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WEAKLY-BAYESIAN AND CONSISTENT ASSESSMENTS*

CARLOS PIMIENTA'

AsstrAcT. A weakly-Bayesian assessméntomputed applying Bayes rule at
positive probability information sets. We characterize the set of exteifisivns

for which the sets of weakly-Bayesian and consistent assessmentgleoiin
doing so we disentangle thefffirent restrictions imposed by consistency across
information sets. We apply this knowledge to strengthen weakly-Bayesian a
sessments and to derive conditions for equivalence with consisterniayathae
useful in economic applications.

1. INTRODUCTION

A sequential equilibrium (Kreps and Wilson, 1982) is a sequentially rational
consistent assessmenthe notion of consistency incorporated in the definition
of sequential equilibrium provides a way of selecting beliefs at zerogtmitity
information sets. Loosely speaking, consistent beliefs must admit an exiplan
consisting of “small trembles” made to reach those information sets.

There is a broad theoretical literature dealing with sequential equilibrium. This
partly stems from the apparently ad-hoc procedure whereby congistefects
beliefs, which urged anffort to understand better the notion of consistency and
its game theoretical implications. Battigalli (1996), Kohlberg and Reny (186@)
Swinkels (1993) show that consistency is related to the game theoreticzippzin
of strategic independence. IfffBrent players choose their strategies independently
then their assessments must be consistent.
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A number of papers alsoffer different characterizations of consistency/and
show that, under certain conditions, sequential equilibrium is equivalenta@er
equilibrium concepts. Fudenberg and Tirole (1991) define perfeptBan equi-
librium imposing some intuitive restrictions on beliefs and show its equiva-
lence to sequential equilibrium in multi-period games with observed actions.
Perea y Monsuwé et al. (1997) provide an algebraic characterizdonsistency
without making use of trembles. Litan and Pimienta (2008) find the maximal class
of extensive-forms such that sequential equilibrium and subgamecperfeoin-
cide in equilibrium strategies and equilibrium outcomes.

In this paper we look at those instances where consistency placestno-res
tions at zero probability information sets. This is the case ofetktensive-form
of Figure 1. If Played movesOutthen any belief at Playdt’s information set
is consistent as it can be justified by an appropriate sequence of trerAldén-
ilar argument holds in the extensive-form of Figure 2. If playeand Il play
according to 1(1, r») then arbitrary beliefs at Playéll 's information set are con-
sistent. To generalize these ideas, we work wigakly-BayesianssessmenfsA
weakly-Bayesian assessment imposes the only requirement that bepefstate
probability information sets be computed from the strategy profile using Bayes
rule. Clearly, every consistent assessment is a weakly-Bayesiessassd and
in general, not every weakly-Bayesian assessment is consistent. aNetdrize
the set of extensive-forms such that every weakly-Bayesian assatsis con-
sistent. Both in Figure 1 and Figure 2 the set of weakly-Bayesian andstemts
assessments coincide.

It is not difficult to come up with examples of extensive-forms for which some
weakly-Bayesian assessment is not consistent. The weakly-Bayessiassenent
(Out I, 1, u(x2) = 1) is not consistent in the extensive-form of Figure 3. Consistent
beliefs should place probability zero at the central node of Plalysrinformation
set given that in a sequential equilibrium “correlation in defections aagighly)
ruled out” (Kreps and Wilson, 1982, p. 875). That is, if Playetefects, it does

2 Mas-Colell et al. (1995, Definition 9.C.3), among others, defieak perfect Bayesian equi-
librium. In a weakly-Bayesian assessment we simply drop the sequentiallyaiifaiequirement
from that definition. We do this to focus on belief formation and to facilitatectmeparison with
sequential equilibrium.
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not make a defection of Playdr more likely. Figure 5 contains another example.
Kreps and Wilson (1982, p. 876) explain how the consistency criteriakas/the
“common knowledge” principle for beliefs. Hence, any assessmenteniayen
movesOut and playerdl andlll assess dierent relative probabilities over their
left-hand and right-hand nodes is not consistent.

This paper identifies the relevant characteristics shared by the exténsivs in
figures 3, 5, and any other one where not every weakly-Bayessasssent is con-
sistent. Furthermore, we provide a characterization of the whole setarisxe
forms where consistency imposes restrictions at zero probability informseisn
While doing so, we disentangle theffirent restrictions imposed by consistency
across information sets. This is useful not only to know under whichitiond ap-
plying weakly-Bayesian assessments is not enough, but also to determiheto
extent a concept that is more demanding than weakly-Bayesian closegptiagtly
respect to consistency.

Thus, as an application of the results, we also work wittconsistent assess-
ments A preconsistent assessment requires each player updates hes bedief
at zero probability parts of the extensive-form. Similarly to weakly-Bayeag:
sessments, preconsistent assessments are easy to compute and comaaoinly us
economic applications. The results derived in this paper help describecsade
class of extensive-forms where every restriction imposed by consysiermap-
tured by preconsistent assessments. In addition, this allows us to drtlivesame

I Out

FiGure 3.
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results as Fudenberg and Tirole (1991) for multi-period games with cddslersc-
tions where players have at most two types.

From a theoretical viewpoint, this paper can also help understand better ho
consistency brings about restriction in beliefs. While in some cases we may al-
ready have a very good understanding about how consistent bekefta@ped, as
it happens for instance when one information set comes after another Fig-in
ure 5, in some other cases this relation may be more obscure or, at |&asi|tdo
identify by arguments that are not context specific (see Figure 6). Forethson,

a unifying explanation of the restrictions on beliefs entailed by consisteatysth
based solely on the characteristics of extensive-forms can be of tisabeterest.

In the next section we introduce the basic notation of extensive-form game
and important definitions. Section 3 contains the results about equivabence
tween weakly-Bayesian and consistent assessments illustrated by acfexes
amples. Proofs of these results afteced in Section 4. Section 5 elaborates on
the relationship between sequentially rational weakly-Bayesian assdssameh
sequential equilibria. To conclude, we apply what we have learned irréviops
sections in Section 6. First, we strengthen weakly-Bayesian assessratnitsgd
preconsistent assessments. Then we derive a new result that estbklighva-
lence between this stronger concept and consistency. Throughosettisn, we
also describe several games where consistent beliefs can be comptitediry
weakly-Bayesian or preconsistent assessments.

2. Basic NotarioN AND DEFINITIONS

We start by describing notation and terminology for finite extensive-fames
with perfect recall. For a full mathematical description of extensive-fgames
the reader is referred to Kreps and Wilson (1982). In what followsevery two
setskE andF, we useE c F allowing for equality. As usuak: \ F represents the
set of elements ik that do not belong t&.

An extensive-fornis a tuplel’ = (L, X, <, P, 27, &7, ). The set of players is
A ={1,...,N}and players are indexed loy=1,...,N.

The finite set of nodeX is partially ordered by. It contains a distinguished
minimal elementx, € X called the root to the extensive form. The subset of
final nodes isZ c X. The setX \ Z is partitioned by theplayer partition P =
(Po, P1, ..., Pn), whereP,, represents the set of nodes where playkas to move
(Po corresponds to the set of nodes where Nature moves).

Theinformation partition># = (Ha, ..., Hy) contains the information structure
of the extensive form, where for eanhthe collectionH,, partitionsP,, into infor-
mation sets ke Hn. An elementh € H,, represents the set of nodes that player
cannot distinguish when she has to movéd.afThe information set that contains
nodex is denoted ab(x). FurthermoreH = ( J, Hn.
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The set ofactionsin the extensive form is7 = (Ag, A). For variety’s sake, we
use the termaction choiceandmoveinterchangeably throughout the paper. The
set of choices available to playersAs= | nen A(h) whereA(h) represents the set
of choices available at the information $efThe set of moves available to Nature is
Ao = Upep, Po(p) WhereAq(p) is the set of moves available to Naturepatit will
be convenient to writédy, = (Jnep,, A(h) for the set of choices available to player
across all information sets. Actions afférent information sets are always labelled
differently, that isA(h) N A(h’) # @ wheneveh # h'. Furthermore, if choicavis
taken at nodex then the next node that follows is denoted, &).

The vectora contains the probability distributions over the moves of Nature by
specifying for eacle € Ag a numbeni(c) € (0, 1) in such away thak ccayp) 4(C) =
1 for all p € Pp. If Nature does not move at the root of the extensive-form, that
is X, ¢ Pp, then we say thax, is the unique initial node. Ik, € Py then, with
slight abuse of terminology, we say that each node that is only precgdad\es
of Nature is annitial node. We explicitly allow that Nature moves at any other
part of the extensive-form.

An extensive-form game is obtained from an extensive-form by sgegifor
each playen a Bernoullian utility function y : Z — R. Our characterizations are
based on properties of the extensive-form.

In order to work with the space of extensive-forms we need to introdane ¢
cepts that summarize parts of their structure. Given any nptieere is a unique
collection of choices (including those of Nature) that from the root of #tersive-
form lead to that node. That set of choices is caflath to node »and it is denoted
by £2(x). The subset of the path to nodenade of by actions of players only is
Za(X) = Z(X) \ Ag. Any path can be totally ordered By A carrier is any subset
of choicesC that satisfies@¢ N A(h)) # @ for all h € H. That is, a carrier contains
at least one action of each information set. The usage of the term “Cdorarset
of choices satisfying these properties is justified below.

We only consider extensive-forms with perfect recall. Whenever aplapves
she remembers all the choices that she has taken in the past as well as the in-
formation that she knew before. In symbols, for any two noxies € hin an
information seth € Hy that belongs to playen the inclusionc € (Za(X) N Ay)
impliesc e Z5(X). Perfect recall implies thad, is totally ordered by.

For an arbitrary set of choices of playddsc A, we say thaB reachesnodex
if Za(X) c B. Likewise, B reacheghe information seh if &2 (x) c B for some
nodex € h. Furthermore, we leX*(C) represent the set of decision nodes that are
reached by the carri& and letX°(C) = X \ X*(C) represent its complement.

A pure strategy sof playern is a plan of action that specifies, for each infor-
mation seth € Hy, one choices,(h) € A(h). The set of playen’s pure strategies
is Sy, and the set of pure strategy profiles3s= S; x --- x Sy. The carrier of
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a pure strategy profile & €'(s) = Une.s Unhen, Sn(h). We write S(x) andS(h) to
denote the set of pure strategy profiles whose carriers reachctespg nodex
and information selt. The setsS,(X) andS_n(X) are the projections d&(x) on Sy,
andS_; = [Tmen Sm-

A behavioral strategy, of playern specifies for every information shte Hy
a probability distributioroy(- | h) on A(h). The probability that playen chooses
a e A(h) is, thereforeg(a | h). A behavioral strategy profile- specifies for every
information seth € H a probability distribution orA(h). The set of behavioral
strategies of playem is denote®, and the set of behavioral strategy profiles
X1 X --- X ZN. Thecarrier of a behavioral strategy profile, denoteds’ (o), is the
union over all information sets of the choices € A that satisfyo(a | h) > O.

Every behavioral strategy profiteinduces, together with, a probability distri-
butionP(- | o) onZ. Given an arbitrary subset of nodgés- X we letZ(Y) denote
the subset of final nodese Z that satisfyy < zfor somey € Y. Furthermore, we
write P(Y | o) instead ofP(Z(Y) | o).

A system of beliefg specifies for every information skia probability distribu-
tion u(- | h) over its nodes. Amssessmern$ a behavioral strategy profile together
with a system of beliefs, u).

We now introduce our two objects of study.

Definition 1 (Consistent Assessmentsjhe assessment(u) is consistentf it is
the limit point of a sequendgo, ')}, such that, for alt, o is completely mixed
(i.e.ot(a| h) > 0 for allh € H and alla € A(h)) and

P(x | o)

w(x | h) = BhToY) for everyh € H and everyx € h.

Definition 2 (weakly-Bayesian Assessmentdhe assessment(u) is aweakly-
Bayesian assessmdhfor everyh c X*(¢(0)) and everyx € h

_B(x|0)

u(x | h) Bh1o)

Of course, every consistent assessment is weakly-Bayesian buirtherse is
not true.

3. NoN-CoNsSISTENT WEAKLY-BAYESIAN A SSESSMENTS

In this section we characterize the set of extensive-forms such thaetlad s
consistent assessments is a strict subset of the set of weakly-Bageseémsments.
This is done in propositions 1 and 3. Theorem 1 will later assert that in tme co
plement of the set laid out by the propositions the sets of weakly-Bayesin a
consistent assessments coincide.



7

To provide a more clear intuition about the results we introduce relativeaprob
bilities over the se® of pure strategy profile$ A relative probability or§s specifies
the relative weight of each subset of pure strategy profiles with regpeany other
subset. This includes subsets having prior probability equal to zero.lafiviee
probability o on S must satisfy the following properties: for every subt S
and all nonempty subse®s T c S,

() p(QR) € [0, =],
(i) p(Q.Q =1,
(i) p(Q,T)+p(RT)=p(QURT)IfQNR=g, and
(iv) p(Q,T) = p(Q,R) p(R, T), whenever the product does not involve both 0
andeo.

Standard prior probabilities are therefore giverplpyS).

Battigalli (1996) and Kohlberg and Reny (1997) show that every ctargisis-
sessment can be generated, in a way specified below, by a relatiabpitgtrle-
fined over the set of pure strategy profiles and satisfying a strong endepce
property. Strong independence implies weak independence and rfpuoses,
the latter concept is restrictive enough.

The relative probability defined on the set of pure strategis weakly inde-
pendent if for every subset of playeks c .+ and every two pairs of subsets of

strategy profileQum, Rv € [Tnem Sn @andQ-m, Rom € [Tnes\m Sn.?
P(Q-m x Qm, Q-m X Ru) = p(R-m X Qm, R-m X Rw). (3.1)

A consistent assessmemt, (1) can be generated by a relative probabifitgat-
isfying weak independence according’®:

o(@al h) = p(S( (x,a)),S(x)) foranyx € h;and, (3.2)
p(x1h) = p(S(x), S(h)). (3.3)

3 Relative probabilities are equivalerdnditional probability system@lyerson, 1986). In game
theory conditional probability systems arise naturally from the need @ifyjpey probabilities con-
ditional on events that have prior probability zero. Among others, comgitiprobability systems
have been studied by Battigalli (1996); Blume et al. (1991); Hammo@€é4} Kohlberg and Reny
(1997); McLennan (1989a,b); Myerson (1986); and Swinkel98).9

4 Swinkels (1993) calls this conditioguasi-independencdt is the (weak) notion of indepen-
dence considered by Battigalli (1996). Swinkels uses the irediidual quasi-independender the
analogous condition wheid is substituted by just one player. The latter is the independence condi-
tion used by Kohlberg and Reny (1997). Quasi-independence implietdndl quasi-independence
but the opposite is not true. Swinkels (1998gos an example, credited to Myerson, at theda.

5 The converse is not true, i.e. not every weakly independent refatblability system generates
a consistent assessment. See Kohlberg and Reny (1997) for aplexam

6 Strictly speaking this only holds when the extensive-form does not comtaires of Nature.
If it does, as we allow here, beliefs in Equation (3.3) need to be modifiethat u(x | h) =

(SO, SO Tee gm0 Q) Dot ee rpteyne A©) -
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It can be shown that perfect recall and weak independence imply3t2atig well
defined (i.e. it does not depend on the nadeh that is used).

We are going to derive a condition that implies restrictions on consistentbelief
at zero probability information sets. Recall that(x) denotes the set of actions
that form the path to node and that#,(x) is obtained formZ?(x) by removing
the moves of Nature. Consider two nodeandy (not necessarily in the same
information set) and an actiane (Za(X) N Za(y)). Letd be a behavioral strategy
profile that takes actioa with probability zero and every other action i#(x)
with positive probability. Even thoughr does not reach eitheror y, intuitively,
nodey cannot benfinitely more likelythan nodex. Let us now dfer a more formal
argument.

Let p be an independent relative probability definedSthat induces the con-
sistent assessmert, (). We want to show that(S(x), S(y)) > 0, that is, that (the
set of strategy profiles that lead to) nogleannot be infinitely more likely than
nodex. Let x' be the unique node that satisfig& (x,a)) c £(x) and lety’ be
the unique node that satisfied( (y’,a)) c £(y). Assume that actioa € A(l’) is
available at the information sat and that playen moves aty'. By property (iii)
of relative probabilities we can find the valueS(x), S(y)) through

P(S(%). S(v)) = p(S(X). S( (X, a)) p(S( (X.4)).S( (4. a))) p(S( (4. ). S(¥))-

We obtainp(S(x), S( (x',a))) > 0 because every choice i#(x) that followsa
receives positive probability. It also holds thaS( (v, a)), S(y)) > 1 because
S(y) is a subset of5( (y’,a)). In addition, from strategic independence it fol-
lows the equality(S( (X, ), S( (v, a))) = p(S( (X,&)),S( (v,&))) for every
a € A(l’) because we are changing the same strategies of ptapdooth sides.
Choose soma@’ € A(h) that satisfies < p(S(x), S( (X,a)) < 1. The value of

PS( (X, &)),S( (v, &) equals
p(S( (X, &), S(X)) p(S(X). S(4)) p(S(y'). S( (v, &))) = p(S(X), S(¥)).

where the last equality follows from the fact that weak independencesr{@ka)
well defined. To concludgs(S(X'), S(y’)) > 0 because every choice i#(x) that
precedes receives positive probability. ThereforgS(x), S(y)) > O.

Now, if x andy belong to the same information $ethenS(x) andS(y) are both
subsets o5(h) and we obtai(S(y), S(h)) < 1. Furthermore, ifis a zero prob-
ability information set according to, 1.e. h ¢ X9(%¢(6)), then the last inequality
and (3.3) implyu(y | h) < 1.

Consider again the extensive-form of the game in Figure 3. The leftmdst no
and the central node in Playil’s information set have a common choice, action
I1, in their respective paths. If playefsandll play according to Qut |,) then
(Out, 1) is infinitely more likely than Qut, m). We can use independence to con-
clude that the profilel{, I,) is infinitely more likely than I, m), i.e. the leftmost
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node in Playetll 's information set is infinitely more likely than the central node.
Since Playel playsOut, Playerlll’s information set is reached with probability
zero and we need to specify beliefs at her information set. It follows tradistent
beliefs must assign probability zero to that central node. Of course gi$tisation
does not apply to weakly-Bayesian assessments.

We start our characterization with afBaient condition for an extensive-form to
admit weakly-Bayesian assessments that are not consistent. It crrdssip the
set of properties suggested above and in our analysis of Figure 3.

Proposition 1. Consider an extensive-form where we can find an information set
h with two distinct nodes ¥, € h, a carrier C, and an action € A such that:

() the carrier C does not reach h,

(i) ce (Fa(¥) N Fay)\C.
Then the set of consistent assessments is strictly contained in the setkby-we
Bayesian assessments.

Condition (i) above is clear. The sets of weakly-Bayesian and consiatent
sessments may fiier only if there exists some strategy profile that reaches some
information set with probability zero.

Condition (ii) captures the relevant features in Figure 3. To understatidrb
why we need an actione (Za(X) N Za(y)) observe that in figures 1 and 2, where
every weakly-Bayesian assessment is consistent, we cannot find tes imothe
same information set that have a common action in their respective pathse To se
why we need ¢ C, consider the extensive-form of Figure 4 and a behavioral strat-
egy profile where choicelsand Out are taken with probability one. There is no
restriction on how Playelll should form her consistent beliefs. (Every conceiv-
able belief vector at that information set is the limit of a sequence of conditiona
probabilities generated by an appropriately chosen sequence of tréniblésis
case, for any system of beliefs the resulting assessment can be associated to
a well defined independent relative probability system on the set ofqitategy
profiles—and every weakly-Bayesian assessment is consistent.

Figure 5 is another example where the set of consistent assessmentiis a str
subset of the set of weakly-Bayesian assessments. Consistency ingoligsan
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knowledge of beliefs. This means that Plajleand Playetll must have the same
belief over their left-hand and right-hand nodes and that, consequeatlgvery
weakly-Bayesian assessment is consistent. In order to see this in termepof P
sition 1 note that actiom, belongs to the path of the two nodes in Plailéis
information set. In Figure 5, moreover, PlayEs information set does admit ar-
bitrary beliefs, but once those are fixed beliefs at her second informstibare
determined. This suggests that we should explore further how the vaisesmad
by consistent beliefs at twoffierent information sets relate to each other.

We start this analysis studying signaling games, where it is well known that se
quential equilibrium does not impose restrictions on belie®nce Nature moves,
the sender observes her type and sends a signal to the receivee rdciiver
observes a signal which is sent in equilibrium, she applies Bayes’ ruleriwede
her beliefs about the type of the sender. If a signal is not sent in equitibthe
receiver has no restrictions whatsoever on how to form her beliefst ahe type
of the sender upon receiving that signal. Note well that every pair désdhat
belong to the same information set have completefgdint paths from each other
(the same signal can be sent from twéelient information sets so they are, in fact,
different actions).

Consider the extensive-form of a slightly modified signaling game in Figure 6.
After the sender learns her type, and before she sends a signakrstead the
game. As it is the case in a standard signaling game, no pair of nodes that be-
long to the same information set have a common action in their respective paths.
Nonetheless, there are players’ actions that are common to the paths sotinaide
belong to diferent information sets. That igg € (Fa(x1) N Paly2)) anday €
(Pa(x2) N Pa(y1)). Consider the behavioral strategy profilig, (f2, uz, do, ry, lg)
which assigns probability zero # anday. As mentioned previously, if a strat-
egy profile assigns positive probability to all the actions leading to a nodentayt

7 See, for instance, Kohlberg (1990).
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which is also in the path to a second node, then the underlying indeperdent r
tive probability must consider the (set of pure strategy profiles leadinge)ditist
node as infinitely more likely than the second node. In terms of the example this
meanso(S(x1), S(y2)) = p(S(%2), S(y1)) = oo which in turn implies that we can-
not haveo(S(y1), S(x1)) = p(S(y2), S(Xx2)) = oo because otherwise a node must be
infinitely more likely than itself. From this argument we obtain that a consistent
assessment with a behavioral strategy profile as above cannot digtilefg ksuch
thatu(y1 | h1) = u(y2 | hy) = 1. Obviously, this restriction does not apply to
weakly-Bayesian assessments.

The relevant features of the previous example are generalized in thpropw-
sition into a new sfiicient condition on extensive-forms so that the set of consistent
assessments is a strict subset of the set of weakly-Bayesian assesssmen

Proposition 2. Consider an extensive-form where we can find two distinct infor-
mation sets h hy, two distinct nodesx y1 € hy in the first information set, two
distinct nodes % y»> € hy in the second, a carrier C, and two choices ¢, € A
such that:

(i) the carrier C reaches neithenmor hp; and

(i) c1 € (Zalx) N Za(y2)) \ C and ¢ € (Za(x2) N Za(y1)) \ C.
Then the set of consistent assessments is strictly contained in the setkbf-we
Bayesian assessments.

Remarkl. e If hy = hy then we can apply Proposition 1. However, it is
important thatx; # y1 andx, # y». Otherwise we cannot guarantee that
some weakly-Bayesian assessments is not consistent.

e The existence of two flierent actiong; andc; in this proposition is not
dispensable. Suppose that in the extensive-form of Figure 6 we delete
actiona, and replace the two consecutive information sets of Playsr
a single information set where Playlehas available the three choicks
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u; andd,. With this modification every weakly-Bayesian assessment is
consistent.

In our signaling game the two zero probability information sets do not come one
after another as it occurs, for instance, in the extensive-form ofr&iguWe have
seen that this extensive-form satisfies the conditions of Propositionr&fahe, we
already know that some weakly-Bayesian assessments are not candiggeran
now see that this extensive-form also satisfies the conditions of Propo2itim-
deed, if Playet movesOut, then Playell’s information set and PlayédH 's infor-
mation set receive probability zero. The left-hand nodg ‘sinformation set and
the left-hand node ifil 's information set have actiola in their respective paths.
The analogous is true for the right-hand nodes and actioiNevertheless, note
that if moving Out was not a possible action the resulting extensive-form would
satisfy the conditions of Proposition 1, but not the conditions of Proposition

Similar arguments to those in our previous two examples are also valid when
three or more information sets are involved. Figure 7 illustrates this with three
information sets. Suppose that playérandll play according toQut, rq,ro,r3).

We must specify beliefs at the three information sets of Pl#yefThe following
pairs of nodes have an action in their respective paths that the previofiie p
attaches probability zero to:x{, y2), (X2,y3) and (s, y1). Weak independence
implies that, for each of these pairs, the pure strategy profile leading to $he fir
node is infinitely more likely than the pure strategy profile leading to the second
node. It follows that a system of beliefs such théf, | h1) = u(y2 | ho) = u(ys |

h3) = 1 is not consistent. Again, this restriction does not apply to weakly-Bayesia
assessments.

The extensive-form of Figure 7 is such that no two information setswiecgi
probability zero come one after another. Figure 8 contains an extefiosivevhere
for some information sets this is the case. For reasons analogous to thmssdis
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in the previous examples, the assessmeéntt, (1, I, u(x1 | h1)) = Lu(xo | hy) =
1, u(x3 | hg) = 1, u(x4 | ha) = 1) is not consisterit.
The general result, which subsumes Proposition 2, is the following:

Proposition 3. Consider an extensive-form where we can fing R distinct in-
formation sets ..., hk, two distinct nodesixy; € h; foreachi= 1,...,K, a
carrier C, and K distinct actions<. . ., ¢k such that:

(i) foreachi=1,...,K the carrier C does not reach;and
(i) foreachi=1,...,K —1we have ce (Z£a(%) N Pa(yi+1)) \ C, likewise,
ek € (Za(xx) N Za(y1)) \ C.
Then the set of consistent assessments is strictly contained in the setkby-we
Bayesian assessments.

Remark2. e Proposition 2 corresponds k0= 2.

e Itis embedded in the statement of the proposition that we have tdfind
information set@nd an orderof those information sets such that the con-
dition are true. The conditions will not typically hold for every possible
order.

e Again, it is important that the R nodes be distinct. However, if some
of the K information sets are not fiierent it would only mean that the
conditions are satisfied for an integer strictly smaller tan

e If the conditions are satisfied for some valuekoft does not follow that
they are also satisfied for some integer smaller tarsee for instance,

8 One diference is that in this exampf(x;) and S(y,) are of the same “order of magnitude”,
i.e. neither set is infinitely more likely than the other becdusechosen by the strategy profile with
probability one. The same is true f8(x3) andS(ya).

9 Nonetheless, we have presented propositions 2 and 3 separately totéathktaxposition of
the results. On a technical note, the proof of the Proposition 3 is done bygtiod (see page 19),
and Proposition 2 corresponds to the initial step.
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Figure 7 whereK = 3 and Figure 8 wher& = 4. In both cases the
conditions do not hold for smaller values f

Theorem 1 states that the conditions in propositions 1 and 3 are not dfity su
cient but also necessary.

Theorem 1. Consider an extensive-form where some weakly-Bayesian asséssmen
is not consistent. Then the extensive-form satisfies either the conditionsiisted
Proposition 1 or the conditions listed in Proposition 3.

Intuitively, for a fixed behavioral strategy profile, if a zero probabilibpice is
in the path to two dferent nodes then we are losing freedom to choose consistent
beliefs because the same tremble is associated to fievetit nodes. The fact that
the conditions in propositions 1 and 3 are not satisfied means that we diaeg's
enough freedom so that arbitrary beliefs are consistent.

Take a behavioral strategy profileand two nodes andy. Suppose that there
is at least one choice in the path xdhat is not in the path tg and at least one
choice in the path tg that is not in the path ta. Suppose further that none of
these two choices is taken with positive probability unaerBased only on this
information aboutr- and the structure of the extensive-form we cannot derive a
definite likelihood ordering between nodgsandy. Recurring to an argument
based on trembles, we can fine-tune the trembles associated to the two actions
pinpointed before to make one of the sets of trembles necessary to resachtba
nodes as likely as we want with respect to the othex ahdy are the only two
nodes in the same information $eand this is reached with probability zero under
o then we can freely choose consistent beliefs. at

If the conditions in Proposition 1 are not satisfied the above argumenténedds
if we have more than two nodes lnand for anyo-. So consistent beliefs atcan
be freely chosen. But this choice of beliefs could, in principle, constleirset of
consistent beliefs available for a second zero probability informatioh’ séthis
can happen when one of the choices whose tremble we fine-tuned kxfothe
path to some node ih’. If the conditions in Proposition 3 are not satisfied for
K = 2 then for each of the remaining nodes in that information set we can again
fine-tune some tremble associated to a choice that is only in the path to that node
and none else il’. The argument can be repeated again for a third zero probability
information sety” but if the conditions in Proposition 3 are not satisfiedfo 3
we do not have restrictions in choosing belieff’at Continuing in this fashion we
can pick arbitrary beliefs at every zero probability information set.
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4. ProoFs

The main tool used in the proofs of Propositions 1, 2 and 3 is Lemma Al in
Kreps and Wilson (1982). But before stating that lemma, a few conceptsear
essary.

Given a system of beliefs, its supportsuppf) is the union over all information
setsh of the decision nodes for which u(x | h) > 0. We reserve the tercarrier
to talk about the set of choices that receive strictly positive probabilitypfoba-
bilities defined by strategy profiles, and the tesapportfor the analogous concept
for probabilities associated to beliefs. Moreover, we witE) for the set of all
possible carriers.

A labellingis a functionL : A — N that maps each choiaec Ainto an integer
numberL(c). For each labellind- there is an associated functién : X —» N
defined by

Fl = > L.
ceZa(X)
Definition 3. Given a carrielC, the labellingL is said to be &-labelling if we
havec € C if and only if L(c) = 0.

A basis(C,Y) is a subset oA x X. We say that the basi€(Y) is consistent
if there exists at least one consistent assessneepd Guch thaté’(o) = C and

suppfy) =Y.

Lemma 1 (Kreps and Wilson (1982, Lemma Al)The basiqC, Y) is consistent
if and only if there is a C-labelling L such that the following condition holds:

x € Y if and only if x minimizes K-) on h(x).

For our purposes Lemma 1 implies the following. Take a behavioral strategy
profile o that does not reach the information $ednd suppose that nodesand
y belong toh. If F (X) < F_(y) for everyconceivable?’(o)-labelling L then a
necessary condition foo{ ) to be consistent is thaly | h) # 1. In order to prove
Proposition 1 we show that, if the extensive-form meets the conditions giver
proposition, we can always find such a strategy profile or, more phacieh a
carrier.

For a behavioral strategy profite with carrierC, we are thus interested in in-
equalities of the fornf (X) < F(y) that remain true for everg-labelling L. It
will be useful to writeF(x, C) < F(y, C) when this is the case. For instance, if node
y comes aftex we can readily conclude th&(x,C) < F(y,C). The expression
F(x,C) < F(y,C) can be meaningfully read as “nogecannot be infinitely more
likely than nodex under any strategy profile with carri€.” If x andy belong
to the same zero probability information set this must be respected by cohsisten
beliefs.
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To avoid duplication of arguments we provide some results in the next lemma
that are used continuously throughout the proofs.

Lemma 2. Consider a carrier C, an information setd X°(C), and two nodes x
andy with a common action € (Za(X) N Za(y)) \ C. LetC = CU (Za(X) \ {c}),
the following holds:
() 0<F(x,C) <F®C);
(i) if (hn X*(C") # @ then there is at least one nodec h that satisfies
Z5(y) c (C U Fa(X)); and moreover
(i) ()N Z2a@)\C # 2,i.e.0< F(y,C) < F(xC).

Proof. Take a carrieC that does not contain some actiore (Fa(X) N Za(y)).
Suppose that under that carrierc X°(C). (Note thatx andy belong toX°(C)
because& ¢ C and that we do not necessarily assuxmeg € h.) We obtain a new
carrierC’ by adding toC all the choices in the path toexcept forc, therefore, we
also obtain thak andy belong toX%(C").

To prove part (i) take ang¢’-labellingL. Action cis the only element ira(X)
that is not inC’. Hence,F| (X) = L(c) > 0 and sincet is also in%a(y) we obtain
FL(y) > L(c). That is, nodey cannot be infinitely more likely tham under a
strategy with carrie€’.

Let us turn to part (ii). Lely be some node ih such thaiy"e X*(C’). We have
Za(y) < C' = CU(Fa(X) \ {c}) c (CU Fa(X)).

Part (iii) follows fromy € X%(C) andy e X*(C’), which means that the actions
in the path toy“that are not inC are in the path tok. It also follows that 0<
F(y,C) < F(x C), where the second inequality is strict becaase “(x) but
Cc ¢ Pa(). m|

We can now prove the first proposition.

Proof of Proposition 1.Recall thah(x) represents the information set that contains
nodex. The conditions listed in the proposition are equivalent to the following set
being nonempty.
D1 = {(x, y,C,C) € X2 x AXE(Z) : y € h(X), y # X, h(x) c X°(C),
Ce (Za(¥) N Za@)) \ C}.
Take an arbitrary elemenk,(y, ¢, C) € ®1 and construct the carrier
C=Cu(Za®)\ (o).

Using Lemma 2 (i) we obtain tha&(x,C) < F(y,C). If h(x) c X%C) then
the desired result follows. If otherwise somes"h(x) satisfiesy"e X*(C) then
Lemma 2 (iii) impliesF(7,C) < F(x,C). Sinceh(x) c X°(C) this concludes the
proof. O
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The argument behind the proof of Proposition 2 is similar but slightly more in-
volved because we have to deal with nodes in twWiedent information sets. Given
two information setf; andh,, we want to use the structure of the extensive-form to
find a carrielC and four nodegy, y1 € hi, X2, y2 € hy such that(xq, C) < F(y2,C)
andF(x,C) < F(y1,C). If hy andh; are subsets ak°(C) then consistency im-
plies that for every assessment () with €’(c) = C beliefs cannot be such that
u(yr | 1) = u(y2 | hy) = 1. These equalities would imply that for sor@e
labellingL it holdsF| (y1) < FL(x1) andFL(y2) < FL(x2). But since we also have
FL(x1) < FL(y2) andF_(x2) < FL(y1) we reach a contradiction. The mairfidi
culty of the argument consists of showing that the information lsendh, are
reached with probability zero. Lemma 2 will be of great help at tfisce.

Proof of Proposition 2.We need to show that, if the conditions in Proposition 2 are
satisfied, not every weakly consistent assessment is consistent. \ayghreved
that this is the case whenev@i # @, so it is enough that we prove the result for
the casab; = @. The conditions in the proposition imply that the following set is
nonempty:

0, = {(xl, Y1, X2, Y2, C1, C2, C) € X4 x A2 X €(2) : h(x1) # h(x2),
y1 € h(x1), y1 # X1, y2 € h(X2), y2 # Xz, h(x1) € X%(C), h(xz) c X°(C),
C1 € (Za(x1) N Pa(y2)) \ C, C2 € (ZalX2) N Pa(y1)) \ C}-

Take any k1, y1, X2, y2, C1, C2, C) € ®5. Lethy = h(xq) andh, = h(xz). Construct
the carrier

C =CuU(Zax) \ {c1)) U(Zalx) \ {C2)).

From Lemma 2 (i) we obtaiiF (x1,C) < F(y2,C) andF(x2,C) < F(y1,C). If
both h; andh, are contained irX%(C) then no consistent assessmentu) with
¢ (o) = C satisfiesu(y1 | h1) = u(y2 | hy) = 1. So we need to prove the result for
the cases where eithdr(n X*(C)) # @ or (h, N X*(C)) # @.

Thus, let us assume thaix(n X*(C)) # @ (the other case is analogous) and
construct the carrier

C1 = CU(Za(x1) \ (c1)).

Now we show thah; ¢ X°(C1). Suppose to the contrary that O X*(Cy)) # 2.
Lemma 2 implies that some nodetin(that is notx;) andx; have a common action
in their respective paths that is not containecinThis in turn would imply that
the setd; is not empty, but this is the case that we assumed at the beginning of the
proof. We can concludie; c X°(C»).

We also know that, ¢ C, for otherwisec, would be a common choice between
x; andys. Furthermoreg; ¢ C; by construction. It follows thaxy, y2 € X%(Cy).
Since N X*(C)) # @ and we are assuminb, = @ we know that there is a subset
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of nodesh, c h; that does not includ&, nor y, and that satisfiee, ¢ X*+(C).
From Lemma 2 (iii) we obtaiff (2, C) < F(xy, C) for eachy> € hy.
Construct the new carrier

C; = CU(Zaly) \ (c2)).

By Lemma 2 (i),F(y1, C’l) < F(xo, C’l). Using the same arguments as before we
can show thahy ¢ X%C}) andx,, y» € X%(C)). If h, ¢ XO(C}) then the desired
result follows becausE(y,,C) < F(x1,C) keeps holding when we chan@efor
C’l. That is, a consistent assessment does not safigfyl hy) = u(xo | hp) = 1.

Hence, the next case we need to explore is when a subset offipdés exists
such thaﬁ’2 C X+(é’1). We construct a new carrier using the set of choices:

B= {@A(xl) \ { U %@Z)J} LS 2t [ U %\(xz)] :
j2ho Roeh,
Let the new carrier be:
C=Cu (é\ {C1,C2}).
We still obtainh; ¢ X(C) from Lemma 2 (i) and the assumptiahy, = @. We
obtainh, c X°(C) by construction. The last carrier that we consider is:

o JCU@noR) el i Ihal < Iy
CU(Zay2) \fcr)  if ol > [y

In either case, the information getis included inX°(C*) becaus@; is empty.
Regardingh,, if some nodex{ € hy belongs toX*(C*) thenF (%, C) < F(yz, C).
Since we also havg (%, C) < F(y1,C) for every% € h, the restriction on the
values that consistent beliefs can take for strategy profiles with cagied é0C
results. Therefore, we only need to analygec X°(C*) together withjhy| < |F1’2|
(given that the other case is similar). Letbe an arbitraryC*-labelling. The
following holds:

FL(X1) = X;,eh, FL(B2) + L(co),
FL{y1) = 2g,er, FL(Re) + L(c2),
FL(y2) > L(c1),
FL(x2) = L(Cc2).

To understand better the first (and the second) equality notice that, biraction,
the only actions in the path tq that do not belong t€* arec; and those that we
can also find in the path to some € hy.

Take now a consistent assessmenj with € (o) = C*. If u(y2 | hy) > 0 then
L(c1) < L(cp). If moreoveru(y, | hy) > 0 for all jo € ﬁ’z thenF(x1) < FL(y1)
becauseh,| < |ﬁ’2|. This completes the proof agy, | hy) cannot take a strictly
positive value. O
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The proof of Proposition 3 is similar. Gived information setd,, ..., hg the
plan is to find two nodesy andyy for each information sely, so that for some
carrierC we haveF(x1,C) < F(y2,C),...,F(xk,C) < F(y1,C). If every hy is
included inX°(C) then we cannot havE (y«) < FL(x«) for everyk and someC-
labellingL. This implies that if {, i) is consistent an@’ (o) = C thenu(Xk | hy) #
1 for at least ond.

Proof of Proposition 3.We need to show that when the conditions in the propo-
sition hold not every weakly-Bayesian assessment is consistent. dteeras in
the proof of the previous proposition it will be enough to prove it wilan= .
Moreover, using the induction procedure, once the proposition has firesen
for K = 2 we assume that the proposition has also been proven for every value
K’ < K strictly larger than 2. This allows us to also assume hencefbgth= @
for2< K’ < K.

The conditions in the proposition imply that the following set is nonempty:

Ok = {(Xl,yl,.--,XK,yK,Cl, G C) e XK x AN xE(2):
h(x) # h(x;) foralli # j, and for alli = 1,...K,
h(x) c X%(C), yi € h(X), yi # %, G € (Za(%) N Palyis1)) \ C}-

Let hj = h(X). Take an arbitrary element dfx and construct the carrier:
~ K
¢=cu (U (Za()\ {ci})).
i=1

From Lemma 2 (i) we obtaifr(x;,C) < F(yi,1,C) for everyi = 1,...K. If
for everyi we also obtairh; ¢ X°(€) then a consistent assessmenty() with
(o) = C cannot satisfyHiK:lu(yi | h) = 1. Thus, we need to prove the result
when, for somé, the sety; is not included inX%(C). Let | represent the collection
of indexes such thatli N X*(C)) £ 2.

Take ani € I. Leth, represent the subset of thage="h; that belong tox*(C).
Nodesx; andy; do not belong tdy because; andc;_; are not inC. Moreover,
every actiorc € (Za(#;) \ C) is contained in#a(x—1) and, thereforeF(5;,C) <
F(x_1, C) for all j € h;. In other words, no action e (Z(5i)\ C) can be contained
in some%(xk) with k # i — 1. This would imply thatbk. # @ for some integer
K’ < K11

10 Throughout the proof, when the indegqualsK, the index + 1 refers to 1. Likewise, if = 1,
the indexi — 1 refers toK.

11 For instance, if actiore e (Za@) \ C) belongs toZs(xi_2) then®y_; would be nonempty.
One element of this set can be obtained from our initial choice fiyrby dropping the entries
corresponding to the nodes at information Iget and actionc;_;, and substituting nodg by node
;i and actiorg;_, by actionc.
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Construct the carrier:

~

C'=Cu

| (Za@\ {ck_1}>] :
kel

Lemma 2 (i) implies (y, C’) < F(x_1, C’) for everyk ¢ |. Furthermore, it also
implies that we still havé(g;, C’) < F(xi_1, C’) for everyi € | and everyy € h.
If all the information setd, ..., hx are contained irk%(C’) then we obtain that
no consistent assessment whose strategy has datran assign a belief equal to
one to every decision nodg. Therefore, we need to analyze what would happen
otherwise. Let) represent the collection of indexg¢such thatlf; N X)) £ o,
furthermore, for each) € J, let Fl} C h; be the subset of nodes Im that belong
to X*(C’). The assumption thabx: = @ whenevelK’ < K indicates that ifj € J
then for everyxj € ﬁ} we obtain(Za(X;) \ C) ¢ Za(yj+1). With this in mind we
use the set of choices

B = {U Fa(xi-1) \ [U %@i)m U {U @A(yi)} U

iel gieh i€l

|2\ | L) 2a%) U{U %(xj)}

jed %jeht jed
to construct the new carrier
C=Cu(B\(c....cl). (4.1)

We can assume that every information sgt .., h is contained inx°(C). To
see why note that it N X*(C)) # @ then there must be an actiorin'the second
or in the fourth component @ that is in the path of some noadg 6f h,. Moreover,
this node cannot be eithex or yx. Sincedx, = @ for everyK’ < K the action
€ must be contained in eithePa(yk+1) or Za(Xk-1). Consider thate Pa(yk.1)
then by Lemma 2 (iii) we have th&(%,C) < F(yk:1,C) and we only need to
replacexy by Xk and redefiné so that it does not include Analogously, suppose
now thatc € Za(x1). Lemma 2 (iii) impliesF(%.C) < F(x1,C). We now
need to replacgy by X and remove the indekfrom J.

The last carrier that we consider’i:

i [Tia(hil+1) 1

& 7 h o
U U ( A(Xk)\{ck})] [Tjea(R + 1)

ke(1-1)u(J+1)
C*

Ccu U (Zalyi) \ {ck_l})] otherwise
ke(1-1)U(J+1)

12Notethesetsl(—l):{i:i+1e|}amd(]+1):{j j—-1€e ).
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Suppose thafTic (il + 1) > [Tjes(I] + 1). We now show that a consistent
assessmentr( i) with €' (o) = C* cannot satisfy at the same time all of the follow-
ing:

(i) foreveryi ¢ 1, u(yi | hy) = 1,
(ii) for everyi € I, u(yi | hi) > 0 andu(gi | h) > O for all §; € h,
(iii) foreveryiel, u(yi | hi) + X5 o5 1@ 1 hi) = 1.

If the consistent assessment, () satisfies (i), (ii) and (iii) then we should be
able to find aC*-labelling, sayL, as in Lemma 1. Given that the getdefined in
(4.1) is contained i€* we can writeF (Xi-1) = Dijich FL(5i) + FL(y) for everyi €
|. Additionally, (ii) and (iii) above imply that (xi_1) = (Ih| + 1)F(y;) for every
i € 1. A similar argument shows that for evejye J the equalityF(x;) = (|F1]| +
1)_1F|_(yj+1) also holds. The definition a* for the case that we are considering
entailsF_(Xk) < FL(yk+1) whenevek ¢ (1 — 1)U (J + 1). Finally, Fi (yk) < FL(X)
for everyk = 1, ..., K given that we always havexk | h) = 0 andu(yx | hy) > 0.
We only have to put all these inequalities together to obtain:

et (01 +1)

[Tjes (|F1'j| +1)
Which provides a contradiction. We can also conclude the proof betheisase
[Tia (Il + 1) < HJ-EJ(|h}| + 1) is analogous. O

The next step is to prove that the conditions given Propositions 1 andrare
only suficient but also necessary. In order to prove this we need a charatitaniz
of consistent assessments.

Lemma 3 (Kreps and Wilson (1982, Lemma A2)let(C, Y) be a consistent basis
and let(o, u) satisfy%' (o) = C andsuppf) = Y. The assessmefat, i) is consis-
tent if and only if there exists a functian: AU Ag — (0, 1) such thatr(c) = A(c)
whenever &= Ay, 7(c) = o(c | h) whenever = ¥ (o), and for every xe X with
u(x|h)>o0:

[T n(c)

ceZ(X)

u(x1h) = (4.2)

n(c)) |

Z (
{X’ eh:u(x'|h)>0} \ce 22(x’)

Now we can turn to prove Theorem 1.

Proof of Theorem 1Fix an extensive-form that satisfies neither the conditions of
Proposition 1 nor the conditions of Proposition 3. Given any ca@iarconsistent
basis C,Y) always exists (Lemma 1 gives a way of seeing this). Take a consis-
tent assessmentr(u) with €’ (o) = C and suppf) = Y. LetL be the associated
labelling and letr be a function such as the one in equation (4.2).

The collection of non-singleton information sdighat satisfyh c X°(C) is
denotedH®. Take any information sét € HO. It is enough to prove that for every
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' that only difers fromu at information seh, i.e. satisfieg/(- | h’) = u(- | ") for
everyh’ # h, the assessmeni (i) is consistent.

First we show that if supp() = suppf) then ¢, i) is consistent. Given the
system of beliefg// we are going to construct a functiort such as the one in
Lemma 3 that justifies it. Fix an arbitrary nodeé that belongs td andY, the
support of botht andy’. Letn’(c) = n(c) for everyc € &(x*). For the rest of the
nodes inh andY we only modify the value taken by with respect tor for just
one choice in its path. In symbols, for eack ((hNY) \ {x*}) choose any action
Cx € (Za(X) \ C) and letn’(c) = n(c) for every otherc € (Z(X) \ {c}). The value
of n’(cy) is calculated in order to adjust the relative valueg/ofvith respect tqu
appropriately:

p (X1 h) u(x* | h)
WO ) u(x 17" 3

However, for eactx the choicecy may also belong to the path to a node that is
not inh. To keep track of those choices we let the Aktonsists of those actions
whose value under’ has been assigned by (4.3). Likewise, the¥detonsists of
those nodeg that belong to some information setht?\ {h} and that have an action
in their paths that belongs #'. A node that belongs t%" may contain in its path
more than one choice iA" but, by assumptiony" cannot contain two nodes that
belong to the same information set.

For eachy* € Y" we maintainr’(c) = n(c) for everyc € (Z(y*) \ A"). For the
rest of the nodes € (h(y*) \ {y*}) that belong tdv, the support of;, we choose any
actionc, € (Za(y) \ C) and letr’(c) = n(c) for every other actiog € (Z(y) \ {c,}).

We have to adjust the value of to maintain in the information sé(y*) the same
beliefs as inu. To do that we fiset the changes made in 4.3 so that

7)) =) || (”(C) ) (4.4)

/
ceZa(y)nan VT ©

n'(Cx) =

Again we can define the set of actioA8?") whose value under’ has been
defined by (4.4) and the s¥f“") of nodes that belong to some information set in
HO \ h(y*) and that satisfy #a(y) N A"®)) £ . The setA"®") does not contain
two nodes from the same information set. Furthermore, since the conditiars gi
in Proposition 3 are not met, it does not contain noddsand, for anyy’™ e AN it
does not contain any node lifiy’*) either.

Since the seH? is finite, we can continue in the same fashion until all the
actions in the paths to nodes in information sets that belondtare exhausted
without redefining any value of . Finally, we have to set’(c) = n(c) for every
unassignea. One can check that the resulting satisfies equation (4.2) for the
system of beliefg/.

Now we prove that for anx* € h the bassesq, Y U {x*}) and C, Y \ {X*}) are
also consistent. We show it first for the basis Y U {x*}).
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LetY’ = YU{X'}. As stated in Lemma 1 we are going to construCtkabelling
L’ such thatx € Y’ if and only if x minimizesF-(-) overh(x). SetL’(c) = L(c)
for everyc € Z5(x*) and for the rest of the nodes# x* in h take an arbitrary
Cx € (Za(X) \ C) and let

L'(cx) = L(cx) + FL(X) = FL(X). (4.5)

We fix L’(c) = L(c) for every other actiort € (#a(X) \ {cx}). That is, we are
adjustingL’ so thatF/(X) = F-(x*) for everyx € Y.

We will assign the remaining values bf recursively. For the same reasons as
before, we know that no value is going to be redefined. Alehow be the set of
those actions whose value undéhas been assigned in (4.5) and, similarlyMet
now be the set of those nodes that belong to some information s&t\r{h} and
whose paths have an actionM. For eachy* € Y" we fix L’(c) = L(c) for every
actionc € Za(y*) and for eacly € (h(y*)\{y"}) selectan arbitrarg, € (Za(y)\C).
LetL’(c) = L(c) for everyc € (Za(y) \ {c,}) and

L) =Le)+ >, (L(©-LE).
ce Za(y*)NAD
We can continue in the same fashion until we have exhausted all the actioes in th
paths to the nodes that belong to some information setinin order to make.’
completely defined let’(c) = L(c) for every action that remains unassigned. Itis
easy to check that the labelling satisfies the condition given in Lemma 1 for the
basis C,Y’).

To conclude it remains to show that for axiye h the basisC, Y \ {x*}) is also
consistent. Take an arbitracy: € (Z5(x*)\ C) and letL’(cy) = L(cx) + 1. We fix
L’(c) = L(c) for every other actior € (La(x*) \ {cx}) in the path tax* and also for
every actionrc € #a(X) in the path to any other nodee h different formx*. The
next step is to assign the valuesldffor those actions leading to nodes contained
in each information sei(y*) € H° that satisfies,. € Z(y*). Since hereafter
everything is analogous to the previous case we can conclude the proof. O

5. SQueNTIALLY RATIONAL WEAKLY-BAYESIAN ASSESSMENTS

In this section we consider extensive-form games and sequentially fationa
weakly-Bayesian assessments. Obviously, if for an extensive-foeny eveakly-
Bayesian assessment is consistent then, for everyfipggetor, every sequentially
rational weakly-Bayesian assessment is a sequential equilibfiuBuppose that
we are given an extensive-form where some weakly-Bayesiansasensis not
consistent. We want to address whether we can always findigasmthat in the

Ba sequentially rational weakly-Bayesian assessmenwisak perfect Bayesian equilibriuas
defined by Mas-Colell et al. (1995, Definition 9.C.3).
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resulting extensive-form game sequential equilibrium refines the setjaésitially
rational weakly-Bayesian assessments.

We first introduce some additional notation needed to define sequentiakaatio
ity. If players play according to the strategy profitehe expected utility to player
is then given by the expressith (o) = X,z P(z| 0)un(2). LetPy(- | o) be the
probability distribution generated ahif players use the strategy profileand the
game starts at the decision nadgNote thaiPy(- | o) is always well defined.) The
expected utility to playen from the strategy profile- at the information sdt given
the system of beliefg is equal toU, (o | h, 1) = X xen (X | D) X se7 Px(z | 0)un(2).

Definition 4. The assessment(u) is sequentially rational if at every information
seth the strategy of the player moving latsay playemn, satisfies

Un(o—n, o | h, i) > Un(o—n, o, | h, ) for everyor, € 2.

The next lemma asserts that if we can find weakly-Bayesian assessménts tha
are not consistent then, for some pfgpthere are behavioral strategies that are
part of sequentially rational weakly-Bayesian assessments that aseqatntial
equilibrium strategies. The proof of the theorem consists of construaticly &
paydf vector.

Proposition 4. Consider an extensive-form where the set of set consistent assess-
ments is strictly contained in the set of weakly-Bayesian assessmentan Vifedc

a game with that extensive-form such that the set of sequential equilibriata-s

gies is a strict subset of the projection &rfrom the set of sequentially rational
weakly-Bayesian assessments.

Proof. Let K be such thatbkx # @ and eithedyk_1 = @ or K = 1. Propositions
1 and 3 imply that we can find a carri€randK information setdy, ..., hg that
belong toX°(C) such that, for every consistent assessment) with € (o) = C,
eachh; strictly contains a subsét with Hﬁl(zyeﬁi u(y | h)) < 1. That s, if
(o, ) is a consistent assessment there must be at least one informatigneset
{hy,..., g} with at least one node € h; \ hj that satisfieg(x | hy) > 0.

Foreach = 1,...,K let ¢ be an action available &t such thai-(c; | hj) = O.
(If at least one does not exist we only need to modify the ca@iappropriately.)
Assign a payfi equal to zero to the player who moveshatat every ending node
that follows some action iA(h;) \ {ci}. Also assign a paybequal to zero to ending
nodes that follow actiom; when taken at any node im. Assign a payfi equal
to 1 to every player elsewhere. A weakly-Bayesian assessmemft) (such that
HiKzl(Zyeﬁi o (y | h)) = 1is sequentially rational but not consistent. O

A possible criticism to the relevance of Proposition 4 is that (as the prods take
advantage of) dierences in strategies may only occur at parts of the extensive-
form that are not reached by the strategy profile. In principle, we whkgdto
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FiGure 9.

show that if some weakly-Bayesian assessment is not consistent thesanfie
paydfs, sequential equilibrium selects only a strict subset from the set outcomes
generated by sequentially rational weakly-Bayesian assessments. vétaivis

may not be possible.

Consider Figure 9. The five open circles are the initial nodes, each of the
is selected with equal probability by Nature. Proposition 3 implies that in this
extensive-form some weakly-Bayesian assessment is not considtest assess-
ments must attach probability zero to the two information sets of Pl&4erhat
means that the actiong r», I3 andr4 have to be taken with probability one which
leaves, for instance, actiomg andl, as the two actions that Proposition 3 re-
quires forK = 2. (This corresponds to the carri€f constructed in the proofs
of propositions 2 and 3.) In this example, consistent beliefs can be ayb#tar
the bottom information set of Play& but they impose restrictions on the set of
consistent beliefs at her top information set. Weakly-Bayesian beliefaa&kanby
definition, arbitrary values at both information sets. Consider now any géthe
that extensive-form. Whether or not actions actibns,, I3 andr4 are sequen-
tially rational does not depend on what is the behavior at the top informadtasf s
PlayerlV. The reason is that that information set can only be reached from zero
probability nodes at positive probability information sets. This implies that if both
information sets of PlaydV are reached with probability zero the strategy part of
a sequentially rational weakly-Bayesian assessment and a sequeuntiitlriemn
strategy may only diier in behavior at Playdi’s top information set. However,
behavior at that information set canndiieat the sequential equilibrium path.

14 The same is true even if we consider concepts stronger than weakgsBaysuch apre-
consistent assessmerats defined in the next section. In the extensive-form of Figure 9, rgr a
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6. APPLICATIONS. STRENGTHENING WEAKLY-BAYESIAN ASSESSMENTS

Weakly-Bayesian assessmentieoa useful benchmark against which to com-
pare consistent assessments. Not only did such a comparison allow us tioefin
maximal set of extensive forms where consistency never imposes ressieio
zero probability information sets, but also disentangled tlkemdint restrictions
entailed by consistency. This in turn can help expand the set of extdosmsg for
which we can find the whole set of consistent assessments in a simple andéntuitiv
way.

We already mentioned that consistent and weakly-Bayesian assessient c
cide in standard signaling games (i.e. those with one sender, one redéfezent
types of sender and only one type of receiver). We can also obtaivadence
within variations of this standard model of signaling games, such as the oige in F
ure 6 once we substitute both sets of consecutive binary choices of Playea
single three way choice (although substituting just one is enough). Blaotkles-
amples such as the ones in figures 1 and 3 also feature the equivalermanfon
and easily observable feature of all these games is that nodes insicéngdaton
information sets have completely independent paths.

Instances of long-horizon games such that every weakly-Bayessmssanent
is consistent include those were every information set is always readgtregosi-
tive probability, e.g. games where players always receive noisy sighalgt past
moves of their opponents (formalized by a move of Nature after each mode) a
no player moves twice along any path of play.

In order to find a larger collection of extensive-forms where the computafio
consistent assessments can be done in a simple manner we now strengiklgn we
Bayesian assessments. A natural way of doing so is to require that pkager
update their beliefs at parts of the extensive forms that are not redghéte
strategy profile.

6.1. Subgame Consistency

In what follows we consider assessmentsy) such that, for every nodethat
is either a node where nature moves Py or a singleton information s¢k} € H:

Z(h') c Z(x) andPy(h' | o) > 0= u(X | W) = X 19) for everyx e h'. (6.1)
Py(l | o)
That is, if the play of the game must go through the decision noldefore go-
ing throughh’ then beliefs ah’ must be computed via Bayes rule taking node
as reference point. Every assessment that satisfies (6.1) is a wealdgiBn as-

sessment and when coupled with sequential rationality induces a subgeew pe

assignment of payis to ending nodes, the sets of sequential equilibria and sequentially rational
preconsistent assessments coincide even though not every psésorsssessment is consistent.
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equilibrium—and a perfect Bayesian equilibrium as defined by RitzbeR}2
Definition 6.2)—in every game with that extensive-form.

An assessments satisfying (6.1) may be consistent even if the exteosive-f
satisfies the hypothesis of Proposition 1. The set of extensive-forrasvthis is
the case is not flicult to characterize once we understand Proposition 1. Games
played in stages where every time a new stage commences all previougimcer
ties are resolved constitute a good example as long as every “stagesdiensi”,
properly defined, does not satisfy Proposition 1 nor Proposition 3 (@g.se-
guence of simultaneous move games or any sequence of signaling games whe
every uncertainty is resolved after each stage).

6.2. Updating Consistency

The second minimal strengthening of weakly-Bayesian assessments that we
consider is requiring that players always update their beliefs basedearothn
previous beliefs and on the strategy profile. To capture this idea waptaing
consistenassessments as introduced by Hendon et al. (1996) and Perea (2002)
is important to notice that updating consistency requires that when a plagaias
her beliefs she takes into account, whenever it must have been théheassyn
past deviations from the strategy profile. That is, every player rezegihat if
she actually has to move at some of her information sets it must be becautd she
not previously preclude that information set from happening. Formally:

Definition 5. An assessment{y) is aupdating consisternif for every playern,
every two information seth, ' € H, satisfyingh < h’, and any pure strategy
sh € Sp(h") of playern, 3 yep u(X | N)Px(N | o7—n, sn) > 0 implies

_ Yixeh M(X | N)Py(X" | 0_n, )
erh/l(xl h)Px(h’ | o_n, Sn)

u(X | h) for everyx’ e h'.° (6.2)

Hendon et al. (1996) and Perea (2002) show that updating congistesdfi-
cient and necessary for the one-shot deviation principle to hold (gingstrategy
profile, if a player cannot improve her pdjdy changing just one action at one
information set then she cannot improve by deviating to a new strategyklyAea
Bayesian assessments that are updating consistent aremaibemsistenassess-
ments by Hendon et al. (1996).

As a quick illustration of preconsistent assessments we reconsider gdmags w
players only receive noisy signals about past moves of their opponelms
these games every updating consistent weakly-Bayesian assessnardistent
whether or not players move twice along the same path of play.

15 Note that the sum in the numerator has only one nonzero term, i.e. theeumdigley in
information set that satisfies?”(y) c Z(X).
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As the name suggests, every preconsistent assessment is consisteama-\We
lyze, however, the stronger concept obtained by selecting from thef sskess-
ments that satisfy (6.1) those that are updating consistent. Not to introdtie@ y
additional concept we will call those preconsistent as well.

Definition 6. An assessmentr{( ) is apreconsistenassessment if it satisfies both
(6.1) and (6.2).

It is easy to see that not every preconsistent assessment is consistagt.
that players beliefs in a preconsistent assessment need not be commdedge.
Hence, it is not be surprising that for preconsistent and consistsessments to
coincide we need two fferent players not to share the same uncertainty. A gen-
eral condition for equivalence between preconsistent and consessggsments is
given in the following theorem.

Theorem 2. The set of consistent and preconsistent assessment coincideyn ever
extensive form where the following two conditions hold:

() if hg € Hy makes the extensive-form satisfy Proposition 1 with choice ¢
then either ¢ belongs to player n, i.e.ecA(h), h € Hy; or there exists a
node x with{x} € H (or x € Pg) such that Zhp) c Z(x) and ce La(X);

(i) if hq,...hx make the extensive-form satisfy Proposition 3 with choices
C1,...,Ck then{hy,..., hx} c Hy for some ne _#; if, moreover, Zh;) N
Z(hj) = o for alli # jthen there exists an additional information set
h € Hy with at most K nodes such thatty) c Z(h) foralli = 1,...,K

and({cy, ..., ¢k} \ An) C Uxen Za(¥).

(If hy, ..., hg are as in Proposition 3 some selections of théseformation sets
may also make the extensive-form satisfy the hypothesis of the definitiote No
that for the theorem to hold we need the conditions to be satif&fiethyfamily of
information sets as in Proposition 3.)

Sketch of the proofThe idea is to use the same reasoning as in the proof of The-
orem 1. The main diiculty lies with how diferently weakly-Bayesian and pre-
consistent assessments are determined. Given a Ba¥swe can identify the set
H*(C,Y) of information sets where the value assumedq:liy not pinned down by
(6.1) or (6.2). We need to show that at those information sets consistersyndt
impose any restrictions.

Recall that any path is totally ordered by For each playen and each infor-
mation seh € (H*(C, Y) n Hp) assign the choicey = max {(Za(X) \ An) \ C} to
every nodex € h. It follows from (i) that no two nodes in the same information set
are assigned the same choice. For each tfferdint nodes, X' € h actionscy and
Cyx are diferent as well and satisfyy € (Fa(X) \ C) andcy € (Fa(X) \ C). We
can choose trembles associatedt@ndc, so as to make the relative likelihood
betweerx andx’ equal any value as we take the trembles to zero.
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However,cx may be the only choice in the path to some node in some other
information set that is not i€. Thus, suppose that for twoftkrent information
setshy, ho € Hy, such thath; < hy there are nodes; € h; andx, € hy for which
Cx, = Cx,. Condition (i) implies that we must hav&P(x1) ¢ &P(x2). Moreover,
u(xg | hy) = 0 wheneveth, € H*(C,Y). If u(y1 | h1) > O then every nodg; in
ho that followsh; is assigned a choiag, ¢ Za(y1), which in turn implies that the
tremble associated ty, cannot modify consistent beliefs laf. Henceforth, we
can justify as consistent arbitrary beliefsratwhen those are not given by (6.2).
We can do so by adjusting trembles associated to choices that are eith@t are n
the path to any node im or, if they are, the corresponding node is assigned zero
probability by the system of beliefs. In other words, under the conditiothef
theorem, preconsistent assessments will not fail to be consistent duevtorsg”
assignment of beliefs &b as long as the value of beliefs up to informationIset
agrees with consistency.

Consider now an indexed family of information séitg, ¢ (H*(C,Y) N Hy)
such thatZ(hj)) n Z(h;) = @ for all i # j. Consider further the existence of an
indexed family of pairs of node{s{xi,yi)}i*il such thatx;, yi € hy andcy = c,,,
for everyi = 1,...,K — 1. By Proposition 3 consistency imposes restrictions on
{hi}iK:1 if we also havecy, = c,,. In such a case, by assumption, there must be an
information seth € H,, with at mostK nodes that precedes every information set
in {hi}iKzl. Moreover, some node, saye h must belong tor andcy, € Za(x) for
somei, 1 <i < K. Sinceh; e H*(C, Y) the choicecy, is not the maximal element in
{(Za(X) \ An) \ C}. This provides a contradiction and shows that consistency does
to impose restrictions ofh}; beyond those imposed by preconsistency. o

The two conditions in the last proposition guarantee that, whenever carisiste
beliefs cannot be arbitrarily chosen in a group of information sets cordrole
playernthey are preceded by another information set of playérat she can take
as reference point to apply Bayesian updating. In particular, the dquam of
condition (ii), by imposing restrictions in the number of nodes of that reteren
point, ensures that the relative probability between zero probability radmissnot
need to be specified to compute consistent beliefs in the following informati®n se

Before giving examples of extensive-forms where Theorem 2 is ajdiaa
is convenient to analyze one where it is not so. Figure 10 contains @heasu
instance. The two last information sets of Playesatisfy Proposition 3 with
K = 2 and associated choicgsandm,;. They are preceded by another information
set of Playedl but it contains three nodes. This permits the left-hand node and
middle node to not being ordered in terms of their likelihood by the beliefs at that
information set thereby not imposing enough restrictions on preconsistats
at the two last information sets.
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Ficure 10.

On the other hand, Theorem 2 can be applied to any game with one player who
moves every other turn, who is the only player with nonsingleton informatiten se
and whose information sets are totally ordered. It can also be applied twany
player game, with or without moves of Nature, where Pldygilays every other
move, every information set of Playkrs a singleton, and every information set of
Playerll has at most two nodes. In this last family of games, players do not have
common uncertainties so we do not need to worry about their beliefs caniimgd
each other; played moves sfficiently often, meaning that there is an explicit
information set whose beliefs must be specified and updated via Bayesmndle
moreover, the fact that information sets have at most two nodes implies thabno
nodes are given zero probability by any system of beliefs in the samernafimm
set. A subset of this family is formed byulti-period games with observed actions
as defined by Fudenberg and Levine (1983) and analyzed in FudesnteiTirole
(1991) where Playdrhas two possible types and Playiecan only be of one type.

As we show in the next section, this family is enough to characterize consjsten
in multi-period games with observed actions with more than two players and with
at most two types per player.

6.3. Multi-Period Games with Observed Actions

A multi-period game with observed actioisgplayed in stages. In the first stage
or period Nature chooses independently—we assume here so for simpliogy—
type of each player and that information is only revealed to that player.aét e
following stage players move simultaneously and at the end of the period their
moves are fully revealed. Therefore, the only uncertainty during the game
cerns the initial move of Nature. A small warning is appropriate: unlike us,
Fudenberg and Tirole (1991) assign the same label to choices of a fayere
available at dierent information sets but that the opponents observe as identical.

We can recover Proposition 3.1 in Fudenberg and Tirole (1991) whiarach
terizes the set of consistent assessments in every multi-period game witheabse
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actions where any player has at most two types. Fudenberg and Timleilp do

so requiring that beliefs about play@s type depend only on playets actions and
through a commonality requirement on beliefs. Instead of giving suchitboms!
here we will take an alternative route by decomposing the whole game intspiece
Afterwards, we will be able to apply Theorem 2 to each of those pieces.

Indeed, given a multi-period game with observed actions, for each phayer
can construct a derived two-player multi-period game. In this deriveteghlature
moves first and chooses the type of playevith the same probability distribution
as in the original game. After the initial move of Nature, playdias two singleton
information sets (as many as possible types). Each information set hagribe sa
moves available as the corresponding first information set of pfaiyethe original
game. The next actor to move in this derived game islaserverof playern. The
observer has as many information sets as previous moves were availahtehin e
of the singleton information sets of player Each of these information sets has
two nodes (as many asftéirent types of playan) and as many moves available as
action profiles of playen’'s opponents in the first period of the original game. The
moves of the observer recreate, jointly with plagsrmoves, the histories that can
occur in the original game. So after each move of the observer (actidifeprb
the opponents of playar), a singleton information set of playerfollows again
with the same actions available as in the stage of the original multi-period game
that is preceded by the same history.

If we continue with this construction we obtain a two-player multi-period game
where we can apply Theorem 2. Moreover, the set of consistergsassats of the
original multi-period game can be characterized byRhdifferent sets of consis-
tent assessments of thdfdrent derived games. (By the same token we we can also
recover Proposition 3.2 in Fudenberg and Tirole (1991) which charaesghe set
of consistent assessments in every multi-period game with two stages. Indhis ca
the derived game that we obtain satisfies the hypothesis of Theorem 1.)

Weak independence (3.1) is the reason why consistency iNblayer multi-
period game can be characterized through consistency bf thigerent two-player
games where one player plays the role of the observer. This is true inrewdt-
period game with observed actions no matter how many types or strategies (as
long as the numbers are finite). The reason why preconsistency damnsed
to characterize consistency when a Player has three types or more ist#dstra
Figure 11. A similar Figure can be found in Fudenberg and Tirole (19@gly€& 1)
or in Osborne and Rubinstein (1994, Figure 235.1) to explain basicallyatne s
point. We can look at it here, however, from the point of view of Thao&and
see that it has the same relevant characteristic as Figure 10. The figiesamts a
period of a two-player multi-period game with observable actions where Pllaye
(who can be thought as thabserverof our previous construction) has one type
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Ficure 11.

and Playel has three possible types. After the history that precedes that period,
Playerll gives a belief equal to one to the rightmost node in her first informa-
tion set. For simplicity, only one choice is available at that information set, after
which is Player’s turn to move. The starred choices are those that Plajadtes

with positive probability in the strategy profile. The information set receivirey

I's actions and the one receiving thés actions make the extensive form satisfy
Proposition 3 withK = 2. The actions associated can be found in the paths to the
two zero probability nodes on the first Playés information set. Note that that
information set has three nodes and not two as required by Theorehis2allbws

that the leftmost and middle nodes of that information set not be given a likeliho
ordering by the system of beliefs.
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