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Abstract

The Cramer-Ridder test is a popular procedure for testing if some outcome

states can be pooled into one state in the multinomial logit model. We show

that, in the presence of binary regressors, the test is overly stringent and

poolability may not be tested unambiguously.

JEL classification: C35

Key words: multinomial logit, pooling, statistical test

Highlights:

• We revisit the problem of pooling states in the multinomial logit model.

• The pooling condition and test due to Cramer and Ridder (1991) are

well-known.

• This condition is at odds with how saturated models behave.

• We derive a new condition for pooling which is not.

• With several binary regressors, pooling may not be unambiguously

tested.



1 Introduction

Empirical researchers often face decisions over pooling unordered categorical outcomes.

When modelling individual labour force status, for example, non-participation may be

treated as one homogeneous state or a further distinction may be drawn between those

who are not desiring work and those who are but not searching actively.

Cramer and Ridder (1991) have developed a well-known procedure for testing if a

subset of categorical outcomes, or states, can be pooled into one state in the multinomial

logit (MNL) model. The authors show that separate states can be viewed as arbitrary

subdivisions of one parent state when their slope coefficients are identical, and pooled

without affecting the probabilities of the other states. The Cramer-Ridder test, or

likelihood ratio test of the corresponding parametric restrictions, is often applied in

practice (Chalkley and McVicar, 2008; Dancer and Fiebig, 2004; Ngyuen and Taylor,

2003) and also available as a Stata command, -crtest-.

We show that, in the presence of binary regressor(s), not all slope coefficients need

be identical across states to make their distinction irrelevant à la Cramer and Ridder

(1991). A sufficient condition for pooling can be derived from a subdivision process

which nests the one Cramer and Ridder have postulated. This condition allows for

state-specific coefficients on those binary regressors which collectively permit saturated

coefficient parameterisations; it only imposes the cross-state equality of coefficients on

the other regressors. A corresponding test of pooling is a test of the cross-state equality

of coefficients on continuous regressors when there is only one binary regressor. With

several binary regressors, a test of pooling may not be implemented as unambiguously

as Cramer and Ridder have prescribed; several pooling conditions may coexist, each

implying a different set of parametric restrictions.

2 Pooling states in MNL

Cramer and Ridder (1991; C&R hereafter) analyse an MNL model with S mutually

exclusive states to establish when the distinction of separate states may be deemed

irrelevant. Using Rn to denote the sum 1 +
∑S−1

j=2 exp(αj + δj · dn + γj · gn + βj · xn),

the probability of state s at observation n is specified as:

Pns =
exp(αs + δs · dn + γs · gn + βs · xn)

Rn + exp(αS + δS · dn + γS · gn + βS · xn)
(1)
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given continuous regressors xn, and two sets of binary regressors dn and gn distinguished

as follows. Had dn been the only regressors, the model would be saturated for dn;

the same statement does not apply to gn. Such division of the regressors has not

been considered by C&R, but plays a major role in our analysis. αs is the intercept,

δs,γs and βs are the slope coefficients associated with state s = 1, 2, · · · , S; all these

parameters are normalised to 0 in state 1.

C&R then suppose that state S is randomly split into Q superficially different states,

S1, S2, · · · , SQ, with the probability λSq of subdivision into Sq so that PnSq = λSqPnS

and PnS =
∑Q

q=1 PnSq . The resulting model with S− 1 +Q states still retains the MNL

form, with Pns unchanged from (1) for any state s = 1, 2, · · · , S − 1, and PnSq for each

new state Sq being:

PnSq =
exp(αSq + δS · dn + γS · gn + βS · xn)

Rn +
∑Q

l=1 exp(αSl
+ δS · dn + γS · gn + βS · xn)

(2)

=
exp(αSq + δS · dn + γS · gn + βS · xn)

Rn + exp(αS + δS · dn + γS · gn + βS · xn)

where αSq = αS + lnλSq . Note that only the intercept varies across the Q new states.

C&R conclude that conversely, Q out of the S states in the original model, (1), can

be pooled into one state when the Q states share the same slope coefficients, because

then they can be viewed as subdivisions of one parent state. With Ψ denoting the set

of the Q candidate states, the likelihood ratio test of these parametric restrictions:

δj = δk,γj = γk,βj = βk for all j, k ∈ Ψ, j 6= k (3)

is known as the Cramer-Ridder test (C-R test hereafter). Each set of restrictions can

be ignored when the corresponding type of regressor is not present.

To see that the pooling condition (3) may be overly stringent, consider a simple

MNL model wherein dn are the only regressors.1 The ML estimator of each possible

Pns equals the sample relative frequency of state s among observations described by

the same configuration of dn, consistently estimating the corresponding population

frequency. Accordingly, any subset of the other states can be merged without affecting

substantive results regarding state s, even though δj may vary across those states.

1For example, consider the following three cases: (a) there is only one regressor and that regressor
is binary (b) the only regressors are binary indicators of different categories of the same qualitative
variable (eg. region of residence) and (c) the only regressors are such binary indicators of several
qualitative variables and all cross-products of those indicators.
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We now derive from the same S-state model, (1), a new pooling condition compat-

ible with the algebraic property of the ML estimator. As before, state S is randomly

subdivided into Q new states, S1, S2, · · · , SQ, but we generalise the subdivision prob-

abilities to vary with dn, instead of being the same for every n. The probability of

subdivision into Sq is denoted fSq(dn) to emphasise its dependence on dn, but other-

wise plays an analogous role as λSq above. Pns remains unchanged from (1) for any

state s = 1, 2, · · · , S − 1, while PnSq for each new state Sq is:

PnSq =
exp(αS + ln fSq(dn) + δS · dn + γS · gn + βS · xn)

Rn +
∑Q

l=1 exp(αS + ln fSl
(dn) + δS · dn + γS · gn + βS · xn)

(4)

=
exp(αS + ln fSq(dn) + δS · dn + γS · gn + βS · xn)

Rn + exp(αS + δS · dn + γS · gn + βS · xn)

The new model with S−1+Q states seems to have a different regressor specification

from the parent S-state model, due to ln fSq(dn) terms in states S1 through SQ. But

when there exist real numbers {aSq ,bSq}Qq=1 such that:

ln fSq(dn) = aSq + bSq · dn for q = 1, · · · , Q− 1 (5)

ln fSQ
(dn) = ln(1−

∑Q−1
q=1 fSq(dn)) = aSQ

+ bSQ
· dn

for all configurations of dn, the new model is observationally equivalent to an MNL

model with S − 1 +Q states using the same specification as the parent model. In that

equivalent model, obtained by plugging (5) into (4), the intercept varies across the new

states, αSq = αS + aSq , while the coefficients on gn and xn do not, γSq = γS and

βSq = βS, where q = 1, · · · , Q. But unlike what the C-R test imposes under the null,

(3), the coefficients on dn vary across the new states too, δSq = δS + bSq . As can be

easily seen, the existence of {aSq ,bSq}Qq=1 as in (5) is also necessary for that of such

equivalent model.

Because the subdivision probabilities are saturated for dn, the linear system (5)

always exists, regardless of the functional form of {fSq(dn)}Qq=1. In the context of the

original S-state model, the pooling condition replacing (3) is:

γj = γk,βj = βk for all j, k ∈ Ψ, j 6= k (6)

Either set of restrictions can be ignored when the corresponding type of regressor is

not present. (6) originates from a subdivision process which nests the one C&R have
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postulated for (3). Moreover, (6) leaves the coefficients on dn unrestricted, in agreement

with how saturated MNL models behave.

No such pooling condition arises when the subdivision probabilities are generalised

further to vary also with gn and/or xn. Suppose first that they vary with both dn and

gn, and are denoted {hSq(dn,gn)}Qq=1. To permit pooling, there must be real numbers

{aSq ,bSq,cSq}
Q
q=1 such that:

lnhSq(dn,gn) = aSq + bSq · dn + cSq · gn for q = 1, · · · , Q− 1 (7)

lnhSQ
(dn,gn) = ln(1−

∑Q−1
q=1 hSq(dn,gn)) = aSQ

+ bSQ
· dn + cSQ

· gn

for all configurations of dn and gn. Because dn and gn collectively do not permit

saturated linear parameterisations, (7) may not be satisfied for all functional forms of

{hSq(dn,gn)}Qq=1; a given variation in some binary regressors may shift a particular sub-

division probability by different proportions depending on configurations of all binary

regressors. To satisfy (7), each hSq(dn,gn) needs to be a product of the parts that vary

with dn only, hASq
(dn), and with gn only, hBSq

(gn). Such multiplicative decomposition,

however, is not possible because hSQ
(dn,gn) = 1 −

∑Q−1
q=1 hSq(dn,gn); for two differ-

ent configurations of gn, g0
n and g1

n, the ratio hSQ
(dn,g

1
n)/hSQ

(dn,g
0
n) must depend on

both dn and gn, even when hSq(dn,gn) = hASq
(dn)hBSq

(gn) for all q < Q. An analogous

argument establishes that the subdivision probabilities also varying with xn do not lead

to a pooling condition.

3 Practical implications

When there are only continuous regressors xn, the pooling condition (3) due to C&R

and ours (6) coincide.

When at least one binary regressor is present, (3) is stronger than (6) because any

binary regressor, when viewed in isolation, satisfies the definition of dn. The poolability

of the candidate states may thus be incorrectly rejected according to the C-R test

because (3) is sufficient but not necessary for pooling. In particular, when both binary

and continuous regressors are present but all binary regressors can be classified as dn,
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the C-R test imposes the cross-state equality of all slope coefficients under the null,

while to test (6) is to test that of the continuous regressor coefficients alone.2

Under more general settings, a test of pooling in the MNL model may not be “of

almost trivial simplicity” as Cramer and Ridder (1991) have concluded.

For illustration, suppose that there are continuous regressors, a set of dummies in-

dicating different regions of residence, and another set of dummies indicating different

levels of self-assessed health. Each set of dummies define mutually exclusive groups

of observations, but the two sets together do not permit saturated coefficient param-

eterisations because self-assessed health may vary within each region. (6) may thus

be tested in two major forms, classifying the regional dummies as dn and the health

dummies as gn or vice versa. These two implementations hypothesise different data

generating processes and need not result in the same conclusion.

Such ambiguity arises because, given a selection of regressors, more than one subdi-

vision processes may be invoked to justify pooling the candidate states. To test pooling,

then, becomes to test restrictions implied by a maintained subdivision process. The

C-R test always prescribes an unambiguous procedure only because it maintains a par-

ticular subdivision process which is restrictive and has implications at odds with how

saturated MNL models behave.

In light of (6), arguably the only unambiguous step of a possible testing strategy

would be to start with a test of the equality of the continuous regressor coefficients:

βj = βk for all j, k ∈ Ψ, , j 6= k (8)

which is both sufficient and necessary for pooling when only dn and xn are present, and

necessary when gn are present too. When the null is not rejected in the latter case,

further tests of pooling may require more subjective decisions over which of subdivision

processes to maintain, either because testing (6) based on each possible classification

of dn and gn leads to conflicting conclusions, or because it is impractical and/or unin-

teresting to compute test statistics for all such classifications.

2For example, suppose that each special case in footnote 1 is extended by including continuous
regressor(s). The empirical example of Cramer and Ridder (1991) corresponds to the first of the
resulting cases because it includes one binary regressor and one continuous regressor.
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