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Abstract

We study the performance of Bayesian model averaging as a forecasting
method for a large panel of time series and compare its performance to prin-
cipal components regression (PCR). We show empirically that these forecasts
are highly correlated implying similar mean-square forecast errors. Applied to
forecasting Industrial production and inflation in the United States, we find that
the set of variables deemed informative changes over time which suggest tem-
poral instability due to collinearity and to the of Bayesian variable selection
method to minor perturbations of the data. In terms of mean-squared forecast
error, principal components based forecasts have a slight marginal advantage over
BMA. However, this marginal edge of PCR in the average global out-of-sample
performance hides important changes in the local forecasting power of the two
approaches. An analysis of the Theil index indicates that the loss of performance
of PCR is due mainly to its exuberant biases in matching the mean of the two
series especially the inflation series. BMA forecasts series matches the first and
second moments of the GDP and inflation series very well with practically zero
biases and very low volatility. The fluctuation statistic that measures the relative
local performance shows that BMA performed consistently better than PCR and
the naive benchmark (random walk) over the period prior to 1985. Thereafter,
the performance of both BMA and PCR was relatively modest compared to the
naive benchmark.

1 Introduction

To overcome the challenges of dimensionality, many forecast approaches proceed by
somehow reducing the number of predictors and three strands of the literature emerge.
The first uses factor models and principal components regression (PCR). The second
performs some sorts of variable selection to choose the “relevant” predictors and shrink
to zero the coefficients of the noninformative predictors. Such methods include among
others shrinkage regression such as ridge and lasso. The third is based on model
averaging techniques and combines forecasts from all models.

∗School of Economics, The University of New South Wales, Sydney 2052 Australia. Email:
rouysse@unsw.edu.au.
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Factor models are successfully used in forecasting with large number of predictors
(Stock and Watson (2002a,b)). The diffusion index forecasts uses principal component
regression (PCR) to summarize the information in all the predictors in a small number
of factors (indexes). Forecasts that are based on these factors use information from all
the predictors. However, this approach may not be optimal since the factors are created
with no reference to the variables to be predicted. The factors are ranked according
to the size of eigenvalues which is related to the amount of information extracted from
the explanatory variables (not the target variable for forecasting) and it is possible
that some factors associated with large eigenvalues have no explanatory power while
some with small eigenvalues do have explanatory power for the dependent variable. To
address this caveat, Bai and Ng (2008) use “targeted diffusion index forecasts” which
target the estimation of the factor structure to the objective of forecasting by first
pre-selecting a set of target predictors on which factor analysis is performed. They
find that targeting predictors provides flexibility to adapt to parameter instability in
the data and thus performs better than standard diffusion index forecasts. However,
this approach still suffers from dimensionality if the factors are to be considered non-
sequentially in the forecasting equation.

The idea of combining forecasts goes back to the work of Bates and Granger (1969)
which pioneered the developing of theory of forecasts combination. See Clemen and
Winkler (1986), Diebold and Lopez (1996), Hendry and Clements (2002) for excel-
lent bibliography and reviews. Model averaging provides a kind of insurance against
selecting a very poor model and can also avoid model selection instability by weight-
ing/smoothing forecasts across several models, instead of relying entirely on a single
model selected arbitrarily or by some model selection criterion. It thus enable consid-
ering different possible relationships between the predicted and the predictor variable.
The analysis of the distribution of model averaging estimators can improve inference
and prediction intervals and improves forecasts accuracy. However, there is no consen-
sus on how to choose the combining weights. Many forecast combination methodologies
use decision theoretic approaches to estimate the forecasts weights. These approaches
can be classified into frequentist model averaging (FMA) and Bayesian model aver-
aging. A few non-Bayesian methods for model averaging have been proposed in the
literature. Hjort and Claeskens (2003) introduced a general class of FMA estimators
which allow to perform valid classical inference in a model averaging context and de-
fine a framework for comparison with BMA estimators. In general the FMA weights
are based on trade off between bias and variance and thus are based on model selec-
tion information criteria. Some examples of FMA estimators include Mallows model
averaging of Hansen (2007) with weights based on the Mallows’ criterion that min-
imizes mean-squared error (MSE) over the set of feasible forecast combinations, the
smoothed information criteria estimator with either Akaike and BIC weights. Post
model averaging and model selection inference has been studied in the literature, for
example, Danilov and Magnus (2004) and Leeb and P̀‘otcher (2006) and the asymptotic
inference developed in Hjort and Claeskens (2003).

Bayesian Model averaging approach offers an alternative for exact finite sample
inference by implicitly incorporating both model and parameters uncertainty into the
distributions of the parameters. The weights applied in averaging the models are
simply the posterior model weights. The statistical literature on BMA is enormous.
Some examples include Raftery et al. (1997), Brown et al. (1999), Fernandez et al.
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(2001) and George and Foster (2000). However, there have been relatively few papers
in econometrics which adopt Bayesian model averaging to forecasting macroeconomic
activity. Exceptions include studies that are related to the current paper. Koop and
Potter (2004) use the factor structure framework of Stock and Watson (2002a) and
propose the use of BMA to search over models which allow for non-sequential factors.
Therefore resolving the issue of potentially selecting irrelevant factors when sequentially
selecting the ones with highest eigenvalues. They apply BMA and Bayesian selection
to the problem of forecasting GDP and inflation using quarterly data on 162 time
series from 1959Q1 through 2001Q1. In their framework, the model allows for lags of
the dependent variable and for factors extracted using principal component analysis.
Since the factors are orthogonal, model search is performed over all indexes using the
computationally algorithm introduced in Clyde (1999). Jacobson and Karlsson (2004)
use BMA to find best predictors for the Swedish inflation. To traverse the model space,
the number of predictors is limited to 20 (from an initial count of 80) and use a reverse
jump Markov Chain Monte Carlo to search the model space.

Wright (2009) consider using BMA for pseudo out-of-sample prediction of US in-
flation. Using a pool of 107 predictors and quarterly data from 1960Q1 to 2006Q1, the
study finds that BMA outperforms equal weighted model averaging. To overcome the
dimensionality problem, Wright (2009) restricts the model space to only models with
one predictor (i addition to lagged inflation). Hence, one contribution of the present
paper is to adapt fast and efficient algorithms used in the Bayesian variable selection
literature to search over large dimensional space. Instead of restricting the number of
predictors in the forecasting equation as in Wright (2009), this paper uses the Markov
Chain Monte Carlo algorithm developed by Kohn et al. (2001) to perform an “effi-
cient” sweep of the model space even with large number of predictors. The algorithm
reduces the computational burden by decreasing the algorithm visits to useless subsets
of predictors and thus identifies “useful” models.

The literature on dimension reduction using principal components and Bayesian
model averaging apparently moved in two different directions. However, recent findings
by De Mol et al. (2008) and the (Ouysse and Kohn, 2009) suggest there are theoretical
and practical reasons to connect the two literatures. De Mol et al. (2008) compare
the properties of forecasts based on principal component regression, Ridge and lasso
regressions, and find that these methods produce forecasts which are highly correlated
with similar out-of-sample performance. They also consider double (N, T ) asymptotics
for the case of shrinkage regression with Gaussian prior. They find that consistency of
the Bayesian (Ridge) regression forecast requires that the amount of shrinkage grows
asymptotically at a rate equal to the number of predictorsN . In the context of Bayesian
variable selection, Ouysse and Kohn (2009) find that under empirical Bayes prior, more
evidence is extracted from the data with a larger number of cross-sections and not
necessarily from longer time series.

The main aim of the study is to compare the ‘real time’ out-of-sample forecast per-
formance of two competing approaches for forecasting with high-dimensional panels:
Bayesian model averaging and information aggregation using PC regression. Con-
trary to existing literature, the paper applies a fully Bayesian analysis and implements
Bayesian variable selection over the full set of 131 predictors. The dataset employed
is the same as the one used in De Mol et al. (2008) and Stock and Watson (2005)
and comprises of monthly observations from 1959:01 to 2003:12 and 131 time series.
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One contribution of this study is to compare the differences in the relative predictive
performance between the predictors and their principal components. To this end we
apply the same Bayesian analysis on all the principal components extracted from the
full set of regressors. This allows non-sequential selection of the factors as in Koop and
Potter (2004).

The single variable analysis that has been the main focus of the literature on fore-
casting imposes independence across output and inflation. This means the loss in
output prediction errors is assumed to be independent of the loss in inflation predic-
tion errors. Singly forecasting output-inflation may create situation in which the losses
are compounded jointly (Komunjer and Owyang (2011)). This paper uses a Normal
inverse-Wishart conjugate prior to estimate the forecasting equations of output and
inflation in a system that allows the forecast errors to be correlated.

We conduct a different out-of-sample investigation in which the predictors are cho-
sen jointly for both output and inflation using Bayesian variable selection in each
out-of-sample recursion using information available at the time of the forecast in a ten
years rolling window. In this framework, the posterior densities of the model and the
parameters are time variant. This implies that the combining weights and the compo-
sition of the combined models are time varying. The “reduced” form time variation of
the forecasting model is nonparametric which offers flexibility in capturing structural
changes and instabilities of unknown forms.

The results show that in terms of mean-squared forecast error, principal compo-
nents based forecasts have a slight marginal advantage over BMA. This edge of PCR in
its global forecast performance hides important changes in the local forecasting power
of the two approaches. The time varying profile of the BMA combining weights and
thereby the profile of the posterior modal model further support the observation of
existence of unstable environment. We use the fluctuation statistic of Giacomini and
Rossi (2010) to assess the local out-of-sample relative performance of the competing
forecasting models over the entire time path. There are instabilities in the forecasting
performance of BMA and PC relative to the naive random walk and relative to each
other. The profile of the relative local forecasting performance reveals surprising re-
sults. PC regression based forecasts performed generally worse than the random walk
in the post 1985 period with high volatility for the late 70’s and early 80’s, where PC
outperformed the naive benchmark. BMA on the other hand, performed consistently
better than PC and the naive benchmark over the period prior to 1985. Thereafter, the
performance of both BMA and PC was relatively modest compared to the naive bench-
mark. However, these profile differences are not statistically significant for industrial
production. The significant differences in the profile performance is however significant
for the consumer price index. On the other hand, PCR performed consistently worse
than the random walk and BMA over the entire time path. BMA beats the naive
benchmark for the period prior to 1985 and is better than PC. The differences in the
relative performance between PC and both BMA and RW are statistically significant
for the post 1985 period but only up to 2001.

Furthermore, an analysis of the Theil index (Theil (1967), Chauvet and Potter
(2012)) indicates that the loss of performance of PCR is due mainly to its exuberant
biases in matching the mean of the two series especially the inflation series. BMA
forecasts series matches the first and second moments of the GDP and inflation series
very well with practically zero biases and very low volatility.
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BMA forecasting performance is robust to the choice of the hyperparameter of
the g-prior. The prior affect the composition of the modal model and the combining
weights. However, the informational value of these alternative BMA combinations is
comparable, thereby suggesting a great deal of substitutability between models. This
is perhaps due to the high level of correlation between the predictors variables. The
profile performance of these methods does however change over time. Overall there is
predictability in the late 70’s and early 80’s when the Fed exercised passive monetary
policy and the US economy was subject to expectations-driven inflation. Predictability
diminishes to some extent during the period of “Great moderation” starting in the late
80’s when the Fed adapted an active monetary policy of inflation targeting.

2 Approaches to dimension reduction

2.1 Preliminaries

Using the notation and framework in De Mol et al. (2008), consider an (n×1) vector of
covariance stationary processes Zt = (z1t, ···, znt)′ with mean zero and unitary variance.
We are interested in forecasting linear transformations of some elements of Zt using
all the variables as predictors. Precisely, the aim is to estimate the linear projection,
yt+h|t = proj{yt+h|It}, where It = span{Zt−s, s = 0, 1, 2, · · ·} is a potentially large
information set, and yt+h = (y1,t+h,··· ,ym,t+h) is an m−vector of filtered versions of zit,
yj,t+h = fj,h(L)zi,t+h for specific i = 1 · ··, n and 1 ≤ m ≤ n.

Traditional time series methods approximate the projection using a finite number,
p, of lags of Zt. In particular, they consider the following regression model:

yj,t+h = Z ′tβj,0 + · · ·+ Z ′t−pβj,p + ut+h = X ′tβj + uj,t+h,

where βj = (βj,0, · · · , βj,p)′ andXt = (Z ′t, ···, Z ′t−p) for each target series j, j = 1, · · · ,m.
Given a sample of size T , let X = (Xp+1, · · ·, XT−h)

′ be the (T −h−p)×n(p+1) matrix
of observations for the predictors and yj = (yj,p+h+1, · · · , yj,T )′ is the (T − h − p) × 1
matrix of observations for the dependent variable. The traditional forecast is given by
ŷLSj,T+h|T = X′β̂LS, where β̂LSj = (X′X)−1X′yj, j = 1, · · · ,m.

When the size of the information set is large, this projection involves estimation of
a large number of parameters, implying loss of degrees of freedom and poor forecasts.
In addition, if n× (p+1) > T , ordinary least squares is not feasible. Stock and Watson
(2006) shows in the case of orthogonal regressors that the variance of the forecast error
is proportional to N/T where N = n×(p+1) is the number of predictors. Therefore if,
N is large relative to T , then the contribution of OLS estimation error to the forecast
does not vanish, no matter how large the sample size.

2.2 The diffusion index framework

We consider forecasting situation in which both N and T are large, hence the double
(N, T ) asymptotics wit no requirements on the relative rates of convergence of N and
T . The number of predictor series can be very large, often larger than the number
of observations as it is the case in macroeconomic forecasting. Many studies have
simplified the high-dimensional problem (N > T ) by modelling the covariability of
the series (the target variables to be forecast and the predictor series) in terms of few
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number of unobserved factors. This literature predominately uses principal components
analysis to estimate these common factors which are then used in forecasting. To be
specific, we assume the following ‘diffusion index’ forecasting framework of Stock and
Watson (2002a) where (Xt, yt+h) admit a factor model representation with r common
latent factors Ft

Xt = ΛFt + ξt (1)

yj,t+h = δjFt + vj,t+h, j = 1, · · · ,m, (2)

where Ft = (f1t, · · · , frt)′ are r−dimensional stationary processes, ξt is an N×1 vector
idiosyncratic disturbances and vt+h is the forecast error. We follow De Mol et al. (2008)
and make the following assumptons about the factors, the N × r matrix Λ of factors
loadings, the forecasting equation (2) and the error terms (ξt, vt+h).

Assumption 1 (Factor structure equation (1))

(i) EFtF
′
t = Ir.

(ii) Λ is a non-random matrix with full rank r for each N : for some r × r positive
definite matrix DΛ, ‖Λ′Λ/N −DΛ‖ → 0 as N →∞;

(iii) ξt are orthogonal to the factors Ft with covariance matrix E ξtξ
′
t = Ψ of full rank

for all N ;

(iv) Weak cross-sectional dependance: there exist M > 0 such that for all N , t =
1, · · ·, T ,

1

N

N∑

i=1

N∑

j=1

|E(ξitξjt)| ≤M.

Assumption 2 (Forecasting equation (2))

(i) vj,t+h are orthogonal to Xt for each N nd j = 1, · · · ,m: T−1
∑

t Ftvj,t+h → 0;

(ii) T−1
∑

t vt+hv
′
t+h → Σv, where vt+h = (v1,t+h, · · · , vm,t+h)′ and Σv is an m ×m

positive definite matrix.

(iii) |δj| ≤ ∞ for j = 1, · · · ,m. (See Stock and Watson (2002a).)

The factors Ft are unobserved and the number of common factors r is also unknown.
There are several methods for determining the number of factors r. Stock and Watson
(1998) develop a consistent estimator for r based on the fit of the forecasting equation
(2). Bai and Ng (2002) use information criteria to penalize the sum of squared residuals
in model (1) to construct consistent estimator for r.

Principal components regression (PCR) computes the forecasts as a projection on
the first few principal components (Forni et al. (2005), Giannone et al. (2004), Stock

and Watson (2002a,b)). Let F̂t be the T × r matrix of the first r principal components

of the predictors X and let Ift = span{f̂1t, · · ·, f̂rt} with r � N be a parsimonious
representation of the information set It. Following De Mol et al. (2008), let Sx be the
sample covariance matrix of the predictors X, Sx = X′X/(T − h− p) and consider the
spectral decomposition of Sx: SxV = V D where D = diag(d1, · · · , dN) is a diagonal
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matrix with di corresponding to the ith highest eigenvalue of Sx, and V = (ν1, · · · , νN)
is the matrix whose columns corresponds to the normalized eigenvectors of Sx. The
normalized principal components are defined as :

f̂it =
1√
di
v′iXt, for i = 1, · · · , N∗

where N∗ ≤ N is the number of non-zero eigenvalues.
The principal component forecast is defined as:

yPCj,T+h|T = proj{yj,T+h|IfT}. (3)

Once the factors are estimated via principal component analysis (PCA), the projection
is computed by OLS treating the factors as observed:

yPCT+h|T = θ̂′F̂T , (4)

θ̂j = (F̂T F̂
′
T )−1F̂ ′Tyj, F̂T = (f̂1T , · · ·, f̂rT )′. (5)

The literature has addressed the asymptotic properties of the principal components
regression for N and T going to infinity. Bai and Ng (2002) established consistency of
the estimated number of factors and of the PC estimates of the factors and factor load-
ings. Bai (2003) derived the asymptotic distributions of the estimated factor structure
and Stock and Watson (2002a,b) established conditions under which the PCR forecasts
converge to the optimal forecast. The main underlying requirement in these results is
that the sources of common dynamics remain limited as the number of cross sections
increases to infinity. To be specific, Assumption 1(i)-(ii) imply that each of the factors
have a nontrivial contribution to the variance of Xt and provides identification of the
factors up to a change of sign. Assumption 1(iii) implies an approximate factor struc-
ture in the sense of Chamberlain and Rothschild (1983) and allows for limited weak
cross-section dependence which dies out as N goes to infinity. This ensures that the
first eigenvectors (corresponding to r largest eigenvalues) of Sx behave as the first r
eigenvectors of Λ′FFΛ/(T −h−p)), the component of the total variance driven by the
common factors.

2.3 Shrinkage regression

Ridge regression and the lasso are classical approaches to shrinkage regression that
penalize large coefficients:

β̂j
(κ)

= argminβj

{
(yj −Xβj)

′(yj −Xβj) + λ

N∑

k=1

|β(κ)
j,k |
}

(6)

for some penalization parameter λ ≥ 0. Choosing κ = 2 yields ridge regression where

β̂j
ridge

= (X′X + λIN)−1 Xyj. Choosing κ = 1 yields the lasso (Tibshirani (1996))
which has no closed form solution but the entire path of λ can be obtained using the
LARS algorithm (Efron et al. (2004)). Both of the ridge and lasso estimators can be
interpreted as the posterior mode under a particular prior that assumes independence
of the parameters. For ridge regression the prior is βj|σ2

ε ∼ N (0, σ2
ελ); for the lasso
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it is an independent identically distributed Laplace (double exponential) p(βj,k|σ2
ε ) =

λ
2σε
e−λ|βj,k|/σε .

Large values of the penalty parameter λ cause the coefficients of β̂
(κ)
j to be shrunk

towards zero. PCR and Ridge regression give non-zero weight to all predictors. The
Laplace prior puts more mass near zero and in the tails inducing either large or zero
estimates of the regression coefficients. Therefore the lasso favors sparse regression co-
efficients instead of many fairly small coefficients as might result in the ridge regression.

De Mol et al. (2008) provide conditions under which the ridge forecast is consistent
and converges to the unfeasible population forecast. They find that the prior should
shrink increasingly all regression coefficients to zero as the number of predictors rises.
Moreover, the shrinkage parameter λ must grow asymptotically at a rate equal to the
number of predictors N ( See Corollary 1 in De Mol et al. (2008)).

3 Bayesian Model averaging

Using the notation in Ouysse and Kohn (2009), consider the econometric model

y = (Im ⊗X) β + ε, (7)

where, y = (y′1, · · · , y′m)′, β = (θ′1, · · · , θ′m), ε is an m×T vector of error terms, and Im
is an m×m identity matrix. The specification (7) enables the estimation and inference
for the m variables to be forecast simultaneously as in a system of seemingly unrelated
regression. Therefore any correlation across the idiosyncratic components is taken into
account in the posterior inference and therefore allows for gains of efficiency.

Bayesian variable selection defines a selector vector γ = {γj, j = 0, · · · , N}, where
N is the total number of possible predictors in X, and γj is a Bernoulli random vari-
able that takes value one if predictor j is allowed in the forecasting model, and zero
otherwise. Therefore γ = {γj, j = 0, 1, ..., N} is a selector vector over the columns of
X = (X0, X1, ..., XN) , where X0 = ιT . Let qγ = γ0 + · · · + γN be the number of
predictors (columns of X) in model γ. Adopting this notation, we can write (7) under
model γ as

y
mT×1

= (Im ⊗Xγ)
mT×mqγ

βγ
mqγ×1

+ ε
mT×1

, (8)

where the subscript γ indicates that only columns and elements with the corresponding
γ element being 1 are included. Since γ is a binary sequence, the number of models to
be evaluated is 2N , which corresponds to a very large sample space for the empirical
example we are treating in this paper with N = 131 and 2N = 2.77 × 1039 possible
models.

3.1 Bayesian variable selection

In Bayesian analysis, model selection, estimation of the parameters and inference about
γ are done simultaneously allowing for uncertainty about all model unknowns to be
integrated out in the posterior inference. We consider a standard hierarchical Bayes
prior:

p(β, γ,Σ) = p(β|Σ, γ)p(Σ|γ)p(γ). (9)
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A commonly used prior for γ is

p(γ) =
N∏

j=1

πγj(1− π)(1−γj),

with π prespecified. The number of factors qγ in (7) thus follows a binomial distribution.
We follow Fernandez et al. (2001) and choose π = 0.5 implying that p(γ) = 2−N : so
the expected model size is N/2 and the standard deviation is

√
N/4. This prior allows

each variable to be in or out of the model independently with the same probability
1/2. If a smaller (bigger) value of π is prespecified, then smaller (larger) models are
preferred a priori. To allow for the intercept term, γ0 is fixed in all models to 1. Using
a Normal inverse-Wishart conjugate prior, we implement Bayesian variable selection
by specifying a g-prior for β|Σ as N(0, cΣ⊗Hβ). The covariance matrix Hβ determines
the amount of structure. It can be chosen to either replicate the correlation structure
of the likelihood by setting Hβ = (X′X)−1 , this is also the g-prior recommended by
Zellner (1986); or to weaken the covariance in the likelihood by setting, Hβ = IN , which
implies that the components of β are conditionally independent. The tuning parameter
c can be model and data dependent as in the empirical Bayes prior (EB), hence the
notation ĉγ. The larger the value of c, the more diffuse (flatter) is the prior over the
region of plausible values of β. The value of c should be large enough to reduce the
prior influence. However, excessively large values can generate a form of the Bartlett-
Lindley paradox by increasing the probability on the null model as c→∞. There is an
asymptotic correspondence between fixed choices of c and the penalized sum-of-squares
(classical) information criteria, see George and Foster (2000) and Chipman et al. (2001).
In univariate analysis, the case of c = T corresponds to the so called unit information
prior which has the same amount of information about β as that contained in one
observation. This prior leads to Bayes factors with asymptotic behavior similar to the
Bayesian information criterion (BIC). The risk information prior (RIC) is obtained
for c = N2 (Donoho and Johnstone (1994)). A conjugate g-prior with fixed c ∼= 3.92
corresponds asymptotically to Akaike’s AIC. As c → ∞, the penalty for dimension
goes to infinity and the model size goes to zero. Finally, George and Foster (2000)
defines the data dependent local empirical Bayes prior

ĉEBγ = max{Fγ − 1, 0}, where Fγ =
R2
γ/qγ

(1−R2
γ)/(T − 1− qγ)

,

and R2
γ is the R-squared of the regression of y on the covariates of the model γ. See

Ouysse and Kohn (2009) for an adaptation to the multivariate case.
The prior on the covariance of ε is a inverse-Wishart Σ−1 ∼ Wm(ω,Φ−1) where Φ

is an m×m scale parameter, ω > m+ 1 is a shape parameter. We choose ω = m+ 2
which reflects a minimum amount of prior information and Φ = Σ̂ + s2Im, where Σ̂
is the maximum likelihood estimator for Σ in the regression of Y on X and s2 is the
sample variance in the pooled regression of y on (Im ⊗X). The posterior density of γ
conditional on the observed excess returns is

p(γ|y,X) =
p(y|γ,X)p(γ)∑
γ p(y|γ,X)p(γ)

∝ p(γ)p(y|γ,X), (10)
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where p(γ) is the prior on γ and p(y|γ,X) is the marginal likelihood of the observed
data under model γ, with

p(y|γ,X) =

∫

Σ

∫

β

p(y|β,Σ, γ,X)p(β,Σ, γ)dβdΣ. (11)

Let Y = (y1, · · · , ym), Dγ =
(
X′γXγ +H−1

β

)
and Sγ = Y ′

(
IT −XγD

−1
γ X ′γ

)
Y . Fur-

ther let β̂γ be the maximum likelihood estimator of β in model γ defined as β̂γ =[
Im ⊗

(
X′γXγ

)−1
X′γ

]
y, the full conditionals for the model parameters are as follows:

p (γ|y,X) ∝ |Hβ|−
m
2

∣∣X′X +H−1
β

∣∣−
m
2 |Φ|ω2 |Φ + Sγ|−

(T+ω)
2(12)

Σ−1|y, γ ∼ Wm(ω + T, (Sγ + Φ)−1) (13)

β|y,Σ, γ ∼ N
(
β̃γ,Σ⊗D−1

γ

)
, where β̃γ =

(
Im ⊗D−1

γ X′γXγ

)
β̂γ (14)

For the conditionally dependent prior Hβ = (X′γXγ)
−1, the mean of β̃γ the posterior

density in (14) becomes β̃γ = ηγβ̂γ with ηγ = cγ
1+cγ

. Therefore the posterior mean of

β shrinks the maximum likelihood estimator β̂γ of model γ towards zero. The term
ηγ can be interpreted as the relative importance or weight that is given to the sample
information relative to the prior information. It also measures the amount of shrinkage
implied by the choice of the tuning parameters.

For the conditionally independent prior Hβ = IN the mean of β̃γ the posterior
density in (14) becomes

β̃γ =

{
Im ⊗

[
X′γXγ +

1

cγ
IN

]−1

X′γXγ

}
β̂γ = Im ⊗

[
X′γXγ +

1

cγ
IN

]−1

X′γy. (15)

Note that if the target variables in y are predicted equation by equation, then the prior
on βj can be written as N (0, σ2

εj
cIN). In this case, m = 1 in the expression (15) and

the posterior mean of βj|yj,X, γ corresponds to the ridge solution β̂ridgej with ridge

penalization parameter ν = 1/cγ and cγ ≡
σ2
βj

σ2
εj

in De Mol et al. (2008). When there

is no shrinkage (ν → 0), the ridge solution is the least squares estimator of β. The
latter case corresponds to cγ → ∞, that is a prior with large variance and very little
information about β.

If we apply the conditions for convergence of the Bayesian forecast to its population
counterpart in De Mol et al. (2008)(Corolarry 1) to the case of data-dependent prior,
we would require that

infN,T→∞
mineig

[
cσ2

εj
(X′X)−1

]

‖cσ2
εj

(X′X)−1‖ > 0 (16)

and,

‖cσ2
εj

(X′X)−1‖ = O(NT
1
2

+α), where 0 < α < 1/2 (17)

to ensure that all regression coefficients are shrunk to zero at the same asymptotic rate.
From these two results we can derive the following condition on the prior c to ensure
consistency of the data-dependent Bayesian forecast

c = O
(

mineig [X′X]NT
1
2

+α
)

0 < α < 1/2 (18)
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3.2 Bayesian model averaging

Bayesian model averaging provides a formal way of handling inference in the presence of
multiple competing models. In BMA the posterior distributions of quantities of interest
are obtained as mixtures of the model-specific distributions weighted by the posterior
model probabilities, Clyde (1999). This approach enables construction of posterior
probability intervals that take into account variability due to model uncertainty and
gives more reliable prediction than using a single model (Madigan and Raftery (1994)).

Suppose that θ is a quantity of interest that has similar interpretation in each
model. The BMA posterior distribution of θ is a weighted average of its model specific
posterior distributions, where the weights are the posterior model probabilities

p(θ|y) =
∑

γ

p(θ|y, γ)p(γ|y), (19)

and the BMA point estimate of θ is

θ̂BMA = E (θ|y) =
∑

γ

E (θ|y, γ)p(γ|y). (20)

The BMA estimate of the posterior predictive density of yt+h, conditional on informa-
tion ⊗T ≡ {y,X} is

p(yT+h|y,X) =
∑

γ

p(yT+h|y,X, γ)p(γ|y,X). (21)

The BMA forecast for yt+ h, defined as the expected value of the density in (21), is

ŷBMA
T+h|T =

∑

γ

(Im ⊗Xγ)β̃γp(γ|y,X). (22)

The BMA forecast (22) is the optimal Bayesian predictor of yT+h in terms of expected
loss over the posterior p(γ|y,X) (Barbieri and Berger (2004)). Let Rγ be a diagonal
matrix with diagonal element Rjj = γj for j = 1, · · · , N , then Xγ ≡ RγX and we can
rewrite (22):

ŷBMA
T+h|T = (Im ⊗X)

∑

γ

p(γ|y,X)Rγβ̃γ. (23)

Implementation of (20) and therefore (22) is difficult because the sum over the 2N

possible models is impractical when N is large. One approach to get around this diffi-
culty is to use MCMC and the simulated Markov chain from the posterior distribution
p(γ|y); γ(j), j = 1, ...,M . Under suitable regularity conditions (Smith and Roberts
(1993)), the posterior mean

θ̂pm =
1

M

M∑

j=1

E (θ|γ(j),y), (24)

is a consistent estimate of E (θ|y). We use the posterior mean estimate

β̂pm =
1

M

M∑

j=1

β(j),
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to approximate the BMA estimate of β. Similarly, the posterior mean estimate Σ̂pm

is obtained as the sample mean of the MCMC draws Σ(j), j = 1, ..,M . The BMA
estimates of any function of γ are obtained by calculating the appropriate function at
each draw and averaging. The quantity in (22) is approximated by the posterior mean
forecast

ŷpmT+h|T =
1

M

M∑

j=1

(Im ⊗Xγ(j))β̃γ(j) , (25)

where β̃γ(j) is determined using (14). The matrix Xγ(j) is formed by selecting the

columns k of X corresponding to γ
(j)
k = 1, in other terms Xγ(j) = Rγ(j)X.

Barbieri and Berger (2004) show that under some regularity conditions, the optimal
model for prediction under squared error loss is the model γ that minimizes

L(γ) =
(
Rγβ̃γ − β

)′
Q
(
Rγβ̃γ − β

)
,

where β =
∑

γ p(γ|y,X)Rγβ̃γ. These regularity conditions include Q = aX′X for a > 0

and β̃γ = bβ̂γ. Both conditions satisfied in the conjugate g-type priors we consider in
this section. Under these conditions, the model that minimizes L(γ) is the median
probability model consisting of those variables l whose posterior inclusion probability
pl is at least zero. The BMA estimate of the posterior (marginal) inclusion probability

(probability that a predictor l is informative) is π̂l =
∑M

j=1 γ
(j)
l /M , and the posterior

average number of “informative” predictors in the model is denoted q̂pm =
∑M

j=1 q̂
(j)
γ /M ,

where q̂
(j)
γ =

∑N
l=1 γ

(j)
l .

Since we consider forecasting using rolling over estimates with a window of ten
years, then at each time T BMA and Bayesian variable selection is carried out using
the last 10 years of data. In our application T is rolled over from T0 = 1969 : 12 to
T1 = 2002 : 12. At the end we have a time series of estimates of the parameters of the
model. In particular, we are interested in the profile of the posterior median model,
the distribution of the average size of the forecasting model and the distribution of the
inclusion probabilities of the predictors. Therefore, we denote q̂pm,T and π̂j,T the BMA
estimates of the average size of the forecasting model and the inclusion probability for
Xj using data up to time T and we use the notation Ê (q̂pm,T ) and πj to denote their
sample average respectively over the forecasting period, where

Ê (q̂pm) =

T1∑

T=T0

q̂pm,T/s (26)

πj =

T1∑

T=T0

π̂pmj,T /s (27)

and s is the number time periods in the evaluation period, s = T1 − T0 + 1.

4 Comparison of BMA and PC forecasts

The data series we use is the same as the one used in De Mol et al. (2008) and
Stock and Watson (2005). The total number of predictors N = 131 in X includes

12



Table 1: Correlation of BMA out-of-sample forecasts of industrial production with
Lasso, Ridge and PC.

Forecast period 1970 : 12 to 2002 : 12

LASSO with BMA
Number of non-zero coefficients

1 3 5 10 25 50 75 Ê (q̂pm)
cγ = T 0.4271 0.7422 0.8047 0.8623 0.8449 0.7782 0.6132 7.25
cγ = N2 0.5009 0.8194 0.8539 0.8475 0.7801 0.692 0.5131 2.55
cγ = 4 0.4998 0.7496 0.8006 0.8672 0.9072 0.9132 0.8038 32

RIDGE with BMA
In sample residual variance, κ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ν 6 25 64 141 292 582 1141 2339 6025
cγ = T 0.6519 0.7767 0.8146 0.8231 0.8153 0.7914 0.7436 0.6445 0.4107
cγ = N2 0.5716 0.7323 0.7992 0.8285 0.836 0.8239 0.7858 0.695 0.4631
cγ = 4 0.8448 0.9056 0.8982 0.8764 0.8502 0.8188 0.7749 0.6947 0.5027

PC with BMA
Number of principal components, r

1 3 5 10 25 50 75
cγ = T 0.2139 0.7218 0.776 0.7954 0.7937 0.7278 0.6076
cγ = N2 0.2577 0.7699 0.8178 0.8363 0.8011 0.664 0.5014
cγ = 4 0.1644 0.6924 0.7188 0.7592 0.7955 0.8205 0.7158

Forecast period 1970 : 12 to 1984 : 12
LASSO with BMA
Number of non-zero coefficients

1 3 5 10 25 50 75
cγ = T 0.3312 0.7598 0.8397 0.9045 0.8898 0.8248 0.6569
cγ = N2 0.4793 0.8666 0.9099 0.8928 0.8263 0.7397 0.5568
cγ = 4 0.393 0.7562 0.8175 0.9008 0.9402 0.9338 0.825

RIDGE with BMA
In sample residual variance, κ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ν 6 25 64 141 292 582 1141 2339 6025
cγ = T 0.6946 0.8297 0.865 0.8696 0.8582 0.8301 0.7756 0.6595 0.3613
cγ = N2 0.6251 0.7955 0.8567 0.8793 0.882 0.8676 0.8296 0.737 0.4697
cγ = 4 0.8681 0.9339 0.9252 0.9027 0.8753 0.8406 0.789 0.689 0.431

PC with BMA
Number of principal components, r

1 3 5 10 25 50 75
cγ = T 0.1253 0.7591 0.8346 0.8495 0.8393 0.7611 0.6278
cγ = N2 0.1909 0.8005 0.8608 0.8785 0.8462 0.703 0.5284
cγ = 4 0.0687 0.7323 0.7701 0.8084 0.8392 0.8332 0.7437

Forecast period 1985 : 01 to 2002 : 12
LASSO with BMA
Number of non-zero coefficients

1 3 5 10 25 50 75
cγ = T 0.6877 0.7771 0.7797 0.7928 0.762 0.7053 0.555
cγ = N2 0.6542 0.732 0.7086 0.702 0.6371 0.585 0.4381
cγ = 4 0.706 0.7677 0.7943 0.8194 0.855 0.8813 0.7669

RIDGE with BMA
In sample residual variance, κ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ν 6 25 64 141 292 582 1141 2339 6025
cγ = T 0.5741 0.6654 0.71 0.7381 0.7537 0.7547 0.7383 0.6984 0.618
cγ = N2 0.4428 0.5414 0.6001 0.6439 0.675 0.6891 0.6818 0.6458 0.5623
cγ = 4 0.7992 0.8559 0.867 0.8627 0.8482 0.8239 0.7902 0.7444 0.6733

PC with BMA
Number of principal components, r

1 3 5 10 25 50 75
cγ = T 0.554 0.7276 0.6659 0.6722 0.6949 0.6639 0.5547
cγ = N2 0.5779 0.7013 0.631 0.6459 0.6025 0.5465 0.4307
cγ = 4 0.4858 0.6731 0.6915 0.7236 0.7544 0.8082 0.6768
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Figure 1: Industrial production 12− step ahead out-of-sample forecasts.
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Figure 2: Consumer Price Index 12− step ahead out-of-sample forecasts.

1970 1975 1980 1985 1990 1995 2000 2005
−8

−6

−4

−2

0

2

4

6

 

 

true

PC, r = 10

BMA, cγ = 4

BMA, cγ = T

14



real variables such as sectoral industrial production, employment and hours worked;
nominal variables such as consumer and price indexes, wages, money aggregates; in
addition to stock prices and exchange rates. The data series are transformed to achieve
stationarity: monthly growth rates for real variables(industrial production, sales · ·
·) and first differences for variables already expressed in rates (unemployment rate,
capacity utilization, · · ·).

Let us define IP as the monthly industrial index and CPI as the monthly consumer
price index. The variables we forecast are

zhIP,t+h = (ipt+h − ipt) = zIP,t+h + · · ·+ zIP,t+1

zhCPI,t+h = (πt+h − πt) = zCPI,t+h + · · ·+ zCPI,t+1

IPT = 100 × log IPt is the rescaled logarithm of IP , cpit = 100 × log CPIt
CPIt−12

IP
enters the panel in first differences of the logarithm while annual inflation enters in
first differences. The forecasts for the (log) IP and the level of inflation are recovered
as:

îpT+h|T = ẑhIP,T+h|T + ipT

ĉpiT+h|T = ẑhCPI,T+h|T + cpiT

In this section we compare the performance of BMA forecasts to those based on
principal components and shrinkage (ridge and lasso) regression. Figure 6 and Table 1
show the sample correlation among BMA forecasts and Ridge forecasts ρ̂Ridge, among
BMA forecasts and lasso forecast ρ̂lasso, and among BMA forecasts and principal com-
ponents forecasts ρ̂PC . The PCR forecasts depend on the number of factors allowed
in the factor structure 1. Similarly, the Ridge and lasso regression forecasts depend
on the choice of the regularization parameter λ in 6. We follow De Mol et al. (2008)
and report sample correlation for r = 1, 3, 5, 10, 25, 50, 75. For the Ridge regression,
the priors are chosen for which the in-sample fit explains a given fraction 1− κ of the
variance of the variable to be forecast. For the Lasso, the prior on β is selected to
deliver a given number (= r) of non-zero coefficients.

4.1 Measures of out-of-sample performance

The dataset employed is the same as the one used in De Mol et al. (2008) and Stock
and Watson (2005) and comprises of monthly observations from 1959:01 to 2003:12
and 131 time series. The sample is divided into an in-sample portion of size T = 120
(1959:01 to 1969:12) and an out-of-sample evaluation portion with first date December
1970 and last date December 2003. Therefore, there are a total of M = 397 out-of-
sample evaluation points which we split into pre- and post-1985 periods with cat-off
date December 1984. The models and parameters are re-estimated and the 12-step-
ahead forecasts are computed for each month t = T + 12, · · ·T + 12 + M − 1 using a
rolling window scheme that uses the most recent 10 years of monthly data, that is data
indexed t− 12− T + 1, · · · , t− 12.

Let êt|t−12 be the forecast error computed at time t, êt|t−12 = yt − ŷt|t−12, where
ŷt|t−12 is the computed point forecast. One measure of overall average performance is
the square root of the out-of-sample mean square forecast error (RMSFE) calculated
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Figure 3: Fluctuation test statistic for industrial production, obtained as the standard-
ized difference between the MSFE of the PC regression model and the MSFE of the
random walk (PC), between the MSFE of the BMA and the MSFE of the random walk
(BMA), and between the MSFE of BMA and the PC regression (BMA-PC)
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Figure 4: Fluctuation test statistic for consumer price index (CPI), obtained as the
standardized difference between the MSFE of the PC regression model and the MSFE
of the random walk (PC), between the MSFE of the BMA and the MSFE of the random
walk (BMA), and between the MSFE of BMA and the PC regression (BMA-PC)
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Table 2: Root mean-squared forecast errors relative to the naive random walk model.

Industrial Production
Bayesian model averaging Principal Component

Forecast cγ = T cγ = 4 ĉEBγ cγ = N2 r
Period X F X F X F X F 5 10 25
1971−2002 0.65 0.87 0.63 0.86 0.63 0.86 0.63 0.87 0.56 0.54 0.65

(0.64) (0.66) (0.75) (0.51) (0.77) (0.49) (0.76) (0.50) (0.79) (0.97) (1.28)
1971−1984 0.40 0.56 0.40 0.69 0.39 0.69 0.39 0.70 0.35 0.34 0.46

(0.59) (0.54) (0.79) (0.47) (0.79) (0.44) (0.79) (0.45) (0.93) (1.11) (1.43)
1985−2002 1.39 1.81 1.28 1.350 1.36 1.36 1.31 1.36 1.16 1.13 1.21

(0.78) (1.01) (0.64) (0.62) (0.72) (0.63) (0.64) (0.62) (0.33) (0.51) (0.79)
Consumer Price Index

Bayesian model averaging Principal Component

Forecast cγ = T cγ = 4 ĉEBγ cγ = N2 r
Period X F X F X F X F 5 10 25
1971−2002 0.70 0.78 0.72 0.77 0.74 0.80 0.72 0.777 0.57 0.69 0.83

(0.39) (0.50) (0.33) (0.52) (0.33) (0.53) (0.37) (0.52) (0.61) (0.63) (0.69)
1971−1984 0.56 0.67 0.57 0.68 0.62 0.71 0.59 0.68 0.39 0.48 0.56

(0.34) (0.49) (0.31) (0.49) (0.30) (0.50) (0.33) (0.50) (0.57) (0.57) (0.60)
1985−2002 1.34 1.29 1.41 1.23 1.28 1.23 1.34 1.22 1.43 1.71 2.11

(0.54) (0.53) (0.44) (0.61) (0.43) (0.61) (0.48) (0.59) (0.73) (0.83) (0.95)

The results under X correspond to those obtained from applying BMA to the model in (7) with

the predictors X. The results under F correspond to BMA applied to the factors F̂ estimated by
extracting the principal components of X as in Equation (34).

as

RMSFE =

√√√√
T+12+M−1∑

j=T+12

ê2
j|j−12/M

The mean square forecast error provides an estimate of the average performance over
the whole out-of-sample evaluation period. This measure has been shown to perform
poorly in the presence of instabilities. Giacomini and Rossi (2010) give the example
of forecasting the dollar/British pound exchange rate and find that despite that the
RMSFE for the random walk model is smaller than that for the uncovered interest rate
parity model, the relative performance of the two models changes considerably over
the sample. The authors highlight the fact that global relative forecasting performance
may hide important information about the relative performance over time. The authors
propose alternative measures for the evolution of the relative forecasting performance of
competing models, one of which is the Fluctuation test. The Fluctuation test statistic,
Ft,l defined as:

Ft,l = σ̂−1l−1

t+l/2−1∑

j=t−l/2

∆L̂s1,s2j , (28)

where ∆L̂s1,s2j is the difference in forecast error between models s1 and s2,

∆L̂s1,s2j = ê2(s1)

j − ê2(s2)
j .

The fluctuation test statistic is a difference between the MSFE of models s1 and s2

calculated over rolling window of size l. The null hypothesis of the test is that there is
no difference in the (local) relative out-of-sample performance of models s1 and s2.
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Consider the case of industrial production, Figure 3 shows the BMA and PCR local
relative performance computed over rolling windows of R = 35. The figure shows three
fluctuation statistics, denoted BMA, PC and BMA-PC. BMA (resp. PC) is the statistic
Ft,l with model s1 being the BMA (resp. PC) and s2 being the random walk. The
third statistic BMA − PC is computed as out-of-sample MSFE differences between
BMA and PCR, that is statistic Ft,l with s1 is BMA and s2 is PC. Negative values
of the statistic indicate better local relative performance of model s1 over s2. Overall
the statistic fluctuates between -0.5 and 0.5, which is statistically insignificant using
the reported critical values in Giacomini and Rossi (2010). Quantitatively however,
BMA produced better out-of-sample forecasts than the random walk model. What is
surprising and novel is the performance of PC and BMA. The latter outperforms PC
regression over the evaluation sample especially for the the pre 1985 era. PC even fails
to beat the random walk over some periods of the evaluation sample. The other key
observation is that both PC and BMA provide little advantage over the random walk
for the 90’s with a drastic fall in their performance post 2001.

For the consumer price index, Figure 4 shows that while the local performance of
BMA relative to random walk is marginal, BMA produced better forecasts than PC.
The latter consistently produced consistently worse forecasts than the random walk
and BMA. Another measure of discrepancy between forecasts and the actual values is

Figure 5: Time-Varying Theil Index over the out-of-sample forecast evaluation period
1970 : 12− 2002 : 12 computed over a rolling window of R = 35.
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the Theil inequality index (Theil (1967)). Theil index was originally proposed for the
measurement of income inequality and is an application of the concept of conditional
entropy to the measurement of distributional change. Theil index has a decomposable
structure allowing the additive disaggregation of the index in three terms, respectively
related to bias, variance and covariance measures. The U-index proposed by Theil
(1967) and applied to the context of forecast evaluation over the entire evaluation
sample is given by the expression,

U =

√
1
M

∑T+12+M−1
j=T+12 (yj − ŷj|j−12)2

√
1
M

∑T+12+M−1
j=T+12 y2

j +
√

1
M

∑T+12+M−1
j=T+12 ŷ2

j|j−12

. (29)

The U-index is scale invariant and fluctuates between zero and one, where zero indicates
perfect forecast. The index also has an additive decomposition into three components:
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Table 3: Theil Inequality Index and its decomposition into percentage of bias (%Bias),
variance (% Var) and covariance (% Cov) for BMA and PC forecasts. The forecast
evaluation period is 1970 : 12− 2002 : 12. Values in parenthesis are computed over the
recession periods as defined in the NBER dating.

Industrial Production Consumer Price Index
PC, r = 10 PC, r = 10
Theil % Bias % Var %Cov Theil % Bias % Var %Cov
0.784 0.253 0.275 0.473 0.973 0.960 0.028 0.012
(0.849) (0.119) (0.273) (0.624) (0.969) (0.996) (0.000) (0.003)
BMA BMA

cγ Theil % Bias % Var %Cov Theil % Bias % Var %Cov
4 0.641 0.003 0.305 0.694 0.432 0.010 0.187 0.804

(0.696) (0.368) (0.042) (0.600) (0.807) (0.040) (0.569) (0.406)
K2 0.376 0.034 0.022 0.945 0.581 0.009 0.179 0.813

(0.593) (0.134) (0.005) (0.875) (0.633) (0.104) (0.382) (0.528)
T 0.376 0.034 0.022 0.945 0.581 0.009 0.179 0.813

(0.599) (0.218) (0.000) (0.794) (0.707) (0.069) (0.588) (0.358)

bias, variance and covariance. The proportion of these three components are given by
the expressions (Chauvet and Potter (2012)),

%Bias =

[
1
M

∑T+12+M−1
j=T+12 êj|j−12

]2

∑T+12+M−1
j=T+12 ê2

j|j−12/M
(30)

%V ar =

(√
V (ŷj|j−12)−

√
V (yj)

)2

∑T+12+M−1
j=T+12 ê2

j|j−12/M
(31)

%Cov = 1−%Bias−%V ar (32)

These components compare the moments of the forecasts to those of the actual data.
In particular, the Bias and variance proportions are measures of departure of the mean
and the variance of the forecasts from those of the actual series. Therefore, smaller
bias and variance proportions are desirable meaning that the largest component in the
Theil index comes from the covariance proportion.

Figure 5 shows the fluctuation over time of the Theil index computed over the
entire out-of-sample evaluation period using a rolling window R = 35. The inequality
index for the PC regression forecasts is significantly high with values exceeding 60% for
industrial production and no less than 95% for consumer price index. This indicates
that there is a significant gap between the PC regression forecasts series and the actual
series. BMA forecasts perform much better with values lower than 20% for GDP and
less than 30% for inflation in early and mid 1990’s.

Table 3 reports the results of the decomposition of the Theil index in its three
components over the entire out-of-sample evaluation period and over the recession
periods (in parenthesis). The results highlight a very important point. Although the
overall measure of discrepancy of PC indicates worse performance than BMA, there is
a difference in how well the two models capture the moments of the actual series.

Remarkably, the prior on t he parameter c does affect the ability of the BMA fore-
casts to track the volatility of the GDP series. BMA with unit and risk information
prior displays remarkable ability in forecasting the volatility of GDP series with vari-
ance proportion as low as 2.2% while the Akaike prior c = 4 results in higher variance
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component of 30.5%. The biases of these forecasts are substantially low with 3.4% for
the former and 0.3% for the latter. This result is consistent with the finding (Table 2)
that BMA forecasts under c = 4 have low variance compared to those generated from
c equal to K2 and T . The PC regression forecasts series does very pour both in match-
ing the mean and the variance of the actual series with bias proportion of 25.3% and
variance proportion of 27.5%. In terms of the consumer price index, the PC forecasts
display good forecasting accuracy of the volatility of the actual series with variance
proportion of (2.8%) compared to the BMA forecast which a variance proportion in
the range of 18%. The PC low volatility proportion comes however at a high bias of
96% while BMA forecasts have very low to almost no bias for all prior settings.

In general the variance proportion is smaller over the recession period indicating
that the forecast series become more volatile and thus is able to capture more of the
variance of the series. The bias proportion generally increases during recession.

The analysis of the relative performance of the competing PC and BMA models
shows that there is some gains from using BMA but mostly these are marginal and not
statistically significant. This suggest that there may be common behaviour in these
series. We turn now to the analysis of correlation between forecasts from the competing
models. The following patterns can be seen in Figure 6. First, a ranking of the sample
correlation with respect to the choice of the tuning parameter cγ is apparent especially
for the shrinkage based forecasts. The sample correlation is highest or at least reaches
a maximum for cγ = 4, followed by the case of cγ = T . The sample correlation when
cγ = N2 comes last. This means that the more informative the priors (therefore more
shrinkage towards zero) the higher is the correlation between the forecasts generated by
BMA and the three methods. Second, for cγ = 4, T the maximum correlation between
the lasso forecasts and BMA is the highest compared to Ridge and PCR. Third, for
lasso and PCR, the maximum correlation with BMA forecasts is reached at the same
abscissa, that is for number of nonzero coefficients equal to the number of principal
components allowed in the model. This number tends to be small (= 3, 5) for cγ = t, N2

and large (= 50) for cγ = 4. For the Ridge forecasts in Figure 6(c), we see the opposite
with maximum correlation reached at high values of κ (= 0.6) for cγ = T,N2 and low
values (= 0.3) for cγ = 4.

Figure 6: Sample correlation for BMA with Ridge (ρ̂Ridge), PC (ρ̂PCR) and Lasso (ρ̂lasso)
forecasts
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Table 1 further shows that these patterns generally hold for the full sample and the
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two subperiods. Under the priors cγ = T and cγ = N2, the sample correlation ρ̂lasso
and ρ̂PC reach a maximum at the same values of r (10 and 5 respectively). Under the
prior cγ = 4, the highest correlation between BMA and lasso is reached for number of
nonzero coefficient equal to 25 while the correlation of BMA and PC forecasts is at its
maximum for r = 50. The BMA and ridge correlation ρ̂ridge is highest for κ = 0.5 and
ν = 292 when cγ = N2, κ = 0.4 and ν = 141 for cγ = T , and κ = 0.2 and ν = 25 for
cγ = 4.

The ridge regression shrinks all coefficients towards zero with more shrinkage on low-
variance directions. This means that the ridge will results in many small coefficients.
As the shrinkage penalization ν increases so does the number of non-zero coefficients
in β̂ridge. A high shrinkage parameter ν corresponds to a small tuning parameter cγ
(cγ ≡ 1/ν). This may explain why the highest correlation between the BMA and ridge
forecasts occurs when cγ = 4 with a 80% explained in sample variance.

The PC regression leaves the r directions with the highest variance alone and dis-
cards the remaining N − r directions. The lasso also truncates at zero and results
in r large coefficients and sets the remaining N − r to zero. This may explain the
similarities of the patterns observed in the the sample correlation between BMA fore-
casts and those generated by lasso and PCR. In the last column of the first Panel in
Table 1, we report the BMA estimate of the model size for the three priors. The results
reflect the amount of shrinkage implied by these choices of cγ. The size of the posterior
mean model is decreasing in cγ with cγ = N2 resulting in the smallest posterior mean
estimate of the model size. We observe that the BMA estimate for the model size
q̂pm = 2.55 under cγ = N2 and the maximum correlation between BMA and both PCR
and lasso forecasts is reached when r = 3. We also have notice that under cγ = T ,
q̂pm = 7 and the maximum correlation between BMA forecasts and lasso occurs for
r = 10 and for BMA and PCR forecasts this number is r = 3. Finally for cγ = 4, the
maximum correlation between BMA and both lasso and PCR forecasts is at r = 50 at
the same time we have q̂pm = 32.

To examine the relative performance of BMA compared to PCR, we report the
MSFE relative to the random walk and the variance (number in parenthesis) of the
forecasts relative to the variance of the series to be forecast in Table 2. Under each
MSFE row, we report the variance of the forecast relative to the variance of the series.
We examine the results for BMAX which refers to the econometric model (7) where
we apply BMA directly to all available predictors in X. In terms of MSFE and over
the three sample periods, PCR performs its best when r = 10 for industrial production
and r = 5 for consumer price index. It also outperforms BMA for all the choices of cγ.
However, BMA forecasts tend to have lower variance relative to the forecasts of the
series of interest. This observation holds also for the consumer price index forecasts.

Figure 1 and Figure 2 plot of the out-of-sample 12-steps ahead monthly forecasts
for industrial production and consumer price index, respectively. These figures One
can see the poor performance of all methods in the last subperiod from 1985 − 2002.
We can also see the better performance of principal components regression forecasts in
the early months of subperiod 1971− 1984, especially forecasting the 1975 recession.
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Figure 7: The BMA estimates of the inclusion probabilities π̂pmj,T for j = 1, · · · , N and
T = T0 · · · , T1. The x− axis represents the predictors index j, the y − axis the value
of the posterior probability of inclusion of Xj in the forecasting model, and each line
in the plot represents a different value of T . We also show some of the predictors that
appear to be in the median model for several values of T and for the three choices of
cγ.
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5 Sensitivity to priors settings

It is worth noting that, we forecast ip and cpi jointly. That is the Bayesian variable
selection is performed for the system of two equations yt ≡ (ipt, cpit). Therefore the
posterior inference is conditional on y and X. We examine the mean of the posterior
inclusion probabilities πj,T = P (γj = 1|y,X) as well as its distribution over time.

In terms of local relative performance, Figure 3 and Figure 4 strongly suggest that
for the purpose of out-sample forecasting, the choice of the prior on c does not affect
the forecast performance of BMA relative to the competing models.

Figure 8: Snapshots of the Median model
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Figure 7 shows the plot of π̂j,T for T = T0 : T1 under the three choices of tuning
parameter cγ. Each line in the plots corresponds to a different value of T . We note the
following patterns. First, in Panel C under the prior cγ = 4, while there is a cluster
of the probabilities between 0.10 and 0.40, none of the posterior inclusion probabilities
reaches the value of 1 with a maximum of 0.96. This reflects the shrinkage effect under
cγ = 4 where all coefficients are shrunk towards zero resulting in nonzero posterior
marginal probabilities for many predictors. To be able to distribute the unit mass over
many predictors, the resulting probabilities are in turns very small. Similar behavior
was discussed in De Mol et al. (2008) with respect to the Ridge regression coefficients.
In contrast, under the risk information prior in Panel A, there seems to be a bimodal
behavior. Many predictors appear to have zero posterior inclusion probability and the
others have their probabilities equal to one. In Panel B under the unit information
cγ = T , we see an intermediate behavior with many probabilities equal to zero, others
reaching 1 but also a cluster around intermediate values. We conjecture that the risk
information prior behaves similar to the lasso in the sense that it forces parsimony
with posterior inclusion probabilities that are either zero or one therefore resulting
in smaller size models. Second, it appears there are clusters of predictors with high
collinearity. By examining Panel A and Panel B, the predictor with posterior inclusion
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probability one belong to these groups: industrial production (j = 19), sectoral (j =
35 · · · , 49), employment index (j = 50), housing (j = 51, · · · , 60), Money Supply/Stock
(j = 51, · · · , 60) and (j = 96, · · · , 102). Under the risk and unit information prior,
at any point in time T the median model will have at most one predictor from each
of these groups with probability 1. Figure 8 shows a snapshot of the median model
at T = 1971 : 12, 1985 : 12, 2002 : 12. Under the prior cγ = 4, at any time T , a
combination of predictors in these clusters will show in the forecasting model, although
they will not necessarily appear in the median model. Third, there are some predictors

Figure 9: The time-varying posterior mean estimates of inclusion probabilities for some
“important” predictors
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that appear to be “popular” under the three choices of priors. Some of these predictors
are examined in Figure 9.

Next, we assess the stability of the forecasting model over time by examining the
distribution of π̂pmj,T for those Xj that appear frequently in the median model. Figure 9
shows that the posterior inclusion probability is time-varying. Except for X102 which
appears to be in the median model for most of the evaluation period, the information
value in the other predictors changes over time. The production index turns out to
be very informative during the 1990, while the commodity price index plays a role in
forcasting both ip and cpi during the 1970’s and 2002.

Figure 10 plots the values of πj, the time average of the posterior probabilities
for the predictors in X computed using equation (27). Table 4 reports those πj that
are ≥ 0.5 indicating the average median model in the time averaged system. The
median model consisting of variables with posterior inclusion probability of at least
0.5 has 7 predictors. Under the unit information prior (cγ = T ), only 12 predictors
have their posterior inclusion probability higher than 10%. The median model consists
of only 4 variables and is nested in the median model under cγ = 4 with higher
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Figure 10: Average (over time) of the posterior mean estimates of inclusion probabilities
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inclusion probabilities of most variables in the 90%. Under the risk information prior,
the median model is empty with all many variables having their inclusion probability
equal to zero. In Table 4, predictor (sFYBAAC) has the highest posterior probability
(0.43) under cγ = N2. This predictor does not appear to be in the average median model for
the other priors.

6 Orthogonal regressors

We compare the out-of-sample performance of BMA using the variables in X as potential
predictors and using the principal components of X. We assume that X is generated as
follows,

Xjt = η′jFt + εjt, j = 1, ..., N. (33)

The r × 1 (r << N) vector Ft is a set of common factors driving the dynamics of the cross-
section of variables in X. The latent factors Ft are not observed and are replaced with their
consistent estimates F̂t. The factors are estimated by the method of principal components
from the panel of data consisting of the Xjt, j = 1, · · ·, N , t =, · · ·, T . The estimated factors

F̂ =
(
F̂1, · · ·, F̂T ,

)
is a T ×N matrix consisting of

F̂ = X × v ×D−1/2

where v is a matrix of eigenvectors corresponding to the largest K = min(T,N) eigenvalues
of X ′X/TN , and D is a diagonal matrix consisting of the K largest eigenvalues.

Instead of using Xt as predictors of yt, in this section we propose the use of F̂t. Thus we
consider the forecasting model:

yt+h = δ′F̂t + εt+h, (34)

In factor analysis, the size of the eigenvalues is related to the amount of information
extracted from the explanatory variables and not the dependent variable. It is possible that
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Table 4: Average over time of the BMA estimates of the posterior inclusion probability
πj,T for Xj in the median average model. The column “lasso” shows that these variables
were selected by lasso in forecasting either cpi, ip or both. The mean of the distribution
of the BMA estimate of the size of the forecasting model is denoted Ê (q̂pm), its standard
deviation std(q̂pm) and its median q̂med. We also report the size of the median model
(median) after (time) averaging the inclusion probabilities.

Xj cγ = 4 cγ = T cγ = N2 lasso
CES006 0.67 - - cpi
CES049 0.63 - - ip
PMNV 0.58 - - cpi
FCLBMC 0.65 0.77 - cpi
Sfygt10 0.77 0.91 - ip
sfyaac 0.6 0.93 - -
PMCP 0.72 0.95 - ip/cpi
sFYBAAC 0.35 0.03 0.43

Ê (q̂pm) 32.93 7.25 2.55
std(q̂pm) 4.19 0.84 0.69
q̂med 32.25 6.90 2.79
median 7 4 0

Table 5: Summary statistics for q̂pm,T under model (7) and model (34). corr is the
sample correlation coefficient between the two series of q̂pm,T .

Model with X Model with F̂
Mean std Median Mean std Median corr

cγ = 4 31.8540 4.1940 32.2542 29.5650 3.9182 30.2454 0.9815
cγ = T 6.8845 0.8393 6.9000 4.6169 0.6737 4.5255 0.4381
cγ = N2 2.6174 0.6863 2.7910 1.6036 0.8867 1.5898 0.3561

27



Figure 11: Comparison of the distribution of the BMA estimates of the size of the
posterior model, q̂pm,T , using the predictors X in panels (a), (b) and (c) and their

principal components F̂ in panels (e), (f) and (g).
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some factors associated with large eigenvalues have no explanatory power while some with
small eigenvalues do have explanatory power for the dependent variable.

Our approach is to apply the same methodology described above to perform Bayesian
variable selection over the model space defined by the estimated orthogonal factors F̂t.

Figure 11 compares the distribution of the BMA estimate of the size of the forecasting
model q̂pm,T under model (7) and model (34). Table 5 reports the mean, standard deviation
and median of these two series of estimates q̂pm,T . There are strong similarities between the
two distributions and strong correlation especially under the prior cγ = 4. More important,
there is evidence that principal components beyond the first ones are found to be informative
in forecasting inflation and industrial production. This can be seen clearly in Figure ??
where we show the distribution over time of the posterior inclusion probabilities π̂pmj,T for all

K = min{T,N} estimated factors F̂j . Our discussion for the case with X about the three

priors carries over the case with F̂ . The unit information and risk information priors both
favor few predictors with probabilities equal to one while assigning zero posterior probability
on the remaining principal components. Therefore resulting in smaller size posterior models.
Even in the case of principal components, the prior cγ = 4 shrinks all the probabilities
resulting in cluster between 20% and 40%. The interesting fact is that principal components
up to j = 27 can still appear in the median model. These inclusion probabilities are time
varying as can be seen in the examples of Figure 14 where we report π̂j,T for the first eight
principal components.

The results indicate that, with the exception of the case of the forecasting consumer price
index in the post 1985, applying BMA to orthogonalized predictors does not result in better
out-of-sample forecast performance. Figure 13 plots the out-of-sample forecasts for industrial
production using X (denoted BMA) and using F̂ (denoted BMAF ). There is correlation
between the two forecasts in most of the early period of the evaluation sample. However
during 1985 − 2002, forecasts based on the model with F̂ as possible predictors performs
extremely bad and is very close to the random walk forecasts. Under cγ = T , the correlation
between the forecasts is about 0.64 for industrial production and 0.58 for inflation. The
forecasts using F̂ tend to be more volatile resulting in wider probability intervals compared
to those based on X.

An interesting result that is worth highlighting is that the posterior distribution of the
model size when BMA is applied to the estimated principal components F̂j , (j = 1, · · · , N),
has moments that are similar to those we get when BMA is applied to the predictor variables
Xj . Table 5 shows summary statistics of the distribution of q̂pm,T , the posterior mean of the
average size of the forecasting model. Noteworthy to note the high correlation between the
two distribution (.98). The other priors on cγ generate distributions that are less correlated
to those under X but the first and second moments are very similar.

Table 6: Correlation of BMA forecasts with principal component forecasts
Industrial Production

Number of principal components
BMAX BMAF 1 3 5 10 25 50 75

cγ = T BMAX 1 0.64 0.57 0.73 0.67 0.68 0.69 0.65 0.54
BMAF 0.64 1 0.47 0.65 0.65 0.65 0.63 0.61 0.45

Consumer Price Index
Number of principal components

BMAX BMAF 1 3 5 10 25 50 75
cγ = T BMAX 1 0.58 0.51 0.56 0.54 0.51 0.60 0.54 0.32

BMAF 0.58 1 0.55 0.75 0.74 0.76 0.67 0.39 0.12
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Figure 12: The Median Model over time for BMA with principal components as pre-
dictors.
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7 Conclusion

This paper analyses the performance of principal components regression and Bayesian model
averaging as two competing approaches to forecasting with large datasets. We consider real
time forecasting by analysing out-of-sample performance.

We find that in terms of average performance measure such as the root mean-squared-
forecast error, PC forecasts are marginally better than BMA although the forecast are more
volatile. However, this edge in global relative performance of PC hides considerable changes
in the relative local forecasting performance. We find that BMA performance surprisingly
good for most of the period pre 1990’s. During the 90’s, both PC and BMA fail to outper-
form the naive random walk. The marginal benefit of PC comes from the improved relative
performance in the years post 2002. Another important point that this paper highlights is
that BMA forecasts series does remarkably well in matching the mean of the actual series
with low or almost zero bias. The bias proportion in the PC forecasts series is extremly high
especially for the consumer price index. In terms of mean and volatility of the predicted
series, BMA generally performs better in matching these moments.

In this paper we also considered applying BMA to orthogonalized predictors in the form
of principal components of the predictors variables. Surprisingly, in terms of global forecast
performance, this strategy produces out-of-sample forecast series that performed worse than
both PC and BMA (applied to the original predictors). The posterior distribution of the
average size of the forecasting model is practically the same as the one produced applying
BMA to the actual predictors.

30



Figure 13: IP forecasts based on BMA applied to the principal components of X.
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The posterior distribution of the forecasting model generated by BMA indicates that
the ’best’ forecasting model is time varying as well as the averaging weights. This further
highlights findings in the literature (Giacomini and Rossi (2010)) about the existence of
instabilities in the forecasting environment.
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