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Stock Market

LORETTI DOBRESCU,� MIHAELA NEAMTU,y DUMITRU OPRISz

Abstract

The time evolution of prices and savings in a stock market is modeled by a discrete-

delay nonlinear dynamic system. The proposed model has a unique and unstable

steady-state, so its time evolution is determined by the nonlinear e¤ects acting out of

the equilibrium. We perform the analysis of the linear approximation through the study

of the eigenvalues of the Jacobian matrix in order to characterize the local stability

properties and the local bifurcations in the parameter space. If the delay is equal

to zero, Lyapunov exponents are calculated. For certain values of the parameters,

we prove that the system has a chaotic behaviour. The discrete nonlinear model is

associated with a discrete stochastic model. For the liniarization of this model, we

establish the conditions for which the mean and quadratic mean values of the state

variables are asymptotically stable. Some numerical examples are �nally given to

justify the theoretical results.

Keywords: price index, mutual fund, stock market, nonlinear dynamic model,

Lyapunov exponents.

1 Introduction

Describing the stock market behavior has been one of the main cornerstones in the modern

theory of �nance. Indeed, identifying models able to explain the workings of the �nancial

markets signi�cantly improved our general understanding and informed e¢ cient policies for

the stock market participants. In this context, asset prices were shown to exhibit a volatile

or erratic behavior. As a result, a rich part of the literature on this topic (Kyle, 1985; Lo

�University of New South Wales, School of Economics, Sydney 2052 Australia (dobrescu@unsw.edu.au).
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and MacKinlay, 1988; Bouchaud, 2005; Chiarella and Wang, 2006; Dieci et al., 2006) has

focused on di¤erent market structures or modeling approaches (continuous vs. discrete), all

meant to capture this behavior.

This paper extends the literature by considering a discrete-delay time deterministic model

that captures the interactions between the stock market price index and the net stock of

savings collected by a mutual fund. We focus on this framework as it accurately re�ects

the current structure of �nancial markets, characterized to some extent by the removal

of intermediaries. Currently, a portion of the funds involved in saving and �nancing �ows

directly in the markets instead of being passed through the standard intermediary operations

(i.e., banks lending, deposit operations, etc.). This is due to the public�s interest in directly

or indirectly investing in the stock market. Those who invest directly are considered �dealers�

and are directly admitted to securities negotiation. Alternatively, the agents can invest in

professionally managed mutual funds. These funds are collective investment schemes that

pool investors and buy shares in a portfolio of stocks, bonds, and other securities. These

agents represent the �savers�,who intend to invest in the stock market but, being scarcely

informed, prefer to underwrite shares of a mutual fund. The link between the two categories

is the fact that, in the model, the dealers choose the securities on the market and sell fractions

of the whole portfolio (shares of the mutual fund).

The paper proceeds as following: Section 2 describes the general economic motivation and

structure of the model that considers savings at time n�m (m being the delay). We show

that, subject to an economically feasible set of parameters, the model has a unique steady

state. In Section 3 we analyze the characteristic equation and the value of the bifurcation for

the parameter a (that determines the agent�s attitude to realize capital gains), when there

is a delay and when there is not. Section 4 derives the normal form, and Section 5 o¤ers a

numerical example for �xed parameters. For the �no delay�case (m = 0), in Section 6 we

present the method for assigning the Lyapunov exponents. For certain parameter values,

it follows that the �rst Lyapunov exponent is positive and the system behaves chaotically.

Using a program in Maple 12, we visualize the orbits of the state variables. Section 7 analyses

the stochastic perturbation of the deterministic system and establishes the conditions for
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which the mean and quadratic mean values of the state variables are asymptotically stable. In

Section 8 we perform the numerical simulations for the stochastic case. Section 9 concludes.

2 The deterministic discrete-delay model

We assume one day as unit of time. This allows us to give the following simple description

of the rules that regulate the time evolution of the stock market price index, p; and of the

net stock of savings collected by the mutual fund, s. The model structure is based on the

assumption that there are two di¤erent kinds of economic agents interacting in the market

(dealers and savers), and they belong to two distinct markets. As a result, the dynamic

process denoting the evolution of the state variables (s; p) will re�ect this �segmentation�.1

If the price level is pn and the savings collected by the funds is sn�m at times n � m,

m � 0, then at time n + 1, the stock market, where only the dealer participates to the

negotiations, will open with a new value of the index pn+1, determined by a law of the kind:

pn+1 � pn = g (sn�m; pn) : (1)

This equation captures the direct dependency of the market price variations on the volume of

capital detained in the mutual funds and on the level of price currently reached. Afterwards,

the stock market being closed, the savers, who act by underwriting shares of the mutual fund

or asking for the repayment of the ones already held, will buy or sell. Such choices give rise

to the new value of savings, through a law of the kind:

sn+1 � sn = f (sn�m; pn+1; pn+1 � pn) : (2)

Equation (2) captures the savers�responsiveness to the stock market: the savers will choose

the funds based not only on the actual price level for the past two periods, but also on the

price trend.

The two functions, g and f , are supposed to be at least C1 and to satisfy the following

assumptions:

1See Bischi and Valori, 2000.
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1:)
@g

@sn�m
> 0; 2:)

@g

@pn
< 0; 3:)

@f

@sn�m
< 0; 4:)

@f

@pn+1
< 0; 5:)

@f

@ (pn+1 � pn)
> 0:

It is easy to verify these assumptions, since the previous �ve hypotheses are su¢ cient to

ensure the uniqueness of the equilibrium, if it exists. Such equilibrium values, say s and p,

can be considered �natural levels�, and deduced from general macroeconomic considerations

on what agents perceive as the reference value to which they compare the current situation in

order to make the investment decision. Under these assumptions the model can be rewritten

as:

sn+1 � sn=F (sn�m � s; pn+1 � p; pn+1 � pn) ;

pn+1 � pn=G (sn�m � s; pn � p) : (3)

The functions F and G satisfy the same �rst-order conditions de�ned for f and g, and

in this context it is natural to claim that G(0; 0) = F (0; 0; 0) = 0.

After the following change of variables:

Sn = sn � s; Sn�m = sn�m � s; Pn = pn � p; (4)

we obtain the system:

Sn+1 � Sn=F (Sn�m; Pn+1; Pn+1 � Pn)

Pn+1 � Pn=G (Sn�m; Pn) : (5)

for which the unique equilibrium is the origin. However, these functions are too general

to attempt an analytic analysis. Following Antoci (1989), and considering the assumptions

1.)-5.) about the prevailing behavior of the agents, we specify the map for F and G in a

polynomial form as
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F (x; y; z)=�Ay �Bx3 +Hz;

G(x; y)=Cx�Dy3:

The system is therefore given by:

Sn+1 � Sn=�APn+1 �BS3n�m +H(Pn+1 � Pn)

Pn+1 � Pn=CSn�m �DP 3n ; (6)

where all the coe¢ cients A;B;C;D;H, whose meaning can be easily deduced from the

previous discussion about the assumptions 1:):::5:), are real and positive.2 The �rst equation

shows that close to the equilibrium, the dynamics is in�uenced positively by the price trend

and negatively by the deviation from the natural level p. This dynamics depends only

marginally on the di¤erence (sn � s). However, if jsn�sj is su¢ ciently large, it will determine

the system to converge towards the equilibrium. Similarly, for the second equation, the

dynamics of the prices in a neighborhood of the equilibrium is particularly sensitive to

deviations of sn from s. In this case, the di¤erence (pn � p) is important to redirect pn

towards p for values of pn far from the equilibrium.

Close to the equilibrium, each variable�s dynamics is endogenously determined with re-

spect to the other variables in the model. Also, the supply of securities is rather inelastic

with respect to the price deviation from the natural level. However, when the system is

far from the equilibrium, only a high deviation of the savings from their natural level will

convince the savers to rebalance their portfolios.

Denoting Sn�m = x1; :::Sn = xm+1; Pn = xm+2, the time evolution of the system (6) is

obtained by the iteration of the (m+ 2)-dimensional map, de�ned by:

2From the qualitative analysis perspective, this system is part of the autonomous polynomial systems
(Andronov and Chaikin, 1949; Andronov et al., 1973; Ye Yian Qian, 1986).
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0BBBBBBBBBB@

x1

:::

xm

xm+1

xm+2

1CCCCCCCCCCA
!

0BBBBBBBBBB@

x2

:::

xm+1

cex1 � b(x1)3 + xm+1 � axm+2 � de(xm+2)3

cx1 + xm+2 � d(xm+2)3

1CCCCCCCCCCA
; (7)

and

a = A; b = B; c = C; d = D; e = H � A: (8)

According to the above discussion, the parameters a; b; c and d are positive, whereas the

coe¢ cient e can take negative values conditional on e + a > 0 being satis�ed. Speci�cally,

b and d represent the �stabilizing�coe¢ cients, and measure the force with which the system

tends to converge to the equilibrium once is su¢ ciently far from it. The coe¢ cient e can be

interpreted as an index of responsiveness of the savers, and thus can be positively correlated

with the speed of adjustment of their expectancies, becoming an index of the �speculative

nature�of the market.

We now turn to studying the necessary and su¢ cient conditions for the parameters a; b; c;

and d such that the system (6) may accept a closed and stable curve in the neighborhood

of the �xed point (0; 0; ::; 0) 2 Rm+2. For m = 0, the system (6) is analyzed in Bischi and

Valori (2000), but to �x notation we will present both cases (i.e., m = 0 and m � 1).

3 The analysis of the characteristic equation for (7)

The �rst step in the qualitative analysis of the dynamic model given by (6) is the localization

of the steady states of the (m + 2)-dimensional map given by (7). In our case, using Ford

and Wulf (1998) and Kuznetsov (1995), the following results hold:

Proposition 1 (i). For each economically feasible set of parameters, the (m+ 2) -dimensional

map given by (7) has the unique steady state O = (0; 0; ::; 0) 2 Rm+2.
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(ii). If m = 0, the Jacobi matrix of (7) computed at O is:

A1 =

0B@1 + ec�a
c 1

1CA ; (9)

and if m � 1;the Jacobi matrix of (7) computed at O is:

A1 =

0BBBBBBBBBB@

0 1 ::: 0 0

::: ::: ::: ::: :::

0 0 ::: 1 0

ce 0 ::: 1 �a

c 0 ::: 0 1

1CCCCCCCCCCA
: (10)

(iii). If m = 0; the characteristic equation is given by:

�2 � (2 + ce)�+ 1 + ce+ ac = 0; (11)

and if m � 1;the characteristic equation is given by:

�m(�� 1)2 � ce(�� 1) + ac = 0: (12)

Given the respective eigenvalues of equations (11) and (12), the instability of O follows

for any feasible set of the parameters. Consequently, the time evolution of the variables Sn

and Pn never converges to the equilibrium values.

However, we are interested to understand the types of non-stationary asymptotic dy-

namics of the model. Thus, we will focus our analysis on the sets of parameters which are

out of the economically feasible region. Also, the local bifurcations of A1 for economically

non-feasible sets of parameters may provide useful insights on the behavior of the model in

the feasible parameter region.

In the following analysis, we shall consider �x positive values of the parameters b; c; d

and we will investigate the e¤ect of changes in the parameters e 2 R and a 2 R. The choice
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of the parameters a and e as bifurcation parameters is related to the fact that they give a

measure of the two opposite forces that determine the relative weight of the agent�s attitude

to realize the capital gains, measured by the parameter a, and their speculative attitude,

measured by the parameter e.

If m = 0, using Kuznetsov (1995) and Mircea et al. (2003), the following results hold:

Proposition 2 (i). If c > 0, e 2
�
�4
c
; 0
�
�
�
�3
c
;�2

c

	
and a = a0 = �e, then the char-

acteristic equation has two eigenvalues and there exists a unit circle, given by �1(a0) =

exp(i�(a0)); �2(a0) = �1(a0); where �(a0) = arccos
�
2+ce
2

�
:

(ii). Consider the variable transformation:

a (�) = a0 +
(1 + �)2 � 1

c
; (13)

where j�j is su¢ ciently small.

With (13), the characteristic equation (11) becomes

�2 � (2 + ce)�+ (1 + �)2 = 0: (14)

The eigenvalues of equation (14) are given by

�1(�) = (1 + �) exp(i!(�)); �2(�) = �1(�); (15)

where

!(�) = arccos

�
2 + ce

2(1 + �)

�
: (16)

(iii). If � = �1(�) is the eigenvalue of (14), the eigenvectors q 2 R2; p 2 R2 corresponding

to A1 and AT1 respectively, have the following components:

q1 = 1; q2 =
1 + ec� �

a
; p1 =

1� �
2(1� �) + ec; p2 =

a

2(1� �) + ecp1; (17)

where a = a(�):
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From Proposition 2, it follows that �1(0) = �1(a0): Also, all the assumption for the

occurrence of a Neimark-Sacker hold for the parameter � and, so, also for a0.

If m = 1, using Ford and Wulf (1998) and equation (12), the following result holds:

Proposition 3 (i). If c > 0, e 2
�
�1
c
; 0
�
and a = a0, where

a0 =
1� ec�

p
1 + ec

c
; (18)

then the characteristic equation has two eigenvalues and there exists a unit circle, given

by �1(a0) and �2(a0) = �1(a0); and an eigenvalue �3(a0) with absolute value less than one:

�1(a0) = �2(a0) = exp

�
2� c(a0 + e)

2
i

�
; �3(a0) = �c(a0 + e): (19)

(ii). For j�j su¢ ciently small, consider the variable transformation:

a(�) = a0 + f(�); (20)

where

f(�) =
(1 + �)2(1�

p
(1 + �)2 + ec)� (1�

p
1 + ec)

c
: (21)

With (20), the characteristic equation (12) becomes

�3 � 2�2 + (1� ec)�+ c(a0 + f(�) + e) = 0: (22)

The eigenvalues of equation (22) are given by

�1(�)= (1 + �) exp(i!(�));

�2(�)=�1(�);

�3(�)=�
c(a0 + f(�) + e)

(1 + �)2
; (23)
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where

!(�) = arccos

�
2(1 + �)2 � c(a0 + f(�) + e)

2(1 + �)2

�
: (24)

(iii). If � = �1(�) is the eigenvalue of (22), the eigenvectors q 2 R3; p 2 R3 corresponding

to A1 and AT1 respectively, have the following components:

q1=1; q2 = �; q3 =
ec+ �(1� �)

a
; (25)

p1=
(�� 1) (�� 1)2

� (�� 1) (�� 1)2 � (ec+ 1� �)(�� 1)
; p2 =

p1
�
; p3 =

p1
(�� 1)�2 : (26)

From Proposition 3, it follows that �1(0) = �1(a0), �3(0) = �3(a0) and all the assumptions

for the occurrence of a Neimark-Sacker hold for the parameter � and, so, also for a0.

4 The normal form of the map (7)

In order to write the normal form of the map (7), we take into account that the RHS of the

system (7) contains only �rst and third order terms and apply the method from Kuznetsov

(1995).

If m = 0, the following result holds:

Proposition 4 (i). The normal form for equation (7) is given by

zn+1 = �(�)zn +
1

6
g30z

3
n +

1

2
g21z

2
nzn +

1

2
g12znzn

2 +
1

6
g03zn

3; (27)

where �(�) is given by equation (15), zn 2 C2 and

g30= g30(�) = �6bp1 � 6d(p1e+ p2)q32;

g21= g21(�) = �6bp1 � 6d(p1e+ p2)q2q22;

g12= g12(�) = �6bp1 � 6d(p1e+ p2)q22q2;

g03= g03(�) = �6bp1 � 6d(p1e+ p2)q23; (28)

with p1; p2; q2 given by (17).
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(ii). Let us consider l1(0) = Re(exp(�i!(0)g21(0))), where !(0) is given by (16). The

condition for a supercritical bifurcation is l1(0) < 0.

(iii). The orbits of system (6), are given by

Sn = zn + zn; Pn = q2zn + q2zn; (29)

where zn is a solution of equation (26).

If m = 1, the following result holds:

Proposition 5 (i). The normal form associated to equation (7) yields

zn+1 = �(�)zn +
1

2
g21(�)z

2
nzn; (30)

where �(�) is given by equation (23), zn 2 C2 and

g21 = g21(�) = �6bp1 � 6d(p1e+ p3)q3q32;

with p1; p2; q3 given by (25)-(26).

(ii). Let us consider l1(0) = Re(exp(�i!(0)g21(0))), where !(0) is given by (24). The

condition for a supercritical bifurcation is l1(0) < 0.

(iii). The orbits of system (6), are given by

Sn= q2zn + q2zn + k1�3(�)
n;

Pn= q3zn + q3zn + k1

�
ec+ �3(�)� �3(�)2

a

�n
;

Sn�m=Un = zn + zn + k1; (31)

where zn is a solution of equation (29), �3(�) is given by equation (23) and k1 2 R.

5 Numerical simulation for the deterministic model

Using a Maple 12 program, for m = 0 and b = 0:5; c = 0:4, d = 0:1, e = �2, � = �0:001,

l1(0) = 0:2449, n = 1300, just after the Neimark-Hopf bifurcation, a trajectory is numerically
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generated starting from an initial condition close to the �xed point O. The bifurcation value

is a0 = �e and the trajectory is presented in the phase plane (Sn; Pn) in Figure 1.

For m = 1 and b = 0:5, c = 0:4, d = 0:1, e = �2, � = �0:001, l1(0) = 0:2449, n = 1300,

just after the Neimark-Hopf bifurcation, we numerically generate a similar trajectory, starting

from an initial condition close to the �xed point O. The bifurcation value in this case is

di¤erent from the m = 0 case, i.e. a0 = 3:3819: As before, we present the trajectory in the

(Sn; Pn) phase plane in Figure 2 and in the (Un; Sn) phase plane in Figure 3.

Fig 1. The trajectory in the phase plane (Sn; P n)

6 The Lyapunov exponent for the system (6) with no delay

In this section we analyze the behavior of system (6) solutions for m = 0 and A > 0; B <

0; C > 0; D < 0; H > 0 and calculate the Lyapunov exponents.
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The system is given by:

xn+1=(1� C(A�H))xn � Ayn �Bx3n +DAy3n

yn+1=Cxn + yn �Dy3n; (32)

where xn = Sn and yn = Pn:

The Lyapunov exponents can be obtained3 by solving the system (32) and the system:

zn+1=arctan(
F1(x)

F2(x)
) (33)

�n+1=�n + ln (jcos zn cos zn+1(f11 � f21 tan zn+1)� sin zn cos zn+1(f12 � f22 tan zn+1)j)

�n+1=�n + ln (jsin zn cos zn+1(f11 tan zn+1 + f21) + cos zn cos zn+1(f12 tan zn+1 + f22)j) ;

where:

f11 =
@f1
@y1

; f12 =
@f1
@y2

; f21 =
@f2
@y1

; f22 =
@f2
@y2

;

f1 = (1� C(A�H))y1 � Ay2 �By31 +DAy32;

f2 = Cy1 + y2 �Dy32;

F1(x) = f22 sin zn � f21 cos zn;

F2(x) = f11 cos zn � f12 sin zn:

The Lyapunov exponents are:

� = lim
n!1

�n
n
; � = lim

n!1

�n
n
: (34)

For parameter values A = 0:4; B = �0:3; C = 0:2; D = �0:1; H = 0:2; the Lyapunov

exponents are � �= 0:047; � = �0:178: Since � > 0; it follows that the system (32) is chaotic.

A similar analysis can be conducted for m = 1:

3See Janaki and Rangarajan (1999).
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7 The stochastic discrete-delay model

Let (
; F; P ) be a probability space, and let �n = �(n;$); n 2 N; $ 2 
 be a random

variable with null mean value, E(�n) = 0, and quadratic mean value E(�
2
n) = �

2, with � > 0

(see Kloeden and Platen, 1995).

For m = 0, the stochastic perturbation of the deterministic system (6) is

Sn+1=Sn � APn+1 �BS3n�1 +H(Pn+1 � Pn) + b1Sn�n

Pn+1=Pn + CSn�1 �DP 3n + b2Pn�n; (35)

with b1; b2 2 R.

The linear discrete dynamic stochastic model associated to the system (35) in the �x

point (0; 0) 2 R2 is4

un+1 = A1un +Bun�n; (36)

where un = (u1n; u
2
n)
T 2 R2; A1 =

0B@1 + ec�a
c 1

1CA and B =

0B@b1 0
0 b2

1CA :
We note

E(un)=
�
E(u1n); E(u

2
n)
�T
= En;

E(unu
T
n )=

0B@(v1n)2 v12n
v12n (v2n)

2

1CA = Vn; (37)

where (v1n)
2
= E ((u1n)

2), v12n = E (u1nu
2
n) and (v

2
n)
2
= E ((u2n)

2).

Proposition 6 (i). The mean values En satisfy the system of equations

En+1 = A1En; n 2 N: (38)

Proof. Since E(�n) = 0, from (36) it directly results (38).

4See Babus and de Vries (2010).
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(ii). The quadratic mean values Vn satisfy the system of equations

Vn+1 = A1VnA
T
1 + �

2BVnB
T ; n 2 N: (39)

Proof. The system (36) yields

un+1u
T
n+1 = A1unu

T
nA

T
1 + �n(A1unu

T
nB

T +Bunu
T
nA

T
1 ) + �

2
nBunu

T
nB

T (40)

and since E(�n) = 0 and E(�
2
n) = �

2, from (40) it follows (39).

From (38) and (39) it follows that:

Proposition 7 (i). The characteristic polynomial for the system (38) is

P1(�) = det(�I � A1): (41)

(ii). The characteristic polynomial for the system (39) is

P2(�) = det(�I � A2); (42)

where

A2 =

0BBBB@
(1 + ec)2 + �2b21 a2 a (1 + ec)

c2 1 + �2b21 2c

c (1 + ec) �a c (1 + ec)� a+ �2b1b2

1CCCCA : (43)

(iii). If the characteristic roots of equation P1(�) = 0 are in absolute value less than one,

then the mean values of the variables in (38) are asymptotically stable.

(iv). If the characteristic roots of equation P2(�) = 0 are in absolute value less than one,

then the quadratic mean values of the variables in (39) are asymptotically stable.

A similar analysis can be performed for the stochastic system for m = 1.
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8 Numerical simulation for the stochastic system

Consider b = 0:5, c = 0:4, d = 0:1, e = �2, b1 = 0:03, b2 = 0:02 and � = 0:2. For

a = �e� 0:01, the roots of the equation P1(�) = 0 are �1 = 0:6� 0:79i and �2 = 0:6+0:79i,

and so, the mean values of the state variables in expression (36) are asymptotically stable.

The roots of the equation P2(�) = 0 are �1 = �0:27�0:95i, �2 = �0:27+0:95i and �3 = 0:99,

and so, the quadratic mean values of the state variables in (36) are asymptotically stable.

The trajectories in the phase plane (Sn($); Pn($)) ; (n; Sn($)) and (n; Pn($)) are presented

in Figures 4 - 6, respectively.

Fig 4. The trajectory in the phase plane (Sn($); P n($))

Fig 5. The trajectory in the phase

plane (n; Sn($))

Fig 6. The trajectory in the phase

plane (n; P n($))

16



Similarly, for a = �e + 0:1, it follows that the roots of the equation P1(�) = 0 are

�1 = 0:6 � 0:8i and �2 = 0:6 + 0:8i, and so, the mean values of the state variables in

expression (36) are cyclical. The roots of the equation P2(�) = 0 are �1 = �0:28 � 0:96i,

�2 = �0:28 + 0:96i and �3 = 1:004, and so, the quadratic mean values of the state variables

in (36) are unstable. The trajectory in (Sn($); Pn($)) plane is presented in Figure 7, while

the trajectories in the (n; Sn($)) and (n; Pn($)) are given in Figure 8 and 9, respectively.

Fig 7. The trajectory in the phase plane

(Sn($); P n($))

Fig 8. The trajectory in the phase

plane (n; Sn($))

Fig 9. The trajectory in the phase

plane (n; P n($))
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9 Conclusions

This paper developed a deterministic model on the time evolution and interactions between

savings and the price level in a stock market. Although not based on the market microstruc-

ture or the optimizing behavior of the agents, it gives a fairly general description of the

main (nonlinear) interactions between the two kinds of agents that we assume are acting in

two di¤erent sections of the market: the dealers, administrators of mutual funds, directly

admitted to the securities negotiation, and the savers, who, after taking their investment

decision, buy or sell shares of the mutual funds.

The model takes into account the savings sn�m collected by funds at the time (n �m),

for m = 0 and m = 1. Considering parameter a as the bifurcation parameter, we obtained

the normal form of the model. Knowing its solution, we described the dynamics of the model

and show that for certain parameter values, the system display a chaotic behavior due to

the fact that the �rst Lyapunov exponent is positive.

Furthermore, we describe the stochastic perturbation model associated with the deter-

ministic model and establish the conditions for which the mean and quadratic mean values

of the state variables are asymptotically stable.
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