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1 Introduction

Mixed logit or random parameter logit is used in many empirical applications to cap-
ture more realistic substitution patterns than traditional conditional logit. The random
parameters are usually assumed to follow a normal distribution and the resulting model
is estimated through simulated maximum likelihood, as in Hole (2007)’s Stata module
mixlogit. Several recent studies, however, note potential gains from specifying a dis-
crete instead of normal mixing distribution, including the ability to approximate the
true parameter distribution more flexibly at lower computational costs.1

Pacifico (2012) implements the Expectation-Maximization (EM) algorithm for esti-
mating a discrete mixture logit model, also known as latent class logit model, in Stata.
As Bhat (1997) and Train (2008) emphasize, the EM algorithm is an attractive alterna-
tive to the usual (quasi-)Newton methods in the present context, because it guarantees
numerical stability and convergence to a local maximum even when the number of la-
tent classes is large. In contrast, the usual optimization procedures often fail to achieve
convergence since inversion of the (approximate) Hessian becomes numerically difficult.

With this contribution, we aim at generalizing Pacifico (2012)’s code with a Stata
module that introduces a series of important functionalities and provides an improved
performance in terms of run time and stability.

2 EM algorithm for latent class logit

This section recapitulates the EM algorithm for estimating a latent class logit model
(LCL).2 Suppose that each of N agents faces, for notational simplicity, J alternatives

1. For example, see Hess et al. (2011), Shen (2009) and Greene and Hensher (2003).
2. Further details are available in Bhat (1997) and Train (2008).
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2 Latent class logit model

in each of T choice scenarios.3 Let ynjt denote a binary variable which equals 1 if agent
n chooses alternative j in scenario t and 0 otherwise. Each alternative is described by
alternative-specific characteristics, xnjt, and each agent by agent-specific characteristics
including a constant, zn.

LCL assumes that there are C distinct sets (or classes) of taste parameters, β =
(β1,β2, ...,βC). If agent n is in class c, the probability of observing her sequence of
choices is a product of conditional logit formulas:

Pn(βc) =

T∏
t=1

J∏
j=1

(
exp(βcxnjt)∑J

k=1 exp(βcxnkt))

)ynjt

(1)

Since the class membership status is unknown, the researcher needs to specify the
unconditional likelihood of agent n’s choices, which equals the weighted average of
equation 1 over classes. The weight for class c, πcn(θ), is the population share of that
class and usually modeled as fractional multinomial logit:

πcn(θ) =
exp(θczn)

1 +
∑C−1

l=1 exp(θlzn)
(2)

where θ = (θ1,θ2, ...,θC−1) are class membership model parameters; note that θC has
been normalized to zero for identification.

The sample log likelihood is then obtained by summing each agent’s log uncondi-
tional likelihood:

lnL(β,θ) =

N∑
n=1

ln

C∑
c=1

πcn(θ)Pn(βc) (3)

Bhat (1997) and Train (2008) note numerical difficulties associated with maximizing
equation 3 directly. They show that β and θ can be more conveniently estimated via
a well-known EM algorithm for likelihood maximization in the presence of incomplete
data, treating each agent’s class membership status as the missing information. Let
superscript s denote the estimates obtained at the sth iteration of this algorithm. Then,
at iteration s+ 1, the estimates are updated as:

βs+1 = argmaxβ
∑N

n=1

∑C
c=1 ηcn(βs,θs) lnPn(βc)

θs+1 = argmaxθ
∑N

n=1

∑C
c=1 ηcn(βs,θs) lnπcn(θ)

(4)

where ηcn(βs,θs) is the posterior probability that agent n is in class c evaluated at the

3. lclogit is also applicable when the number of scenarios varies across agents, and that of alternatives
varies both across agents and over scenarios.
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sth estimates:

ηcn(βs,θs) =
πcn(θs)Pn(βs

c)∑C
l=1 πln(θs)Pn(βs

l )
(5)

The updating procedure can be implemented easily in Stata, exploiting clogit and
fmlogit routines as follows.4 βs+1 is computed by estimating a conditional logit model
(clogit) C times, each time using ηcn(βs,θs) for a particular c to weight observations on
each n. θs+1 is obtained by estimating a fractional multinomial logit model (fmlogit)
which takes η1n(βs,θs), η2n(βs,θs), · · · , ηCn(βs,θs) as dependent variables. When zn
only includes the constant term so that each class share is the same for all agents, ie
πcn(θ) = πc(θ), each class share can be directly updated using the following analytical
solution:

πc(θ
s+1) =

∑N
n=1 ηcn(βs,θs)∑C

l=1

∑N
n=1 ηln(βs,θs)

(6)

without estimating the fractional multinomial logit model.

With a suitable selection of starting values, the updating procedure can be repeated
until changes in the estimates and/or improvement in the log likelihood between itera-
tions are small enough.

An often highlighted feature of LCL is its ability to accommodate unobserved inter-
personal taste variation without restricting the shape of the underlying taste distribu-
tion. Hess et al. (2011) have recently emphasized that LCL also provides convenient
means to account for observed interpersonal heterogeneity in correlations among tastes
for different attributes. For example, let βq and βh denote taste coefficients on the qth

and hth attributes respectively. Each coefficient may take one of C distinct values, and
is a random parameter from the researcher’s perspective. Their covariance is given by:

covn(βq, βh) =

C∑
c=1

πcn(θ)βc,qβc,h −

(
C∑

c=1

πcn(θ)βc,q

)(
C∑

c=1

πcn(θ)βc,h

)
(7)

where βc,q is the value of βq when agent n is in class c, and βc,h is defined similarly.
As long as zn in equation 2 includes a non-constant variable, this covariance will vary
across agents with different observed characteristics through the variation in πcn(θ).

3 The lclogit command

lclogit is a Stata module which implements the EM iterative scheme outlined in the
previous section. This module generalizes Pacifico (2012)’s step-by-step procedure and

4. fmlogit is a user-written program. See footnote 5 for a further description.
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introduces an improved internal loop along with other important functionalities. The
overall effect is to make the estimation process more convenient, significantly faster and
more stable numerically.

To give a few examples, the internal code of lclogit executes fewer algebraic oper-
ations per iteration to update the estimates; uses the standard generate command to
perform tasks which were previously executed with slightly slower egen functions; and
works with log probabilities instead of probabilities when possible. All these changes
substantially reduce the estimation run time, especially in the presence of a large num-
ber of parameters and/or observations. Taking the 8-class model estimated by Pacifico
(2012) for example, lclogit produces the same results as the step-by-step procedure
while using less than a half of the latter’s run time.

The data setup for lclogit is identical to that required by clogit.

The generic syntax for lclogit is:

lclogit depvar
[
varlist

] [
if
][

in
]
, group(varname) id(varname) nclasses(#)[

options
]

The options for lclogit are:

• group(varname) is required and specifies a numeric identifier variable for the
choice scenarios.

• id(varname) is required and specifies a numeric identifier variable for the choice
makers or agents. When only one choice scenario is available for each agent, users
may specify the same variable for both group() and id().

• nclasses(#) is required and specifies the number of latent classes. A minimum
of 2 latent classes is required.

• membership(varlist) specifies independent variables that enter the fractional multi-
nomial logit model of class membership, i.e. the variables included in the vector
zn of equation 2. These variables must be constant within the same agent as iden-
tified by id().5 When this option is not specified, the class shares are updated
algebraically following equation 6.

• convergence(#) specifies the tolerance for the log likelihood. When the propor-
tional increase in the log likelihood over the last five iterations is less than the
specified criterion, lclogit declares convergence. The default is 0.00001.

5. Pacifico (2012) specified a ml program with the method lf to estimate the class membership model.
lclogit uses another user-written program from Maarten L. Buis - fmlogit - which performs the
same estimation with the significantly faster and more accurate d2 method. lclogit is downloaded
with a modified version of the prediction command of fmlogit - fmlogit pr - since we had to
modify this command to obtain double-precision class shares.
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• iterate(#) specifies the maximum number of iterations. If convergence is not
achieved after the selected number of iterations, lclogit stops the recursion and
notes this fact before displaying the estimation results. The default is 150.

• seed(#) sets the seed for pseudo uniform random numbers. The default is
c(seed).

The starting values for taste parameters are obtained by splitting the sample into
nclasses() different subsamples and estimating a clogit model for each of them.
During this process, a pseudo uniform random number is generated for each agent
to assign the agent into a particular subsample.6 As for the starting values for
the class shares, the module assumes equal shares, i.e. 1/nclasses().

• constraints(Class#1numlist: Class#2 numlist: ..) specifies the constraints
that are imposed on the taste parameters of the designated classes, i.e. βc in equa-
tion 1. For instance, suppose that x1 and x2 are alternative-specific characteristics
included in indepvars for lclogit and the user wishes to restrict the coefficient
on x1 to zero for Class1 and Class4, and the coefficient on x2 to 2 for Class4.
Then, the relevant series of commands would look like:

. constraint 1 x1 = 0

. constraint 2 x2 = 2

. lclogit depvar indepvars, gr() id() ncl() constraints(Class1 1: Class4 1 2)

• nolog suppresses the display of the iteration log.

4 Post-estimation command: lclogitpr

lclogitpr predicts the probabilities of choosing each alternative in a choice situation
(choice probabilities hereafter), the class shares or prior probabilities of class member-
ship, and the posterior probabilities of class membership. The predicted probabilities
are stored in a variable named stubname# where # refers to the relevant class number;
the only exception is the unconditional choice probability, as it is stored in a variable
named stubname. The syntax for lclogitpr is:

lclogitpr stubname
[
if
][

in
]
,
[
options

]
The options for lclogitpr are:

• class(numlist) specifies the classes for which the probabilities are going to be
predicted. The default setting assumes all classes.

6. More specifically, the unit interval is divided into nclasses() equal parts and if the agent’s pseudo
random draw is in the cth part, the agent is allocated to the subsample whose clogit results serve
as the initial estimates of Class c’s taste parameters. Note that lclogit is identical to asmprobit in
that the current seed as at the beginning of the command’s execution is restored once all necessary
pseudo random draws have been made.



6 Latent class logit model

• pr0 predicts the unconditional choice probability, which equals the average of
class-specific choice probabilities weighted by the corresponding class shares. That
is,
∑C

c=1 πcn(θ)[exp(βcxnjt)/(
∑J

k=1 exp(βcxnkt))] in the context of Section 2.

• pr predicts the unconditional choice probability and the choice probabilities condi-

tional on being in particular classes; exp(βcxnjt)/(
∑J

k=1 exp(βcxnkt)) in equation
1 corresponds to the choice probability conditional on being in class c. This is the
default option when no other option is specified.

• up predicts the class shares or prior probabilities that the agent is in particular
classes. They correspond to the class shares predicted by using the class member-
ship model parameter estimates; see equation 2 in Section 2.

• cp predicts the posterior probabilities that the agent is in particular classes taking
into account her sequence of choices. They are computed by evaluating equation
5 at the final estimates for each c = 1, 2, · · · , C.

5 Post-estimation command: lclogitcov

lclogitcov predicts the implied variances and covariances of taste parameters by eval-
uating equation 7 at the active lclogit estimates. They could be a useful tool for
studying the underlying taste patterns; see Hess et al. (2011) for a related application.

The generic syntax for lclogitcov is:

lclogitcov
[
varlist

] [
if
][

in
]
,
[
options

]
The default is to store the predicted variances in a set of hard-coded variables named

var 1, var 2, ... where var q is the predicted variance of the coefficient on the qth variable
listed in varlist, and the predicted covariances in cov 12, cov 13, ..., cov 23, ... where
cov qh is the predicted covariance between the coefficients on the qth variable and the
hth variable in varlist.

The averages of these variance and covariances over agents - as identified by the
required option id() of lclogit - in the prediction sample are reported as a covariance
matrix at the end of lclogitcov’s execution.

The options for lclogitcov are:

• nokeep drops the predicted variances and covariances from the data set at the end
of the command’s execution. The average covariance matrix is still displayed.

• varname(stubname) requests the predicted variances to be stored as stubname1,
stubname2,...

• covname(stubname) requests the predicted covariances to be stored as stubname12,
stubname13,...
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• matrix(name) stores the reported average covariance matrix in a Stata matrix
called name.

6 Post-estimation command: lclogitml

lclogitml is a wrapper for gllamm (Rabe-Hesketh et al., 2002) which uses the d0

method to fit generalised linear latent class and mixed models including LCL via the
Newton-Rhapson (NR) algorithm for likelihood maximization.7 This post-estimation
command passes active lclogit specification and estimates to gllamm, and its primary
usage mainly depends on how iterate() option is specified; see below for details.

The default setting relabels and transforms the ereturn results of gllamm in ac-
cordance with those of lclogit, before reporting and posting them. Users can exploit
lclogitpr and lclogitcov, as well as Stata’s usual post-estimation commands re-
quiring the asymptotic covariance matrix such as nlcom. When switch is specified,
the original ereturn results of gllamm are reported and posted; users gain access to
gllamm’s post-estimation commands, but lose access to lclogitpr and lclogitcov.

lclogitml can also be used as its own post-estimation command, for example to
pass the currently active lclogitml results to gllamm for further NR iterations.

The generic syntax for lclogitml is:

lclogitml
[
if
][

in
]
,
[
options

]
The options for lclogitml are:

• iterate(#) specifies the maximum number of NR iterations for gllamm’s likeli-
hood maximization process. The default is 0 in which case the likelihood function
and its derivatives are evaluated at the current lclogit estimates; this allows
obtaining standard errors associated with the current estimates without boot-
strapping.

With a non-zero argument, this option can implement a hybrid estimation strategy
similar to Bhat (1997)’s. He executes a relatively small number of EM iterations to
obtain intermediate estimates, and use them as starting values for direct likelihood
maximization via a quasi-Newton algorithm until convergence, because the EM
algorithm tends to slow down near a local maximum.

Specifying a non-zero argument for this option can also be a useful tool for check-
ing whether lclogit has declared convergence prematurely, for instance because
convergence() has not been set stringently enough for an application at hand.

• level(#) sets confidence level; the default is 95.

• nopost restores the currently active ereturn results at the end of the command’s
execution.

7. gllamm can be downloaded by entering ssc install gllamm into the command window.
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• switch displays and posts the original gllamm estimation results, without relabel-
ing and transforming them in accordance with the lclogit output.

• compatible gllamm options refer to gllamm’s estimation options which are com-
patible with the LCL model specification. See gllamm’s own help menu for more
information.

7 Application

We illustrate the use of lclogit and its companion post-estimation commands by ex-
panding upon the example Pacifico (2012) uses to demonstrate his step-by-step proce-
dure for estimating LCL in Stata. This example analyzes the stated preference data on
household’s electricity supplier choice accompanying Hole (2007)’s mixlogit module,
which in turn are a subset of data used in Huber and Train (2001). There are 100
customers who face up to 12 different choice occasions, each of them consisting of a
single choice among 4 suppliers with the following characteristics:

• The price of the contract (in cents per kWh) whenever the supplier offers a contract
with a fixed rate (price)

• The length of contract that the supplier offered, expressed in years (contract)

• Whether the supplier is a local company (local)

• Whether the supplier is a well-known company (wknown)

• Whether the supplier offers a time-of-day rate instead of a fixed rate (tod)

• Whether the supplier offers a seasonal rate instead of a fixed rate (seasonal)

The dummy variable y collects the stated choice in each choice occasion whilst the
numeric variables pid and gid identify customers and choice occasions respectively. To
illustrate the use of membership() option, we generate a pseudo random regressor x1

which mimics a demographic variable. The data are organized as follows:

. use http://fmwww.bc.edu/repec/bocode/t/traindata.dta, clear

. set seed 1234567890

. bysort pid: egen _x1=sum(round(rnormal(0.5),1))

. list in 1/12, sepby(gid)

y price contract local wknown tod seasonal gid pid _x1

1. 0 7 5 0 1 0 0 1 1 26
2. 0 9 1 1 0 0 0 1 1 26
3. 0 0 0 0 0 0 1 1 1 26
4. 1 0 5 0 1 1 0 1 1 26

5. 0 7 0 0 1 0 0 2 1 26
6. 0 9 5 0 1 0 0 2 1 26
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7. 1 0 1 1 0 1 0 2 1 26
8. 0 0 5 0 0 0 1 2 1 26

9. 0 9 5 0 0 0 0 3 1 26
10. 0 7 1 0 1 0 0 3 1 26
11. 0 0 0 0 1 1 0 3 1 26
12. 1 0 0 1 0 0 1 3 1 26

In empirical applications, it is common to choose the optimal number of latent classes
by examining information criteria such as BIC and CAIC. The next lines show how to
estimate 9 LCL specifications repeatedly and obtain the related information criteria: 8

. forvalues c = 2/10 {
2. lclogit y price contract local wknown tod seasonal, group(gid) id(pid)

> nclasses(`c´) membership(_x1) seed(1234567890)
3. matrix b = e(b)
4. matrix ic = nullmat(ic)\`e(nclasses)´,`e(ll)´,`=colsof(b)´,`e(caic)´,`e(bic)´
5. }

(output omitted)

. matrix colnames ic = "Classes" "LLF" "Nparam" "CAIC" "BIC"

. matlist ic, name(columns)

Classes LLF Nparam CAIC BIC

2 -1211.232 14 2500.935 2486.935
3 -1117.521 22 2358.356 2336.356
4 -1084.559 30 2337.273 2307.273
5 -1039.771 38 2292.538 2254.538
6 -1027.633 46 2313.103 2267.103
7 -999.9628 54 2302.605 2248.605
8 -987.7199 62 2322.96 2260.96
9 -985.1933 70 2362.748 2292.748
10 -966.3487 78 2369.901 2291.901

CAIC and BIC are minimized with 5 and 7 classes respectively. In the remainder of
this section, our analysis focuses on the 5-class specification to economize on space.

lclogit reports the estimation results as follows:

. lclogit y price contract local wknown tod seasonal, group(gid) id(pid) nclass
> es(5) membership(_x1) seed(1234567890)

Iteration 0: log likelihood = -1313.967
Iteration 1: log likelihood = -1195.5476
(output omitted)
Iteration 22: log likelihood = -1039.7709

Latent class model with 5 latent classes

Choice model parameters and average classs shares

Variable Class1 Class2 Class3 Class4 Class5

8. lclogit saves three information criteria in its ereturn list: AIC, BIC and CAIC. AIC equals
−2 lnL + 2m, where lnL is the maximized sample log likelihood and m is the total number of
estimated model parameters. BIC and CAIC penalize models with extra parameters more heavily,
by using penalty functions increasing in the number of choice makers, N : BIC = −2 lnL + m lnN
and CAIC = −2 lnL + m(1 + lnN).



10 Latent class logit model

price -0.902 -0.325 -0.763 -1.526 -0.520
contract -0.470 0.011 -0.533 -0.405 -0.016

local 0.424 3.120 0.527 0.743 3.921
wknown 0.437 2.258 0.325 1.031 3.063

tod -8.422 -2.162 -5.379 -15.677 -6.957
seasonal -6.354 -2.475 -7.763 -14.783 -6.941

Class Share 0.113 0.282 0.162 0.243 0.200

Class membership model parameters : Class5 = Reference class

Variable Class1 Class2 Class3 Class4 Class5

_x1 0.045 0.040 0.047 0.048 0.000
_cons -1.562 -0.544 -1.260 -0.878 0.000

Note: Model estimated via EM algorithm

It is worth noting that the reported class shares are the average shares over agents,
because the class shares vary across agents when the membership() option is included
in the syntax. If needed, agent-specific class shares can be easily computed by using the
post-estimation command lclogitpr with the up option.

In order to obtain a quantitative measure of how well the model does in differen-
tiating several classes of preferences, we use lclogitpr to compute the average (over
respondents) of the highest posterior probability of class membership:9

. bys `e(id)´: gen first = _n==1

. lclogitpr cp, cp

. egen double cpmax = rowmax(cp1-cp5)

. sum cpmax if first, sep(0)

Variable Obs Mean Std. Dev. Min Max

cpmax 100 .9596674 .0860159 .5899004 1

As it can be seen, the mean highest posterior probability is about 0.96, meaning that
the model does very well in distinguishing among different underlying taste patterns for
the observed choice behavior.

We next examine the model’s ability to make in-sample predictions of the actual
choice outcomes. For this purpose, we first classify a respondent as a member of class c
if class c gives her highest posterior membership probability. Then, for each subsample
of such respondents, we predict the unconditional probability of actual choice and the
probability of actual choice conditional on being in class c:

. lclogitpr pr, pr

. gen byte class = .
(4780 missing values generated)

. forvalues c = 1/`e(nclasses)´ {

9. A dummy variable which equals 1 for the first observation on each respondent is generated because
not every agent faces the same number of choice situations in this specific experiment.
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2. quietly replace class = `c´ if cpmax==cp`c´
3. }

. forvalues c = 1/`e(nclasses)´ {
2. qui sum pr if class == `c´ & y==1
3. local n=r(N)
4. local a=r(mean)
5. qui sum pr`c´ if class == `c´ & y==1
6. local b=r(mean)
7. matrix pr = nullmat(pr) \ `n´, `c´, `a´, `b´
8. }

. matrix colnames pr = "Obs" "Class" "Uncond_Pr" "Cond_PR"

. matlist pr, name(columns)

Obs Class Uncond_Pr Cond_PR

129 1 .3364491 .5387555
336 2 .3344088 .4585939
191 3 .3407353 .5261553
300 4 .4562778 .7557497
239 5 .4321717 .6582177

In general, the average unconditional choice probability is much higher than 0.25
which is what a naive model would predict given that there are 4 alternatives per choice
occasion. The average conditional probability is even better and higher than 0.5 in
all but one classes. Once again we see that the model describes the observed choice
behavior very well.

When taste parameters are modeled as draws from a normal distribution, the esti-
mated preference heterogeneity is described by their mean and covariances. The same
summary statistics can be easily computed for LCL by combining class shares and
taste parameters; see Hess et al. (2011) for a detailed discussion. lclogit saves these
statistics as part of its ereturn list:

. matrix list e(PB)

e(PB)[1,6]
Average Average Average Average Average Average
price contract local wknown tod seasonal

Coefficients -.79129 -.23756 1.9795 1.6029 -7.62728 -7.64949

. matrix list e(CB)

symmetric e(CB)[6,6]
price contract local wknown tod seasonal

price .20833629
contract .07611239 .05436665

local .48852574 .32683725 2.1078043
wknown .27611961 .22587673 1.4558029 1.045789

tod 2.2090348 .65296465 4.0426714 1.9610973 25.12504
seasonal 1.9728148 .65573999 3.8801716 2.0070985 21.845013 20.189302

Since we estimated a model with the membership() option, the class shares (hence
the covariances; see equation 7) now vary across respondents and the matrix e(CB) above
is an average covariance matrix. In this case, the post-estimation command lclogitcov

can be very useful for studying variation in taste correlation patterns within and across
different demographic groups. To illustrate this point, we compute the covariances of
the coefficients on price and contract, and then summarize the results for two groups
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defined by whether x1 is greater or less than 20:

. quietly lclogitcov price contract

. sum var_1 cov_12 var_2 if _x1 >20 & first

Variable Obs Mean Std. Dev. Min Max

var_1 62 .2151655 .0061303 .2065048 .2301424
cov_12 62 .0765989 .000348 .0760533 .0773176
var_2 62 .0545157 .0000987 .0543549 .0547015

. sum var_1 cov_12 var_2 if _x1 <=20 & first

Variable Obs Mean Std. Dev. Min Max

var_1 38 .1971939 .0053252 .1841499 .2050795
cov_12 38 .0753185 .0004483 .0741831 .075949
var_2 38 .0541235 .0001431 .0537589 .0543226

Standard errors associated with any results provided by lclogit can be obtained
via bootstrap. However, the bootstrapped standard errors of class-specific results are
much less reliable than those of averaged results because the class labeling may vary
arbitrarily across bootstrapped samples; see Train (2008) for a detailed discussion.

Users interested in class-specific inferences may consider passing the lclogit re-
sults to user-written ml programs like gllamm (Rabe-Hesketh et al., 2002), to take
advantage of the EM algorithm and obtain conventional standard errors at the same
time. lclogitml simplifies this process.

. lclogitml, iter(5)
-gllamm- is initializing. This process may take a few minutes.

Iteration 0: log likelihood = -1039.7709 (not concave)
Iteration 1: log likelihood = -1039.7709
Iteration 2: log likelihood = -1039.7706
Iteration 3: log likelihood = -1039.7706

Latent class model with 5 latent classes

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

choice1
price -.9023068 .2012345 -4.48 0.000 -1.296719 -.5078945

contract -.4698861 .089774 -5.23 0.000 -.64584 -.2939322
local .4241342 .3579407 1.18 0.236 -.2774167 1.125685
wknown .4370318 .2864782 1.53 0.127 -.1244552 .9985188

tod -8.422232 1.584777 -5.31 0.000 -11.52834 -5.316126
seasonal -6.354626 1.569516 -4.05 0.000 -9.43082 -3.278431

choice2
price -.3249095 .1090047 -2.98 0.003 -.5385548 -.1112642

contract .0108523 .0384404 0.28 0.778 -.0644894 .0861941
local 3.122255 .2842558 10.98 0.000 2.565124 3.679387
wknown 2.258772 .2553446 8.85 0.000 1.758306 2.759238

tod -2.157726 .8906932 -2.42 0.015 -3.903453 -.4119997
seasonal -2.470511 .894278 -2.76 0.006 -4.223264 -.7177582

choice3
price -.7629762 .1415072 -5.39 0.000 -1.040325 -.4856271

contract -.5331056 .0739354 -7.21 0.000 -.6780162 -.3881949
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local .526889 .2633905 2.00 0.045 .0106531 1.043125
wknown .3249201 .2391513 1.36 0.174 -.1438078 .793648

tod -5.379464 1.100915 -4.89 0.000 -7.537218 -3.22171
seasonal -7.763171 1.191777 -6.51 0.000 -10.09901 -5.427331

choice4
price -1.526036 .1613542 -9.46 0.000 -1.842284 -1.209787

contract -.4051809 .0754784 -5.37 0.000 -.5531158 -.2572459
local .7413859 .3599632 2.06 0.039 .0358711 1.446901
wknown 1.029899 .3032522 3.40 0.001 .4355353 1.624262

tod -15.68543 1.523334 -10.30 0.000 -18.67111 -12.69975
seasonal -14.78921 1.463165 -10.11 0.000 -17.65696 -11.92146

choice5
price -.5194972 .1357407 -3.83 0.000 -.7855442 -.2534503

contract -.0141426 .0915433 -0.15 0.877 -.1935641 .165279
local 3.907502 .7079699 5.52 0.000 2.519907 5.295097
wknown 3.055901 .4653005 6.57 0.000 2.143928 3.967873

tod -6.939564 1.428877 -4.86 0.000 -9.740112 -4.139015
seasonal -6.92799 1.363322 -5.08 0.000 -9.600052 -4.255928

share1
_x1 .0443861 .0510411 0.87 0.385 -.0556525 .1444247

_cons -1.562361 1.197298 -1.30 0.192 -3.909022 .7843001

share2
_x1 .0400449 .0427769 0.94 0.349 -.0437962 .1238861

_cons -.5443567 .956636 -0.57 0.569 -2.419329 1.330615

share3
_x1 .0470822 .0458336 1.03 0.304 -.0427501 .1369144

_cons -1.260251 1.061043 -1.19 0.235 -3.339857 .8193542

share4
_x1 .0479228 .042103 1.14 0.255 -.0345976 .1304431

_cons -.8794649 .9718415 -0.90 0.365 -2.784239 1.025309

The estimated choice model or taste parameters, βc, and class membership model pa-
rameters, θc, are grouped under equations choicec and sharec respectively. lclogitml
relabels and transforms the original gllamm estimation results in accordance with the
lclogit’s ereturn list (see Section 6), facilitating interpretation of the new output
table.10 The active lclogitml coefficient estimates can also be displayed in the stan-
dard lclogit output format, by entering lclogit into the command window without
any additional statement.

Note that the log likelihood increases slightly after 3 iterations, though the parameter
estimates remain almost the same. This may happen since lclogit uses only the relative
change in the log likelihood as convergence criterion. gllamm works with the standard ml

command with a d0 evaluator, which declares convergence in a more stringent manner:
specifically, when the relative changes in both the scaled gradient and either the log

10. The original output table gllamm reports is lengthier and somewhat less intuitive in comparison. For
instance, it splits the six estimates displayed under equation choice1 over six different equations,
labeled z 1 1, z 2 1, z 3 1, z 4 1, z 5 1 and z 6 1 respectively.
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likelihood or the parameter vector are smaller than a given tolerance level.11

When lclogit is used in a final production run, it is advisable to specify more
stringent convergence() than the default, and experiment with alternative starting
values by changing seed(). Train (2008) contains references highlighting the importance
of these issues for applications exploiting EM algorithms.
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