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ABSTRACT: We investigate the persistence of real exchange rates using Bayesian 
methods. First, an algorithm for Bayesian estimation of nonlinear threshold models is 
developed. Unlike standard grid-based estimation, the Bayesian approach fully captures 
joint parameter uncertainty and uncertainty about complicated functions of the 
parameters, such as the half-life measure of persistence based on generalized impulse 
response functions. Second, model comparison is conducted via marginal likelihoods, 
which reflect the relative abilities of models to predict the data given prior beliefs about 
model parameters. This comparison is conducted for a range of linear and nonlinear 
models and provides a direct evaluation of the importance of nonlinear dynamics in 
modeling exchange rates. The marginal likelihoods also imply weights for a model-
averaged measure of persistence. The empirical results for real exchange rate data from 
the G7 countries suggest general support for nonlinearity, but the strength of the evidence 
depends on which country pair is considered. However, the model-averaged estimates of 
half-lives are uniformly smaller than for the linear models alone, suggesting that the 
purchasing power parity persistence puzzle is less of a puzzle than previously thought. 
 
Keywords: Bayesian Analysis; Real Exchange Rate Dynamics; Purchasing Power Parity; 
Nonlinear Threshold Models; Bayesian Model Averaging; Half lives 
JEL Classification: C11; C22; F31

                                                
∗ Lo: Department of Economics, Stewart Hall 380, St. Cloud State University, St. Cloud, MN 56301-4498, 
1-320-308-0143 (tel.), 1-320-308-2228 (fax), mclo@stcloudstate.edu; Morley: School of Economics, 
Australian School of Business, University of New South Wales, Sydney, NSW, 2052, +612 9385 3366 
(tel.), +612 9313 6337 (fax), james.morley@unsw.edu.au. This paper has been presented at the 5th 
INFINITI conference held at Trinity College, Dublin, the 16th Annual Symposium of the Society for 
Nonlinear Dynamics and Econometrics at the Federal Reserve Bank of San Francisco, the 18th Midwest 
Econometric Group conference at the University of Kansas, and a seminar at Minnesota State University at 
Mankato. We thank conference and seminar participants for comments. The usual disclaimers apply.  



 1 

1. Introduction 

Numerous studies, including Michael, Nobay, and Peel (1997), Obstfeld and Taylor 

(1997), Sarantis (1999), Sarno, Taylor, and Chowdhury (2004), and Bec, Ben Salem, and 

Carrasco (2010), have made use of nonlinear threshold-type autoregressive models to 

investigate the purchasing power parity (PPP) persistence puzzle, a notion initiated in a 

survey by Rogoff (1996). The motivation for using nonlinear models in this setting is that 

the original empirical findings used to establish the puzzle may have arisen due to model 

misspecification. Specifically, linear time series models restrict the degree of adjustment 

of real exchange rates to their PPP levels to be the same at all points of time. However, 

basic theory suggests that transaction costs can affect when PPP is effective and when it 

is not.1 Hence, nonlinear models that allow for regime-switching behavior in real 

exchange rates may be more appropriate to study PPP. Indeed, the findings of many 

recent empirical studies imply that estimated PPP adjustments are faster for nonlinear 

models than those estimated for linear models, thus providing a potential resolution for 

the PPP persistence puzzle. Sarno (2003) and Taylor and Sarno (2003) provide detailed 

surveys of this literature. 

 In this paper, we adopt a Bayesian approach to investigate exchange rate 

nonlinearities and the PPP persistence puzzle. There are three reasons for doing this. 

First, standard frequentist estimation for nonlinear threshold models typically considered 

in the literature on exchange rates is cumbersome as it involves procedures to grid-search 

for the value of the parameters in nonlinear transition functions. Bayesian methods allow 

for joint estimation of all model parameters, as well as complicated functions of the 

parameters, such as the half-life measure of persistence based on generalized impulse 
                                                
1 See, for example, Heckscher (1916), Cassel (1922), Dumas (1992) and O’Connell (1997). 
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response functions. Second, testing threshold-type nonlinearities in the frequentist setting 

is challenging due to the presence of nuisance parameters, with the concomitant problem 

that tests may be relatively uninformative in small samples due to weak power. In the 

Bayesian framework, model comparison via marginal likelihoods, which reflect the 

relative abilities of models to predict the data given prior beliefs about model parameters, 

is conceptually straightforward for any set of models and an inability to discriminate 

between models based on sample information will be evident in posterior odds ratios 

being close to even. Third, while frequentist inferences about exchange rate persistence 

can be highly sensitive to the model and lag specification, the Bayesian approach allows 

for model-averaged measures that address inherent uncertainty about model-specification 

issues such as whether a linear or nonlinear model is more appropriate. 

 Our empirical findings can be summarized as follows. Based on our model 

comparison, there is general support for nonlinear threshold dynamics in real exchange 

rates for the G7 countries, although the strength of the evidence varies considerably 

across country pairs. However, our model-averaged measures of real exchange rate 

persistence are uniformly lower than for linear models alone. Thus, our analysis takes the 

resolution of the PPP persistence puzzle further than frequentist analysis based on 

nonlinear models. In the frequentist setting, the finding of lower persistence is a “knife-

edge” results that depends crucially on the presence of nonlinear dynamics in real 

exchange rates, with tests for nonlinearity providing only mixed support for nonlinearity 

across country pairs in practice. These “knife-edge” inferences are particularly worrisome 

given the fact that tests of nonlinearity can suffer from weak power in small samples. By 

contrast, our finding based on Bayesian analysis is that model-averaged measures of 
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persistence are uniformly lower than those based on linear models, including in the cases 

where the evidence for nonlinearity is ambiguous. Specifically, we find that half-lives for 

G7 real exchange rates range between 2-3 years compared to the 3-5 years found in 

Rogoff (1996). This might be seen as only a partial resolution of the PPP persistence 

puzzle given that 2-3 year half-lives are still too long to be easily reconciled with sticky 

goods prices alone. However, when one considers the possibility of threshold effects, the 

2-3 year unconditional half-lives become much more economically plausible as exchange 

rates would not be expected to adjust quickly when they are close to their PPP levels, 

which they often are in practice. 

 The remainder of this paper is organized as follows: Section 2 presents linear and 

nonlinear models of the real exchange rate considered in our analysis. Section 3 discusses 

practical issues for Bayesian estimation for these models. Section 4 reports the empirical 

results for an application of these models and Bayesian methods to real exchange rate 

data from the G7 countries. Section 5 concludes. 

 

2. Models 

There are many different time series models of exchange rates. The main distinction 

between them is whether they assume linear or nonlinear dynamics. Within the realm of 

nonlinear models, the emphasis for exchange rates has been on models that allow for 

nonlinear conditional mean dynamics. However, exchange rates are asset prices, so there 

are also models that allow changing conditional variances to help capture fat tails in the 

distribution of exchange rate returns. In our analysis, we focus on the distinction between 

linear and nonlinear models of conditional mean dynamics. However, we also consider 
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the effects of accounting for heteroskedasticity and fat tails on inferences about nonlinear 

mean dynamics and the persistence of exchange rate fluctuations. 

 The benchmark linear model that we consider is a stationary finite-order 

autoregressive (AR) model: 

  φ(L)(qt −µ) = εt , εt ~ i.i.d.N(0,σ
2 ) , (1) 

where qt  is the log real exchange rate,   

€ 

φ(L) =1−φ1L −−φpL
p , and the roots of 

€ 

φ(z) = 0  

lie outside the unit circle. The stationarity assumption corresponds to the idea that PPP 

holds in the long run.2 The Gaussian error assumption is driven by the need for a 

parametric structure in order to conduct our Bayesian analysis.3  

 In terms of nonlinear models of conditional mean dynamics for exchange rates, 

the existing literature has emphasized so-called “self-exciting” threshold models with 

discrete transitions (TAR) and smooth transitions (STAR) between different regimes for 

the AR dynamics (see Michael, Nobay, and Peel, 1997; Obstfeld and Taylor, 1997; 

Taylor, Peel, and Sarno, 2001; and Sarno, Chowdhury, and Taylor, 2004). Building on 

this literature and inspired by Franses and van Dijk (2000), Bec, Ben Salem, and 

Carrasco (2010) develop a general multi-regime logistic STAR (MR-LSTAR) model that 

nests both TAR and STAR dynamics. The model, which we adopt here, starts with a 

                                                
2 The strongest evidence for long-run PPP comes from the long samples of exchange rate data considered in 
Abuaf and Jorion (1990) and Lothian and Taylor (1996), although it should always be acknowledged that 
long-run PPP may not strictly hold due to the possible presence of a small random walk component (see 
Engel, 2000).   
3 Given that exchange rates are asset prices, a Student t distribution with a low degree of freedom for the 
error term might seem a more reasonable assumption. However, when we considered this alternative 
assumption, we found that our results were highly robust. This finding likely reflects the fact that we 
consider quarterly data and a Gaussian assumption for exchange rates is somewhat more reasonable at 
lower frequencies than at high frequencies (i.e., accounting for fat tails would be more important for daily 
or weekly data). 
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Dickey-Fuller transformation of the benchmark linear AR model in (1) into an error-

correction representation: 

  Δqt = β(qt−1 −µ)+ut , (1’) 

where β ≡ −φ(1) , ut ≡ φ j
∗Δq t− j

j=1

p−1

∑ , and φ j
∗ ≡ − φi

i= j+1

p

∑ . Nonlinear conditional mean 

dynamics are then allowed for by letting the error-correction coefficient β  be regime-

dependent as follows: 

  Δqt = Fr (qt−1 −µ γ,c)βr (qt−1 −µ)
r=1

3

∑  (2) 

where 

  F1 = 1+ exp(−γ (qt−1 −µ − c)[ ]−1 , (3) 

  F2 = 1+ exp(γ (qt−1 −µ + c)[ ]−1 , (4) 

  F3 =1−F1 −F2 , (5) 

with the restriction β1 = β2 ≡ βout  and, for notational convenience, β3 ≡ βin . In words, the 

prevailing error correction coefficient at any point of time depends on the level of the 

lagged exchange rate relative to symmetric thresholds around the mean µ , with the width 

of the threshold bands determined by the threshold parameter c . The transition functions 

Fr (qt−1 −µ γ,c)  determine the weights put on each regime according to logistic 

specifications that depends on the smooth transition parameter γ , which is restricted to 

be positive in order to identify the regimes. Note that, as γ→∞ , the MR-LSTAR model 

approximates a band-TAR model.  
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 Given this setup, it is straightforward to allow other parameters to also depend on 

the regime, including the variance of the shocks. Thus, in order to address the possibility 

of heteroskedasticity, we also consider whether augmenting the models discussed above 

with regime-dependent variances, σ out
2  and σ in

2 , affects our inferences about exchange 

rate dynamics.   

 

3. Bayesian Estimation 

We conduct our Bayesian estimation via a multi-block random-walk chain version of the 

Metropolis-Hastings (MH) algorithm. The MH algorithm is a posterior simulator in 

which draws are first made from an easy-to-simulate proposal distribution (e.g., a 

multivariate Normal distribution). Then the draws are accepted or rejected as draws from 

a target distribution (i.e., the posterior distribution) based on the relative densities of the 

draws for both the proposal and target distributions. 

 As with any importance-sampling algorithm, the success of the posterior 

simulator in providing an accurate discrete approximation of the target distribution 

depends on the proposal distribution. We follow a common approach in the applied 

literature of making our proposal a multivariate Student t distribution based on the 

posterior mode and the curvature of the posterior around the mode. However, some issues 

arise in doing so for the nonlinear MR-LSTAR model. First, just as with maximum 

likelihood estimation of nonlinear threshold models, there is a need for a grid search 

across the threshold parameter c to find the posterior mode. However, it is important to 

emphasize that this only applies to constructing the proposal distribution. Bayesian 

estimation of the threshold based on the target distribution does not involve discretization 
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of the sample space for the threshold parameter. Second, by using a grid search to 

estimate the threshold parameter, numerical derivatives cannot be used to evaluate the 

curvature of the posterior with respect to the threshold parameter. Thus, there is no guide 

from numerical optimization for the scale of the proposal density, even if its location can 

be pinned down at the posterior mode.  

 In our analysis, we address the problem of determining a good proposal 

distribution for nonlinear threshold models by considering an alternative measure of the 

curvature of the posterior with respect to the threshold parameter c. First, we invert the 

“posterior ratio” for the threshold based on a 

€ 

χ 2(1) assumption. Specifically, given 

diffuse priors, this is equivalent to inverting the likelihood ratio statistic for c to construct 

a 95% confidence interval (in a frequentist sense) under the assumption that a parameter 

has a standard asymptotic distribution. Note that this calculation only applies to 

constructing the proposal distribution and that the posterior estimates should be robust to 

different assumptions for the asymptotic distribution, such as a χ 2 (2) , which we have 

verified in our empirical analysis. The important issue is that we obtain some sense of the 

curvature of the posterior with respect to the parameter, not to literally conduct 

frequentist inference. Then, we use the interval based on the inverted “posterior ratio” to 

back out an implied standard error (again, in a frequentist sense) for the threshold 

parameter under the assumption that the estimator has a standard asymptotic distribution. 

In particular, the approach proceeds as follows: 
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1) Construct “confidence set” for 

€ 

c  based on inverting the posterior ratio.4 

Assuming the set is contiguous, denote the estimated 95% confidence interval as 

ĉ0.025, ĉ0.975[ ] .5 

2) Note that, if a standard error were available and assuming asymptotic normality, 

another estimate of the 95% confidence interval would be ĉ±1.96× SE(ĉ) , 

meaning that ĉ±1.96× SE(ĉ) ≈ ĉ0.025, ĉ0.975[ ] . 

3) Assuming an asymptotic equivalence of the two confidence interval estimators, 

construct an approximate standard error as σ̂ c =
1
3.92

(ĉ0.975 − ĉ0.025 ) . 

 In terms of the smooth transition parameter 

€ 

γ , while it is possible to estimate it by 

numerical optimization, there are practical difficulties with doing so. As 

€ 

γ →∞ (i.e., as 

the MR-LSTAR model becomes more like a Band TAR model), 

€ 

γ  becomes unidentified 

(i.e., there is no impact on the likelihood for changes in 

€ 

γ  when it is extremely large). 

Bayesian analysis helps to some extent because an informative prior on 

€ 

γ  has the 

implication that the posterior will change even if the likelihood does not. However, in 

practice, to allow for relatively diffuse priors and to aid in numerical optimization, we 

follow the frequentist literature (see, for example, Franses and van Dijk, 2000) and 

conduct a grid search for 

€ 

γ  to obtain σ̂ γ  for the proposal distribution. Again, it should be 

emphasized that the grid search is for the proposal distribution only and is only meant to 

loosely approximate the posterior. The draws of 

€ 

γ  from the target distribution will be 

accurate even given the approximations in the proposal distribution. Meanwhile, we 

                                                
4 See Hansen (1996) for his detailed discussion of the method. 
5 If the confidence set is not contiguous, we take the conservative approach of using the smallest and largest 
values in the set to construct a 95% confidence interval. 



 9 

check the robustness of posterior moments to different assumptions for the proposal 

distribution for these nonlinear parameters. 

 Letting 

€ 

θ  denote the vector of model parameters, the overall proposal distribution 

is constructed as follows: 

  

€ 

θ ~ MT(µθ ,Σθ ,νθ ) , 

where 

€ 

µθ  is set to the previous draw for the random walk chain version of the MH 

algorithm and 

€ 

νθ  is the degrees of freedom parameter that it set as 

€ 

T − k , where T is the 

sample size and k is the number of parameters. The key aspect of the proposal density is 

the scale matrix 

€ 

Σθ . Letting 

€ 

θ L  denote the “linear” parameters and 

€ 

θNL  denote the 

“nonlinear” parameters (i.e., 

€ 

c  and 

€ 

γ ), where θ = θ L,θ NL( )! , 

€ 

Σθ  is given as follows: 

  Σθ =κ
vâr(θ̂ L ) 0

0 vâr(θ̂ NL )

"

#

$
$

%

&

'
'
, 

where 

€ 

κ  is a “tuning” parameter for the MH algorithm, vâr(θ̂ L ) is the variance-

covariance of the “linear” parameters based on the estimated inverse expected Hessian at 

the posterior mode conditional on the “nonlinear” parameters and 

vâr(θ̂ NL ) = σ̂ c
2,σ̂ γ

2( )! I2×2  is based on the indirect estimated standard deviations discussed 

above. In practice, we consider different parameter blocking schemes (i.e., conditional 

drawing from subsets of 

€ 

θ ) and we adjust 

€ 

κ  to attain an acceptance rate for the MH 

algorithm of between 20-50%.  

  Model comparison and model weights for constructing a model-averaged measure 

of persistence are based on marginal likelihoods. These are proportional to the probability 

that a model (including priors on parameters) would have predicted the observed data. 
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Following Chib and Jeliazkov (2001), we calculate these using the Bayes identity and the 

MH output. We have confirmed that marginal likelihood estimates and posterior 

moments are robust across multiple runs of the MH algorithm and for different starting 

values of the random-walk chain. For each run, we consider 20,000 draws after 10,000 

burn-in draws. 

 

4. Empirical Results 

4.1. Data and Priors 

We consider quarterly real exchange rates for eight different country pairs from the G7; 

these include non-euro currency exchange rates from 1974Q1 to 2007Q1 and euro 

currency exchange rates from 1974Q1 to 1998Q4. We calculate the real exchange rate 

series using nominal exchange rates and consumer price index data from the IFS 

database. We convert the monthly series into a quarterly frequency by taking the end-of-

quarter values. When looking at long-horizon persistence properties of exchange rates, 

there is little benefit of considering monthly data instead of quarterly data, while there 

would be a cost in terms needing more complicated models to account for the fat tails and 

volatility clustering that is more evident in higher-frequency exchange rate data. Also, the 

computation, especially of marginal likelihoods, is much faster given quarterly data 

instead of monthly data.6 

 Five of the real exchange rate series are vis-à-vis the U.S. dollars; all are 

commonly examined in the literature but only the pound-dollar exchange rate is included 

                                                
6 Note, however, that we have checked that the posterior inferences are qualitatively similar (adjusting for 
the frequency when appropriate) when considering similar models with monthly data. 
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in Bec, Ben Salem and Carrasco (2010).7 To compare with their results, we also include 

three series that do not involve the U.S. dollar. All real exchange rate series are converted 

into logarithms and re-centered. The full sample period is separated into two: 1974Q1 to 

1979Q4 provides a training sample to help us with the elicitation of priors for certain 

parameters that depend on the scale of the data (e.g., the variance of shocks) and/or 

parameters for which model comparison could potentially be sensitive to what might 

otherwise be arbitrary assumptions (e.g., the nonlinear parameters); 1980Q1 to 2007Q1 is 

used for Bayesian estimation and model comparison. We consider up to four lags for the 

AR specification. Because we use the error-correction and Dickey-Fuller transformation 

given in (1’) and (2), the AR(4) model, for example, is specified with the regressand as 

the first difference of the log real exchange rate and the regressors are the first lag of the 

log real exchange rate and three lags of the first differences.  

 For all of the models, the priors for the AR parameters have a Normal 

distribution. The prior means are all set to zero, except for the error-correction coefficient 

which is set to the OLS estimate based on an AR(1) model for the training sample. The 

prior standard deviations are 0.5, which are relatively uninformative, although we 

consider a truncation of the joint Normal distribution for the AR parameters to ensure 

stationarity (i.e., a draw from the proposal density can only be accepted if the roots of the 

characteristic equation 

€ 

φ(z) = 0 lie outside the unit circle). The prior for the forecast error 

variance has a Gamma distribution 

€ 

σ 2 ~ Gamma(ν,δ)  where the Gamma distribution for 

variable x is parameterized as follows: 

                                                
7 We exclude the German real exchange rate because the interpretation of the CPI before and after the 
German unification is problematic. 
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€ 

f (xν,δ) =
δ 2( )α

Γ ν 2( )
x ν 2( )−1e− δ 2( )x. 

For the prior on the forecast error variance, we set the rate parameter 

€ 

δ =1 (i.e., the 

Gamma distribution collapses to is a Chi-squared distribution with 

€ 

ν  degrees of freedom) 

and we set the shape parameter 

€ 

ν  to the sample variance of the forecast error in the 

training sample, implying that the prior mean for the variance is equal to the sample 

variance in the training sample. This is a relatively uninformative prior that is common to 

all models and so does not affect the model comparison.  

 The elicitation of priors for the nonlinear parameters in the MR-LSTAR model is 

slightly more involved and requires some discussion. For the threshold parameter c, we 

assume a Gamma distribution and set the rate parameter 

€ 

δ = 0.5  and the shape parameter 

€ 

ν  to 

€ 

δ  times the median absolute real exchange deviation (in logarithms) from the 

sample mean using data from the training sample period, implying the prior mean for c is 

equal to the median deviation from the mean in the training sample. For the smooth 

transition parameter 

€ 

γ , we also assume a Gamma distribution and set the rate parameter 

€ 

δ = 0.5 and the shape parameter 

€ 

ν  to 

€ 

0.1×δ  times the mean non-zero absolute quarterly 

change in the real exchange rate over the training sample, implying the prior mean is 

equal to one-tenth of the mean absolute quarterly change. This calibrates the scale of the 

small change in the exchange rate that could produce a change in the dynamics of the 

exchange rate. Also, despite the use of training sample information to calibrate the means 

of the priors for both 

€ 

c  and 

€ 

γ , the priors are still relatively uninformative given the low 

values for the rate parameter 

€ 

δ .  



 13 

 The remaining parameter for the nonlinear threshold models is the change in error 

correction coefficient across regimes: 

€ 

Δβ ≡ β in −βout . For this parameter, our prior is 

somewhat more informative than for other parameters and is based on the transaction 

costs notion that the adjustment to PPP will be larger when the exchange rate is far away 

from its PPP level. In particular, for 

€ 

Δβ , we again assume a Gamma distribution and set 

the rate parameter 

€ 

δ =100 and the shape parameter 

€ 

ν =10, implying the mean for the 

reduction in the error correction coefficient is 0.1, with a standard deviation of about 

0.045. We justify this relatively informative prior in two ways. First, we have strong 

theoretical reasons based on transaction costs to believe the error correction effect is 

larger in the outside regime when the real exchange rate is further from PPP. This is 

exactly the motivation for using a threshold model for real exchange rates and the ability 

to specify an informative prior that specifies the model according to that dynamic is a 

benefit of Bayesian analysis.8 Second, even though an informative prior might seem at 

first glance to push our empirical findings towards finding evidence of nonlinearity, it 

does not in fact do so.9 This is because we also consider linear models in our model 

comparison. Indeed, it is important for comparing linear and nonlinear models with 

Bayesian model comparison that there is little or no prior weight on the portion of the 

parameter space for the nonlinear models that corresponds to linearity. Only in this case 

will our true prior odds for linearity and nonlinearity be equal when considering Bayes 

factors (see below) to calculate posterior odds, while equal prior odds for a linear and 

                                                
8 In Bayesian analysis, the prior and the model are closely related. As an example, it is possible to compare 
two priors given the same model specification using marginal likelihoods. In essence, the comparison is 
between how well two prior models predicted the sample data.  
9 It should also be noted that the prior does not push the nonlinear models to imply shorter half lives for real 
exchange rates. This is because the prior is put on the change in persistence between regimes, not on the 
overall level of persistence, for which the prior is quite diffuse given the uninformative prior on the error 
correction coefficient. 
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nonlinear model would implicitly favor linearity given less informative priors on 

parameters in the nonlinear models related to nonlinearity.  

 

4.2. Posteriors 

Table 1 reports the logarithm of the marginal likelihood value, with the corresponding 

Bayes factor in the parentheses. Each Bayes factor is calculated as the ratio between the 

marginal likelihood value of a particular specification and the largest marginal likelihood 

value among the sixteen specifications for a given country pair. Based on these results, 

the MR-LSTAR models with and without heteroskedastic disturbances are well supported 

for seven out of eight series. Moreover, in every one of these cases, the second best 

model, using the Bayes factor as the measure, is also an MR-LSTAR specification. A 

linear model only has the highest Bayes factor overall for the Canadian-U.S. dollar real 

exchange rate. Even for that series, the MR-LSTAR(4)-h specification, where “h” 

denotes “heteroskedastic” disturbances, comes as a close second to the linear AR(4) 

specification, with a Bayes factor of 0.89. Meanwhile, our results suggest that both 

nonlinear conditional mean dynamics and heteroskedasticity are important in 

understanding the exchange rate data. Indeed, among the series in which nonlinearities 

are most probable, an MR-LSTAR-h specification has the highest Bayes factor in five out 

of seven cases. 

  It is illustrative to compare Table 1 with Table 2, which reports results for a 

frequentist LM-type test of linearity that was also considered in Bec, Ben Salem and 

Carrasco (2010).10 Our sample periods are different than theirs, so the results in Table 2 

                                                
10 Bec, Ben Salem, and Carrasco (2010) refer these tests as LML tests. The tests require an estimation 
procedure that grid searches for the maximal LM statistics over a set of γ and c in (3)-(5). The LM statistics 



 15 

are not an exact replication of their results. However, the inferences are almost the same. 

There are four series that are common in the two studies: pound-dollar, Canadian dollar-

pound, pound-franc and lira-franc. Note that they fix the number of lags to 2 and adopt a 

slightly unconventional set of significance levels from 5% to 15%. As in their study, we 

find evidence of nonlinearity for all of the common series except the Canadian dollar-

pound. However, Table 2 illustrates a difficulty with frequentist hypothesis testing in this 

context. Based on a pre-determined level of significance of even 15%, we fail to reject 

linearity for half of the series that we consider, including, for example, for the Italy/U.S. 

real exchange rate. Yet, we can reject linearity for the France/U.S. and the Italy/France 

real exchange rates. Although transitivity may not necessarily apply, this result suggests 

that the failure to reject may simply reflect low power of the test in a small sample 

setting. Unfortunately, failure to reject due to lower power is highly problematic in this 

setting because subsequent inferences about the persistence of shocks can be highly 

sensitive across country pairs depending on whether we condition on a linear or nonlinear 

model. By contrast, our subsequent Bayesian inferences about persistence are much more 

consistent across country pairs by always giving weight to both linear and nonlinear 

models.11 

 To provide a sense of the possible nonlinear features in the exchange rate data, we 

report the estimates and the empirical transition functions for the nonlinear model with 

the highest Bayes factor for each country pair in Table 3 and Figure 1 respectively. The 

                                                                                                                                            
are computed as T ( !ε ε − !̂ε ε̂ ) , where !ε ε  is the sum of squared residuals for the linear model and !̂ε ε̂  is 
the sum of squared residuals for the MR-LSTAR model. Full details of computation for the LM test 
statistic can be found in Appendix B of Bec, Ben Salem and Carrasco (2010). 
11 Bayesian model averaging tends to put all weight on one model when models are “sparse” in the sense of 
being quite different from each other. In our case, the models are similar, with the main distinction being 
between linear and nonlinear specifications. As a result, we find that the various models all tend to receive 
nontrivial weight, supporting the use of Bayesian model averaging as a way to combine models. 
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posterior means for the sum of the autoregressive coefficients within the threshold bands 

(i.e., 

€ 

βin +1) range from 0.904 to 0.982. By allowing nonlinearities, we find that the 

posterior means for the change in the sum of the autoregressive coefficients (i.e., 

€ 

βout −β in ) ranges from -0.093 to -0.048, with posterior standard deviations generally 

about half of the prior standard deviation of about 0.045. The data are informative, but 

not definitive about the magnitude of the change in persistence across regimes. 

Meanwhile, Figure 1 illustrates the estimated transition functions based on posterior 

means. The mirrored logistic function imposed by the MRLSTAR specification can 

converge to a discrete step function like a TAR model when γ is large enough. It can also 

mimic other functions, such as the exponential function. However, Figure 1 clearly 

suggests that the changes in the dynamics are discrete around a threshold. In many cases, 

there are very few points in between 0 and 1. At the same time, it was important for a fair 

comparison to linear models not to prespecify the form of nonlinearity in our estimation. 

 Interpretation of threshold estimates is seldom easy. An intuitive but not 

comprehensive view is to see them as estimates for the cost of transportation in the 

“iceberg” form (see O’Connell and Wei, 2001). In their investigation of the Law of One 

Price, Obstfeld and Taylor (1997) find that threshold estimates are positively related to 

the distance between two locations. Along these lines, our results regarding the thresholds 

are revealing. The European country-pairs: France/U.K. and Italy/France have the 

smallest threshold estimates 3.906 and 6.166 respectively. If thresholds represent the cost 

of arbitrage, we would expect European countries in the European Union enjoy smaller 

cost of transaction among them.  Not surprisingly, all Europe/U.S. pairs with the Atlantic 

Ocean to separate the two continents apart have similar threshold estimates; the range is 
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small, only from 7.015 to 8.080. The threshold for the Japan/U.S. real exchange rate is 

the largest among all: 14.807. The most interesting ones are series that involve the 

Canadian dollar. One would expect, because of geographical distances and historical 

trade tie, the U.S. and the Canadian economies are the closest. But the threshold estimate 

for the real exchange rates of the two dollars is 8.743, larger than any for the Europe/U.S. 

pairs. Also the threshold estimate for the Canadian dollar-pound real exchange rate is 

10.455, which is larger than that for the U.S. dollar-pound, even though both North 

American countries are separated from the United Kingdom by a similar distance. 

 Based on draws of the parameters from their posterior distributions, we also 

compute and report posterior means for the unconditional half-life of real exchange rate 

deviations from PPP in Table 4. Given parameter values, the computation of half-lives 

for the AR models is conventional. The computation for the MR-LSTAR models requires 

generalized impulse response simulation as discussed in Koop, Pesaran, and Potter 

(1996) and Potter (2000). We randomize the initial conditions and the properties (size and 

sign) of the shocks. This is different to many conditional exercises as in Taylor, Peel, and 

Sarno (2001) and Bec, Ben Salem, and Carrasco (2004), but is similar to Lo (2008). 

 We use the marginal likelihood value as relative weights to compute different 

model-averaged measures of the half-lives. In Table 4, the last row labeled “All Models” 

and the last column labeled “All Lags” in each panel reports such measures. The former 

reports the weighted half-life between the linear and the nonlinear model given the same 

lag order. The latter reports the weighted half-life among different lag orders for the same 

model. The number where the “All Models” row and the “All Lags” column intersect 

indicate the weighted half-life for all models with all lags. These are our overall model-
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averaged estimates of half-lives. Because we use quarterly data, we round up the 

decimals to the nearest 0.25 for the ease of interpretation. 

  Rogoff (1996) surveyed a number of studies that make use of linear models and 

found that half-life estimates range from 3 to 5 years for most real exchange rates 

between industrialized countries. From our estimates, there are two extreme cases 

involving the Canadian dollar in which the half-life estimates for the linear models are 

above 6 years or longer. For the rest of the data series, however, the half-life estimates for 

the linear models fall right into Rogoff’s range, from 3 to 4.25 years. These results are 

also sensitive to the lag length; in general, the larger the number of lags, the smaller the 

level of persistence. Using the Bayesian weighing scheme, we also find that the model-

averaged half-life measures for the linear models (under “All Lags” corresponding to 

linear and linear-h) are all below 4.  

 When we examine the results for the nonlinear models, we find even smaller half-

life estimates. From the linear to the nonlinear models, the reduction ranges from 1 to 3 

years. The reason for relatively shorter half-lives for nonlinear models versus linear 

models can be explained by the results in Table 5, which reports quantiles from the 

posterior distribution for the half-lives. It turns out that the difference between the 

posterior medians for the linear and the nonlinear models is negligible. In a frequentist 

framework, Lo (2008) shows that when the MR-LSTAR model is the true data generating 

process, the Monte Carlo median of the half-life estimates from a linear model are not 

significantly different to the true unconditional half-life generated from the nonlinear 

model. Our findings here match this result. However, a closer examination of the other 

quantiles shows that the distributions for all models are skewed, resulting in our earlier 
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finding that means are larger than medians. Importantly, the upper 95% bound for the 

liner models is much higher than that for the nonlinear models and hits the level of 

“infinity” frequently.12 This echoes the results in Murray and Pappell (2002) and Rossi 

(2005), which imply that estimation uncertainty for linear models is large. What is new 

here is that the MR-LSTAR models manage to not only generate smaller mean half-lives, 

but also less uncertainty about the range of possible half-lives. 

 Another new finding with our results compared to the previous literature is the 

overall model-averaged half-life (at the far bottom right corner for each panel in Table 4). 

Although we have estimates as low as 2.50 years, we also have estimate as high as 6 

years when Canada is involved. These model-averaged estimates are based on the 

weights using the marginal likelihood value for all models and lags. The weights are 

reported in Table 6. For certain data series, weights for a specific nonlinear model may 

reach to 20% (lira-dollar) or even 25% (yen-dollar). Overall, nonlinear models receive 

about 70% to 80% of the weight in calculating model-averaged half-lives. The 

consequence of this weight on the nonlinear models is that the estimated half-lives are 

uniformly lower than in the linear case, even when the evidence against linear models is 

more ambiguous. Thus, we obtain a stronger result about the PPP persistence than 

provided by the frequentist literature, which only finds less persistence when 

conditioning on a nonlinear model. 

 

 

 

                                                
12 In our generalized impulse response simulations, we set a maximum of 15 years (60 quarters) horizon. 
When the simulated half-life hits this limit, we label it as infinity. 
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5. Conclusion 

In this paper, we have employed Bayesian analysis to re-examine previous empirical 

findings on real exchange rate persistence that were based on frequentist inferences. Our 

results strengthen some previous results about the importance of nonlinearities, but add 

important new insights about the general persistence of real exchange rates. In particular, 

in terms of uncertainty about half-lives, the nonlinear models yield more accurate 

inferences than linear models. Also, even though there is a nontrivial posterior probability 

for linear dynamics, there is clear evidence that the persistence of real exchange rates is 

lower than reported in Rogoff (1995) based on linear models, with the range being 

between 2-3 years for most country pairs. Thus, we confirm the frequentist results that 

condition on a nonlinear model that one partial resolution of the purchasing power parity 

persistence puzzle is that exchange rates are not quite as persistent as suggested by 

possibly misspecified linear models. Notably, our results imply less persistence, even 

when frequentist tests fail to reject linearity. 

 We conclude by noting that our analysis of exchange rate persistence is based on 

the assumption that purchasing power parity holds in the long run. It is possible, 

however, that there is a small random walk component in the real exchange rate (see, for 

example, Engel and Kim, 1999, and Engel, 2000) and that allowing for it would affect 

our inferences about the persistence of transitory deviations from the long-run 

equilibrium level of the real exchange rate. Incorporating nonlinear transitory dynamics 

in an unobserved components model that allows for stochastic permanent movements in 

the real exchange rate is a complicated econometric problem that we leave for future 

research. Of course, accounting for such movements should only serve to further reduce 
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the estimated persistence of the transitory component of the real exchange rate and 

reinforce the empirical findings presented here. 
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Table 1: Log Marginal Likelihood and Bayes Factors 
 

          
          

 British Pound-U.S. Dollar 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 
Linear  -335.48 (0.29) -335.26 (0.36) -336.66 (0.09) -337.09 (0.06) 
Linear-h  -335.08 (0.43) -335.01 (0.46) -336.44 (0.11) -336.85 (0.07) 
MRLSTAR  -335.26 (0.36) -334.67 (0.64) -336.03 (0.16) -336.35 (0.12) 
MRLSTAR-h  -334.50 (0.77) -334.23 (1.00) -335.62 (0.25) -336.05 (0.16) 
          
          

 Canadian Dollar-U.S. Dollar 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 
Linear  -255.36 (0.30) -255.84 (0.18) -257.29 (0.04) -254.15 (1.00) 
Linear-h  -256.16 (0.13) -256.67 (0.08) -258.20 (0.02) -254.95 (0.45) 
MRLSTAR  -255.94 (0.17) -256.27 (0.12) -257.76 (0.03) -254.27 (0.89) 
MRLSTAR-h  -256.64 (0.08) -256.98 (0.06) -258.55 (0.01) -254.90 (0.47) 
          
          

 French Franc-U.S. Dollar 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 
Linear  -241.54 (0.11) -240.45 (0.32) -241.74 (0.09) -241.18 (0.16) 
Linear-h  -241.91 (0.08) -241.06 (0.18) -242.31 (0.05) -241.72 (0.09) 
MRLSTAR  -240.56 (0.29) -239.33 (1.00) -240.65 (0.27) -239.95 (0.54) 
MRLSTAR-h  -240.63 (0.27) -239.52 (0.83) -240.56 (0.29) -240.02 (0.50) 
          
          

 Italian Lira-U.S. Dollar 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 
Linear  -244.28 (0.09) -243.48 (0.20) -244.22 (0.10) -243.25 (0.26) 
Linear-h  -244.21 (0.10) -243.63 (0.18) -244.29 (0.09) -243.13 (0.29) 
MRLSTAR  -243.60 (0.18) -242.50 (0.54) -243.47 (0.21) -241.92 (0.97) 
MRLSTAR-h  -243.67 (0.17) -242.71 (0.44) -243.56 (0.19) -241.89 (1.00) 
          
Note: The Bayes factor is reported in parentheses; it is equal to the marginal likelihood value for each 
model and lag specification divided by the largest marginal value in the group. 
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 Japanese Yen-U.S. Dollar 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 
Linear  -346.35 (0.18)  -346.74 (0.12) -347.88 (0.04) -346.02 (0.26) 
Linear-h  -346.45 (0.17)  -346.92 (0.10) -347.97 (0.04) -345.72 (0.34) 
MRLSTAR  -345.95 (0.27)  -346.35 (0.18) -347.28 (0.07) -345.14 (0.61) 
MRLSTAR-h  -345.72 (0.34)  -345.85 (0.30) -347.11 (0.09) -344.65 (1.00) 
          
          

 Canadian Dollar-British Pound 
          
Model   Autoregressive Lag Order (p) 
  1  2 3 4 
Linear  -337.16 (0.05)  -335.70  (0.21) -336.47 (0.10) -337.61 (0.03) 
Linear-h  -337.27 (0.04)  -335.73 (0.21) -336.49 (0.10) -337.68 (0.03) 
MRLSTAR  -336.29 (0.12)  -334.46 (0.74) -335.60 (0.23) -336.56 (0.09) 
MRLSTAR-h  -336.07 (0.15) -334.15 (1.00) -335.04 (0.41) -336.18 (0.13) 
          
          

 British Pound-French Franc 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 
Linear  -223.31 (0.09) -223.31 (0.09) -224.59 (0.02) -224.90 (0.02) 
Linear-h  -223.09 (0.11) -222.52 (0.19) -223.82 (0.05) -224.47 (0.03) 
MRLSTAR  -222.44 (0.21) -222.26 (0.25) -223.45 (0.08) -223.72 (0.06) 
MRLSTAR-h  -221.68 (0.44) -220.87 (1.00) -222.24 (0.25) -222.75 (0.15) 
          
          

 Italian Lira-French Franc 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 
Linear  -187.17 (0.17) -186.98 (0.21) -188.23 (0.06) -188.74 (0.04) 
Linear-h  -187.33 (0.15) -186.91 (0.22) -188.02 (0.07) -188.07 (0.07) 
MRLSTAR  -186.77 (0.26) -186.57 (0.32) -187.71 (0.10) -188.09 (0.07) 
MRLSTAR-h  -186.42 (0.36) -185.41 (1.00) -186.80 (0.25) -187.12 (0.18) 
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Table 2: Linearity Tests 

 
LM Statistics 

Model Autoregressive Lag Order (p) 
 1 2 3 4 
British Pound-U.S. Dollar 2.7959 4.4016 - 3.9650 - 5.4480* 

Canadian-U.S. Dollar 0.3140 0.6371 0.4627 0.9430 

French Franc-U.S. Dollar 3.3300 5.3418* 5.0728* 4.9556* 

Italian Iira-U.S. Dollar 2.5983 3.4869 3.4183 2.9888 
Japanese Yen-U.S. Dollar 1.3232 1.9722 1.8125 1.7733 
Canadian Dollar-British Pound 0.8961 1.4968 1.1165 1.1604 
British-Pound-French Franc 3.7321 4.6134* 4.8375* 4.8730* 

Italian Lira-French Franc 5.3371* 8.4954** 8.1807** 7.6548** 

     
Heteroskedasticity Robust LM Statistics 

Model Autoregressive Lag Order (p) 
 1 2 3 4 
British Pound-U.S. Dollar 3.1279 5.0530* 4.7306* 5.8211* 

Canadian-U.S. Dollar 0.3114 0.6576 0.4522 0.9246 
French Franc-U.S. Dollar 3.0394 4.8514* 5.1414* 5.4710* 

Italian Iira-U.S. Dollar 1.5188 2.1944 2.5005 2.4644 
Japanese Yen-U.S. Dollar 0.4528 0.6649 0.6536 0.7372 
Canadian Dollar-British Pound 1.2295 2.1482 1.7331 1.8727 
British-Pound-French Franc 2.6618 3.3910 - 4.1377 - 4.4314 - 

Italian Lira-French Franc 3.1254 4.3026 - 4.6046** 5.1828** 

     
Note: -, *, and ** denote significance at 15%, 10%, and 5%, respectively. 
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Table 3: Posterior Means for the Best Nonlinear Models 

 
         
 £/USD CN$/US$ FF/US$ ITL/US$ ¥/US$ CN$/£ £/FF ITL/FF 

         
σout

2 28.160 -- -- 28.702 33.309 27.224 12.891 9.057 
 (4.783)   (4.508) (5.377) (4.835) (2.264) (2.807) 
σin

2 21.766 5.505 25.936 19.673 26.401 30.480 22.954 6.320 
 (3.997) (0.739) (3.519) (5.246) (4.470) (5.880) (4.729) (2.432) 

βin+1 0.961 0.982 0.959 0.959 0.972 0.967 0.904 0.961 
 (0.029) (0.014) (0.030) (0.031) (0.021) (0.025) (0.053) (0.029) 

βout-βin -0.071 -0.048 -0.070 -0.071 -0.060 -0.067 -0.093 -0.075 
 (0.028) (0.018) (0.027) (0.029) (0.022) (0.026) (0.039) (0.030) 
c 8.743 8.080 7.576 7.015 14.807 10.455 3.906 6.166 
 (4.706) (5.020) (5.281) (6.252) (8.038) (5.032) (1.953) (3.357) 
γ 5.459 10.204 7.846 8.850 3.313 3.537 12.303 10.753 
 (5.400) (10.276) (7.695) (8.894) (3.350) (3.645) (11.687) (10.124) 
         
Note: Standard deviations in parentheses. For CN$/US$ and FF/US$, the variance σin

2 prevails in both regimes. 
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Table 4: Posterior Half-Life (Means and Weighted Averages) 
 
          
          

 British Pound-U.S. Dollar 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 All Lags 
Linear  3.75 3.25 3.50 3.25 3.50 
Linear-h  4.00 3.25 3.50 3.25 3.50 
MRLSTAR  2.50 2.50 2.50 2.50 2.50 
MRLSTAR-h  2.75 2.50 2.50 2.50 2.50 
All Models  3.25 2.75 2.75 2.75 3.00 
          
          

 Canadian Dollar-U.S. Dollar 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 All Lags 
Linear  8.00 7.75 7.50 6.75 7.00 
Linear-h  8.00 7.75 7.75 6.75 7.25 
MRLSTAR  5.00 4.75 4.75 4.50 4.50 
MRLSTAR-h  5.00 4.75 4.75 4.75 4.75 
All Models  7.00 6.50 6.50 5.75 6.00 
          
          

 French Franc-U.S. Dollar 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 All Lags 
Linear  3.25 3.00 3.25 3.00 3.00 
Linear-h  3.50 3.25 3.25 3.00 3.25 
MRLSTAR  2.25 2.25 2.25 2.50 2.25 
MRLSTAR-h  2.25 2.25 2.25 2.50 2.25 
All Models  2.50 2.50 2.50 2.50 2.50 
          
          

 Italian Lira-U.S. Dollar 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 All Lags 
Linear  4.25 3.50 3.75 3.50 3.50 
Linear-h  4.00 3.50 4.00 3.50 3.75 
MRLSTAR  2.75 2.75 2.50 2.75 2.75 
MRLSTAR-h  2.50 2.50 2.25 2.50 2.50 
All Models  3.00 2.75 3.00 2.75 3.00 
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Continued from the last page. 
          

 Japanese Yen-U.S. Dollar 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 All Lags 
Linear  3.75 3.25 3.50 3.25 3.50 
Linear-h  4.00 3.25 3.50 3.25 3.50 
MRLSTAR  2.50 2.50 2.50 2.50 2.50 
MRLSTAR-h  2.75 2.50 2.50 2.50 2.50 
All Models  3.25 2.75 2.75 2.75 3.00 
          
          

 Canadian Dollar-British Pound 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 All Lags 
Linear  8.00 7.75 7.50 6.75 7.00 
Linear-h  8.00 7.75 7.75 6.75 7.25 
MRLSTAR  5.00 4.75 4.75 4.50 4.50 
MRLSTAR-h  5.00 4.75 4.75 4.75 4.75 
All Models  7.00 6.50 6.50 5.75 6.00 
          
          

 British Pound-French Franc 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 All Lags 
Linear  3.25 3.00 3.25 3.00 3.00 
Linear-h  3.50 3.25 3.25 3.00 3.25 
MRLSTAR  2.25 2.25 2.25 2.50 2.25 
MRLSTAR-h  2.25 2.25 2.25 2.50 2.25 
All Models  2.50 2.50 2.50 2.50 2.50 
          
          

 Italian Lira-French Franc 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 All Lags 
Linear  4.25 3.50 3.75 3.50 3.50 
Linear-h  4.00 3.50 4.00 3.50 3.75 
MRLSTAR  2.75 2.75 2.50 2.75 2.75 
MRLSTAR-h  2.50 2.50 2.25 2.50 2.50 
All Models  3.00 2.75 3.00 2.75 3.00 
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Table 5: Posterior Half-Life (Medians, Quartiles and 95% Confidence Intervals) 
 
 

       
       
 British Pound-U.S. Dollar 

 Lag 5% 25% Median 75% 95% 

Linear 

1 1.50 2.25 2.75 4.00 ∞ 
2 1.50 2.00 2.75 3.50 12.00 
3 1.50 2.25 2.75 3.75 ∞ 
4 1.75 2.25 2.50 3.25 10.25 

Linear-h 

1 1.50 2.25 3.00 4.25 ∞ 
2 1.50 2.00 2.75 3.50 12.25 
3 1.50 2.00 2.75 3.75 ∞ 
4 1.50 2.25 2.50 3.50 10.75 

MRLSTAR 

1 1.00 1.75 2.25 3.00 6.00 
2 1.00 1.75 2.25 2.75 5.25 
3 1.00 1.75 2.25 2.75 5.00 
4 1.25 2.00 2.25 2.75 5.00 

MRLSTAR-h 

1 1.00 1.75 2.25 3.00 6.50 
2 1.00 1.75 2.25 2.75 5.50 
3 1.00 1.75 2.25 2.75 5.50 
4 1.00 2.00 2.25 2.75 5.25 

       
       
 Canadian Dollar-U.S. Dollar 
 Lag 5% 25% Median 75% 95% 

Linear 

1 2.75 4.50 6.50 11.50 ∞ 
2 3.00 4.50 6.25 10.25 ∞ 
3 2.75 4.25 6.25 10.00 ∞ 
4 3.00 4.25 5.50 7.75 ∞ 

Linear-h 

1 3.00 4.75 6.75 11.50 ∞ 
2 2.75 4.50 6.25 10.00 ∞ 
3 2.75 4.50 6.25 10.00 ∞ 
4 3.00 4.25 5.50 8.00 ∞ 

MRLSTAR 

1 1.25 3.00 4.00 6.00 ∞ 
2 1.25 3.00 4.00 5.75 14.75 
3 1.25 3.00 4.00 5.50 14.25 
4 1.50 3.25 4.00 5.00 11.00 

MRLSTAR-h 

1 1.25 3.00 4.00 5.75 ∞ 
2 1.25 3.00 4.00 5.50 14.25 
3 1.25 3.00 4.00 5.50 14.00 
4 1.50 3.25 4.00 5.25 12.00 

       
Note: Our simulations of generalized impulse responses allow for a maximum of 15 years (or 60 quarters). 
Any simulation that hit the limit is regarded as ∞. 
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 French Franc-U.S. Dollar 

 Lag 5% 25% Median 75% 95% 

Linear 

1 1.50 2.00 2.50 3.50 12.00 
2 1.50 2.00 2.50 3.25 10.00 
3 1.50 2.00 2.50 3.25 10.25 
4 1.75 2.25 2.50 3.25 7.75 

Linear-h 

1 1.50 2.00 2.50 3.75 ∞ 
2 1.50 2.00 2.50 3.25 10.75 
3 1.50 2.00 2.50 3.25 10.50 
4 1.75 2.25 2.50 3.25 7.75 

MRLSTAR 

1 1.00 1.75 2.00 2.75 5.50 
2 1.25 1.75 2.00 2.50 4.75 
3 1.00 1.75 2.00 2.75 4.75 
4 1.25 2.00 2.25 2.75 4.50 

MRLSTAR-h 

1 1.25 1.75 2.00 2.50 4.50 
2 1.25 1.75 2.00 2.50 4.50 
3 1.00 1.75 2.25 2.75 4.75 
4 1.25 2.00 2.25 2.75 4.25 

       
       
 Italian Lira-U.S. Dollar 
 Lag 5% 25% Median 75% 95% 

Linear 

1 1.50 2.25 3.00 4.50 ∞ 
2 1.50 2.00 2.75 3.75 13.25 
3 1.50 2.25 2.75 4.00 ∞ 
4 1.75 2.25 2.75 3.75 12.00 

Linear-h 

1 1.50 2.25 2.75 4.25 ∞ 
2 1.50 2.25 2.75 3.75 ∞ 
3 1.50 2.25 3.00 4.25 ∞ 
4 1.75 2.25 2.75 3.75 12.75 

MRLSTAR 

1 1.00 1.75 2.25 3.00 7.00 
2 1.00 1.75 2.25 3.00 7.00 
3 1.00 1.75 2.25 3.00 7.00 
4 1.00 2.00 2.50 3.00 6.00 

MRLSTAR-h 

1 1.00 1.75 2.25 3.00 6.25 
2 1.00 1.75 2.25 2.75 6.25 
3 1.00 1.75 2.25 2.75 5.00 
4 1.25 2.00 2.25 3.00 5.00 
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Continued from the last page. 

       
 Japanese Yen-U.S. Dollar 

 Lag 5% 25% Median 75% 95% 

Linear 

1 2.00 3.00 4.00 6.25 ∞ 
2 2.00 3.00 3.75 5.50 ∞ 
3 2.00 3.00 4.00 6.00 ∞ 
4 2.25 3.00 3.75 5.00 ∞ 

Linear-h 

1 2.00 3.00 4.00 6.25 ∞ 
2 2.00 3.00 3.75 5.50 ∞ 
3 2.00 3.00 4.00 6.00 ∞ 
4 2.25 3.00 3.75 5.00 ∞ 

MRLSTAR 

1 1.25 2.25 3.00 4.00 9.25 
2 1.25 2.25 2.75 3.75 8.00 
3 1.00 2.25 2.75 3.75 8.25 
4 1.50 2.50 3.00 3.75 7.25 

MRLSTAR-h 

1 1.00 2.25 3.00 4.25 10.00 
2 1.25 2.25 3.00 4.00 8.75 
3 1.00 2.25 3.00 4.00 8.75 
4 1.25 2.50 3.00 4.00 8.25 

       
       
 Canadian Dollar-British Pound 
 Lag 5% 25% Median 75% 95% 

Linear 

1 1.75 2.50 3.50 5.25 ∞ 
2 1.75 2.50 3.00 4.50 ∞ 
3 1.75 2.50 3.50 5.00 ∞ 
4 1.50 2.50 3.25 5.25 ∞ 

Linear-h 

1 1.75 2.50 3.50 5.50 ∞ 
2 1.75 2.50 3.00 4.25 ∞ 
3 1.75 2.50 3.25 5.00 ∞ 
4 1.25 2.50 3.25 5.00 ∞ 

MRLSTAR 

1 1.00 2.00 2.50 3.25 6.50 
2 1.25 2.00 2.50 3.00 6.00 
3 1.00 2.00 2.50 3.00 6.00 
4 1.00 1.75 2.50 3.00 6.00 

MRLSTAR-h 

1 1.00 1.75 2.50 3.25 6.50 
2 1.25 2.00 2.25 3.00 5.50 
3 1.00 2.00 2.50 3.25 6.00 
4 1.00 1.75 2.50 3.00 6.00 
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Continued from the last page. 

       
 British Pound-French Franc 

 Lag 5% 25% Median 75% 95% 

Linear 

1 1.00 1.25 1.50 2.00 5.00 
2 1.00 1.25 1.50 1.75 3.50 
3 1.00 1.25 1.50 1.75 3.75 
4 1.00 1.50 1.50 1.75 3.50 

Linear-h 

1 1.00 1.25 1.50 1.75 3.75 
2 1.00 1.25 1.50 1.75 2.75 
3 1.00 1.25 1.50 1.75 3.25 
4 1.00 1.25 1.50 1.75 2.75 

MRLSTAR 

1 0.75 1.25 1.50 1.75 3.25 
2 0.75 1.25 1.50 1.75 3.00 
3 0.75 1.25 1.50 1.75 3.00 
4 0.75 1.25 1.50 1.75 2.75 

MRLSTAR-h 

1 0.75 1.25 1.50 1.75 2.75 
2 1.00 1.25 1.25 1.50 2.50 
3 0.75 1.25 1.25 1.50 2.50 
4 0.75 1.25 1.50 1.75 2.50 

       
       
 Italian Lira-French Franc 
 Lag 5% 25% Median 75% 95% 

Linear 

1 1.50 2.00 2.75 3.75 ∞ 
2 1.50 2.25 2.75 3.75 14.00 
3 1.50 2.00 2.75 3.75 14.25 
4 1.75 2.25 2.75 3.75 11.75 

Linear-h 

1 1.50 2.00 2.75 4.00 ∞ 
2 1.50 2.25 2.75 4.00 ∞ 
3 1.50 2.00 2.75 3.75 ∞ 
4 1.50 2.25 2.75 3.75 11.50 

MRLSTAR 

1 1.00 1.75 2.25 3.00 6.50 
2 1.25 1.75 2.25 2.75 5.50 
3 1.00 1.75 2.25 2.75 5.50 
4 1.25 2.00 2.25 2.75 4.75 

MRLSTAR-h 

1 1.00 1.75 2.25 3.00 6.75 
2 1.00 1.75 2.25 3.00 6.50 
3 1.00 1.75 2.25 3.00 5.75 
4 1.00 2.00 2.50 3.00 5.75 
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Table 6: Weights from Marginal Likelihood Values 

 
          
          

 British Pound-U.S. Dollar 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 
Linear  0.0539 0.0671 0.0166 0.0107 
Linear-h  0.0804 0.0862 0.0206 0.0137 
MRLSTAR  0.0668 0.1208 0.0310 0.0226 
MRLSTAR-h  0.1438 0.1880 0.0470 0.0306 
  Sum of all linear: 0.3494 Sum of all MRLSTARs: 0.6506 
          
          

 Canadian Dollar-U.S. Dollar 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 
Linear  0.0737 0.0457 0.0107 0.2481 
Linear-h  0.0331 0.0200 0.0043 0.1110 
MRLSTAR  0.0414 0.0298 0.0067 0.2202 
MRLSTAR-h  0.0205 0.0147 0.0030 0.1171 
  Sum of all linear: 0.5465 Sum of all MRLSTARs: 0.4535 
          
          

 French Franc-U.S. Dollar 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 
Linear  0.0216 0.0640 0.0176 0.0309 
Linear-h  0.0150 0.0350 0.0100 0.0181 
MRLSTAR  0.0577 0.1974 0.0526 0.1062 
MRLSTAR-h  0.0539 0.1636 0.0578 0.0985 
  Sum of all linear: 0.2123 Sum of all MRLSTARs: 0.7877 
          
          

 Italian Lira-U.S. Dollar 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 
Linear  0.0184 0.0407 0.0195 0.0511 
Linear-h  0.0197 0.0352 0.0181 0.0579 
MRLSTAR  0.0361 0.1085 0.0414 0.1944 
MRLSTAR-h  0.0336 0.0878 0.0377 0.1997 
  Sum of all linear: 0.2607 Sum of all MRLSTARs: 0.7393 
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Continued from the last page. 
          

 Japanese Yen-U.S. Dollar 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 
Linear  0.0444 0.0301 0.0097 0.0620 
Linear-h  0.0402 0.0253 0.0088 0.0831 
MRLSTAR  0.0662 0.0444 0.0175 0.1487 
MRLSTAR-h  0.0834 0.0731 0.0208 0.2423 
  Sum of all linear: 0.3036 Sum of all MRLSTARs: 0.6964 
          
          

 Canadian Dollar-British Pound 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 
Linear  0.0136 0.0582 0.0272 0.0087 
Linear-h  0.0122 0.0567 0.0266 0.0081 
MRLSTAR  0.0324 0.2026 0.0644 0.0248 
MRLSTAR-h  0.0404 0.2746 0.1134 0.0362 
  Sum of all linear: 0.2111 Sum of all MRLSTARs: 0.7889 
          
          

 British Pound-French Franc 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 
Linear  0.0287 0.0287 0.0080 0.0058 
Linear-h  0.0358 0.0633 0.0172 0.0090 
MRLSTAR  0.0684 0.0820 0.0248 0.0190 
MRLSTAR-h  0.1460 0.3290 0.0837 0.0504 
  Sum of all linear: 0.1966 Sum of all MRLSTARs: 0.8034 
          
          

 Italian Lira-French Franc 
          
Model  Autoregressive Lag Order (p) 
  1 2 3 4 
Linear  0.0488 0.0593 0.0170 0.0101 
Linear-h  0.0415 0.0637 0.0209 0.0199 
MRLSTAR  0.0730 0.0894 0.0285 0.0195 
MRLSTAR-h  0.1034 0.2835 0.0704 0.0511 
  Sum of all linear: 0.2812 Sum of all MRLSTARs: 0.7188 
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Figure 1: Empirical Transition Functions for the Best Nonlinear Models 
 

  

  

  

  
 

 
 


