more importantly, ANA may be empirically confounded with unmodeled consumer
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heterogeneity which does not necessarily induce zero utility weights. The fundamental

source of confounding is clear. A latent class ANA model is, by McFadden and Train

(2000)’s definition, a mixed logit model with discrete mixing. The particular discrete

distribution operationalizing ANA is less flexible than discrete mixtures considered

by Train (2008) but can still approximate interpersonal taste variation. Accordingly,

the significant class shares and the superior fit of latent class ANA models over MNL

should be interpreted broadly as evidence on the importance of specifying a flexible

model. The results do not necessarily constitute evidence that ANA is a widespread

behavioral phenomenon.

The remainder of this paper is organized as follows. Section 2 critically reviews

the latent class approach to modeling ANA. Section 3 presents simulated examples to

explain why ANA can be confounded with scale heterogeneity conceptualized by Fiebig

et al. (2010) and traditional coefficient heterogeneity. Section 4 concludes.

II. Models

Suppose that each of N agents chooses amongst J alternatives on T different choice

occasions. Alternative j in agent n’s choice set t is described by a K-vector of attributes,

xnjt. The probability of observing her actual choice, Pnt(β), depends on her utility

weights on these attributes, β, and is assumed to take the MNL form; if alternative i

has been chosen, Pnt(β) = exp(β · xnit)/[
∑J

j=1 exp(β · xnjt)].
In the latent class framework for modeling ANA, different classes of agents are

assumed to consider different subsets of xnjt, and the class ignoring a particular subset

is defined by constraining the corresponding elements in β to 0. For example, non-

attendance to “fuel cost” and “seating capacity” of an automobile is accommodated

by constraining the utility weights on these attributes to 0. We use c = 1, 2, · · · , C to

index the classes, where C ≤ 2K . The unconditional likelihood of agent n’s sequence

of choices is specified as:

Pn(β1, · · · ,βC , ρ1, · · · , ρC) =
C∑
c=1

ρc

T∏
t=1

Pnt(βc) (1)

where βc collects utility weights for class c, ρc is the population share of this class, and∑C
c=1 ρc = 1. All coefficients in β1 are unconstrained, as class 1 is assumed to consider

all attributes or “fully attend”. A common practice is to constrain the utility weight on
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an attribute to be identical across all classes attending to it, assuming that they have

the same underlying tastes. With K = 2, four possible classes include β1 = (βA, βB),

β2 = (βA, 0), β3 = (0, βB) and β4 = (0, 0).

The model specification described so far involves K utility weights and up to C − 1

class shares, and has been implemented by Scarpa et al. (2009), Campbell, Hensher

and Scarpa (2011), Hensher et al. (2012) and Lagarde (2012). We use ANA-MNL

to denote this specification and a similar model due to Hole (2011). The latter im-

poses restrictions ρc =
∏

k∈Ωc
πk

∏
k/∈Ωc

(1− πk) for each class c, where πk is the binary

probability of attending to attribute k and Ωc collects indices for the attributes class

c considers. Arana et al. (2008) and Hensher and Greene (2010) analyze ANA along

with other decision strategies after allowing for some form of preference heterogeneity,

while Campbell, Aravena and Hutchinson (2011) examine whether the cheaper of two

alternatives is more likely to be subject to ANA; the crux of our subsequent discussion

applies to these studies too because they model and interpret the incidence of ANA in

essentially the same way as the ANA-MNL applications.

It is analytically clear that ANA-MNL would overestimate the true incidence of ANA

whenever some agents fully attend but find changes in certain attributes irrelevant to

their choices. That is, whenever some agents genuinely have the utility weights of 0 on

those attributes. For instance, many non-Muslim agents would find the Halal status of

a breakfast cereal irrelevant in a cereal choice experiment or alternatively, some agents

may not respond to the observed range of variation in an attribute due to discontinuity

in preferences.

A major threat to the model-based inference of ANA, however, comes not from these

special cases but from a general form of interpersonal variation in tastes, β. Consider a

mixed logit (MIXL) model (McFadden and Train, 2000) which has driven much of the

recent literature on modeling individual heterogeneity.1 The MIXL likelihood of agent

n’s choices is usually specified as in Revelt and Train (1998):

Pn(θ) =

∫ T∏
t=1

Pnt(β)f(β|θ)dβ (2)

where density f(β|θ) describes as a function of θ the mixing distribution that captures

1 Empirical evidence to date suggests that the amount of unobserved taste heterogeneity in choice

data tends to be substantial. See Train (2009) and references therein.
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interpersonal variation in β. When f(β|θ) is discrete, MIXL becomes latent class

logit (LCL) with the likelihood identical to equation (1) except no constraint is placed

on any βc. ANA-MNL is thus LCL (also MIXL) wherein a behavioral hypothesis

motivates a particular specification of discrete mixture. This link tends to be noted

only in the context of implementing estimation, but carries far-reaching implications

for interpreting the estimation results.

ANA can be empirically confounded with unmodeled taste heterogeneity as ANA-

MNL is estimated, even when no agent has a zero utility weight on any attribute. Most

of modeling and survey design implications derived from the related studies depend on

the sharp interpretation of estimated class shares as estimated frequencies of ignoring

different attributes. But the discrete mixture specified for ANA-MNL is not exempt

from the general property that any mixing distribution potentially captures the struc-

ture of unobserved heterogeneity other than what it is motivated to capture (Cherchi

and Ortuza, 2010). The class shares (ρ1, · · · , ρC) estimated for ANA-MNL in equa-

tion (1) would reflect how best the MNL likelihood,
∏T

t=1 Pnt(βc), can be mixed over

partially constrained support points (β1, · · · ,βC) to approximate mixing over the true

distribution of individual heterogeneity. As we illustrate in Section 3, that the support

points operationalize a specific behavioral hypothesis does not preclude such approxi-

mation. The economic significance of these shares, and the consequential improvement

of model fit and changes of substantive results in comparison with MNL, should be

interpreted broadly as evidence on the importance of specifying a flexible model, not

that of modeling and quantifying ANA.

It may be tempting to suggest that potential confounding can be avoided by esti-

mating an extension of ANA-MNL with the following likelihood:

Pn(θ,ρ1, · · · , ρC) =
C∑
c=1

ρc

∫ T∏
t=1

Pnt(β
∗
c)f(β|θ)dβ (3)

where β∗c = dc · β and dc is a K-vector of zero-one binary indicators which equal 0

for the attributes ignored by class c. Now ANA is seemingly distinguished from taste

heterogeneity because the latter is described by f(β|θ) while the former is captured by

a separate discrete mixture. The problem still remains, however, unless all interpersonal

taste variation can be adequately accommodated by f(β|θ). The model in equation (3)

is equivalent to MIXL using a more flexible mixture than f(β|θ), and may achieve a

significant improvement in log-likelihood over MIXL using f(β|θ) alone even when all
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agents fully attend. The situation as such can arise, for example, if f(β|θ) is specified

as a unimodal distribution when the true taste distribution is bimodal.

III. Simulated examples

That a substantial proportion of economic agents are estimated to ignore some at-

tributes is often highlighted as a key finding in studies adopting the latent class ap-

proach to modeling ANA. In fact, this approach loses much of its appeal unless the

relative incidence of ANA per se is of interest to the researcher. Among MIXL models,

ANA-MNL in equation (1) and its potential extension in equation (3) are less flexible a

priori than alternative specifications which require a similar amount of computational

effort, for example those analyzed by Train (2008), because the support points must

be partially constrained to the origin and relative to one another. On the other hand,

ANA as defined for ANA-MNL and its variants can be accommodated by more flexible

MIXL models with positive coefficient densities at and/or near the origin.

In this section, we use three simulated data sets to illustrate how unmodeled in-

terpersonal heterogeneity may mislead inference on the incidence of ANA. The data

generating process (DGP) for each example is a special case of Fiebig et al.’s (2010)

generalized multinomial logit II (GMNL-II).2 We simulate N = 300 utility-maximizing

agents who choose among J = 2 alternatives on each of T = 10 choice occasions.

Each alternative is described by two observed attributes, xAnjt and xBnjt, drawn in-

dependently from the standard normal distribution. The utility agent n derives from

alternative j on occasion t is:

Unjt = σn(βAnxAnjt + βBnxBnjt) + εnjt (4)

where the idiosyncratic error εnjt is independently type I extreme value distributed,

2 In usual MIXL models following the tradition of Revelt and Train (1998), a coefficient can be

decomposed into its population mean and agent-specific random deviation around it. GMNL-II speci-

fies an agent-specific positive random parameter multiplying both components of all coefficients. This

parameter is motivated by, but need not be tied to, scale heterogeneity discussed in Section 3.1. Fiebig

et al. (2010) note that random scaling can be more broadly justified as a parsimonious approach to in-

crease flexibility of an initially specified coefficient distribution. They also formulate GMNL-I, wherein

only the mean components are randomly scaled, and GMNL, which nests GMNL-I and GMNL-II.
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σn is a positive scalar describing the agent-specific scale of utility, βAn and βBn are

agent-specific coefficients on attributes A and B respectively. The scale and coefficient

heterogeneity parameters follow different specifications across data sets, as discussed

later. We use the same realized draws of xAnjt, xBnjt and εnjt throughout all examples,

to focus on the confounding effects of different forms of heterogeneity while controlling

for variations in observed and unobserved attributes.

Table 1 summarizes four models estimated for each data set: multinomial logit

(MNL), Fiebig et al. (2012)’s GMNL-II with lognormal-normal mixing, the most com-

mon latent class MNL tailored to capture ANA (ECL-MNL) and finally a similar model,

due to Hole (2011), with additional constraints on class shares (EAA-MNL).3

Attribute non-attendance and scale heterogeneity

As well known, economically relevant coefficients in nonlinear choice models are in-

versely proportional to the unnormalized variance of the idiosyncratic error. Interper-

sonal scale heterogeneity arises when this variance differs across agents, for example

because the influence of unobserved attributes relative to that of observed attributes

varies.

Table 2 reports estimation results for the simulated data featuring only this form

of heterogeneity. DGP is Fiebig et al.’s (2010) Scaled MNL (SMNL). We specify

(βAn, βBn) = (3, 1) for all n = 1, 2, · · · , 300 so that there is no real incidence of ANA.

σn varies across n and is drawn from a log-normal distribution with mean −0.5τ 2 and

variance τ 2, where τ = 1.5; σn thus equals 1 in expectation. The chosen level of τ in

relation to the magnitude of (βAn, βBn) reflect empirical SMNL estimates reported in

Fiebig et al. (2010).

GMNL-II obtains the best BIC and Wald test statistics correctly point towards

SMNL. MNL is conclusively rejected in favour of EAA-MNL and ECL-MNL at any

conventional significance level using a likelihood ratio test; the latter two models also

provide a substantial improvement in BIC. Both models suggest that a large fraction of

agents ignore at least one attribute. ECL-MNL indicates that the vast majority either

fully attend (55.5%) or fully non-attend (31.3%). EAA-MNL suggests that 38% fully

3 ECL stands for ‘equality constrained latent class’ (Scarpa et al., 2009). Hole (2011) dubs his

variation endogenous attribute attendance (EAA) model.
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attend and 30.5% ignore attribute B only, with the rest being almost evenly split over

the other two classes. The two sets of ANA-MNL results differ because EAA-MNL uses

constrained class shares; to describe the high probability of full attendance, πAπB, both

binary probabilities of attending to A, πA, and B, πB, need to be reasonably high and

in consequence the estimated probabilities of attending to A only, πA(1 − πB), and B

only, (1− πA)πB, are higher than their ECL-MNL counterparts.

But in this data set, neither the gain in fit over MNL nor the precisely estimated

shares can be explained by the real incidence of ANA. Why is scale heterogeneity

confounded with ANA? ECL-MNL is MIXL with discrete mixing over four partially

constrained support points, β1 = (βA, βB), β2 = (βA, 0), β3 = (0, βB) and β4 =

(0, 0) where βA and βB are the coefficients on attributes A and B. Now suppose that

βA > βB > 0. Given the DGP, the economically relevant coefficient vector takes form

σn(3, 1) for all agents. When σn is close to or larger than unity, agent n’s choice behavior

may be best described as full attendance, β1, while when σn is close to zero, agent n’s

choice behavior resembles full non-attendance, β4. When σn is much smaller than unity

and larger than zero simultaneously, say 0.3, agent n’s scaled coefficient vector (1, 0.3)

somewhat resembles non-attendance to attribute B only, β2, and exactly corresponds

to a linear combination of β1 and β4. Mixing the MNL likelihood mainly over β1, β2

and β4 with βA > βB > 0 thus provides an approximation to mixing over the true

distribution of scale heterogeneity, resulting in large probability masses at these points.

Essentially the same explanation holds for EAA-MNL, except that β3 must obtain a

non-negligible share too as a consequence of the constrained class shares.

Attribute non-attendance and coefficient heterogeneity

Table 3 presents estimates for the second data set featuring traditional coefficient het-

erogeneity as modeled by Revelt and Train (1998). DGP is MIXL with independently

normal mixing and there is no scale heterogeneity: σn = 1 for every n and βAn is

drawn from N(3, 1) while βBn is drawn from N(1, 1), where N(m, v) denotes a normal

distribution with mean m and variance v. Hence, βAn is positive except for extremely

rare cases, while βBn can be negative for a non-negligible proportion of agents. For a

motivating example, consider attribute A as −1 times price and B as the length of stay

in a holiday package choice problem. The real incidence of ANA is almost ruled out

because the probability of drawing a coefficient of 0 from each distribution is 0.

GMNL-II achieves the best BIC and aptly fails to find significant scale heterogeneity,
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while each of EAA-MNL and ECL-MNL obtains a very significant improvement in

log-likelihood over MNL. Both ANA-MNL models suggest that about 56% of agents

fully attend while 41% consider attribute A only. The model-based inference on the

incidence of ANA appears contaminated by coefficient heterogeneity, much as it was by

scale heterogeneity.

The confounding effects of coefficient heterogeneity can be explained by typical

draws from the coefficient distribution. As before, suppose that βA > βB > 0. Since

βAn ∼ N(3, 1), this coefficient lies between 1 and 5 for about 95% of agents. Classes non-

attending to attribute A, namely β3 = (0, βB) and β4 = (0, 0), become poor support

points in consequence and obtain negligible shares. Now because βBn ∼ N(1, 1), this

coefficient takes negative or sufficiently small positive values for a nontrivial fraction of

agents, whose behavior would then be best described as non-attendance to B only, β2 =

(βA, 0). For somewhat over 50% of agents, however, βBn would be greater than 1 or

slightly below it, making their behavior best captured by full attendance, β1 = (βA, βB).

Mixing the MNL likelihood mainly over β1 and β2 with βA > βB > 0 thus provides an

approximation to mixing over the true distribution of coefficient heterogeneity.

Attribute non-attendance and scale & coefficient heterogeneity

Table 4 reports estimation results for the third data set featuring both scale and coef-

ficient heterogeneity. Neither form of heterogeneity can be ruled out a priori and this

set-up arguably mimics the real choice data most closely. DGP is GMNL-II which com-

bines SMNL and independent normal MIXL specified above: ln σn ∼ N(−1
2
1.52, 1.52),

βAn ∼ N(3, 1) and βBn ∼ N(1, 1). For every n, we use the same realization of each

parameter as drawn earlier.

GMNL-II unsurprisingly obtains the best BIC but the estimated standard deviation

of βAn is economically and statistically insignificant; with the coefficient’s tight pop-

ulation distribution, it is empirically difficult to disentangle the coefficient deviation

parameter, σβA
, from the scale variation parameter, τ . EAA-MNL and ECL-MNL are

again preferred to MNL using a likelihood ratio test, and indicate significant incidence

of ANA. The pattern of ANA suggested by ECL-MNL is as expected; 35% of agents

attend to attribute A only (due to confounding coefficient heterogeneity), 33.1% non-

attend to both attributes (due to confounding scale heterogeneity), while almost all of

the rest (31.5%) fully attend. EAA-MNL suggests a somewhat different pattern which

can be expected from the constrained class shares; to describe the high frequency of
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attending to A only, the probability of considering A, πA, must be high and that of con-

sidering B, πB, low, but to capture the high frequency of full attendance simultaneously,

πB must remain reasonably large, requiring an offsetting increase in πA.

The confounding effects of joint scale and coefficient heterogeneity can be under-

stood intuitively as follows. When σn moderately deviates from 1, the explanation

provided in the preceding subsection still holds while when σn is close to zero, agent

n’s choice behavior resembles full non-attendance, β4 = (0, 0). Two major possibilities

exist when σn is very large. Agent n’s behavior may be described as full attendance,

β1 = (βA, βB), when both βAn and βBn are positive while it may be better approx-

imated as non-attendance to B only, β2 = (βA, 0), when βAn is positive but βBn is

negative. Mixing the MNL likelihood mainly over β1, β2 and β3 with βA > βB > 0

thus provides an approximation to mixing over the joint distribution of scale and coef-

ficient heterogeneity.

IV. Discussion

Several recent studies adopt a latent class approach to modeling attribute non-attendance

(ANA) and conclude that a majority of economic agents ignore one or more of the ob-

served product attributes when making discrete choices. These studies formulate dis-

crete mixture logit with a behaviorally motivated selection of support points wherein

the share of each point is interpreted as the relative incidence of ignoring particular

attribute(s). We note that because the logit kernel is mixed over these points to ap-

proximate unmodeled interpersonal taste variation empirically, the estimated shares

cannot be interpreted as estimated incidence. Evidence from our simulated data shows

that scale and coefficient heterogeneity indeed can be mistaken for ANA when this type

of discrete mixture logit is estimated.

The general message of our analysis is that an estimated mixing distribution does

not provide convincing statistics which can be narrowly associated with behavioral

hypotheses motivating the specification of that distribution. While our immediate

focus has been on model-based inference of ANA, this message and related discussion

could prove useful in assessing similar attempts at quantifying the relative incidence

of other information processing rules. For example, Fok et al. (2010) hypothesize that

respondents assign arbitrary rankings to worst H alternatives in a choice set when

ranking all alternatives from best to worst, and formulate a latent class exploded logit
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model allowing H to vary across classes. In this model, arbitary ranking assignment

is operationalized by constraining all coefficients of the relevant MNL multiplicands in

the exploded logit formula (p.157, Train, 2009) to 0, in the same manner as how full

ANA is operationalized.
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TABLE 1

A summary of estimated models

Model Likelihood for agent n Notes

MNL
∏T
t=1 Pnt(β) ·β = (βA, βB)

·Estimate βA and βB .

GMNL-II
∫ ∫ ∏T

t=1 Pnt(σβ)g(σ|τ)f(β|θ)dβdσ ·θ = (βA, βB , σβA
, σβB

)

·β = (βA βB) ∼ N((βA, βB), diag(σ2
βA
, σ2
βB

))

· lnσ ∼ N(−0.5τ2, τ2)
·Estimate τ and θ

ECL-MNL
∑4
c=1 ρc

∏T
t=1 Pnt(βc) ·β1 = (βA, βB),β2 = (βA, 0)

β3 = (0, βB),β4 = (0, 0)
·Estimate βA, βB , ρ1, ρ2 and ρ3.

EAA-MNL
∑4
c=1 ρc

∏T
t=1 Pnt(βc) ·βc is as defined for ECL-MNL.

·ρ1 = πAπB , ρ2 = πA(1− πB)
ρ3 = (1− πA)πB , ρ4 = (1− πA)(1− πB)
·Estimate βA, βB , πA and πB .

The GMNL-II likelihood is simulated by taking 600 draws of each random parameter.
g(.|.) and f(.|.) denote log-normal and multivariate normal densities respectively.
Other notations are as defined in Section 2.

12



TABLE 2

DGP with scale heterogeneity

MNL EAA-MNL ECL-MNL DGP GMNL-II

βA 0.939*** 1.928*** 2.163*** βA 3 2.696***
(0.063) (0.139) (0.154) (0.456)

βB 0.294*** 0.664*** 0.765*** βB 1 0.800***
(0.036) (0.107) (0.105) (0.144)

Relative incidence (ρc) of: Heterogeneity
(βA, βB) 0.380*** 0.555*** σβA

0 0.529
(0.066) (0.070) (0.397)

(βA, 0) 0.305*** 0.104 σβB
0 0.210

(0.062) (0.067) (0.144)
(0, βB) 0.175*** 0.0272 τ 1.5 1.528***

(0.033) (0.025) (0.143)
(0, 0) 0.140*** 0.313***

(0.034) (0.039)

Parameters 2 4 5 5
Log-likelihood -1641.277 -1575.980 -1558.195 -1528.953
BIC 3293.963 3174.774 3144.910 3086.425
LR statistic 130.596 166.164 224.648

The LR statistic assumes MNL under the null. Standard errors are in parentheses.
*, **, *** denote statistical significance at the 10%, 5% and 1% level respectively.
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TABLE 3

DGP with coefficient heterogeneity

MNL EAA-MNL ECL-MNL DGP GMNL-II

βA 2.028*** 2.591*** 2.587*** βA 3 2.984***
(0.104) (0.117) (0.117) (0.252)

βB 0.678*** 1.520*** 1.513*** βB 1 1.032***
(0.061) (0.121) (0.121) (0.114)

Relative incidence (ρc) of: Heterogeneity
(βA, βB) 0.566*** 0.563*** σβA

1 0.869***
(0.047) (0.047) (0.089)

(βA, 0) 0.408*** 0.411*** σβB
1 0.975***

(0.047) (0.047) (0.118)
(0, βB) 0.0149** 0.0184* τ 0 0.241

(0.007) (0.011) (0.207)
(0, 0) 0.0108** 0.00755

(0.005) (0.008)

Parameters 2 4 5 5
Log-likelihood -1096.507 -1031.969 -1031.854 -1021.673
BIC 2204.421 2086.753 2092.228 2071.864
LR statistic 129.075 129.304 149.668

The LR statistic assumes MNL under the null. Standard errors are in parentheses.
*, **, *** denote statistical significance at the 10%, 5% and 1% level respectively.
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TABLE 4

DGP with scale and coefficient heterogeneity

MNL EAA-MNL ECL-MNL DGP GMNL-II

βA 0.840*** 1.768*** 2.007*** βA 3 2.653***
(0.056) (0.144) (0.155) (0.492)

βB 0.271*** 1.183*** 1.426*** βB 1 0.914***
(0.037) (0.179) (0.169) (0.199)

Relative incidence (ρc) of: Heterogeneity
(βA, βB) 0.231*** 0.315*** σβA

1 0.230
(0.042) (0.042) (0.408)

(βA, 0) 0.455*** 0.350*** σβB
1 1.056***

(0.043) (0.044) (0.223)
(0, βB) 0.106*** 0.00445 τ 1.5 1.584***

(0.020) (0.012) (0.159)
(0, 0) 0.208*** 0.331***

(0.033) (0.036)

Parameters 2 4 5 5
Log-likelihood -1701.444 -1631.755 -1616.578 -1593.076
BIC 3414.296 3286.326 3261.675 3214.671
LR statistic 139.377 169.732 216.736

The LR statistic assumes MNL under the null. Standard errors are in parentheses.
*, **, *** denote statistical significance at the 10%, 5% and 1% level respectively.
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