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WEAKLY-BAYESIAN AND CONSISTENT ASSESSMENTS*

CARLOS PIMIENTA†

Abstract. A weakly-Bayesian assessmentis computed applying Bayes rule at

positive probability information sets. We characterize the set of extensive-forms

for which the sets of weakly-Bayesian and consistent assessments coincide. In

doing so we disentangle the different restrictions imposed by consistency across

information sets. We apply this knowledge to strengthen weakly-Bayesian as-

sessments and to derive conditions for equivalence with consistency that can be

useful in economic applications.

1. Introduction

A sequential equilibrium (Kreps and Wilson, 1982) is a sequentially rational

consistent assessment. The notion of consistency incorporated in the definition

of sequential equilibrium provides a way of selecting beliefs at zero probability

information sets. Loosely speaking, consistent beliefs must admit an explanation

consisting of “small trembles” made to reach those information sets.

There is a broad theoretical literature dealing with sequential equilibrium. This

partly stems from the apparently ad-hoc procedure whereby consistency selects

beliefs, which urged an effort to understand better the notion of consistency and

its game theoretical implications. Battigalli (1996), Kohlberg and Reny (1997)and

Swinkels (1993) show that consistency is related to the game theoretical principle

of strategic independence. If different players choose their strategies independently

then their assessments must be consistent.1
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A number of papers also offer different characterizations of consistency and/or

show that, under certain conditions, sequential equilibrium is equivalent toweaker

equilibrium concepts. Fudenberg and Tirole (1991) define perfect Bayesian equi-

librium imposing some intuitive restrictions on beliefs and show its equiva-

lence to sequential equilibrium in multi-period games with observed actions.

Perea y Monsuwé et al. (1997) provide an algebraic characterization of consistency

without making use of trembles. Litan and Pimienta (2008) find the maximal class

of extensive-forms such that sequential equilibrium and subgame perfection coin-

cide in equilibrium strategies and equilibrium outcomes.

In this paper we look at those instances where consistency places no restric-

tions at zero probability information sets. This is the case of theextensive-form

of Figure 1. If PlayerI movesOut then any belief at PlayerII ’s information set

is consistent as it can be justified by an appropriate sequence of trembles.A sim-

ilar argument holds in the extensive-form of Figure 2. If playersI and II play

according to (r1, r2) then arbitrary beliefs at PlayerIII ’s information set are con-

sistent. To generalize these ideas, we work withweakly-Bayesianassessments.2 A

weakly-Bayesian assessment imposes the only requirement that beliefs atpositive

probability information sets be computed from the strategy profile using Bayes’

rule. Clearly, every consistent assessment is a weakly-Bayesian assessment and

in general, not every weakly-Bayesian assessment is consistent. We characterize

the set of extensive-forms such that every weakly-Bayesian assessments is con-

sistent. Both in Figure 1 and Figure 2 the set of weakly-Bayesian and consistent

assessments coincide.

It is not difficult to come up with examples of extensive-forms for which some

weakly-Bayesian assessment is not consistent. The weakly-Bayesian assessment

(Out, l2, r, µ(x2) = 1) is not consistent in the extensive-form of Figure 3. Consistent

beliefs should place probability zero at the central node of PlayerIII ’s information

set given that in a sequential equilibrium “correlation in defections are (partially)

ruled out” (Kreps and Wilson, 1982, p. 875). That is, if PlayerI defects, it does

2 Mas-Colell et al. (1995, Definition 9.C.3), among others, defineweak perfect Bayesian equi-

librium. In a weakly-Bayesian assessment we simply drop the sequentially rationality requirement

from that definition. We do this to focus on belief formation and to facilitates thecomparison with

sequential equilibrium.
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not make a defection of PlayerII more likely. Figure 5 contains another example.

Kreps and Wilson (1982, p. 876) explain how the consistency criterion invokes the

“common knowledge” principle for beliefs. Hence, any assessment where PlayerI

movesOut and playersII and III assess different relative probabilities over their

left-hand and right-hand nodes is not consistent.

This paper identifies the relevant characteristics shared by the extensive forms in

figures 3, 5, and any other one where not every weakly-Bayesian assessment is con-

sistent. Furthermore, we provide a characterization of the whole set of extensive

forms where consistency imposes restrictions at zero probability informationsets.

While doing so, we disentangle the different restrictions imposed by consistency

across information sets. This is useful not only to know under which conditions ap-

plying weakly-Bayesian assessments is not enough, but also to determine towhich

extent a concept that is more demanding than weakly-Bayesian closes the gap with

respect to consistency.

Thus, as an application of the results, we also work withpreconsistent assess-

ments. A preconsistent assessment requires each player updates her beliefs even

at zero probability parts of the extensive-form. Similarly to weakly-Bayesian as-

sessments, preconsistent assessments are easy to compute and commonly used in

economic applications. The results derived in this paper help describe a general

class of extensive-forms where every restriction imposed by consistency is cap-

tured by preconsistent assessments. In addition, this allows us to arrive at the same
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results as Fudenberg and Tirole (1991) for multi-period games with observable ac-

tions where players have at most two types.

From a theoretical viewpoint, this paper can also help understand better how

consistency brings about restriction in beliefs. While in some cases we may al-

ready have a very good understanding about how consistent beliefs are shaped, as

it happens for instance when one information set comes after another like inFig-

ure 5, in some other cases this relation may be more obscure or, at least, difficult to

identify by arguments that are not context specific (see Figure 6). For this reason,

a unifying explanation of the restrictions on beliefs entailed by consistency that is

based solely on the characteristics of extensive-forms can be of theoretical interest.

In the next section we introduce the basic notation of extensive-form games

and important definitions. Section 3 contains the results about equivalencebe-

tween weakly-Bayesian and consistent assessments illustrated by a seriesof ex-

amples. Proofs of these results are offered in Section 4. Section 5 elaborates on

the relationship between sequentially rational weakly-Bayesian assessments and

sequential equilibria. To conclude, we apply what we have learned in the previous

sections in Section 6. First, we strengthen weakly-Bayesian assessments defining

preconsistent assessments. Then we derive a new result that establishes equiva-

lence between this stronger concept and consistency. Throughout thissection, we

also describe several games where consistent beliefs can be computed by finding

weakly-Bayesian or preconsistent assessments.

2. Basic Notation and Definitions

We start by describing notation and terminology for finite extensive-form games

with perfect recall. For a full mathematical description of extensive-formgames

the reader is referred to Kreps and Wilson (1982). In what follows, for every two

setsE andF, we useE ⊂ F allowing for equality. As usual,E \ F represents the

set of elements inE that do not belong toF.

An extensive-formis a tupleΓ = (N ,X,≺,P,H ,A , λ). The set of players is

N = {1, . . . ,N} and players are indexed byn = 1, . . . ,N.

The finite set of nodesX is partially ordered by≺. It contains a distinguished

minimal elementxo ∈ X called the root to the extensive form. The subset of

final nodes isZ ⊂ X. The setX \ Z is partitioned by theplayer partition P =

(P0,P1, . . . ,PN), wherePn represents the set of nodes where playern has to move

(P0 corresponds to the set of nodes where Nature moves).

Theinformation partitionH = (H1, . . . ,HN) contains the information structure

of the extensive form, where for eachn, the collectionHn partitionsPn into infor-

mation sets h∈ Hn. An elementh ∈ Hn represents the set of nodes that playern

cannot distinguish when she has to move ath. The information set that contains

nodex is denoted ash(x). Furthermore,H =
⋃

n Hn.
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The set ofactionsin the extensive form isA = (A0,A). For variety’s sake, we

use the termsaction, choiceandmoveinterchangeably throughout the paper. The

set of choices available to players isA =
⋃

h∈H A(h) whereA(h) represents the set

of choices available at the information seth. The set of moves available to Nature is

A0 =
⋃

p∈P0
A0(p) whereA0(p) is the set of moves available to Nature atp. It will

be convenient to writeAn =
⋃

h∈Hn
A(h) for the set of choices available to playern

across all information sets. Actions at different information sets are always labelled

differently, that is,A(h) ∩ A(h′) , ∅ wheneverh , h′. Furthermore, if choicea is

taken at nodex then the next node that follows is denoted (x,a).

The vectorλ contains the probability distributions over the moves of Nature by

specifying for eachc ∈ A0 a numberλ(c) ∈ (0,1) in such a way that
∑

c∈A0(p) λ(c) =

1 for all p ∈ P0. If Nature does not move at the root of the extensive-form, that

is xo < P0, then we say thatxo is the unique initial node. Ifxo ∈ P0 then, with

slight abuse of terminology, we say that each node that is only preceded by moves

of Nature is aninitial node. We explicitly allow that Nature moves at any other

part of the extensive-form.

An extensive-form game is obtained from an extensive-form by specifying for

each playern a Bernoullian utility function un : Z → R. Our characterizations are

based on properties of the extensive-form.

In order to work with the space of extensive-forms we need to introduce con-

cepts that summarize parts of their structure. Given any nodex, there is a unique

collection of choices (including those of Nature) that from the root of the extensive-

form lead to that node. That set of choices is calledpath to node xand it is denoted

by P(x). The subset of the path to nodex made of by actions of players only is

PA(x) =P(x) \ A0. Any path can be totally ordered by≺. A carrier is any subset

of choicesC that satisfies (C ∩ A(h)) , ∅ for all h ∈ H. That is, a carrier contains

at least one action of each information set. The usage of the term “carrier” for a set

of choices satisfying these properties is justified below.

We only consider extensive-forms with perfect recall. Whenever a player moves

she remembers all the choices that she has taken in the past as well as the in-

formation that she knew before. In symbols, for any two nodesx, x′ ∈ h in an

information seth ∈ Hn that belongs to playern the inclusionc ∈ (PA(x) ∩ An)

impliesc ∈PA(x′). Perfect recall implies thatHn is totally ordered by≺.

For an arbitrary set of choices of playersB ⊂ A, we say thatB reachesnodex

if PA(x) ⊂ B. Likewise,B reachesthe information seth if PA(x) ⊂ B for some

nodex ∈ h. Furthermore, we letX+(C) represent the set of decision nodes that are

reached by the carrierC and letX0(C) = X \ X+(C) represent its complement.

A pure strategy sn of playern is a plan of action that specifies, for each infor-

mation seth ∈ Hn, one choicesn(h) ∈ A(h). The set of playern’s pure strategies

is Sn and the set of pure strategy profiles isS = S1 × · · · × SN. Thecarrier of
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a pure strategy profile sis C (s) =
⋃

n∈N
⋃

h∈Hn
sn(h). We writeS(x) andS(h) to

denote the set of pure strategy profiles whose carriers reach, respectively, nodex

and information seth. The setsSn(x) andS−n(x) are the projections ofS(x) on Sn

andS−n =
∏

m,n Sm.

A behavioral strategyσn of playern specifies for every information seth ∈ Hn

a probability distributionσn(· | h) on A(h). The probability that playern chooses

a ∈ A(h) is, therefore,σn(a | h). A behavioral strategy profileσ specifies for every

information seth ∈ H a probability distribution onA(h). The set of behavioral

strategies of playern is denotedΣn and the set of behavioral strategy profilesΣ =

Σ1 × · · · × ΣN. Thecarrier of a behavioral strategy profileσ, denotedC (σ), is the

union over all information setsh of the choicesa ∈ A that satisfyσ(a | h) > 0.

Every behavioral strategy profileσ induces, together withλ, a probability distri-

butionP(· | σ) on Z. Given an arbitrary subset of nodesY ⊂ X we letZ(Y) denote

the subset of final nodesz ∈ Z that satisfyy ≺ z for somey ∈ Y. Furthermore, we

write P(Y | σ) instead ofP(Z(Y) | σ).

A system of beliefsµ specifies for every information seth a probability distribu-

tion µ(· | h) over its nodes. Anassessmentis a behavioral strategy profile together

with a system of beliefs (σ, µ).

We now introduce our two objects of study.

Definition 1 (Consistent Assessments). The assessment (σ, µ) is consistentif it is

the limit point of a sequence{(σt, µt)}∞t=0 such that, for allt,σt is completely mixed

(i.e.σt(a | h) > 0 for all h ∈ H and alla ∈ A(h)) and

µt(x | h) =
P(x | σt)
P(h | σt)

for everyh ∈ H and everyx ∈ h.

Definition 2 (weakly-Bayesian Assessments). The assessment (σ, µ) is aweakly-

Bayesian assessmentif for everyh ⊂ X+(C (σ)) and everyx ∈ h

µ(x | h) =
P(x | σ)
P(h | σ)

.

Of course, every consistent assessment is weakly-Bayesian but the converse is

not true.

3. Non-ConsistentWeakly-Bayesian Assessments

In this section we characterize the set of extensive-forms such that the set of

consistent assessments is a strict subset of the set of weakly-Bayesianassessments.

This is done in propositions 1 and 3. Theorem 1 will later assert that in the com-

plement of the set laid out by the propositions the sets of weakly-Bayesian and

consistent assessments coincide.
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To provide a more clear intuition about the results we introduce relative proba-

bilities over the setS of pure strategy profiles.3 A relative probability onS specifies

the relative weight of each subset of pure strategy profiles with respect to any other

subset. This includes subsets having prior probability equal to zero. A relative

probabilityρ on S must satisfy the following properties: for every subsetQ ⊂ S

and all nonempty subsetsR, T ⊂ S,

(i) ρ(Q,R) ∈ [0,∞],

(ii) ρ(Q,Q) = 1,

(iii) ρ(Q,T) + ρ(R,T) = ρ(Q∪ R,T) if Q∩ R= ∅, and

(iv) ρ(Q,T) = ρ(Q,R) ρ(R,T), whenever the product does not involve both 0

and∞.

Standard prior probabilities are therefore given byρ(·,S).

Battigalli (1996) and Kohlberg and Reny (1997) show that every consistent as-

sessment can be generated, in a way specified below, by a relative probability de-

fined over the set of pure strategy profiles and satisfying a strong independence

property. Strong independence implies weak independence and, for our purposes,

the latter concept is restrictive enough.

The relative probabilityρ defined on the set of pure strategiesS is weakly inde-

pendent if for every subset of playersM ⊂ N and every two pairs of subsets of

strategy profilesQM, RM ⊂
∏

n∈M Sn andQ−M, R−M ⊂
∏

n∈N \M Sn,4

ρ(Q−M × QM,Q−M × RM) = ρ(R−M × QM ,R−M × RM). (3.1)

A consistent assessment (σ, µ) can be generated by a relative probabilityρ sat-

isfying weak independence according to:5,6

σ(a | h) = ρ(S( (x,a)),S(x)) for anyx ∈ h; and, (3.2)

µ(x | h) = ρ(S(x),S(h)). (3.3)

3 Relative probabilities are equivalentconditional probability systems(Myerson, 1986). In game

theory conditional probability systems arise naturally from the need of specifying probabilities con-

ditional on events that have prior probability zero. Among others, conditional probability systems

have been studied by Battigalli (1996); Blume et al. (1991); Hammond (1994); Kohlberg and Reny

(1997); McLennan (1989a,b); Myerson (1986); and Swinkels (1993).
4 Swinkels (1993) calls this conditionquasi-independence. It is the (weak) notion of indepen-

dence considered by Battigalli (1996). Swinkels uses the termindividual quasi-independencefor the

analogous condition whereM is substituted by just one player. The latter is the independence condi-

tion used by Kohlberg and Reny (1997). Quasi-independence implies individual quasi-independence

but the opposite is not true. Swinkels (1993) offers an example, credited to Myerson, at that effect.
5 The converse is not true, i.e. not every weakly independent relativeprobability system generates

a consistent assessment. See Kohlberg and Reny (1997) for an example.
6 Strictly speaking this only holds when the extensive-form does not containmoves of Nature.

If it does, as we allow here, beliefs in Equation (3.3) need to be modified so that µ(x | h) =

ρ(S(x),S(h))
(

∏

c∈PA(x)∩A0
λ(c)

)(

∑

x′∈h
∏

c∈PA(x′)∩A0
λ(c)

)−1
.



8

It can be shown that perfect recall and weak independence imply that (3.2) is well

defined (i.e. it does not depend on the nodex ∈ h that is used).

We are going to derive a condition that implies restrictions on consistent beliefs

at zero probability information sets. Recall thatP(x) denotes the set of actions

that form the path to nodex and thatPA(x) is obtained formP(x) by removing

the moves of Nature. Consider two nodesx andy (not necessarily in the same

information set) and an actiona ∈ (PA(x)∩PA(y)). Let σ̂ be a behavioral strategy

profile that takes actiona with probability zero and every other action inPA(x)

with positive probability. Even though ˆσ does not reach eitherx or y, intuitively,

nodey cannot beinfinitely more likelythan nodex. Let us now offer a more formal

argument.

Let ρ be an independent relative probability defined onS that induces the con-

sistent assessment ( ˆσ, µ). We want to show thatρ(S(x),S(y)) > 0, that is, that (the

set of strategy profiles that lead to) nodey cannot be infinitely more likely than

nodex. Let x′ be the unique node that satisfiesP( (x′,a)) ⊂ P(x) and lety′ be

the unique node that satisfiesP( (y′,a)) ⊂P(y). Assume that actiona ∈ A(h′) is

available at the information seth′ and that playern moves ath′. By property (iii)

of relative probabilities we can find the value ofρ(S(x),S(y)) through

ρ(S(x),S(y)) = ρ(S(x),S( (x′,a))) ρ(S( (x′,a)),S( (y′,a))) ρ(S( (y′,a)),S(y)).

We obtainρ(S(x),S( (x′,a))) > 0 because every choice inP(x) that followsa

receives positive probability. It also holds thatρ(S( (y′,a)),S(y)) ≥ 1 because

S(y) is a subset ofS( (y′,a)). In addition, from strategic independence it fol-

lows the equalityρ(S( (x′,a)),S( (y′,a))) = ρ(S( (x′,a′)),S( (y′,a′))) for every

a′ ∈ A(h′) because we are changing the same strategies of playern in both sides.

Choose somea′ ∈ A(h′) that satisfies 0< ρ(S(x′),S( (x′,a′)) ≤ 1. The value of

ρ(S( (x′,a′)),S( (y′,a′))) equals

ρ(S( (x′,a′)),S(x′)) ρ(S(x′),S(y′)) ρ(S(y′),S( (y′,a′))) = ρ(S(x′),S(y′)),

where the last equality follows from the fact that weak independence makes (3.2)

well defined. To conclude,ρ(S(x′),S(y′)) > 0 because every choice inP(x) that

precedesa receives positive probability. Therefore,ρ(S(x),S(y)) > 0.

Now, if x andy belong to the same information seth thenS(x) andS(y) are both

subsets ofS(h) and we obtainρ(S(y),S(h)) < 1. Furthermore, ifh is a zero prob-

ability information set according to ˆσ, i.e. h ⊂ X0(C (σ̂)), then the last inequality

and (3.3) implyµ(y | h) < 1.

Consider again the extensive-form of the game in Figure 3. The leftmost node

and the central node in PlayerIII ’s information set have a common choice, action

l1, in their respective paths. If playersI and II play according to (Out, l2) then

(Out, l2) is infinitely more likely than (Out,m). We can use independence to con-

clude that the profile (l1, l2) is infinitely more likely than (l1,m), i.e. the leftmost



9

l
I

rIIOut

r3l3 r3l3 r3l3
III

Figure 4.

node in PlayerIII ’s information set is infinitely more likely than the central node.

Since PlayerI playsOut, PlayerIII ’s information set is reached with probability

zero and we need to specify beliefs at her information set. It follows that consistent

beliefs must assign probability zero to that central node. Of course, this restriction

does not apply to weakly-Bayesian assessments.

We start our characterization with a sufficient condition for an extensive-form to

admit weakly-Bayesian assessments that are not consistent. It corresponds to the

set of properties suggested above and in our analysis of Figure 3.

Proposition 1. Consider an extensive-form where we can find an information set

h with two distinct nodes x,y ∈ h, a carrier C, and an action c∈ A such that:

(i) the carrier C does not reach h,

(ii) c ∈ (PA(x) ∩PA(y)) \C.

Then the set of consistent assessments is strictly contained in the set of weakly-

Bayesian assessments.

Condition (i) above is clear. The sets of weakly-Bayesian and consistentas-

sessments may differ only if there exists some strategy profile that reaches some

information set with probability zero.

Condition (ii) captures the relevant features in Figure 3. To understand better

why we need an actionc ∈ (PA(x)∩PA(y)) observe that in figures 1 and 2, where

every weakly-Bayesian assessment is consistent, we cannot find two nodes in the

same information set that have a common action in their respective paths. To see

why we needc < C, consider the extensive-form of Figure 4 and a behavioral strat-

egy profile where choicesl andOut are taken with probability one. There is no

restriction on how PlayerIII should form her consistent beliefs. (Every conceiv-

able belief vector at that information set is the limit of a sequence of conditional

probabilities generated by an appropriately chosen sequence of trembles.) In this

case, for any system of beliefsµ, the resulting assessment can be associated to

a well defined independent relative probability system on the set of purestrategy

profiles—and every weakly-Bayesian assessment is consistent.

Figure 5 is another example where the set of consistent assessment is a strict

subset of the set of weakly-Bayesian assessments. Consistency implies common



10

r1l1

I Out

l2 r2
l2 r2

II

III

r3l3 r3l3

Figure 5.

knowledge of beliefs. This means that PlayerII and PlayerIII must have the same

belief over their left-hand and right-hand nodes and that, consequently,not every

weakly-Bayesian assessment is consistent. In order to see this in terms of Propo-

sition 1 note that actionr2 belongs to the path of the two nodes in PlayerIII ’s

information set. In Figure 5, moreover, PlayerII ’s information set does admit ar-

bitrary beliefs, but once those are fixed beliefs at her second information set are

determined. This suggests that we should explore further how the values assumed

by consistent beliefs at two different information sets relate to each other.

We start this analysis studying signaling games, where it is well known that se-

quential equilibrium does not impose restrictions on beliefs.7 Once Nature moves,

the sender observes her type and sends a signal to the receiver. If the receiver

observes a signal which is sent in equilibrium, she applies Bayes’ rule to derive

her beliefs about the type of the sender. If a signal is not sent in equilibrium, the

receiver has no restrictions whatsoever on how to form her beliefs about the type

of the sender upon receiving that signal. Note well that every pair of nodes that

belong to the same information set have completely different paths from each other

(the same signal can be sent from two different information sets so they are, in fact,

different actions).

Consider the extensive-form of a slightly modified signaling game in Figure 6.

After the sender learns her type, and before she sends a signal, she can end the

game. As it is the case in a standard signaling game, no pair of nodes that be-

long to the same information set have a common action in their respective paths.

Nonetheless, there are players’ actions that are common to the paths to nodes that

belong to different information sets. That is,a1 ∈ (PA(x1) ∩PA(y2)) anda2 ∈

(PA(x2) ∩PA(y1)). Consider the behavioral strategy profile (f1, f2,u1,d2, ru, ld)

which assigns probability zero toa1 anda2. As mentioned previously, if a strat-

egy profile assigns positive probability to all the actions leading to a node butone,

7 See, for instance, Kohlberg (1990).
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which is also in the path to a second node, then the underlying independent rela-

tive probability must consider the (set of pure strategy profiles leading to the) first

node as infinitely more likely than the second node. In terms of the example this

meansρ(S(x1),S(y2)) = ρ(S(x2),S(y1)) = ∞ which in turn implies that we can-

not haveρ(S(y1),S(x1)) = ρ(S(y2),S(x2)) = ∞ because otherwise a node must be

infinitely more likely than itself. From this argument we obtain that a consistent

assessment with a behavioral strategy profile as above cannot display beliefs such

that µ(y1 | h1) = µ(y2 | h2) = 1. Obviously, this restriction does not apply to

weakly-Bayesian assessments.

The relevant features of the previous example are generalized in the next propo-

sition into a new sufficient condition on extensive-forms so that the set of consistent

assessments is a strict subset of the set of weakly-Bayesian assessments.

Proposition 2. Consider an extensive-form where we can find two distinct infor-

mation sets h1, h2, two distinct nodes x1, y1 ∈ h1 in the first information set, two

distinct nodes x2, y2 ∈ h2 in the second, a carrier C, and two choices c1, c2 ∈ A

such that:

(i) the carrier C reaches neither h1 nor h2; and

(ii) c1 ∈ (PA(x1) ∩PA(y2)) \C and c2 ∈ (PA(x2) ∩PA(y1)) \C.

Then the set of consistent assessments is strictly contained in the set of weakly-

Bayesian assessments.

Remark1. • If h1 = h2 then we can apply Proposition 1. However, it is

important thatx1 , y1 andx2 , y2. Otherwise we cannot guarantee that

some weakly-Bayesian assessments is not consistent.

• The existence of two different actionsc1 andc2 in this proposition is not

dispensable. Suppose that in the extensive-form of Figure 6 we delete

actiona2 and replace the two consecutive information sets of PlayerI by

a single information set where PlayerI has available the three choicesf2,
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I Out

r1

II II

r3

r2

II

x1 y1 x3 y3III III

IIIy2 x2

Figure 7.

u2 andd2. With this modification every weakly-Bayesian assessment is

consistent.

In our signaling game the two zero probability information sets do not come one

after another as it occurs, for instance, in the extensive-form of Figure 5. We have

seen that this extensive-form satisfies the conditions of Proposition 1, therefore, we

already know that some weakly-Bayesian assessments are not consistent. We can

now see that this extensive-form also satisfies the conditions of Proposition 2. In-

deed, if PlayerI movesOut, then PlayerII ’s information set and PlayerIII ’s infor-

mation set receive probability zero. The left-hand node inII ’s information set and

the left-hand node inIII ’s information set have actionl2 in their respective paths.

The analogous is true for the right-hand nodes and actionr2. Nevertheless, note

that if movingOut was not a possible action the resulting extensive-form would

satisfy the conditions of Proposition 1, but not the conditions of Proposition2.

Similar arguments to those in our previous two examples are also valid when

three or more information sets are involved. Figure 7 illustrates this with three

information sets. Suppose that playersI andII play according to (Out, r1, r2, r3).

We must specify beliefs at the three information sets of PlayerIII . The following

pairs of nodes have an action in their respective paths that the previous profile

attaches probability zero to: (x1, y2), (x2, y3) and (x3, y1). Weak independence

implies that, for each of these pairs, the pure strategy profile leading to the first

node is infinitely more likely than the pure strategy profile leading to the second

node. It follows that a system of beliefs such thatµ(y1 | h1) = µ(y2 | h2) = µ(y3 |

h3) = 1 is not consistent. Again, this restriction does not apply to weakly-Bayesian

assessments.

The extensive-form of Figure 7 is such that no two information sets receiving

probability zero come one after another. Figure 8 contains an extensive-form where

for some information sets this is the case. For reasons analogous to those discussed
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I Out

l1

x1

l1
l2

x3

l2

II II

IIIx4 y4

IIIy2 x2

Figure 8.

in the previous examples, the assessment (Out, l1, l2, µ(x1 | h1) = 1, µ(x2 | h2) =

1, µ(x3 | h3) = 1, µ(x4 | h4) = 1) is not consistent.8

The general result, which subsumes Proposition 2, is the following:9

Proposition 3. Consider an extensive-form where we can find K≥ 2 distinct in-

formation sets h1, . . . ,hK , two distinct nodes xi , yi ∈ hi for each i = 1, . . . ,K, a

carrier C, and K distinct actions c1, . . . , cK such that:

(i) for each i= 1, . . . ,K the carrier C does not reach hi ; and

(ii) for each i= 1, . . . ,K − 1 we have ci ∈ (PA(xi) ∩PA(yi+1)) \C, likewise,

cK ∈ (PA(xK) ∩PA(y1)) \C.

Then the set of consistent assessments is strictly contained in the set of weakly-

Bayesian assessments.

Remark2. • Proposition 2 corresponds toK = 2.

• It is embedded in the statement of the proposition that we have to findK

information setsand an orderof those information sets such that the con-

dition are true. The conditions will not typically hold for every possible

order.

• Again, it is important that the 2K nodes be distinct. However, if some

of the K information sets are not different it would only mean that the

conditions are satisfied for an integer strictly smaller thanK.

• If the conditions are satisfied for some value ofK it does not follow that

they are also satisfied for some integer smaller thanK. See for instance,

8 One difference is that in this exampleS(x1) andS(y2) are of the same “order of magnitude”,

i.e. neither set is infinitely more likely than the other becausel1 is chosen by the strategy profile with

probability one. The same is true forS(x3) andS(y4).
9 Nonetheless, we have presented propositions 2 and 3 separately to facilitate the exposition of

the results. On a technical note, the proof of the Proposition 3 is done by induction (see page 19),

and Proposition 2 corresponds to the initial step.
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Figure 7 whereK = 3 and Figure 8 whereK = 4. In both cases the

conditions do not hold for smaller values ofK.

Theorem 1 states that the conditions in propositions 1 and 3 are not only suffi-

cient but also necessary.

Theorem 1. Consider an extensive-form where some weakly-Bayesian assessment

is not consistent. Then the extensive-form satisfies either the conditions listedin

Proposition 1 or the conditions listed in Proposition 3.

Intuitively, for a fixed behavioral strategy profile, if a zero probability choice is

in the path to two different nodes then we are losing freedom to choose consistent

beliefs because the same tremble is associated to two different nodes. The fact that

the conditions in propositions 1 and 3 are not satisfied means that we alwayshave

enough freedom so that arbitrary beliefs are consistent.

Take a behavioral strategy profileσ and two nodesx andy. Suppose that there

is at least one choice in the path tox that is not in the path toy and at least one

choice in the path toy that is not in the path tox. Suppose further that none of

these two choices is taken with positive probability underσ. Based only on this

information aboutσ and the structure of the extensive-form we cannot derive a

definite likelihood ordering between nodesx and y. Recurring to an argument

based on trembles, we can fine-tune the trembles associated to the two actions

pinpointed before to make one of the sets of trembles necessary to reach one of the

nodes as likely as we want with respect to the other. Ifx andy are the only two

nodes in the same information seth and this is reached with probability zero under

σ then we can freely choose consistent beliefs ath.

If the conditions in Proposition 1 are not satisfied the above argument holdseven

if we have more than two nodes inh and for anyσ. So consistent beliefs ath can

be freely chosen. But this choice of beliefs could, in principle, constrainthe set of

consistent beliefs available for a second zero probability information seth′. This

can happen when one of the choices whose tremble we fine-tuned beforeis in the

path to some node inh′. If the conditions in Proposition 3 are not satisfied for

K = 2 then for each of the remaining nodes in that information set we can again

fine-tune some tremble associated to a choice that is only in the path to that node

and none else inh′. The argument can be repeated again for a third zero probability

information seth′′ but if the conditions in Proposition 3 are not satisfied forK = 3

we do not have restrictions in choosing beliefs ath′′. Continuing in this fashion we

can pick arbitrary beliefs at every zero probability information set.
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4. Proofs

The main tool used in the proofs of Propositions 1, 2 and 3 is Lemma A1 in

Kreps and Wilson (1982). But before stating that lemma, a few concepts are nec-

essary.

Given a system of beliefsµ, its supportsupp(µ) is the union over all information

setsh of the decision nodesx for whichµ(x | h) > 0. We reserve the termcarrier

to talk about the set of choices that receive strictly positive probability forproba-

bilities defined by strategy profiles, and the termsupportfor the analogous concept

for probabilities associated to beliefs. Moreover, we writeC (Σ) for the set of all

possible carriers.

A labelling is a functionL : A→ N that maps each choicec ∈ A into an integer

numberL(c). For each labellingL there is an associated functionFL : X → N

defined by

FL(x) =
∑

c∈PA(x)

L(c).

Definition 3. Given a carrierC, the labellingL is said to be aC-labelling if we

havec ∈ C if and only if L(c) = 0.

A basis(C,Y) is a subset ofA × X. We say that the basis (C,Y) is consistent

if there exists at least one consistent assessment (σ, µ) such thatC (σ) = C and

supp(µ) = Y.

Lemma 1 (Kreps and Wilson (1982, Lemma A1)). The basis(C,Y) is consistent

if and only if there is a C-labelling L such that the following condition holds:

x ∈ Y if and only if x minimizes FL(·) on h(x).

For our purposes Lemma 1 implies the following. Take a behavioral strategy

profile σ that does not reach the information seth and suppose that nodesx and

y belong toh. If FL(x) ≤ FL(y) for everyconceivableC (σ)-labelling L then a

necessary condition for (σ, µ) to be consistent is thatµ(y | h) , 1. In order to prove

Proposition 1 we show that, if the extensive-form meets the conditions givenin the

proposition, we can always find such a strategy profile or, more precisely, such a

carrier.

For a behavioral strategy profileσ with carrierC, we are thus interested in in-

equalities of the formFL(x) ≤ FL(y) that remain true for everyC-labelling L. It

will be useful to writeF(x,C) ≤ F(y,C) when this is the case. For instance, if node

y comes afterx we can readily conclude thatF(x,C) ≤ F(y,C). The expression

F(x,C) ≤ F(y,C) can be meaningfully read as “nodey cannot be infinitely more

likely than nodex under any strategy profile with carrierC.” If x andy belong

to the same zero probability information set this must be respected by consistent

beliefs.
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To avoid duplication of arguments we provide some results in the next lemma

that are used continuously throughout the proofs.

Lemma 2. Consider a carrier C, an information set h⊂ X0(C), and two nodes x

andy with a common action c∈
(

PA(x)∩PA(y)
)

\C. Let C′ = C∪
(

PA(x) \ {c}
)

,

the following holds:

(i) 0 < F(x,C′) ≤ F(y,C′);

(ii) if (h ∩ X+(C′)) , ∅ then there is at least one nodeŷ ∈ h that satisfies

PA(ŷ) ⊂ (C ∪PA(x)); and moreover

(iii)
(

PA(x) ∩PA(ŷ)
)

\C , ∅, i.e. 0 < F(ŷ,C) < F(x,C).

Proof. Take a carrierC that does not contain some actionc ∈ (PA(x) ∩PA(y)).

Suppose that under that carrierh ⊂ X0(C). (Note thatx andy belong toX0(C)

becausec < C and that we do not necessarily assumex, y ∈ h.) We obtain a new

carrierC′ by adding toC all the choices in the path tox except forc, therefore, we

also obtain thatx andy belong toX0(C′).

To prove part (i) take anyC′-labellingL. Action c is the only element inPA(x)

that is not inC′. Hence,FL(x) = L(c) > 0 and sincec is also inPA(y) we obtain

FL(y) ≥ L(c). That is, nodey cannot be infinitely more likely thanx under a

strategy with carrierC′.

Let us turn to part (ii). Let ˆy be some node inh such that ˆy ∈ X+(C′). We have

PA(ŷ) ⊂ C′ = C ∪
(

PA(x) \ {c}) ⊂ (C ∪PA(x)).

Part (iii) follows from ŷ ∈ X0(C) andŷ ∈ X+(C′), which means that the actions

in the path to ˆy that are not inC are in the path tox. It also follows that 0<

F(ŷ,C) < F(x,C), where the second inequality is strict becausec ∈ PA(x) but

c <PA(ŷ). �

We can now prove the first proposition.

Proof of Proposition 1.Recall thath(x) represents the information set that contains

nodex. The conditions listed in the proposition are equivalent to the following set

being nonempty.

Φ1 =
{

(x, y, c,C) ∈ X2 × A× C (Σ) : y ∈ h(x), y , x, h(x) ⊂ X0(C),

c ∈
(

PA(x) ∩PA(y)
)

\C
}

.

Take an arbitrary element (x, y, c,C) ∈ Φ1 and construct the carrier

Ĉ = C ∪
(

PA(x) \ {c}
)

.

Using Lemma 2 (i) we obtain thatF(x, Ĉ) ≤ F(y, Ĉ). If h(x) ⊂ X0(Ĉ) then

the desired result follows. If otherwise some ˆy ∈ h(x) satisfies ˆy ∈ X+(Ĉ) then

Lemma 2 (iii) impliesF(ŷ,C) < F(x,C). Sinceh(x) ⊂ X0(C) this concludes the

proof. �
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The argument behind the proof of Proposition 2 is similar but slightly more in-

volved because we have to deal with nodes in two different information sets. Given

two information setsh1 andh2, we want to use the structure of the extensive-form to

find a carrierC and four nodesx1, y1 ∈ h1, x2, y2 ∈ h2 such thatF(x1,C) ≤ F(y2,C)

andF(x2,C) ≤ F(y1,C). If h1 andh2 are subsets ofX0(C) then consistency im-

plies that for every assessment (σ, µ) with C (σ) = C beliefs cannot be such that

µ(y1 | h1) = µ(y2 | h2) = 1. These equalities would imply that for someC-

labellingL it holdsFL(y1) < FL(x1) andFL(y2) < FL(x2). But since we also have

FL(x1) ≤ FL(y2) andFL(x2) ≤ FL(y1) we reach a contradiction. The main diffi-

culty of the argument consists of showing that the information setsh1 andh2 are

reached with probability zero. Lemma 2 will be of great help at this effect.

Proof of Proposition 2.We need to show that, if the conditions in Proposition 2 are

satisfied, not every weakly consistent assessment is consistent. We already proved

that this is the case wheneverΦ1 , ∅, so it is enough that we prove the result for

the caseΦ1 = ∅. The conditions in the proposition imply that the following set is

nonempty:

Φ2 =
{

(x1, y1, x2, y2, c1, c2,C) ∈ X4 × A2 × C (Σ) : h(x1) , h(x2),

y1 ∈ h(x1), y1 , x1, y2 ∈ h(x2), y2 , x2, h(x1) ⊂ X0(C), h(x2) ⊂ X0(C),

c1 ∈
(

PA(x1) ∩PA(y2)
)

\C, c2 ∈
(

PA(x2) ∩PA(y1)
)

\C
}

.

Take any (x1, y1, x2, y2, c1, c2,C) ∈ Φ2. Leth1 = h(x1) andh2 = h(x2). Construct

the carrier

Ĉ = C ∪
(

PA(x1) \ {c1}
)

∪
(

PA(x2) \ {c2}
)

.

From Lemma 2 (i) we obtainF(x1, Ĉ) ≤ F(y2, Ĉ) and F(x2, Ĉ) ≤ F(y1, Ĉ). If

both h1 andh2 are contained inX0(Ĉ) then no consistent assessment (σ, µ) with

C (σ) = Ĉ satisfiesµ(y1 | h1) = µ(y2 | h2) = 1. So we need to prove the result for

the cases where either (h1 ∩ X+(Ĉ)) , ∅ or (h2 ∩ X+(Ĉ)) , ∅.

Thus, let us assume that (h2 ∩ X+(Ĉ)) , ∅ (the other case is analogous) and

construct the carrier

Ĉ1 = C ∪
(

PA(x1) \ {c1}
)

.

Now we show thath1 ⊂ X0(Ĉ1). Suppose to the contrary that (h1∩X+(Ĉ1)) , ∅.

Lemma 2 implies that some node inh1 (that is notx1) andx1 have a common action

in their respective paths that is not contained inC. This in turn would imply that

the setΦ1 is not empty, but this is the case that we assumed at the beginning of the

proof. We can concludeh1 ⊂ X0(Ĉ1).

We also know thatc2 < Ĉ1, for otherwisec2 would be a common choice between

x1 andy1. Furthermore,c1 < Ĉ1 by construction. It follows thatx2, y2 ∈ X0(Ĉ1).

Since (h2∩X+(Ĉ)) , ∅ and we are assumingΦ1 = ∅we know that there is a subset
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of nodesĥ2 ⊂ h2 that does not includex2 nor y2 and that satisfieŝh2 ⊂ X+(Ĉ1).

From Lemma 2 (iii) we obtainF(ŷ2,C) < F(x1,C) for each ˆy2 ∈ ĥ2.

Construct the new carrier

Ĉ′1 = C ∪
(

PA(y1) \ {c2}
)

.

By Lemma 2 (i),F(y1, Ĉ′1) ≤ F(x2, Ĉ′1). Using the same arguments as before we

can show thath1 ⊂ X0(Ĉ′1) andx2, y2 ∈ X0(Ĉ′1). If h2 ⊂ X0(Ĉ′1) then the desired

result follows becauseF(ŷ2,C) < F(x1,C) keeps holding when we changeC for

Ĉ′1. That is, a consistent assessment does not satisfyµ(x1 | h1) = µ(x2 | h2) = 1.

Hence, the next case we need to explore is when a subset of nodesĥ′2 ⊂ h2 exists

such that̂h′2 ⊂ X+(Ĉ′1). We construct a new carrier using the set of choices:

B̃ =



















PA(x1) \





















⋃

ŷ2∈ĥ2

PA(ŷ2)







































⋃























PA(y1) \























⋃

x̂2∈ĥ′2

PA(x̂2)













































.

Let the new carrier be:

C̃ = C ∪
(

B̃ \ {c1, c2}
)

.

We still obtainh1 ⊂ X0(C̃) from Lemma 2 (ii) and the assumptionΦ1 = ∅. We

obtainh2 ⊂ X0(C̃) by construction. The last carrier that we consider is:

C∗ =



















C̃ ∪
(

PA(x2) \ {c2}
)

if |ĥ2| ≤ |ĥ′2|;

C̃ ∪
(

PA(y2) \ {c1}
)

if |ĥ2| > |ĥ′2|.

In either case, the information seth2 is included inX0(C∗) becauseΦ1 is empty.

Regardingh1, if some node ˜x1 ∈ h1 belongs toX+(C∗) thenF(x̃1, C̃) ≤ F(y2, C̃).

Since we also haveF(x̂2, C̃) ≤ F(y1, C̃) for every x̂2 ∈ ĥ′2 the restriction on the

values that consistent beliefs can take for strategy profiles with carrier equal toC̃

results. Therefore, we only need to analyzeh1 ⊂ X0(C∗) together with|ĥ2| ≤ |ĥ′2|

(given that the other case is similar). LetL be an arbitraryC∗-labelling. The

following holds:

FL(x1) =
∑

ŷ2∈ĥ2
FL(ŷ2) + L(c1),

FL(y1) =
∑

x̂2∈ĥ′2
FL(x̂2) + L(c2),

FL(y2) ≥ L(c1),

FL(x2) = L(c2).

To understand better the first (and the second) equality notice that, by construction,

the only actions in the path tox1 that do not belong toC∗ arec1 and those that we

can also find in the path to some ˆy2 ∈ ĥ2.

Take now a consistent assessment (σ, µ) with C (σ) = C∗. If µ(y2 | h2) > 0 then

L(c1) ≤ L(c2). If moreoverµ(ŷ2 | h2) > 0 for all ŷ2 ∈ ĥ′2 thenFL(x1) ≤ FL(y1)

because|ĥ2| ≤ |ĥ′2|. This completes the proof asµ(y1 | h1) cannot take a strictly

positive value. �
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The proof of Proposition 3 is similar. GivenK information setsh1, . . . ,hK the

plan is to find two nodesxk andyk for each information sethk so that for some

carrierC we haveF(x1,C) ≤ F(y2,C), . . . , F(xK ,C) ≤ F(y1,C). If every hk is

included inX0(C) then we cannot haveFL(yk) < FL(xk) for everyk and someC-

labellingL. This implies that if (σ, µ) is consistent andC (σ) = C thenµ(xk | hk) ,

1 for at least onek.

Proof of Proposition 3.We need to show that when the conditions in the propo-

sition hold not every weakly-Bayesian assessment is consistent. Therefore, as in

the proof of the previous proposition it will be enough to prove it whenΦ1 = ∅.

Moreover, using the induction procedure, once the proposition has been proven

for K = 2 we assume that the proposition has also been proven for every value

K′ < K strictly larger than 2. This allows us to also assume henceforthΦK′ = ∅

for 2 ≤ K′ < K.

The conditions in the proposition imply that the following set is nonempty:10

ΦK =
{

(x1, y1, . . . , xK , yK , c1, . . . ck,C) ∈ X2K × AK × C (Σ) :

h(xi) , h(x j) for all i , j, and for alli = 1, . . .K,

h(xi) ⊂ X0(C), yi ∈ h(xi), yi , xi , ci ∈
(

PA(xi) ∩PA(yi+1)
)

\C
}

.

Let hi = h(xi). Take an arbitrary element ofΦK and construct the carrier:

Ĉ = C ∪

















K
⋃

i=1

(

PA(xi) \ {ci}
)

















.

From Lemma 2 (i) we obtainF(xi , Ĉ) ≤ F(yi+1, Ĉ) for every i = 1, . . .K. If

for every i we also obtainhi ⊂ X0(Ĉ) then a consistent assessment (σ, µ) with

C (σ) = Ĉ cannot satisfy
∏K

i=1 µ(yi | hi) = 1. Thus, we need to prove the result

when, for somei, the sethi is not included inX0(Ĉ). Let I represent the collection

of indexesi such that (hi ∩ X+(Ĉ)) , ∅.

Take ani ∈ I . Let ĥi represent the subset of those ˆyi ∈ hi that belong toX+(Ĉ).

Nodesxi andyi do not belong tôhi becauseci andci−1 are not inĈ. Moreover,

every actionc ∈ (PA(ŷi) \ C) is contained inPA(xi−1) and, therefore,F(ŷi ,C) ≤

F(xi−1,C) for all ŷ ∈ ĥi . In other words, no actionc ∈ (PA(ŷi)\C) can be contained

in somePA(xk) with k , i − 1. This would imply thatΦK′ , ∅ for some integer

K′ < K.11

10 Throughout the proof, when the indexi equalsK, the indexi +1 refers to 1. Likewise, ifi = 1,

the indexi − 1 refers toK.
11 For instance, if actionc ∈ (PA(ŷi) \ C) belongs toPA(xi−2) thenΦK−1 would be nonempty.

One element of this set can be obtained from our initial choice fromΦK by dropping the entries

corresponding to the nodes at information sethi−1 and actionci−1, and substituting nodeyi by node

ŷi and actionci−2 by actionc.
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Construct the carrier:

Ĉ′ = C ∪

















⋃

k<I

(

PA(yk) \ {ck−1}
)

















.

Lemma 2 (i) impliesF(yk, Ĉ′) ≤ F(xk−1, Ĉ′) for everyk < I . Furthermore, it also

implies that we still haveF(ŷi , Ĉ′) ≤ F(xi−1, Ĉ′) for everyi ∈ I and every ˆyi ∈ ĥi .

If all the information setsh1, . . . ,hK are contained inX0(Ĉ′) then we obtain that

no consistent assessment whose strategy has carrierĈ′ can assign a belief equal to

one to every decision nodexk. Therefore, we need to analyze what would happen

otherwise. LetJ represent the collection of indexesj such that (h j ∩ X+(Ĉ′)) , ∅,

furthermore, for eachj ∈ J, let ĥ′j ⊂ h j be the subset of nodes inh j that belong

to X+(Ĉ′). The assumption thatΦK′ = ∅ wheneverK′ < K indicates that ifj ∈ J

then for every ˆx j ∈ ĥ′j we obtain
(

PA(x̂ j) \ C
)

⊂ PA(y j+1). With this in mind we

use the set of choices

B̃ =



















⋃

i∈I





















PA(xi−1) \





















⋃

ŷi∈ĥi

PA(ŷi)



























































⋃















⋃

i∈I

PA(yi)















⋃























⋃

j∈J

























PA(y j+1) \

























⋃

x̂ j∈ĥ′j

PA(x̂ j)







































































⋃



















⋃

j∈J

PA(x j)



















to construct the new carrier

C̃ = C ∪
(

B̃ \ {c1, . . . , cK}
)

. (4.1)

We can assume that every information seth1, . . . ,hK is contained inX0(C̃). To

see why note that if (hk ∩ X+(C̃)) , ∅ then there must be an action ˜c in the second

or in the fourth component of̃C that is in the path of some node ˜xk of hk. Moreover,

this node cannot be eitherxk or yk. SinceΦK′ = ∅ for everyK′ < K the action

c̃ must be contained in eitherPA(yk+1) or PA(xk−1). Consider that ˜c ∈ PA(yk+1)

then by Lemma 2 (iii) we have thatF(x̃k, Ĉ) ≤ F(yk+1, Ĉ) and we only need to

replacexk by x̃k and redefineI so that it does not includek. Analogously, suppose

now thatc̃ ∈ PA(xk−1). Lemma 2 (iii) impliesF(x̃k, Ĉ) < F(xk−1, Ĉ). We now

need to replaceyk by x̃k and remove the indexk from J.

The last carrier that we consider is:12

C∗ =























































C̃ ∪

















⋃

k<(I−1)∪(J+1)

(

PA(xk) \ {ck}
)

















if
∏

i∈I (|ĥi | + 1)
∏

j∈J(|ĥ′j | + 1)
≥ 1,

C̃ ∪

















⋃

k<(I−1)∪(J+1)

(

PA(yk) \ {ck−1}
)

















otherwise.

12 Note the sets (I − 1) = {i : i + 1 ∈ I } and (J + 1) = { j : j − 1 ∈ J}.
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Suppose that
∏

i∈I (|ĥi | + 1) ≥
∏

j∈J(|ĥ′j | + 1). We now show that a consistent

assessment (σ, µ) with C (σ) = C∗ cannot satisfy at the same time all of the follow-

ing:

(i) for every i < I , µ(yi | hi) = 1,

(ii) for every i ∈ I , µ(yi | hi) > 0 andµ(ŷi | hi) > 0 for all ŷi ∈ ĥi ,

(iii) for every i ∈ I , µ(yi | hi) +
∑

ŷi∈ĥi
µ(ŷi | hi) = 1.

If the consistent assessment (σ, µ) satisfies (i), (ii) and (iii) then we should be

able to find aC∗-labelling, sayL, as in Lemma 1. Given that the setC̃ defined in

(4.1) is contained inC∗ we can writeFL(xi−1) =
∑

ŷi∈ĥi
FL(ŷi)+FL(yi) for everyi ∈

I . Additionally, (ii) and (iii) above imply thatFL(xi−1) = (|ĥi | + 1)FL(yi) for every

i ∈ I . A similar argument shows that for everyj ∈ J the equalityFL(x j) = (|ĥ′j | +

1)−1FL(y j+1) also holds. The definition ofC∗ for the case that we are considering

entailsFL(xk) ≤ FL(yk+1) wheneverk < (I − 1)∪ (J + 1). Finally,FL(yk) < FL(xk)

for everyk = 1, . . . ,K given that we always haveµ(xk | hk) = 0 andµ(yk | hk) > 0.

We only have to put all these inequalities together to obtain:
∏

i∈I (|ĥi | + 1)
∏

j∈J (|ĥ′j | + 1)
< 1.

Which provides a contradiction. We can also conclude the proof becausethe case
∏

i∈I (|ĥi | + 1) <
∏

j∈J(|ĥ′j | + 1) is analogous. �

The next step is to prove that the conditions given Propositions 1 and 3 arenot

only sufficient but also necessary. In order to prove this we need a characterization

of consistent assessments.

Lemma 3 (Kreps and Wilson (1982, Lemma A2)). Let (C,Y) be a consistent basis

and let(σ, µ) satisfyC (σ) = C andsupp(µ) = Y. The assessment(σ, µ) is consis-

tent if and only if there exists a functionπ : A∪ A0 → (0,1) such thatπ(c) = λ(c)

whenever c∈ A0, π(c) = σ(c | h) whenever c∈ C (σ), and for every x∈ X with

µ(x | h) > 0:

µ(x | h) =

∏

c∈P(x)
π(c)

∑

{x′∈h:µ(x′ |h)>0}

(

∏

c∈P(x′)
π(c)

) . (4.2)

Now we can turn to prove Theorem 1.

Proof of Theorem 1.Fix an extensive-form that satisfies neither the conditions of

Proposition 1 nor the conditions of Proposition 3. Given any carrierC a consistent

basis (C,Y) always exists (Lemma 1 gives a way of seeing this). Take a consis-

tent assessment (σ, µ) with C (σ) = C and supp(µ) = Y. Let L be the associated

labelling and letπ be a function such as the one in equation (4.2).

The collection of non-singleton information setsh that satisfyh ⊂ X0(C) is

denotedH0. Take any information seth ∈ H0. It is enough to prove that for every
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µ′ that only differs fromµ at information seth, i.e. satisfiesµ′(· | h′) = µ(· | h′) for

everyh′ , h, the assessment (σ, µ′) is consistent.

First we show that if supp(µ′) = supp(µ) then (σ, µ′) is consistent. Given the

system of beliefsµ′ we are going to construct a functionπ′ such as the one in

Lemma 3 that justifies it. Fix an arbitrary nodex∗ that belongs toh andY, the

support of bothµ andµ′. Let π′(c) = π(c) for everyc ∈P(x∗). For the rest of the

nodes inh andY we only modify the value taken byπ′ with respect toπ for just

one choice in its path. In symbols, for eachx ∈ ((h∩ Y) \ {x∗}) choose any action

cx ∈ (PA(x) \C) and letπ′(c) = π(c) for every otherc ∈ (P(x) \ {cx}). The value

of π′(cx) is calculated in order to adjust the relative values ofµ′ with respect toµ

appropriately:

π′(cx) =
µ′(x | h)
µ′(x∗ | h)

µ(x∗ | h)
µ(x | h)

π(cx). (4.3)

However, for eachx the choicecx may also belong to the path to a node that is

not in h. To keep track of those choices we let the setAh consists of those actions

whose value underπ′ has been assigned by (4.3). Likewise, the setYh consists of

those nodesy that belong to some information set inH0\{h} and that have an action

in their paths that belongs toAh. A node that belongs toYh may contain in its path

more than one choice inAh but, by assumption,Yh cannot contain two nodes that

belong to the same information set.

For eachy∗ ∈ Yh we maintainπ′(c) = π(c) for everyc ∈ (P(y∗) \ Ah). For the

rest of the nodesy ∈ (h(y∗) \ {y∗}) that belong toY, the support ofµ, we choose any

actioncy ∈ (PA(y)\C) and letπ′(c) = π(c) for every other actionc ∈ (P(y)\ {cy}).

We have to adjust the value ofπ′ to maintain in the information seth(y∗) the same

beliefs as inµ. To do that we offset the changes made in 4.3 so that

π′(cy) = π(cy)
∏

c∈PA(y∗)∩Ah

(

π(c)
π′(c)

)

. (4.4)

Again we can define the set of actionsAh(y∗) whose value underπ′ has been

defined by (4.4) and the setYh(y∗) of nodes that belong to some information set in

H0 \ h(y∗) and that satisfy (PA(y) ∩ Ah(y∗)) , ∅. The setAh(y∗) does not contain

two nodes from the same information set. Furthermore, since the conditions given

in Proposition 3 are not met, it does not contain nodes inh and, for anyy′∗ ∈ Ah, it

does not contain any node inh(y′∗) either.

Since the setH0 is finite, we can continue in the same fashion until all the

actions in the paths to nodes in information sets that belong toH0 are exhausted

without redefining any value ofπ′. Finally, we have to setπ′(c) = π(c) for every

unassignedc. One can check that the resultingπ′ satisfies equation (4.2) for the

system of beliefsµ′.

Now we prove that for anyx∗ ∈ h the basses (C,Y ∪ {x∗}) and (C,Y \ {x∗}) are

also consistent. We show it first for the basis (C,Y∪ {x∗}).
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Let Y′ = Y∪ {x∗}. As stated in Lemma 1 we are going to construct aC-labelling

L′ such thatx ∈ Y′ if and only if x minimizesFL′(·) over h(x). SetL′(c) = L(c)

for everyc ∈ PA(x∗) and for the rest of the nodesx , x∗ in h take an arbitrary

cx ∈ (PA(x) \C) and let

L′(cx) = L(cx) + FL(x∗) − FL(x). (4.5)

We fix L′(c) = L(c) for every other actionc ∈ (PA(x) \ {cx}). That is, we are

adjustingL′ so thatFL′(x) = FL′(x∗) for everyx ∈ Y.

We will assign the remaining values ofL′ recursively. For the same reasons as

before, we know that no value is going to be redefined. LetAh now be the set of

those actions whose value underL′ has been assigned in (4.5) and, similarly, letYh

now be the set of those nodes that belong to some information set inH0 \ {h} and

whose paths have an action inAh. For eachy∗ ∈ Yh we fix L′(c) = L(c) for every

actionc ∈PA(y∗) and for eachy ∈ (h(y∗)\{y∗}) select an arbitrarycy ∈ (PA(y)\C).

Let L′(c) = L(c) for everyc ∈ (PA(y) \ {cy}) and

L′(cy) = L(cy) +
∑

c∈PA(y∗)∩Ah

(

L′(c) − L(c)
)

.

We can continue in the same fashion until we have exhausted all the actions in the

paths to the nodes that belong to some information set inH0. In order to makeL′

completely defined letL′(c) = L(c) for every action that remains unassigned. It is

easy to check that the labellingL′ satisfies the condition given in Lemma 1 for the

basis (C,Y′).

To conclude it remains to show that for anyx∗ ∈ h the basis (C,Y \ {x∗}) is also

consistent. Take an arbitrarycx∗ ∈ (PA(x∗) \C) and letL′(cx∗) = L(cx∗)+1. We fix

L′(c) = L(c) for every other actionc ∈ (PA(x∗)\ {cx∗}) in the path tox∗ and also for

every actionc ∈ PA(x) in the path to any other nodex ∈ h different formx∗. The

next step is to assign the values ofL′ for those actions leading to nodes contained

in each information seth(y∗) ∈ H0 that satisfiescx∗ ∈ PA(y∗). Since hereafter

everything is analogous to the previous case we can conclude the proof. �

5. Sequentially RationalWeakly-Bayesian Assessments

In this section we consider extensive-form games and sequentially rational

weakly-Bayesian assessments. Obviously, if for an extensive-form every weakly-

Bayesian assessment is consistent then, for every payoff vector, every sequentially

rational weakly-Bayesian assessment is a sequential equilibrium.13 Suppose that

we are given an extensive-form where some weakly-Bayesian assessment is not

consistent. We want to address whether we can always find payoffs so that in the

13A sequentially rational weakly-Bayesian assessment is aweak perfect Bayesian equilibriumas

defined by Mas-Colell et al. (1995, Definition 9.C.3).
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resulting extensive-form game sequential equilibrium refines the set of sequentially

rational weakly-Bayesian assessments.

We first introduce some additional notation needed to define sequential rational-

ity. If players play according to the strategy profileσ the expected utility to playern

is then given by the expressionUn(σ) =
∑

z∈Z P(z | σ)un(z). Let Px(· | σ) be the

probability distribution generated onZ if players use the strategy profileσ and the

game starts at the decision nodex. (Note thatPx(· | σ) is always well defined.) The

expected utility to playern from the strategy profileσ at the information seth given

the system of beliefsµ is equal toUn(σ | h, µ) =
∑

x∈h µ(x | h)
∑

z∈Z Px(z | σ)un(z).

Definition 4. The assessment (σ, µ) is sequentially rational if at every information

seth the strategy of the player moving ath, say playern, satisfies

Un(σ−n, σn | h, µ) ≥ Un(σ−n, σ
′
n | h, µ) for everyσ′n ∈ Σn.

The next lemma asserts that if we can find weakly-Bayesian assessments that

are not consistent then, for some payoffs, there are behavioral strategies that are

part of sequentially rational weakly-Bayesian assessments that are notsequential

equilibrium strategies. The proof of the theorem consists of constructing such a

payoff vector.

Proposition 4. Consider an extensive-form where the set of set consistent assess-

ments is strictly contained in the set of weakly-Bayesian assessments. We can find

a game with that extensive-form such that the set of sequential equilibrium strate-

gies is a strict subset of the projection onΣ from the set of sequentially rational

weakly-Bayesian assessments.

Proof. Let K be such thatΦK , ∅ and eitherΦK−1 = ∅ or K = 1. Propositions

1 and 3 imply that we can find a carrierC andK information setsh1, . . . ,hK that

belong toX0(C) such that, for every consistent assessment (σ, µ) with C (σ) = C,

eachhi strictly contains a subset̂hi with
∏K

i=1
(∑

y∈ĥi
µ(y | hi)

)

< 1. That is, if

(σ, µ) is a consistent assessment there must be at least one information sethi ∈

{h1, . . . ,hK} with at least one nodex ∈ hi \ ĥi that satisfiesµ(x | hi) > 0.

For eachi = 1, . . . ,K let ci be an action available athi such thatσ(ci | hi) = 0.

(If at least one does not exist we only need to modify the carrierC appropriately.)

Assign a payoff equal to zero to the player who moves athi at every ending node

that follows some action inA(hi)\ {ci}. Also assign a payoff equal to zero to ending

nodes that follow actionci when taken at any node in̂hi . Assign a payoff equal

to 1 to every player elsewhere. A weakly-Bayesian assessment (σ, µ′) such that
∏K

i=1
(∑

y∈ĥi
µ′(y | hi)

)

= 1 is sequentially rational but not consistent. �

A possible criticism to the relevance of Proposition 4 is that (as the proof takes

advantage of) differences in strategies may only occur at parts of the extensive-

form that are not reached by the strategy profile. In principle, we wouldlike to
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show that if some weakly-Bayesian assessment is not consistent then, for some

payoffs, sequential equilibrium selects only a strict subset from the set outcomes

generated by sequentially rational weakly-Bayesian assessments. However this

may not be possible.

Consider Figure 9. The five open circles are the initial nodes, each of them

is selected with equal probability by Nature. Proposition 3 implies that in this

extensive-form some weakly-Bayesian assessment is not consistent. Those assess-

ments must attach probability zero to the two information sets of PlayerIV. That

means that the actionsl1, r2, l3 andr4 have to be taken with probability one which

leaves, for instance, actionsr1 and l2 as the two actions that Proposition 3 re-

quires forK = 2. (This corresponds to the carrierC∗ constructed in the proofs

of propositions 2 and 3.) In this example, consistent beliefs can be arbitrary at

the bottom information set of PlayerIV but they impose restrictions on the set of

consistent beliefs at her top information set. Weakly-Bayesian beliefs cantake, by

definition, arbitrary values at both information sets. Consider now any gamewith

that extensive-form. Whether or not actions actionsl1, r2, l3 and r4 are sequen-

tially rational does not depend on what is the behavior at the top information set of

PlayerIV. The reason is that that information set can only be reached from zero

probability nodes at positive probability information sets. This implies that if both

information sets of PlayerIV are reached with probability zero the strategy part of

a sequentially rational weakly-Bayesian assessment and a sequential equilibrium

strategy may only differ in behavior at PlayerIV ’s top information set. However,

behavior at that information set cannot affect the sequential equilibrium path.14

14 The same is true even if we consider concepts stronger than weakly-Bayesian such aspre-

consistent assessmentsas defined in the next section. In the extensive-form of Figure 9, for any
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6. Applications: StrengtheningWeakly-Bayesian Assessments

Weakly-Bayesian assessments offer a useful benchmark against which to com-

pare consistent assessments. Not only did such a comparison allow us to find the

maximal set of extensive forms where consistency never imposes restrictions at

zero probability information sets, but also disentangled the different restrictions

entailed by consistency. This in turn can help expand the set of extensiveforms for

which we can find the whole set of consistent assessments in a simple and intuitive

way.

We already mentioned that consistent and weakly-Bayesian assessment coin-

cide in standard signaling games (i.e. those with one sender, one receiver, different

types of sender and only one type of receiver). We can also obtain equivalence

within variations of this standard model of signaling games, such as the one in Fig-

ure 6 once we substitute both sets of consecutive binary choices of Player I by a

single three way choice (although substituting just one is enough). Blackboard ex-

amples such as the ones in figures 1 and 3 also feature the equivalence. Acommon

and easily observable feature of all these games is that nodes inside non-singleton

information sets have completely independent paths.

Instances of long-horizon games such that every weakly-Bayesian assessment

is consistent include those were every information set is always reachedwith posi-

tive probability, e.g. games where players always receive noisy signalsabout past

moves of their opponents (formalized by a move of Nature after each move) and

no player moves twice along any path of play.

In order to find a larger collection of extensive-forms where the computation of

consistent assessments can be done in a simple manner we now strengthen weakly-

Bayesian assessments. A natural way of doing so is to require that players also

update their beliefs at parts of the extensive forms that are not reachedby the

strategy profile.

6.1. Subgame Consistency

In what follows we consider assessments (σ, µ) such that, for every nodex that

is either a node where nature movesx ∈ P0 or a singleton information set{x} ∈ H:

Z(h′) ⊂ Z(x) andPx(h
′ | σ) > 0⇒ µ(x′ | h′) =

Px(x′ | σ)
Px(h′ | σ)

for everyx′ ∈ h′. (6.1)

That is, if the play of the game must go through the decision nodex before go-

ing throughh′ then beliefs ath′ must be computed via Bayes rule taking nodex

as reference point. Every assessment that satisfies (6.1) is a weakly-Bayesian as-

sessment and when coupled with sequential rationality induces a subgame perfect

assignment of payoffs to ending nodes, the sets of sequential equilibria and sequentially rational

preconsistent assessments coincide even though not every preconsistent assessment is consistent.
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equilibrium—and a perfect Bayesian equilibrium as defined by Ritzberger (2002,

Definition 6.2)—in every game with that extensive-form.

An assessments satisfying (6.1) may be consistent even if the extensive-form

satisfies the hypothesis of Proposition 1. The set of extensive-forms where this is

the case is not difficult to characterize once we understand Proposition 1. Games

played in stages where every time a new stage commences all previous uncertain-

ties are resolved constitute a good example as long as every “stage extensive-form”,

properly defined, does not satisfy Proposition 1 nor Proposition 3 (e.g.any se-

quence of simultaneous move games or any sequence of signaling games where

every uncertainty is resolved after each stage).

6.2. Updating Consistency

The second minimal strengthening of weakly-Bayesian assessments that we

consider is requiring that players always update their beliefs based on their own

previous beliefs and on the strategy profile. To capture this idea we useupdating

consistentassessments as introduced by Hendon et al. (1996) and Perea (2002). It

is important to notice that updating consistency requires that when a player updates

her beliefs she takes into account, whenever it must have been the case,her own

past deviations from the strategy profile. That is, every player recognizes that if

she actually has to move at some of her information sets it must be because shedid

not previously preclude that information set from happening. Formally:

Definition 5. An assessment (σ, µ) is aupdating consistentif for every playern,

every two information setsh, h′ ∈ Hn satisfyingh ≺ h′, and any pure strategy

sn ∈ Sn(h′) of playern,
∑

x∈h µ(x | h)Px(h′ | σ−n, sn) > 0 implies

µ(x′ | h′) =
∑

x∈h µ(x | h)Px(x′ | σ−n, sn)
∑

x∈h µ(x | h)Px(h′ | σ−n, sn)
for everyx′ ∈ h′.15 (6.2)

Hendon et al. (1996) and Perea (2002) show that updating consistency is suffi-

cient and necessary for the one-shot deviation principle to hold (givenany strategy

profile, if a player cannot improve her payoff by changing just one action at one

information set then she cannot improve by deviating to a new strategy). Weakly-

Bayesian assessments that are updating consistent are calledpreconsistentassess-

ments by Hendon et al. (1996).

As a quick illustration of preconsistent assessments we reconsider games where

players only receive noisy signals about past moves of their opponents. In

these games every updating consistent weakly-Bayesian assessment is consistent

whether or not players move twice along the same path of play.

15 Note that the sum in the numerator has only one nonzero term, i.e. the unique nodey in

information seth that satisfiesP(y) ⊂P(x′).
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As the name suggests, every preconsistent assessment is consistent. Weana-

lyze, however, the stronger concept obtained by selecting from the setof assess-

ments that satisfy (6.1) those that are updating consistent. Not to introduce yet an

additional concept we will call those preconsistent as well.

Definition 6. An assessment (σ, µ) is apreconsistentassessment if it satisfies both

(6.1) and (6.2).

It is easy to see that not every preconsistent assessment is consistent.Note

that players beliefs in a preconsistent assessment need not be common knowledge.

Hence, it is not be surprising that for preconsistent and consistent assessments to

coincide we need two different players not to share the same uncertainty. A gen-

eral condition for equivalence between preconsistent and consistentassessments is

given in the following theorem.

Theorem 2. The set of consistent and preconsistent assessment coincide in every

extensive form where the following two conditions hold:

(i) if h0 ∈ Hn makes the extensive-form satisfy Proposition 1 with choice c

then either c belongs to player n, i.e. c∈ A(h), h ∈ Hn; or there exists a

node x with{x} ∈ H (or x ∈ P0) such that Z(h0) ⊂ Z(x) and c∈PA(x);

(ii) if h1, . . .hK make the extensive-form satisfy Proposition 3 with choices

c1, . . . , cK then{h1, . . . ,hK} ⊂ Hn for some n∈ N ; if, moreover, Z(hi) ∩

Z(h j) = ∅ for all i , j then there exists an additional information set

h ∈ Hn with at most K nodes such that Z(hi) ⊂ Z(h) for all i = 1, . . . ,K

and({c1, . . . , cK} \ An) ⊂
⋃

x∈h PA(x).

(If h1, . . . ,hK are as in Proposition 3 some selections of thoseK information sets

may also make the extensive-form satisfy the hypothesis of the definition. Note

that for the theorem to hold we need the conditions to be satisfiedfor anyfamily of

information sets as in Proposition 3.)

Sketch of the proof.The idea is to use the same reasoning as in the proof of The-

orem 1. The main difficulty lies with how differently weakly-Bayesian and pre-

consistent assessments are determined. Given a basis (C,Y) we can identify the set

H∗(C,Y) of information sets where the value assumed byµ is not pinned down by

(6.1) or (6.2). We need to show that at those information sets consistency does not

impose any restrictions.

Recall that any path is totally ordered by≺. For each playern and each infor-

mation seth ∈ (H∗(C,Y) ∩ Hn) assign the choicecx = maxc
{(

PA(x) \ An
)

\C
}

to

every nodex ∈ h. It follows from (i) that no two nodes in the same information set

are assigned the same choice. For each two different nodesx, x′ ∈ h actionscx and

cx′ are different as well and satisfycx ∈ (PA(x) \ C) andcx′ ∈ (PA(x′) \ C). We

can choose trembles associated tocx andcx′ so as to make the relative likelihood

betweenx andx′ equal any value as we take the trembles to zero.
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However,cx may be the only choice in the path to some node in some other

information set that is not inC. Thus, suppose that for two different information

setsh1, h2 ∈ Hn such thath1 ≺ h2 there are nodesx1 ∈ h1 andx2 ∈ h2 for which

cx1 = cx2. Condition (i) implies that we must havePP(x1) ⊂PP(x2). Moreover,

µ(x1 | h1) = 0 wheneverh2 ∈ H∗(C,Y). If µ(y1 | h1) > 0 then every nodey2 in

h2 that followsh1 is assigned a choicecy2 <PA(y1), which in turn implies that the

tremble associated tocy2 cannot modify consistent beliefs ath1. Henceforth, we

can justify as consistent arbitrary beliefs ath2 when those are not given by (6.2).

We can do so by adjusting trembles associated to choices that are either are not

the path to any node inh1 or, if they are, the corresponding node is assigned zero

probability by the system of beliefs. In other words, under the condition ofthe

theorem, preconsistent assessments will not fail to be consistent due to a “wrong”

assignment of beliefs ath2 as long as the value of beliefs up to information seth1

agrees with consistency.

Consider now an indexed family of information sets{hi}
K
i=1 ⊂ (H∗(C,Y) ∩ Hn)

such thatZ(hi) ∩ Z(h j) = ∅ for all i , j. Consider further the existence of an

indexed family of pairs of nodes{(xi , yi)}Ki=1 such thatxi , yi ∈ hi andcxi = cyi+1

for every i = 1, . . . ,K − 1. By Proposition 3 consistency imposes restrictions on

{hi}
K
i=1 if we also havecxK = cy1. In such a case, by assumption, there must be an

information seth ∈ Hn with at mostK nodes that precedes every information set

in {hi}
K
i=1. Moreover, some node, sayx ∈ h must belong toY andcxi ∈ PA(x) for

somei, 1 ≤ i ≤ K. Sincehi ∈ H∗(C,Y) the choicecxi is not the maximal element in

{(PA(x) \ An) \C
}

. This provides a contradiction and shows that consistency does

to impose restrictions on{hi}
K
i=1 beyond those imposed by preconsistency. �

The two conditions in the last proposition guarantee that, whenever consistent

beliefs cannot be arbitrarily chosen in a group of information sets controlled by

playern they are preceded by another information set of playern, that she can take

as reference point to apply Bayesian updating. In particular, the second part of

condition (ii), by imposing restrictions in the number of nodes of that reference

point, ensures that the relative probability between zero probability nodesdoes not

need to be specified to compute consistent beliefs in the following information sets.

Before giving examples of extensive-forms where Theorem 2 is applicable it

is convenient to analyze one where it is not so. Figure 10 contains one such an

instance. The two last information sets of PlayerII satisfy Proposition 3 with

K = 2 and associated choicesl1 andm1. They are preceded by another information

set of PlayerII but it contains three nodes. This permits the left-hand node and

middle node to not being ordered in terms of their likelihood by the beliefs at that

information set thereby not imposing enough restrictions on preconsistentbeliefs

at the two last information sets.
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On the other hand, Theorem 2 can be applied to any game with one player who

moves every other turn, who is the only player with nonsingleton information sets

and whose information sets are totally ordered. It can also be applied to anytwo-

player game, with or without moves of Nature, where PlayerII plays every other

move, every information set of PlayerI is a singleton, and every information set of

PlayerII has at most two nodes. In this last family of games, players do not have

common uncertainties so we do not need to worry about their beliefs contradicting

each other; playerII moves sufficiently often, meaning that there is an explicit

information set whose beliefs must be specified and updated via Bayes rule; and,

moreover, the fact that information sets have at most two nodes implies that notwo

nodes are given zero probability by any system of beliefs in the same information

set. A subset of this family is formed bymulti-period games with observed actions

as defined by Fudenberg and Levine (1983) and analyzed in Fudenberg and Tirole

(1991) where PlayerI has two possible types and PlayerII can only be of one type.

As we show in the next section, this family is enough to characterize consistency

in multi-period games with observed actions with more than two players and with

at most two types per player.

6.3. Multi-Period Games with Observed Actions

A multi-period game with observed actionsis played in stages. In the first stage

or period Nature chooses independently—we assume here so for simplicity—the

type of each player and that information is only revealed to that player. At each

following stage players move simultaneously and at the end of the period their

moves are fully revealed. Therefore, the only uncertainty during the gamecon-

cerns the initial move of Nature. A small warning is appropriate: unlike us,

Fudenberg and Tirole (1991) assign the same label to choices of a playerthat are

available at different information sets but that the opponents observe as identical.

We can recover Proposition 3.1 in Fudenberg and Tirole (1991) which charac-

terizes the set of consistent assessments in every multi-period game with observed
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actions where any player has at most two types. Fudenberg and Tirole (loc. cit.) do

so requiring that beliefs about playern’s type depend only on playern’s actions and

through a commonality requirement on beliefs. Instead of giving such conditions

here we will take an alternative route by decomposing the whole game into pieces.

Afterwards, we will be able to apply Theorem 2 to each of those pieces.

Indeed, given a multi-period game with observed actions, for each playern we

can construct a derived two-player multi-period game. In this derived game, Nature

moves first and chooses the type of playern with the same probability distribution

as in the original game. After the initial move of Nature, playern has two singleton

information sets (as many as possible types). Each information set has the same

moves available as the corresponding first information set of playern in the original

game. The next actor to move in this derived game is anobserverof playern. The

observer has as many information sets as previous moves were available in each

of the singleton information sets of playern. Each of these information sets has

two nodes (as many as different types of playern) and as many moves available as

action profiles of playern’s opponents in the first period of the original game. The

moves of the observer recreate, jointly with playern’s moves, the histories that can

occur in the original game. So after each move of the observer (action profile of

the opponents of playern), a singleton information set of playern follows again

with the same actions available as in the stage of the original multi-period game

that is preceded by the same history.

If we continue with this construction we obtain a two-player multi-period game

where we can apply Theorem 2. Moreover, the set of consistent assessments of the

original multi-period game can be characterized by theN different sets of consis-

tent assessments of the different derived games. (By the same token we we can also

recover Proposition 3.2 in Fudenberg and Tirole (1991) which characterizes the set

of consistent assessments in every multi-period game with two stages. In this case

the derived game that we obtain satisfies the hypothesis of Theorem 1.)

Weak independence (3.1) is the reason why consistency in theN-player multi-

period game can be characterized through consistency of theN different two-player

games where one player plays the role of the observer. This is true in every multi-

period game with observed actions no matter how many types or strategies (as

long as the numbers are finite). The reason why preconsistency cannotbe used

to characterize consistency when a Player has three types or more is illustrated in

Figure 11. A similar Figure can be found in Fudenberg and Tirole (1991, Figure 1)

or in Osborne and Rubinstein (1994, Figure 235.1) to explain basically the same

point. We can look at it here, however, from the point of view of Theorem 2 and

see that it has the same relevant characteristic as Figure 10. The figure represents a

period of a two-player multi-period game with observable actions where Player II

(who can be thought as theobserverof our previous construction) has one type
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II[0] [0] [1]

l1

I
l∗2

I
l3

I

II[1] [0] [0]

m∗1 m2 m3
II[0] [1] [0]

r1 r2 r∗3
II[0] [0] [1]

Figure 11.

and PlayerI has three possible types. After the history that precedes that period,

Player II gives a belief equal to one to the rightmost node in her first informa-

tion set. For simplicity, only one choice is available at that information set, after

which is PlayerI ’s turn to move. The starred choices are those that PlayerI takes

with positive probability in the strategy profile. The information set receivingthe

l’s actions and the one receiving them’s actions make the extensive form satisfy

Proposition 3 withK = 2. The actions associated can be found in the paths to the

two zero probability nodes on the first PlayerII ’s information set. Note that that

information set has three nodes and not two as required by Theorem 2. This allows

that the leftmost and middle nodes of that information set not be given a likelihood

ordering by the system of beliefs.
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