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Abstract

When siblings are concerned for the well-being of their elderly parents, the costs of caregiv-

ing and long-term commitment create a free-rider problem. If siblings living near their parents

can share the costs, this positive externality exacerbates the under-provision of proximate liv-

ing. Location decisions allow siblings to make a commitment to not provide long-term support

for parents, and if decisions are made in birth order, elder siblings may enjoy the first-mover

advantage. To quantify these effects, we study siblings’location decisions relative to parents by

estimating a sequential participation game that features rich heterogeneity. We find moderate

altruism and cooperation in the US that imply: (1) limited strategic behavior: more than 90%

of children have a dominant strategy; and (2) non-negligible free-riding: of the families with

multiple children, had siblings fully internalized externality and jointly maximized their utility,

18.3% more parents would have had at least one child nearby.

∗Earlier versions of the paper were circulated under the title "Externality and Strategic Interaction in the Location
Choice of Siblings under Altruism toward Parents." The authors gratefully acknowledge financial support from the
Australian Research Council’s Discovery Projects funding scheme (project number DP110100773).
†Corresponding author. E-mail: s.maruyama@unsw.edu.au
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1 Introduction

While adult children wish for the well-being of their elderly parents, the burden of caring for elderly

parents has been well-documented. In a family with multiple adult children, altruism toward the

elderly parent and the cost of caregiving result in a textbook public good problem. Children feel

comfortable if they know their parents are well treated and well taken care of, and the cost of

caregiving creates an incentive to free-ride on their siblings.

This public good problem is particularly highlighted when we consider siblings’location deci-

sions. The opportunity cost of living near or with the parent and forgoing opportunities elsewhere

is much less documented but no less important than other caregiving burdens. The discrete nature

of location choice and associated non-negligible relocation costs make effi cient bargaining challeng-

ing. Furthermore, in the course of location decisions, there exists a potential commitment device

– birth order. The eldest children may enjoy the first-mover advantage by choosing to move away

from their parents once they finish their schooling, before their younger siblings. Consistent with

this argument, Konrad et al (2002) find that in Germany, elder siblings are more likely to move far

away from their parents than their younger siblings.

The goal of this paper is to quantify this public good problem and the first-mover advantage

for the first time in the literature, by studying the location decisions of adult siblings relative to

their elderly parents. Based on American families in the Health and Retirement Study (HRS), we

estimate a sequential participation game played by siblings.

In an attempt to quantify the free-rider problem, it is important to incorporate and distinguish

another type of externality that is highly likely in reality – cooperation. Siblings living near

parents may be able to share the costs, and shared caregiving is widely observed (Matthews and
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Rosner 1988; Checkovich and Stern, 2002). While cooperation offsets the coordination diffi culty

caused by the free-rider problem, a positive externality resulting from cooperation exacerbates the

under-provision of proximate living. A negative cooperation effect is also possible and implies

an excessive provision of proximate living, similar to the standard entry game. An example is

the bequest motive argument by Bernheim et al (1985), in which the presence of another sibling

reduces transfers from the parent. When altruism toward parents is present, positive cooperation

induces more families to be in the prisoners’dilemma situation, while negative cooperation leads

to a larger first-mover advantage.

Our empirical framework addresses this potentially highly complex nature of the location game,

relying upon the idea that all these externalities and strategic interactions can be summarized by

three structural parameters: altruism, private cost, and cooperation. We then introduce rich hetero-

geneity in these three terms so that our empirical model can represent a wide range of participation

games. As a result, our empirical framework sheds light on (1) the degree of externality, specifi-

cally altruism toward parents and cooperation among siblings, (2) the associated under-provision

or over-provision of proximate living, (3) the game structure and equilibrium characteristics (e.g.

coordination vs. anti-coordination games), (4) the extent of the first-mover advantage, and (5)

how externality and ineffi ciency vary across families. Estimation relies on the maximum simulated

likelihood. After the preference parameters of children are recovered, counterfactual simulations are

conducted. We also estimate a joint-utility maximization model and a private-information model

to confirm the validity of the main model.

These empirical questions have significant policy implications. In the recent trend of population

aging, elderly parents, particularly widowed mothers, are more likely to live alone for longer, often

with disabilities. Despite the trend toward formal care, informal care still plays an important role.
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In the case of the elderly with a disability or severe medical condition, around 80% of the hours

of care are provided informally (OECD, 2005). Despite declining intergenerational coresidence and

the increased mobility of young generations, the majority of adult Americans still live within 25

miles of their mothers (Compton and Pollak, 2009). Though much of the informal care can be

replaced by formal care, family assistance, such as companionship, frequent visits, and mental and

emotional support, contributes to the well-being of elderly parents and enables them to remain in

the community (Matthews and Rosner, 1988). A good understanding of adult children’s location

decisions serves as an important step in designing public policies to promote the well-being of

families in aging societies.

There are myriad studies on informal care and living arrangements for families with elderly

parents. We advance the literature in two ways. First, we are the first in the literature to develop

an econometric model that captures the sequential aspect of decision making among siblings and

to quantify its empirical importance. All existing studies of empirical games in this literature

assume the simultaneous move of siblings. Second, we are the first to apply an empirical game

to the location decisions among siblings, rather than the informal care arrangement decision. The

location choice problem more clearly highlights the free-rider problem and strategic interactions

due to its discrete, irreversible, and long-term nature. Moreover, studying the location decision

is important because the location pattern is a critical determinant of formal and informal care

arrangements (Checkovich and Stern, 2002; and Engers and Stern, 2002).

This paper also makes two contributions to the literature of empirical games. First, our model

features rich heterogeneity in the two distinct externalities. As a result, different players face

participation games of different equilibrium characteristics (e.g. coordination and anti-coordination

games). This is particularly important in the environments studied, because we expect a high
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level of heterogeneity in families’ preferences and behaviors. This approach enables us to draw

inferences on the share of families in the situation of prisoners’dilemma, families achieving joint-

utility optimum, and families with a large first-mover advantage. Second, this paper is one of

very few empirical analyses that allow us to study the first-mover advantage, preemption, and

commitment device by incorporating sequential decision making. Most of the previous sequential

games focus on extremely simple cases, such as two-player games. The only exception we are aware

of is Schmidt-Dengler (2006), who studies the timing game of MRI adoption by hospitals in a fairly

general setup and finds a significant but small preemption effect. Compared to his model, the rich

heterogeneity in our model allows us to capture a wider variety of participation games.

The findings are summarized as follows. We find that the location game played by American

siblings is characterized by altruism and cooperation of moderate size relative to private costs that

have two implications. First, there is limited strategic behavior. More than 90% of children have a

dominant strategy. The first-mover advantage is almost negligible because of the positive cooper-

ation effect: among two-child families, reversing the birth order changes the location outcomes of

only 1.9% of two-child families. 2.0% of multi-child families suffer from prisoners’dilemma. Second,

altruism and positive cooperation lead to a non-negligible under-provision of proximate living due

to free-riding. 28.8% of multi-child families result in location configurations that are not joint-

utility optimal. Of the families with multiple children, had siblings fully internalized externality

and jointly maximized utility sum, 18.3% more parents would have had at least one child living

nearby. We also find substantial heterogeneity across families. Under-provision is more severe if

children have a stronger altruism toward their parents, particularly in a family with a less educated

single mother (widowed and non-widowed) with poor health and younger children. Lastly, we find

that the non-cooperative model fits the data considerably better than the joint-utility maximization
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model. Our findings suggest that future research should direct its attention more toward exter-

nality, the free-rider problem, and the under-provision of care and attention rather than strategic

interactions such as the first-mover advantage and prisoners’dilemma.

2 Related Literature

There are myriad economics and non-economics studies on intergenerational coresidence and co-

location between elderly parents and their children (Börsch-Supan et al, 1988; Dostie and Léger,

2005; Hank, 2006; Compton and Pollak, 2009; Fontaine et al, 2009; Hotz et al, 2010; Johar and

Maruyama, 2011), but few investigate the non-cooperative decision making of families, and none

quantifies the free-rider problem among siblings.1

Regarding informal care arrangements, a small but tangible body of literature applies the non-

cooperative game-theoretic framework to study interactions among siblings (Hiedemann and Stern,

1999; Checkovich and Stern, 2002; Engers and Stern, 2002; Byrne et al, 2009; Knoef and Kooreman,

2011). In these models, each family member acts to maximize his or her own utility and the

equilibrium arrangement is fully solved in estimation. Hiedemann and Stern (1999) and Engers

and Stern (2002) study the family decision about the primary caregiver; Checkovich and Stern

(2002) study the amount of care, allowing for multiple caregivers. Byrne et al (2009) enrich these

studies by also modeling consumption, transfers for formal home care, and labor supply. While these

studies use US data, Knoef and Kooreman (2011) estimate a model using European multi-country

data. Except for Byrne et al (2009), these studies find support for interdependence in caregiving

1Pezzin and Schone (1999) study American families with one daughter using a bargaining model of coresidence,
care arrangements, and the child’s labor force participation. Sakudo (2008) studies Japanese families with one
daughter by a bargaining model of coresidence, monetary transfers, and marriage. Hoerger et al (1996) study living
arrangements, allowing multiple children to contribute to caregiving, based on a single family utility function.
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decisions among siblings. Knoef and Kooreman (2011) argue that if siblings engage in joint utility

maximization, 50% more informal care will be provided to parents, while the costs to children will

increase to a much smaller extent. All these structural studies apply the game-theoretic framework

to explain across-family variations in care arrangements, taking families’location decision as given.

We contribute to this empirical literature by being the first to apply the game-theoretic framework

to the location decision among siblings.

Given the complexity of care and living arrangements, one model cannot capture all possible

aspects of family decision making. The existing structural studies utilize rich and reliable measures

of informal care and other transfers, endogenize labor force participation and formal care decisions,

and/or incorporate important policy variables, such as eligibility for Medicaid. We abstract from

these relevant features to concentrate on modeling strategic interaction and externality. Our study

should therefore be regarded as a complement to existing studies.

Our study builds on the nonstructural study by Konrad et al (2002). They estimate an ordered

logit model of children’s distance from the parent with child-level data of two-child families in the

mid-1990s drawn from the German Aging Survey, and first-born children are found to be more likely

to live far from their parents than their younger siblings. They argue that this finding supports their

first-mover advantage hypothesis: by locating suffi ciently far from the parent, the first-born child

can force a younger sibling to locate closer to the parent as the primary caregiver. However, as we

discuss below, the observed birth-order asymmetry may be explained by observed characteristics,

and Konrad et al’s (2002) nonstructural approach does not provide much understanding of the

mechanism behind the observed asymmetry.
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3 Data and Descriptive Results

3.1 Population

The data are drawn from the Health and Retirement Study (HRS), a nationally representative

biannual longitudinal survey of Americans over 50. The HRS took its current form in 1998 by

merging with the Study of Assets and Health Dynamics among the Oldest Old (AHEAD). Since

then, the HRS has added two new cohorts, in 2004 and 2010. It tracks the health, wealth, and

well-being of these elderly individuals and their spouses. The HRS also asks the respondents about

the demographics and location of all their children.

To make the analysis tractable, we take a cross-sectional approach: we build a game-theoretic

model to explain the cross-sectional variation of siblings’location patterns, abstracting from dy-

namic aspects other than sequential decision in birth order. We combine the three HRS waves in

1998, 2004, and 2010, and construct our "cross-sectional" data as follows. First, we choose family

observations from HRS 1998 that meet the sample selection criteria explained below. Next, we add

families from HRS 2004 that (1) meet the criteria and (2) are not yet included in our data. We

then add the HRS 2010 observations, repeating the same procedure. A family thus never appears

twice in our data set. We take this approach because pooling three waves considerably increases the

sample size, and including waves that are twelve years apart ensures the robustness of our results.

We also estimate our models using each wave separately. As reported in Johar and Maruyama

(2012), our basic results are robust regarding the choice of waves.

Our sample consists of individuals over 50: (1) who do not live in a nursing home or institution;

(2) who do not have a spouse younger than 50; (3) who have at least one surviving biological child;

(4) who do not have more than four children; (5) who have no step or foster children; (6) whose
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youngest child is aged 35 or older and whose eldest child is younger than 65; (7) whose eldest

child is at least 16 years younger than the parent (or the spouse, if the spouse is younger); and (8)

who have no same age children. In HRS 2010, 3% of the elderly population live in nursing homes

and fewer than 7% have no child. We limit the number of children to four to limit computational

burdens. This group represents 75% of parents. For our research question, we expect to learn little

from adding very large families.

We focus on relatively older children because the moves of younger children are often temporary;

for example they may relate to post-graduate education. The location configuration of those above

35 is more likely to involve serious long-term commitment. We find that lowering this limit to age

30 does not affect our main results. We also set the maximum age of children because our model

concerns where children set up their own families. We focus our study on biological children to the

respondent parent, to avoid complications from potentially different family preferences in relation to

non-biological children.2 Finally, we exclude same age children because sequential decision making

is one of our main interests and our estimation method utilizes birth order.

For this sample of parents, we create a child-level data set. The spousal information is retained

as explanatory variables. Our final data consist of 18,647 child observations in 7,670 families, of

which 55.0%, 24.9%, and 20.0% is from the HRS waves 1998, 2004, and 2010, respectively.

3.2 Location Patterns of Siblings

The location of the children relative to the parent defines our dependent variable. We group

"living with the parent" and "living close to the parent" together and refer to this as living near

2Due to data limitations, our sample does not include parents who have a child whose relationship is biological
only to the current spouse of the respondent.
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the parent. While coresidence is becoming less common, shared caregiving is observed in a non-

negligible proportion of families (Matthews and Rosner 1988; Checkovich and Stern, 2002). Siblings

living nearby also contribute to the family by other means– by frequent visits and as a backup in

case of caregiving burnout of the primary caregiver. Proximity is defined as a distance of less than

10 miles. This definition is used in HRS reports and previous studies (e.g. McGarry and Schoeni,

1995; Byrne et al, 2009).

Table 1 presents the location patterns of siblings in our data. The top panel shows that 48.7%

of only children live far from their parents. Elderly parents with two children, shown in the second

panel, are most likely to have one child nearby (43.1%) and least likely to have both of them nearby

(17.4%). The probability of having no child nearby decreases with the number of children: parents

of four children are much less likely to live without any child nearby (20.5%). We also compute

the theoretical share of each location configuration under the assumption that each child makes

decisions independently. This benchmark tells us what a standard probit model cannot capture

and what our model needs to explain. The shares are computed based on p =40.4% —the share

of children living near parents in our entire sample, and reported in the last column. Comparing

the last two columns highlights two empirical regularities. First, only children are more likely to

choose to live nearby, perhaps because they have no one to free-ride on. Second, in families with

two or more children, siblings’decisions are positively correlated. This may be because they share

similar preferences and environments or because of the positive coordination effect.

[Insert Table 1: Sibling Location Configurations by Birth Order]

Conditional on one child living near the parent, two-child families have two possible location

configurations: (near, far) and (far, near), where the first element in parentheses denotes the first
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child’s location. The two-child family panel shows that the former is less frequent than the latter.

The three- and four-child family panels prove the robustness of this birth-order asymmetry, across

the number of siblings and across the number of siblings living near the parent: in all rows with

multiple possible location configurations, the rightmost cell has the largest share. This robust

birth-order asymmetry is in line with Konrad et al’s (2002) argument of the first-mover advantage.

This may simply reflect the systematic difference between elder and younger siblings, however.

Elder children are in the later stage of their life, and they are more likely to have better outside

options and greater commitment to their own family. It is also a well-documented fact that elder

children tend to have more education.3 Hence, how much of the observed birth-order asymmetry

is attributed to the first-mover advantage is an empirical question.

3.3 Explanatory Variables

We use both parents’and children’s characteristics. Parental characteristics include demograph-

ics (age, sex, marital status, and ethnicity), education, health status, location type (urban or

rural), and housing. For children, we use age, sex, education, marital status, and information on

grandchildren. Table 2 provides the definitions of the explanatory variables and their summary

statistics. Parental health status is constructed as the first factor from factor analysis consisting

of self-assessed health index, Activities of Daily Living (ADL) and Instrumental Activities of Daily

Living (IADL) scores, and previous diagnoses of diabetes, hypertension, and stroke. We choose

these items because they tend to be persistent in time and occur in relatively many observations.

We also attempt other health conditions in our specification, and find that they do not change the

3 In our sample, the share of those who have a university degree is 37.0% and 35.6% for the first and second children
in two-child families, and 36.2%, 32.0%, and 31.3% for the first, second, and third children in three-child families.
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results. When a respondent parent is married, the data of the couple are aggregated.

Our assumption in using parents’ residential location and housing status is that children’s

migration decisions determine the location configuration, not parents’migration. Although elderly

parents sometimes relocate closer to their children, our calculation based on HRS 2010 reveals that

more than 80% of new coresidence is formed by children moving in with the parent(s). Removing

the location and housing variables does not affect our main results.

The majority of the parents in the sample own a house and are single, with widowed mothers

being the most common. The majority of children are married. The mean ages of parents and

children are 72 and 45, respectively.

[Insert Table 2: Definition and Summary Statistics of Variables]

4 The Model

4.1 Environment

We consider a game played by children. Our goal is to describe the observed cross-sectional snapshot

of location configurations of families by explicitly modeling strategic interactions among siblings.

Each child chooses whether to live close to their parent(s). To make our analysis tractable, we do not

distinguish between coresidence and living nearby; for the rest of the paper, living "near" includes

living together. Let ai,h ∈ {0, 1} denote the action of child i = 1, ..., Ih in family h = 1, ...,H. If

child i lives near the parent, ai,h = 1. Child i = 1 denotes the eldest child.

We model the location choice of children as a perfect-information sequential game in which

each child sequentially makes a once-and-for-all location decision. This approach has several im-

plications. First, we formulate the location problem of families solely as the children’s problem,
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not modeling the role of parents. This simplification helps us to focus on the interaction among

siblings, whereas it does not assume that parents are passive and play no role. In reality, parents

may influence children’s payoff function by promising compensation for informal care in the future

(e.g. a bequeathable house). Family bargaining and intergenerational transfers are implicit in our

payoff function and our coeffi cient estimates should be interpreted in a reduced-form way.4

Second, modeling location choice as a once-and-for-all decision abstracts from the dynamic

aspects of location choice except for the birth order sequence. Location choice dynamics caused

by events and decisions in the later life, such as changes in the family structure, parents’health

deterioration, and sibling bargaining regarding the informal care arrangement, is beyond the scope

of this study, as it has been for most previous studies. In this sense, our utility function should be

interpreted as indirect utility.

Third, we rely on the non-cooperative framework. An alternative is a model of joint-utility

maximization, which we estimate and test against our non-cooperative framework. Fourth, ex-post

bargaining and side payments among siblings are beyond the scope of our discrete setup. Large

relocation costs justify this approach to some extent. Alternatively, our estimates of externality

and strategic interaction can be regarded as their lower bound estimates, because in general, side-

payments neutralize externality and strategic interaction.

Fifth, we assume a game with perfect information. Although the majority of empirical games

in the industrial organization and labor literature assume incomplete information, in the family

setting, the perfect-information framework is reasonable, because family members know each other

well.5 We also estimate an incomplete-information simultaneous-move game.

4Checkovich and Stern (2002) and Knoef and Kooreman (2011) employ the same approach.
5The informal care literature uses both approaches; e.g. Byrne et al (2009) assume a complete information game,

while Engers and Stern (2002) assume a game with private information.
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4.2 Preferences

Denote the utility of child i by ui,h (ai,h, a−i,h), where a−i,h ∈ {0, 1}Ih−1 is the choices of child i’s

siblings. In the rest of the paper, subscript −i indicates a vector that contains the values of all

siblings except for child i, and the family subscript, h, is omitted when no ambiguity arises. Given

a−i, child i’s problem is, after dropping subscript h, written as

max
ai∈{0,1}

ui (ai, a−i) .

We further assume that child i’s utility depends only on ai and the number of siblings who

choose to live near the parent irrespective of which siblings.6 Let N =
∑

k ak denote the number of

siblings who choose to live near the parent. The utility levels when child i lives far from the parent

and near the parent are specified as follows:

{
ui (ai = 0, a−i) = uαi (N) ,

ui (ai = 1, a−i) = uαi (N) + uβi + uγi (N) .
(1)

Utility flow consists of three structural parameters, uαi (N) , uβi , and u
γ
i (N). The first parameter,

uαi (N), captures the child’s altruism toward the parent. It is a utility gain of child i from the

parent’s well-being (such as happiness, good health, and long-term security) that arises if the

parent has a child nearby. We assume uαi (0) = 0, that is, we normalize the system without loss

of generality so that when every sibling lives far from the parent, everyone receives zero utility. If

uαi (N > 0) is positive, intergenerational proximate living is a public good with a positive externality,

and child i free-rides on child j if child i lives far and child j lives near the parent. uαi (N) may

6Relaxing this restriction is conceptually straightforward but computationally challenging.
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be an increasing function of N if the number of children living nearby means a greater amount of

care and attention given to the parent, and the child is concerned about the amount of care and

attention.

The next parameter, uβi , captures child i’s private cost (or benefit) from living near the parent

that are independent of a−i. For example, it captures caregiving burdens, opportunity costs,

monetary transfers to/from parents, housing benefits in the case of coresidence, attachment to the

location, and the consumption value of time child i shares with the parent.

The third parameter, uγi (N), is child i’s private costs or benefits that depend on a−i. This

cooperation parameter is likely to be a positive function of other siblings’proximity. Siblings can

share the costs of looking after parents. Siblings may also enjoy living close to each other. This

term may be negative and decreasing in N . An example is the bequest motive hypothesis discussed

in Bernheim et al (1985)– the presence of another sibling taking care of the parent reduces transfers

from the parent. We normalize this term as uγi (1) = 0 without loss of generality, that is, when

child i is the only child near the parent, child i’s utility is uαi (1) + uβi .
7

4.3 Equilibrium and Effi ciency Benchmarks

The location decision is made by siblings in their birth order. All siblings’preferences and the

game structure are known to every sibling. In this sequential game, child i’s strategy, si ∈ Si,

specifies the child’s decision at every decision node (thus note the difference between ai and si). A

subgame-perfect pure-strategy Nash equilibrium (SPNE) is obtained when no child expects to gain

7Although we name the three parameters altruism, private cost, and cooperation and we attempt to interpret
the results accordingly, such interpretation requires caution. For example, our altruism term, uαi (N), only captures
the additively separable part as our "altruism". In other words, equation (1) is how we define the altruism in this
study. As long as we interpret the results in such a way, how we label the three parameters does not undermine the
generality of our behavioral model.
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Figure 1: Strategies and Outcomes in Extensive-Form Presentation

from individually deviating from their equilibrium strategy in every subgame. Every finite game

with perfect information has a pure-strategy SPNE (Zermelo’s theorem).89

The sequential nature of the game is illustrated in the extensive-form representation in Figure

1. The figure shows four possible SPNE when the first child chooses to live nearby. Because the

younger child has two decision nodes, his choice set comprises four strategies, which we refer to as

"always far", "imitate", "preempted", and "always near". Given the payoffs at each terminal node,

we can find the SPNE outcome and strategies by solving the choice problem at each decision node

sequentially from the youngest child to the eldest child (backward induction). Note that in Figure

1, if the first child lives nearby, two strategies of the second child, "always far" and "preempted",

lead to the same game outcome – (Near, Far), because the difference between "always far" and

"preempted" lies only in the unobservable off-the-equilibrium path. In estimation, we exploit this

one-to-many mapping structure.

To examine the desirability of an equilibrium outcome, we use two effi ciency measures: Pareto

effi ciency and effi ciency in joint utility. Even if a game has a unique SPNE, it may have a Pareto-

8 In this paper, we only consider pure strategies. In our perfect-information setup, mixed strategies are irrelevant
because every decision node has a choice strictly better than the other.

9For Zermelo’s theorem, see Mas-Colell et al. (1995), page 272.
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improving (non-equilibrium) outcome, which constitutes well-known "prisoners’dilemma". Effi -

ciency in joint utility, or Kaldor-Hicks effi ciency, concerns the sum of siblings’ utility. Though

this criterion does not guarantee Pareto improvement, it is sensible to study this effi ciency mea-

sure because it provides families or policy makers implications for implementable compensation

schemes.10

The following examples in the normal form illustrate the relationship between these concepts:

Example 1: Example 2: Example 3:

a2 = 1 a2 = 0 a2 = 1 a2 = 0 a2 = 1 a2 = 0

a1 = 1 (2, 2) (−1, 1) a1 = 1 (1, 1) (−1, 2) a1 = 1 (−1,−1) (−2, 4)

a1 = 0 (1,−1) (0, 0) a1 = 0 (2,−1) (0, 0) a1 = 0 (4,−2) (0, 0)

Without the sequential structure, Example 1 has two Nash equilibria, (Near, Near) and (Far, Far).

The former is Pareto dominating and the latter is so-called coordination failure. Once we intro-

duce the decision order, (Near, Near) becomes the only SPNE outcome.11 Example 2 exhibits

the prisoners’ dilemma. (Near, Near) is no longer an equilibrium, but it remains Pareto domi-

nating and hence creates Pareto ineffi ciency in the equilibrium. The unique equilibrium in Ex-

ample 3, (Far, Far), is Pareto effi cient but not joint-utility effi cient. The family can achieve a

larger joint utility at (Near, Far) or (Far, Near)– at the expense of either sibling’s compromise.

If compensation is possible, these effi cient outcomes will be chosen. Assuming a constant altruism

(i.e. uα (N = 1) = uα (N = 2)), it is easy to show that the payoffmatrix in Example 1 corresponds

10Note that our framework does not include parents’ welfare, though this is partly captured by the children’s
altruism term. Hence, the terms "ineffi ciency" and "under-provision" in this study should be interpreted as such. If
we assume that children’s proximate living increases parents’utility, our ineffi ciency measures are the lower bound
of family ineffi ciency.
11Though we do not discuss here, there is a normal-form representation of the sequential game. For example, the

sequential game in Figure 1 is represented by a two by four payoff matrix.

17



to
(
uai , u

β
i , u

γ
i

)
= (1,−2, 3). Similarly,

(
uai , u

β
i , u

γ
i

)
= (2,−3, 2) in Example 2, and (4,−6, 1) in

Example 3. In this way, altruism, private cost, and cooperation in our model govern the game

structure in each family.

A negative uγi leads to an anti-coordination game, as is typical in entry games. Example 4

assumes
(
uai , u

β
i , u

γ
i

)
= (2,−1,−2), and has two Nash equilibria, (Near, Far) and (Far, Near). A

smaller uγi leads to a larger first-mover advantage. When sequence is introduced, the SPNE is

(Far, Near), and child 1 enjoys a higher utility than child 2. Example 5 shows a rather rare but

interesting case. Its normal form has a unique Nash equilibrium (Near, Far), in which child 1 plays

a dominant strategy. However, the SPNE is (Far, Near), in which child 1 receives a higher utility

by not playing the normal-form dominant strategy. The decision order provides child 1 with the

"commitment device" and hence the first-mover advantage.

Example 4: Example 5:

a2 = 1 a2 = 0 a2 = 1 a2 = 0

a1 = 1 (−1,−1) (1, 2) a1 = 1 (0.5, 0.25) (0.2, 0.26)

a1 = 0 (2, 1) (0, 0) a1 = 0 (0.4, 0.01) (0, 0)

4.4 Theoretical Predictions

Theoretical predictions can be derived and confirmed by a simulation study, which we have con-

ducted in Johar and Maruyama (2012). The main results in symmetric two-player games are

summarized as follows. First, joint-utility ineffi ciency increases with the absolute size of externality

terms, uα and uγ . Both positive and negative values of uγ enlarge ineffi ciency. The under-provision

of proximate living results from positive values of uα and uγ , because children do not take into

consideration the potential positive externalities to the other siblings. Similarly, if uγ < 0, excessive
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participation may occur, creating a setting similar to the standard entry game.12 When there is no

externality (uα = uγ = 0), the SPNE outcome maximizes the joint profit.

Second, the prisoners’dilemma case only appears when uα > 0, uγ > 0, and uβ < 0, i.e. when

cooperation increases payoffs but the incentive to free-ride exists. Its associated Pareto ineffi ciency

increases as uα and uγ both become large.

Third, the size of the first-mover advantage depends on strategic substitutability. Gal-Or (1985)

studies a two-player Stackelberg game and proves that when the reaction functions of the players

are downwards (upwards) sloping, the first mover earns higher (lower) profits. The same principle

applies here. Consider child 1’s utility in a two-child family:

u1 (a1 = 1, a2 = 1) = uα1 + uβ1 + uγ1 , u1 (a1 = 1, a2 = 0) = uα1 + uβ1 ,

u1 (a1 = 0, a2 = 1) = uα1 , u1 (a1 = 0, a2 = 0) = 0.
(2)

Then strategic substitutability in our two-player setup can be studied based on

[u1 (1, 1)− u1 (0, 1)]− [u1 (1, 0)− u1 (0, 0)] = −uα1 + uγ1 .

Analogous to Gal-Or’s (1985) argument, when the payoff function exhibits decreasing difference

(−uα1 + uγ1 < 0), it implies strategic substitutability and we observe a larger first-mover advantage.

If cooperation benefits siblings (uγ > 0), it reduces the size of the first-mover advantage. Strategic

complements (or a supermoduler game) may also result from a small uα and/or large uγ . In our

symmetric binary setup, however, the second-mover advantage never appears, because strategic

complementarity degenerates the game into the choice between (Near, Near) and (Far, Far) and

12Both positive uα and negative uγ create strategic substitutability, but the former leads to under-participation
and the latter to excessive-participation. This makes our setting different from the standard entry game.
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at the same time, the first mover is never worse off. Decreasing difference is also necessary for

anti-coordination games such as Example 4 above.

In summary, if we find uα > 0 and uγ > 0, it suggests: positive externality and free-riding

among siblings; the under-provision of proximate living; possible prisoners’dilemma; and, if uγ and

uα are of similar size, a small first-mover advantage. Finally, the extent of these externalities and

distortions depends on the size of uα and uγ relative to the size of uβ. If the absolute value of uβ

is dominantly large, the family is more likely to achieve the joint-utility optimal outcome.

5 Estimation

5.1 Unobserved Error Term

To match the model with data, we need an unobserved error term. We assume that the error term

additively affects the utility of living near the parent. Formally,

{
ui (ai = 0, a−i) = uαi (N) ,

ui (ai = 1, a−i) = uαi (N) + uβi + uγi (N) + εi.
(3)

The unobserved error term is assumed to be distributed as a normal distribution independent of(
uαi , u

β
i , u

γ
i

)
. Under the assumption of perfect information, ε is unobservable to an econometrician

but is observed by the siblings. The normality assumption implies that the game almost surely

has a unique equilibrium, because ties occur with probability measure zero.13 We can solve for the

unique equilibrium by backward induction for any given
(
uαi , u

β
i , u

γ
i

)
and ε.

As with the standard random utility models, the level of utility is not identified. Assuming the

13Here we use the term almost surely rather than generically because from the player’s point of view, the payoff
function is deterministic, unlike games for which game theorists use the term generically.
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same variance for every child, we normalize the variance of εi,h to one. Formally,

εh ≡ {εi,h}i=1,...,Ih
∼ Φ

(
Ωh
)
, (4)

where Ωh is the Ih × Ih covariance matrix whose diagonal elements are unity and whose (i, j)

off-diagonal element is ρi,j ∈ (−1, 1), which we parameterize as

ρi,j = Xρ
i,jθ

ρ, (5)

where θρ are vectors of parameters and Xρ
i,j is a set of relational variables between child i and child

j, such as their age and gender differences.

5.2 Specifying Functional Forms

For estimation, we also need to specify the functional forms of the three components, uαi (N) , uβi ,

and uγi (N). Let Xα
i , X

β
i , and X

γ
i be vectors of covariates observable to the econometrician, each of

which includes a constant term. In this paper, we report the results of the following four models.

The simplest model, Model [1], imposes uαi (N) = uγi (N) = 0, uβi = Xβ
i β, and ρi,j = 0. In this

model, the decisions of siblings have no interdependency, and the econometric model degenerates

to a standard binary probit model. Model [2] allows ρi,j to be some constant, ρ0, so that the

preferences of siblings may correlate. Model [3] introduces externality in the most parsimonious

way: uαi (N) = α0, u
β
i = Xβ

i β, u
γ
i (N) = 0, and ρi,j = ρ0. Model [4] allows externality to vary in a

flexible way so that the degree of externalities may depend on N and the characteristics of parents
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and children. Specifically:

uαi (N) = I [N ≥ 1] · exp {Xα
i α0 + α1 · I [N ≥ 2] + α2 · I [N ≥ 3]} , (6)

uβi = Xβ
i β, and

uγi (N) = Xγ
i γ0 · (I [N ≥ 2] + γ1 · (N − 2) · I [N ≥ 3]) ,

where α1, α2, and γ1 are scalar parameters, and α0, β, and γ0 are vectors of coeffi cient parameters,

which allow preference heterogeneity based on observables. In our behavioral model, a negative

value of uαi (N) has no meaningful interpretation. After we estimate Model [3] and confirm a positive

estimate of α0, we introduce heterogeneity in this term using the exponential function so that its

value is always positive. As discussed below, we have attempted many alternative specifications to

(6), and the main results are found to be robust.

5.3 Identification

To understand how our structural parameters are identified, take a simple model of two-child

families with no heterogeneity as an example:
(
uαi (N) , uβi , u

γ
i (N)

)
= (α0, β0, γ0) and ρi,j = 0.

First, consider the choice problem of child 2 after he observes that child 1 chooses to live near

the parent. This binary choice problem compares u2 (a2 = 1, a1 = 1) = α0 + β0 + γ0 + ε2 and

u2 (a2 = 0, a1 = 1) = α0, and thus allows us to identify β0 + γ0. Similarly, when child 1 chooses

to live far, we identify α0 + β0. From these two values, the degree of strategic substitutability,

α0 − γ0, (and hence the degree of the first-mover advantage) is determined. When we assume no

cooperation effect (i.e. γ0 = 0), then the identification of α0 and β0 follows. Otherwise, three

parameter values are indeterminate.
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The rest of identification relies on sequential interaction. To illustrate this point, consider the

following two families: (1) free-riding siblings, (α0, β0, γ0) = (2,−2, 0) and (2) siblings hating each

other: (α0, β0, γ0) = (0, 0,−2). In both cases, α0 + β0 = 0, β0 + γ0 = −2, and α0 − γ0 = 2,

thus studying the choice problem of child 2 cannot distinguish between these two types. Under the

payoff function with decreasing difference, child 2 has three strategies depending on the value of ε2:

"always far", "preempted", and "always near", as shown in Figure 1. The last step of identification

is achieved by studying child 1’s choice problem when child 2 takes the strategy "preempted", that

is, comparing u1 (a1 = 1, a2 = 0) = α0 + β0 + ε1 and u1 (a1 = 0, a2 = 1) = α0, and thus identifying

β0. If we observe that child 1 almost always chooses to live far when child 2 takes the "preempted"

strategy, it implies a larger α0 and a smaller β0, i.e. siblings with free-riding. In the second type

families, we will observe child 1 choosing "near" and "far" with the same probability. Put differently,

the size of the birth-order asymmetry given the size of the first-mover advantage provides essential

information in identifying the three parameters separately.

As shown here, the identification of this simple game is achieved solely by studying the two-

child families, although the use of functional form assumptions and information from families

with different numbers of siblings further assists the identification. Including three- and four-child

families also allows for the identification of models with richer heterogeneity.

5.4 Method of Simulated Likelihood

The estimation relies on the maximum likelihood estimation in which the game is fully solved for

an equilibrium outcome, a∗h. Denote the observed family location configuration as a
o
h ∈ {0, 1}

Ih .
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(Near, Near)

(Far, Near)

(Near, Far)

(Far, Far)

ε1

ε2

Figure 2: Relationship between Error Terms and Location Outcome

The log-likelihood function is written as

θ̂ML = arg max
θ

{
1

H

H∑
h

ln Prρ [aoh = a∗h(Xh, εh; α, β, γ)]

}
, (7)

where θ is the vector of the model parameters, (α, β, γ, ρ), and X is the union of Xα
i , X

β
i , and X

γ
i .

The intuition behind this likelihood function is that, conditional on X and (α, β, γ), the location

configuration is determined by ε, and the probability of a location configuration is computed based

on the distribution of ε. Figure 2 depicts this relationship in a two-child family example. The

asymmetry around the center part in Figure 2 is due to sequential strategic interaction.

The probability in the likelihood does not have an analytical solution due to multidimensional

integrals over the εh space. This motivates the use of the maximum simulated likelihood (MSL)

method. The multidimensionality becomes a non-trivial problem when error components correlate

among siblings and externality makes the decisions of siblings interdependent. When the dimension
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of εh becomes large (i.e. more than two), computationally demanding numerical approximation,

such as the quadrature method, is impractical. To overcome this computation problem, we use the

Monte Carlo integration method developed by Maruyama (2010).

5.5 Monte Carlo Integration

Maruyama (2010) develops the Monte Carlo integration method applicable to finite sequential

games with perfect information, in which each player makes a decision in publicly-known exoge-

nous decision order. The proposed method relies on two ideas. First, the estimation relies on

MSL assisted by the Geweke-Hajivassiliou-Keane (GHK) simulator, the most popular solution

for approximating high-dimensional truncated integrals in standard probit models. This powerful

importance-sampling simulator recursively truncates the multivariate normal probability density

function, by decomposing the multivariate normal distribution into a set of univariate normal dis-

tribution using Cholesky triangularization.

Strategic interaction, however, complicates high-dimensional truncated integration, causing in-

terdependence of the truncation thresholds, which undermines the ground of the GHK’s recursive

conditioning approach. The second building block of the proposed method is the use of the GHK

simulator, not for the observed equilibrium outcome per se, but separately for each of the SPNE

profiles that rationalize the observed equilibrium outcome. In the sequential game framework, the

econometrician does not observe the underlying SPNE, because an equilibrium strategy consists

of a complete contingent plan, which includes off-the-equilibrium-path strategies as unobserved

counterfactuals. Hence, there may exist different realizations of unobservables that lead to differ-

ent subgame-perfect equilibria but generate an observationally equivalent game outcome. Figure

3 visualizes this point. The integration domain of (ε1, ε2) that leads to the location outcome,

25



(Near, Far), is not rectangular due to strategic interaction between the two children, and hence the

standard GHK simulator breaks down for this domain.

ε2

ε1

(Near, Far)(1)

(Far, Near)

(Far, Far)

(Near, Near)

Younger child: always far preempted always near

(Near,Far)(3)

Figure 3: Dividing Observed Location Outcome into Strategy Profiles

The use of subgame perfection resolves this non-rectangular domain problem. In the example

in Figure 3, the non-rectangular integration domain for (Near, Far) consists of two rectangular

regions that correspond to two sets of SPNE, labeled (1) and (3), which correspond to (1) and

(3) in the extensive form in Figure 1. Maruyama (2010) proves that the separate evaluation

of the likelihood contribution for each subgame-perfect strategy profile allows us to control for

the unobserved off-the-equilibrium-path strategies so that the recursive conditioning of the GHK

simulator works by making the domain of Monte Carlo integration (hyper-)rectangular. After

computing the probability of each SPNE that rationalizes the observed outcome, the econometrician

then obtains the probability of the observed outcome by summing the probabilities of those SPNEs,

and the use of maximum likelihood follows.
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6 Results

6.1 Probit Results

Before presenting advanced models, it is useful to summarize the results from a simple probit model,

which serves as a benchmark for complex models. In addition to its reduced-form interpretation,

the model offers a simple random-utility-model interpretation under the following assumptions:

each child makes their location decision independently; their decision has no implications for other

children; and their unobserved preference component is distributed i.i.d. normal.

The results are reported in Column [1] of Table 3. Parents who have a child living nearby

tend to be older, less educated, and less healthy widowed parents who live in their owned home in

urban areas. Proximate living is less likely for white parents and single but non-widowed fathers.

Child variables are also relevant. Unmarried children, particularly single daughters, are likely to

live near their parents. Married children are less likely to do so, but the presence of their children

slightly offsets this effect (grandparenting effect). Education moves children away from the parents.

These findings are consistent with previous studies (e.g. Checkovich and Stern, 2002; Compton and

Pollak, 2009; Byrne et al, 2009). Proximate living is less likely for children who are older after

controlling for parental age. This partly captures the higher tendency of elder siblings to live far

from the parents.

[Insert Table 3: Estimated Parameters]

6.2 Models with Interactions among Siblings

The first step to build interdependence among siblings is to model a correlation in the error terms,

{εi,h}Ihi=1. Model [2] has a covariance matrix, Ωh, whose off-diagonal elements are all equal to a con-
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stant, ρ0 ∈ (−1, 1), which captures resemblance in the preferences of siblings, shared environments,

and a certain behavioral interaction among siblings. The result shown in Column [2] of Table 3

testifies a significant positive correlation in the error term.

Now we explicitly introduce externality, first by a constant externality, uαi (N) = α0. As shown

in Column [3] of Table 3, we find a positive and significant estimate of α0.14 To confirm the

robustness of this result, we estimate Model [3] separately using each wave of HRS from 1998 to

2010 and we find α and ρ always positive and highly significant.

When we compare Models [1] - [3], while there is no substantial change in coeffi cient estimates,

the goodness-of-fit improves over every step of elaboration. In terms of log L, a decent improvement

comes from incorporating externality α, but incorporating correlation ρ contributes most. The

proportion of correctly predicted observations, which is defined based on the location configuration

with the highest predicted probability, also shows improvement in the model fit. Although the

proportion of correct prediction becomes slightly worse at the individual child level, a significant

improvement is found at the family level.

6.3 Model with Heterogeneous Externality

Model [3] assumes a restrictive form of externality – a constant altruism toward parents. To al-

low for another form of externality, cooperation , as well as heterogeneity in externality, we now

parameterize uαi , u
γ
i , and ρi,j as specified in (5) and (6), by introducing covariates in each term.

Given the positive significant estimate of α0 in Model [3], it is reasonable to parameterize uαi in the

exponential function so that uαi is always positive. Including the full set of covariates in every term

14This model leads to an even larger ρ for the following reason. The positive externality creates strategic substi-
tutability in the decisions of siblings. Without explicitly modeling this externality, the correlation in the error term
needs to reflect this negative behavioral correlation, resulting in a smaller estimate of ρ in the previous specification.
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is impractical, because it makes precise identification of parameters diffi cult and increases compu-

tational burden. We thus need a reasonably general yet parsimonious specification. Admittedly,

the choice of variables is arbitrary. Two guidelines lead us to our final model. First is the intended

behavioral interpretation of each term. Variables in uαi are supposed to be the determinants of

innate altruism, while variables in uγi should affect the cost and benefit of cooperation. Second, we

adjust the sets of variables by attempting various specifications. Variables that are always estimated

with a large standard error and/or without statistical and economic significance are not included.

We find our main results are reasonably robust across these modifications. Regarding correlation

within siblings, we allow ρi,j to depend on the age and gender differences between children i and j.

Column [4] of Table 3 reports the result of the full model. Compared to Model [3], the model

fit is improved both in terms of log likelihood and correct prediction, indicating the importance

of heterogeneity in externality. The LR test confirms that the improvement is significant at stan-

dard significance levels. Figure 4 compares the predicted distribution of location configurations of

Models [1] - [4] with the actual distribution in data, illustrating step-by-step improvement in model

prediction.

Correlation in the error term is stronger for siblings of closer age and of the same sex than

for other siblings, indicating that those siblings share preferences and environments to a greater

extent. The altruism parameter, uαi , varies across children and families. Altruism is strongest

toward less educated single mothers (widowed or not) with poor health. α1 and α2 measure utility

components in the uαi term that increase with the number of children living near the parent,

but their estimates are small and insignificant. This implies that what is important to children

is whether at least one child lives near the parent. Based on the distribution of Xα
i , the value
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Figure 4: Predicted and Observed Location Configurations

of uαi ranges [0.120, 1.370] with its mean 0.377.15 The cooperation parameter, uγi , also exhibits

heterogeneity, ranging [−0.046, 0.361] with its mean 0.199. The size of uγi is overall smaller than

uαi . The ranges of u
α
i and u

γ
i also indicate that a few families effectively show no altruism and

cooperation. uγi is larger for younger children. One interpretation of this heterogeneity is that

younger siblings enjoy living close to each other. This interpretation has little to do with the

provision of care and attention. Alternatively, younger siblings tend to have less experience of care

provision and hence mutual assistance reduces the (actual and perceived) cost of providing care and

attention. Similar to α1 and α2, the estimate of γ1 indicates that having the third sibling nearby

has no significant effect on uγi . Thus, externality and ineffi ciency do not distort the behavior of

15We also estimate a model with a linearly parameterized uαi , instead of in the exponential function. Its results
imply that uαi sometimes takes a small negative value, though the vast majority of children have a positive u

α
i . We

find no substantial difference between these two models in model fit and main findings.
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families in which more than two siblings choose to live near parents. We attempt a number of

alternative functional specifications of uαi and u
γ
i other than (6), and we consistently find our main

results robust.

Heterogeneity in uαi and u
γ
i determines the extent of ineffi ciency and strategic interaction in

each family. Ineffi ciency becomes larger in a family with larger uαi and u
γ
i , i.e. a family with a less

educated single mother with poor health and relatively younger children. The prisoners’dilemma

is more likely in these families. The first-mover advantage, on the other hand, becomes larger when

uαi and is large and u
γ
i is small. For relatively older children, the value of cooperation is limited,

and if their parent is a less educated non-widowed single mother with poor health, the incentive of

free-riding is large, and the elder child has a large first-mover advantage.

The range of Xβ
i β is [−2.193, 0.861] with its mean −0.545.16 Given that the variance of εi is

unity, the ranges of the three preference parameters suggest that although the two externalities are

not negligible, the private costs, uβi + εi , is the primary determinant of the location patterns. The

coeffi cients in the uβi term of Model [4] are estimated less precisely than previous models, but the

sign and magnitude of each coeffi cient are largely similar to the previous models. Exceptions are the

variables also included in uαi and u
γ
i . These variables offer additional insight. While Models [1]-[3]

find that parents of poor health are more likely to have their children nearby, in Model [4], this

effect in uβi becomes smaller and we find that poor health significantly increases u
α
i . This implies

that poor parental health induces intergenerational proximity both (1) because poor parental health

increases children’s net utility of living near the parent and (2) because children are more concerned

about the well-being of those parents. Children’s utility from living near the parent increases with

parental poor health despite the expected larger cost of care provision, probably because children

16The distributions of uαi and u
β
i are skewed because of the skewed distribution of parental health.

31



value sharing the time with parents with shorter life expectancy.

Children’s education shows another contrast. Previous models reveal a significant negative

relationship between children’s education and their propensity to live near their parents. The full

model confirms that this negative effect arises completely through the private utility term, uβi ,

most likely reflecting high opportunity costs to educated children of living near the parent. The

estimated coeffi cients in uαi show no evidence that educated children are less concerned about the

well-being of their parents than less educated children.

Lastly, why do elder siblings tend to live far from the parent? Our coeffi cient estimates offer

some explanation. We find a negative age effect both in uβi and u
γ
i ; the private cost of living near

the parent increases with age, and an additional sibling near the parent benefits elderly siblings less.

Both of these effects contribute to the lower tendency of elder siblings to live near their parents,

and these effects have nothing to do with the first-mover advantage; elder siblings live far because

they are older. At the same time, the significant estimates of uαi and u
γ
i indicate the existence of

the sequential strategic interaction. In the next section, we quantify how much of the birth-order

asymmetry in location choice can be explained by the first-mover advantage.

7 Counterfactual Simulations

7.1 Method

The estimated parameters reveal how uαi , u
β
i , u

γ
i , and ρi,j vary across families and siblings, and

guide us to counterfactual simulations to quantitatively illustrate how the game structure and

game outcomes vary across families under different game settings, such as a simultaneous game

and joint-utility optimization.
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In the counterfactual exercises, we simulate location configurations under certain assumptions,

based on estimated parameters θ̂ and data,
{
aoi,h, Xi,h

}Ih
i=1
. This simulation is not straightforward

for several reasons. First, if we knew the true values of εi,h, solving for the equilibrium or optimal

location configurations would be trivial, but we do not observe εi,h in data. We thus rely on Monte

Carlo simulations, in which we generate the simulated values of error terms that rationalize the

observed location configuration. For example, we can compute the probability that the siblings in

family h result in location configuration ãh by taking the following integral over the domain of εh

that rationalizes observed outcome, aoh. By denoting this integration domain over the space of εh

as ∆ (aoh) ,

Pr (ãh) =
1

Pr
(
εh ∈ ∆

(
aoh
)) ∫

εh∈∆(aoh)
I [ãh = a∗h (Xh, εh)]φ (εh) dεh,

where φ (εh) is the density function of εh, and a∗h (Xh, εh) is a function for the solution under

a particular setup. Second, because this multidimensional integral does not have an analytical

solution, a simulation method is necessary to numerically approximate this integral. Third, this

simulation-based integration is complicated by the behavioral interaction among siblings. We eval-

uate this integral and the probability in the denominator in exactly the same way that we simulate

the likelihood function using the GHK simulator and subgame perfection.

7.2 Joint-Utility Optimal Location Configuration

We first consider joint-utility ineffi ciency. Table 4 shows the relationship between the observed

SPNE location patterns and the family-optimal location patterns in three-child families for illus-

tration purposes (similar patterns are observed for two- and four-child families). If having no child
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near the parent leads to the highest joint utility (the first column), it always occurs as an SPNE

outcome. In this case, the positive externality is so small compared to large private costs that

externality plays no role. If the joint-utility optimum is achieved by one or two children living

nearby, the SPNE outcome may or may not lead to the same location pattern, and if the SPNE

location pattern is different from the joint-utility optimal one, it almost always results in the under-

provision of proximate living, though over-provision is possible when uαi is close to zero and u
γ
i < 0.

The last column shows that when having three children nearby is joint-utility optimal, there is no

distortion. This finding comes from the negative estimates of α2 and γ1.

[Insert Table 4: Observed and Family-Optimal Location Configurations in Three-Child Families]

Table 5 presents this joint-utility ineffi ciency by family size. Many families whose optimal

number of children living near the parent is one or more in reality have no child living nearby. This

gap between the SPNE and the joint-utility optimum increases with family size, because positive

externality is shared by more children. The last row in the table shows that, of the families with

multiple children, had siblings fully internalized externality and collectively maximized utility sum,

18.3% more parents (= 32.5%− 14.2%) would have had at least one child nearby.17

[Insert Table 5: Observed and Family-Optimal Location Configurations by Family Size]

7.3 Normal-Form Game Structure

Payoffmatrices, or the normal-form representations of games, provide useful information to under-

stand the nature of the games played by American siblings. Table 6 characterizes (simultaneous)

17Knoef and Kooreman (2011) also find a large implication of ineffi ciency in joint utility in a similar context.
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payoff matrices of two-child families by the observed SPNE location pattern. The top panel in Ta-

ble 6 reports whether siblings have dominant strategies in the payoff matrix. In 86.2% of two-child

families, both children have a dominant strategy. This reflects that for the majority of children,

the size of uβi is so large that u
α
i and u

γ
i do not influence their decisions. It is trivial to show that,

when every child has a dominant strategy, the simultaneous game has a unique equilibrium, and

the equilibrium outcome is always achieved as an SPNE. Hence, the fact that the vast majority of

children have a dominant strategy suggests limited strategic behavior. The table also shows that

when we observe (Far, Far) or (Near, Near) in data, it almost always implies that both children

in those families have a dominant strategy. The last column of Table 6 reports a simulation in

which we double uαi for every family. The share of families in which both children have a dominant

strategy reduces to 62.7%. A larger externality induces strategic behavior to a greater extent.

[Insert Table 6: Characteristics of Simultaneous Normal-Form Games in Two-Child Families]

The bottom panel in Table 6 characterizes the Nash equilibrium of the simultaneous game.

This table shows limited strategic behavior even more clearly. More than 99% of two-child families

have a unique simultaneous equilibrium and it is rare to have no equilibrium or multiple equilibria.

In most cases, the unique equilibrium in the simultaneous game actually occurs as an SPNE out-

come. The only non-negligible gap between the normal-form equilibrium outcome and the SPNE

outcome is found among the families that choose (Far, Near). This group includes not only families

whose normal-form equilibrium is (Far, Near) but also families whose normal-form equilibrium is

(Near, Far) and families with two equilibria that consist of (Far, Near) and (Near, Far). This gap

suggests the presence of the first-mover advantage.
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7.4 Effi ciency Type

The observed SPNE location patterns can be classified into three groups: (1) joint-utility optimal;

(2) joint-utility suboptimal but Pareto effi cient; and (3) prisoners’dilemma, that is, there is a non-

SPNE location configuration that is Pareto-dominating. Table 7 presents the distribution of these

three groups by family size. It also shows the distributions under different externality parameter

values (Panels [2]-[4]). Panel [1] shows that the prisoners’dilemma is observed only for 2.0% of the

multi-child families, but that its presence increases with family size: 2.7% of four-child families suffer

from prisoners’dilemma. While 98.0% of multi-child families achieve Pareto effi ciency, many of

them do not achieve the joint-utility optimum. This joint-utility ineffi ciency is particularly large in

three- and four-child families: only 65.6% of them achieve the joint-utility optimum. The simulation

results reported in Panels [2]-[4] confirm the theoretical predictions. Larger uαi and u
γ
i lead to larger

joint-utility ineffi ciency and Pareto ineffi ciency. uαi explains a larger part of joint-utility ineffi ciency

than uγi , while a large value of u
γ
i is necessary for prisoners’dilemma to occur.

[Insert Table 7: Effi ciency Type by Family Size]

Table 8 compares the effi ciency types by the observed location configuration (the top panel)

and by the joint-utility optimal location configuration (the bottom panel) in two-child families.

The first number in each cell represents its column share and the second number its row share.

The table illustrates how prisoners’dilemma occurs. 70.5% of families in the prisoners’dilemma

situation have no one near the parent despite the fact that (Near, Near) is Pareto dominating. The

remaining 29.5% have the second child near the parent, although (Near, Far) is Pareto dominating.

Joint-utility ineffi ciency occurs in a similar way. As discussed earlier, when (Far, Far) is joint-utility

optimal, a family can achieve it as an SPNE outcome. When we observe (Near, Near) in data, it is
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always joint-utility optimum, while when we observe (Far, Far), it is joint-utility effi cient only for

61.5% of those families.

[Insert Table 8: Location Patterns and Effi ciency Type in Two-Child Families]

7.5 First-Mover Advantage

One way to quantify the first-mover advantage in our setup is to study the equilibrium outcome that

arises when we reverse the decision order. Table 9 reports the results of the reverse-order simulations

for two-child families. The top panel compares the location configurations in the observed SPNE

and in the reverse-order SPNE. The bottom panel investigates how reversing the order alters the

utility of each child. Overall, the table clearly states that the sequential interaction is negligible.

The reverse order only affects 1.9% of two-child families. When it does affect a family, it is almost

always the case that the reverse order changes the SPNE outcome from (Far, Near) to (Near, Far),

increasing the second child’s utility and decreasing the first child’s utility. The joint utility may

or may not increase. If we double altruism, the share of families with the first-mover advantage

increases to 9.3%.

Konrad et al (2002) argue that the birth-order asymmetry in the location configuration sup-

ports the first-mover advantage hypothesis. An interesting question is how much of the birth-order

asymmetry in the location configuration can be explained by the first-mover advantage. The num-

bers of two-child families that result in (Far, Near) and (Near, Far) are 658 and 564, respectively.

Of the 658 families with (Far, Near), 7.8%, or 51 families are affected by the reversed order. If we

assume that removing the first-mover advantage affects the half of 51 families switching their loca-

tion configuration from (Far, Near) to (Near, Far), we would observe 632 and 590 for (Far, Near)

and (Near, Far) without the first-mover advantage. Hence, even though the first-mover advantage
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implied by our estimates is small, because the birth-order asymmetry in data is also small, the first-

mover advantage explains roughly half of the asymmetry. The rest of the asymmetry is explained

by observable characteristics.

[Insert Table 9: Reverse-Order SPNE in Two-Child Families]

8 Robustness and Validity of Results

8.1 Sensitivity Check

We have attempted various population selection criteria and functional forms, and the main findings

are fairly robust. In this subsection, we discuss selected robustness tests that are critical to the

interpretation of our results. The detailed results of these tests are reported in the Appendix.

Measuring Decision Order If the decision order we impose in estimation contains measurement

error, estimated strategic effect may be biased toward zero. We expect that birth order is recorded

with little measurement error, but birth order may not necessarily coincide with the actual order of

location decisions among siblings. There may be a number of temporary moves when siblings are in

their twenties, such as attending college elsewhere, and some of those moves may become permanent.

It is not uncommon that younger siblings make a permanent move before their elder siblings

complete their post-graduate education. The question then is how well birth order approximates

the true decision order. The degree of measurement error in decision order determines the size

of bias. Maruyama (2010) conducts a Monte Carlo experiment by applying the same estimation

method as this study for a sequential entry game, and reports that such bias tends to be marginal

if decision order is correctly specified in more than 90% of game observations.
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One way to investigate potential bias resulting from misspecifed order is to estimate the same

models excluding siblings of similar age. In this way, birth order reflects the true decision order

more accurately and the strategic effect will be estimated more precisely. Specifically, we exclude

families that have a pair of siblings whose age difference is only one year and estimate the same

models. With this additional restriction, most of our results are unaffected,18 and we find the same

when we further increase the minimum age difference to three years. Thus, measurement error

in decision order is unlikely to cause significant bias in our findings. We exclude only same age

children in the full model, because this approach provides significantly more observations and it

guarantees that our results are largely nationally representative.

Conceptually, decision order in our model is a broader notion than a mere timing of migration,

involving any credible commitment related to a permanent move, such as the choice of occupation

and spouse, that determines the possibility of the child moving away from the parent in the future.

Hence, although it is not uncommon for younger siblings to make a permanent move before elder

siblings complete a post-graduate degree, it does not necessarily contradict the use of birth order.

Are Only Children Special? We include one-child families in our sample because they aid

identification. However, the results may be biased if only children considerably differ from children

with siblings (after controlling for observable characteristics). To address this concern, we estimate

our models without one-child families. We find that excluding one-child families makes parameter

estimates less robust regarding specification choice. Standard errors tend to be larger with slightly

18We find slightly larger estimates of externality as well as a smaller proportion of families experiencing ineffi cient
family location both in the sense of Kaldor-Hicks and Pareto. These two findings arise at the same time because
while the sample of siblings with a larger age gap leads to a larger estimate of strategic effect, such siblings tend to
have more diverse characteristics than siblings of similar age. When players differ to a greater extent, they are more
likely to have a dominant strategy and game outcomes depend less on strategic interaction; hence we find smaller
ineffi ciency.
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worse goodness-of-fit measures. However, while these findings suggest an important role for one-

child families in estimation, the results do not show any distinct systematic difference and the

results are overall consistent with our main results, indicating that our results are highly unlikely

to be artifact generated by the distinct nature of only children.

Potential Bias Due to the Cross-Sectional Approach To quantify sequential strategic in-

teraction in a tractable yet intuitive manner, this study takes the cross-sectional approach that

bases our empirical analysis on cross-sectional variation of data and abstracts from dynamic as-

pects of siblings’ location decisions except for birth order. For our estimates to be meaningful

and credible, our empirical framework must be approximately consistent with the underlying data

generating process in reality. In particular, the explanatory variables used in estimation are taken

from information recorded many years after children make their location decisions. The results

can be interpreted in a way that is consistent with our behavioral model if all our explanatory

variables are either observed or accurately predicted at the time children make decisions. For this

reason, we select exogenous variables that we expect to be either time-invariant or reasonably sta-

ble and predictable in the long run. Rigorously speaking, however, our structural parameters may

be biased because many of our explanatory variables are time-varying for a number of reasons.

For example, a child’s location decision might have a long-term effect on our explanatory variables

such as parental health (reverse causality). Location and spouse might be determined at the same

time (simultaneity). A child might have responded to recent parental health decline many years

after the child has left the parent (misspecification of the time frame), and current variables might

have accumulated stochastic errors since the child makes the decision and thus they may lead to

downward bias even if the child’s prediction is not biased (measurement error).
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To address these concerns, we estimate a simplified model that excludes health and marital

variables, which may be endogenous events in later life. We find that the results of the simplified

model are overall consistent with the full model, despite its significantly worsened model fit. Coun-

terfactual simulation results are also similar between the two models. This finding provides some

assurance that our main findings are not driven by the time inconsistency due to those time-variant

variables.19

8.2 Alternative Behavioral Assumptions

While our key findings are robust regarding the data selection criteria and functional form assump-

tions, our discussion so far is based on the assumption of the perfect information sequential game.

To investigate how appropriate this behavioral assumption is, we discuss three alternative models.

Collective Maximization First, we examine the assumption of the non-cooperative decision

making. This assumption is to some extent justified by the discrete, irreversible, and long-term

nature of the location choice, but siblings may be able to arrange enforceable side-payment transfers

to achieve the highest joint utility possible, as discussed by Engers and Stern (2002). We examine

this possibility by estimating a model of joint-utility maximization. This model uses the identical

functional form specification as our full model, namely, (3), (4), and (6), and assumes the following

joint-utility maximization:

max
ah∈{0,1}Ih

Ih∑
i

ui (ah) .

19A more conservative view for our approach is that even if our cross-sectional approach does not lead to precise
estimates, it is an empirical model exercise that focuses not on the precision of estimates but on finding models with
new features that better fit the data. It is not uncommon that empirical game-theoretic analysis of an inherently
dynamic subject starts with the cross-sectional framework. The structural econometric modeling of firms’entry, for
example, starts with the framework to study a cross-sectional snapshot of market structures.
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We estimate this model by using the multinomial probit framework. Because the multivariate

normal distribution does not have an analytical form, the estimation is based on the method of

simulated likelihood with the GHK simulator.

Incomplete-Information Game To examine how crucial the perfect-information assumption is,

we estimate an incomplete-information model, maintaining the same functional form specifications

as before. In this setup, each child makes a decision simultaneously by maximizing expected

utility based on the privately observed value of εi, the distribution of ε−i (conditional on εi), and

"conjectures" of the other siblings’ strategies. Conjectures about the other siblings’ behaviors

underlie the utility maximization because they affects one’s expected utility. Child i’s strategy, or

decision rule, is denoted as ai (εi), and effectively it is a threshold value of εi above which child

i chooses "near" or ai = 1. A strategy profile in family h, {ai (εi)}i=1,...,Ih , constitutes a Nash

equilibrium if:

aei (εi) = arg max
a∈{0,1}

Eε−i

[
ui

(
a, {aek (εk)}k 6=i , εi

)]
, for i = 1, . . . , Ih. (8)

We estimate this multivariate probit model by the method of simulated likelihood.

The procedure for constructing the simulated likelihood consists of three key algorithms. The

first is an algorithm to obtain the optimal strategy of child i, a∗i (εi), given the strategies of the sib-

lings, {ak (εk)}k 6=i, by evaluating the net expected utility gain of choosing "near". For incomplete-

information games, previous studies typically assume a normal or logit distribution independent

across players, but our error terms are correlated within siblings, and hence, the optimal strategy,

a∗i (εi), needs to be obtained from a conditional normal distribution that incorporates the correla-

tion parameters. When child i has more than one sibling, the expectation is evaluated numerically
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by the GHK probit simulator.20 The second algorithm obtains the equilibrium strategy profile,

{aei (εi)}i=1,...,Ih ≡ aeh. This algorithm consists of a numerical iteration loop that nests the first

algorithm inside, and solves the equilibrium strategy profile as a fixed point in (8).21 We find that

this numerical iteration procedure is well-behaved as long as parameter values are not far from rea-

sonable values. Because the mapping defined by (8), f : at → at+1, is a continuous mapping from

RI to RI , the existence of a fixed point is guaranteed by Brouwer’s fixed point theorem. Although

the uniqueness of the equilibrium depends on model parameters, as long as f is decreasing or mod-

erately increasing (derivatives less than one) at any point of RI , it is trivial to show the uniqueness.

In our model, uniqueness is guaranteed under the condition that the positive cooperation effect does

not overwhelmingly dominate the altruism effect to the extent that the game exhibits strong strate-

gic complementarity at some point on RI . The results of the perfect-information model indicate

that this condition is very unlikely to be violated in our setup. The third algorithm, based on the

equilibrium strategy profile obtained by the above algorithms, computes the likelihood value. The

algorithm conducts Monte Carlo integration over a multivariate normal distribution of dimension

Ih, taking the correlation of εi into account and using the GHK simulator.

Sequential Game with Reversed Order The difference between the perfect-information se-

quential game and the incomplete-information simultaneous game may result from both the infor-

mation structure and the timing of decisions. In an attempt to disentangle these two effects, we

estimate a perfect-information sequential game with the reversed order, that is, we estimate our

20Because the value of εi affects the net utility gain not only as the additive error term but also through the
conditional distribution of ε−i, the optimal decision rule (the optimal threshold value for εi) does not have an
analytical-form solution. Thus the optimal strategy is solved by numerical iteration using the fact that the expected
net utility gain is a continuous increasing function of εi within the region of parameter values of our interest.
21We start the estimation with a1i (εi), the threshold values of εi that makes near and far indifferent under the

standard binary probit model. Every time the likelihood value improves, the previously saved initial point for the
numerical iteration is replaced with the new strategy profile.
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preferred model under the artificial assumption that the youngest child makes the decision first and

the eldest last. This experiment allows us to examine how crucial our decision order assumption

is.22

Model Fit Comparison Table 10 compares the goodness-of-fit of six alternative models with

different behavioral assumptions: independent maximization under no externalities (Model [1]), the

non-cooperative perfect-information sequential model (Models [3] and [4]), joint maximization, the

non-cooperative private-information model, and the non-cooperative perfect-information sequential

model with reverse decision order. The last four columns compare different behavioral assumptions

based on the same functional form assumption as the full model (Model [4]). The table reports

three comparison measures: the log likelihood values, the Akaike information criterion, and the

percentage of correct prediction.

[Insert Table 10: Comparison of Alternative Behavioral Assumptions]

Overall, the comparison supports the use of the non-cooperative sequential framework. The

joint-maximization model shows worse goodness-of-fit than the non-cooperative models, indicating

the presence of conflicting self-interest.23 The private-information model fits better with data than

the joint-decision model, but not as well as the perfect-information sequential model. Between these

two lies the model with reverse decision order, supporting the use of both the perfect information

framework and the birth order.24

22A more direct approach would be to estimate a perfect-information simultaneous game. We do not attempt it
because its estimation is not trivial due to the multiplicity of equilibrium.
23Engers and Stern (2002) conduct a similar model comparison in their framework of family long-term care decisions,

and favor a game-theoretic model over a collective model.
24We also conduct the same comparison using simpler specifications and find that it does not affect our conclusion.
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9 Conclusion

We study externality and strategic interaction among adult siblings regarding their location decision

relative to their elderly parents, estimating a rich sequential participation game that exceeds the

scope of previous studies. We find positive externality and strategic interaction. Siblings make

location decisions non-cooperatively and proximate living with elderly parents is an under-provided

public good. While the size of strategic behavior is limited, the impact of the public good problem

is striking; of the families with multiple children, 18.3% more parents would have had at least one

child nearby had siblings fully internalized externality and jointly maximized family utility.

The complex nature of the subject requires us to employ a tractable framework: we rely on the

cross-sectional approach and do not explicitly model parental utility. We conduct a number of model

comparisons, however, and our parameter estimates consistently support the significant role of the

non-cooperative behavior of siblings, the empirical relevance of externality, and the empirically

limited role of sequential interaction, largely for the first time in the literature. Validating our

results under a more general setup is left for future research.

The most direct way to achieve the joint-utility optimum is to develop a mechanism that forces

families to do so. Historically in many countries, social norms and traditions have forced daughters

to assume caregiving obligations (e.g. Holroyd, 2001; Silverstein et al, 2006), which serves as an

enforceable mechanism for families to achieve a larger joint utility. In modern societies, however,

improved gender equality and increased female labor force participation may have reduced the joint

utility of families. The joint-utility optimum can also be achieved by a transfer scheme from those

who free-ride to those who provide care, but this option may be practically diffi cult. Parents can

utilize inheritance to enforce such a transfer, although this is not available for parents in need,
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for whom we identify a severe free-riding problem. Further, this within-family transfer may not

be effective where there is the law of legitim– a statutory fraction of the decedent’s gross estate

from which the decedent cannot disinherit his next-of-kin. Free-riding is thus likely to be more

severe in jurisdictions that have legitim, such as Scotland, Louisiana until recently, and Japan. In

general, policies that reduce the private costs of caring for elderly parents, such as tax benefits for

carers, increases proximate living, but if the costs of such policies are financed by equally taxing

other children, their social welfare effect is ambiguous. The welfare effect of public support for

parents is similarly ambiguous, depending on families’preferences (altruism) and how such policies

are financed.

If the free-riding problem identified in this study is not taken into consideration in future

research, misleading conclusions may be drawn. Future research should direct its attention toward

externality, the free-riding problem, and the under-provision of care and attention rather than to

strategic interactions such as the first-mover advantage, given that more than 90% of children have

a dominant strategy.

A Results of Selected Robustness Tests

[Insert Table A1: Robustness of Results]
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Table 1: Sibling Location Configurations by Birth Order with  
Shares Implied under Independence (p=0.404) 

 
One-child families (N=1,493) 

N of children 
living near Observed location configurations Total 

Implied shares under 
independence 

(p=0.404) 

0 Far: 48.7% 48.7% 59.6% 
1 Near: 51.3% 51.3% 40.4% 

Two-child families (N=2,840) 

N of children 
living near Observed location configurations Total Implied shares under 

independence (p=0.404) 

0 FF: 39.6% 39.6% 35.5% 
1 NF: 19.9% ; FN: 23.2% 43.1% 48.2% 
2 NN: 17.4% 17.4% 16.3% 

Three-child families (N=2,054) 

N of children 
living near Observed location configurations Total Implied shares under 

independence (p=0.404) 

0 FFF: 30.3% 30.1% 21.2% 
1 NFF: 10.2% ; FNF: 11.1% ; FFN: 13.0% 34.3% 43.1% 
2 NNF: 7.3% ; NFN: 7.1% FNN: 9.4% 23.8% 29.2% 
3 NNN: 11.7% 11.7% 6.6% 

Four-child families (N=1,283) 

N of children 
living near Observed location configurations Total 

Implied shares 
u/ independence 

(p=0.404) 
0 FFFF: 20.5% 20.5% 12.6% 
1 NFFF: 6.7% ; FNFF: 6.3% ; FFNF: 8.5% ; FFFN: 8.9% 30.4% 34.2% 
2 NNFF: 3.1% ; NFNF: 3.4% ; NFFN: 4.7% ; FNNF: 3.3% ; FNFN: 4.9% ; FFNN: 4.8% 24.2% 34.8% 
3 NNNF: 3.7% ; NNFN: 4.4% ; NFNN: 3.8% ; FNNN: 4.4% 16.3% 15.7% 
4 NNNN: 8.7% 8.7% 2.7% 

Note: Each digit in the key indicates the proximity of each child to their parents, either far or near, with the first digit representing 
the eldest child. E.g., “FFN” indicates that in a three-child family, the two elder siblings choose far and the youngest child chooses 
near. “N” includes coresidence. As a benchmark, the last column shows the share for each number of children living near 
computed under the assumption that each child independently chooses near with probability 0.404 (=overall average). 
 
 

  



 
 

 
 
 

Table 2:  Definition and Summary Statistics of Variables 
Variable Definition Mean S.D. 
Outcome    
Near =1 if the child lives with or within 10 miles from the parent  0.404 0.491 
Parent    
P_father_widow =1 if only father and he is a widow 0.062 0.242 
P_father_nonwidow =1 if only father and he is not a widow (married/separated/divorced/other status) 0.057 0.232 
P_mother_widow =1 if only mother and she is a widow 0.302 0.459 
P_mother_nonwidow =1 if only mother and she is not a widow (married/separated/divorced/other 

status) 
0.132 0.339 

P_cohab =1 if the parent lives with a partner (regardless of marital status) 0.447 0.497 
P_age* Parent's age 71.939 7.576 
P_white^ =1 if race is white 0.838 0.369 

P_health* The first factor from factor analysis consisting of self-assessed health index, ADL 
and IADL scores (functional limitations expected to last more than 3 months), 
and three indicator variables for ever being diagnosed with diabetes, 
hypertension, and stroke. 

-0.033 0.782 

P_College# =1 if highest education is college or post college 0.197 0.398 
P_SomeCollege# =1 if highest education is some college (13 – 15 years of formal education) 0.209 0.407 
P_HighSchool# =1 if highest education is high school (reference group - include 15 observations 

of parents with missing education) 
0.354 0.478 

P_<HighSchool^ =1 if less than 12 years of formal education 0.239 0.427 
Geo_HighPop =1 if lives in a metro area of 1 million population /more (reference group) 0.441 0.476 

Geo_MedPop =1 if lives in a metro area of 250,000 to 1 million population  0.250 0.433 
Geo_LowPop =1 if lives in a metro area of fewer than 250,000 population or non-metro area 0.283 0.450 

Geo_missing =1 if geographical information is missing 0.026 0.160 
House =1 if owns a residential house 0.698 0.459 
Child    
C_age Child's age 44.775 6.863 
C_male_single =1 if the child is a male and single 0.151 0.358 
C_female_single =1 if the child is a female and single (reference group) 0.154 0.360 
C_male_partner =1 if the child is a male and lives with a partner 0.357 0.479 
C_female_partner =1 if the child is a female and lives with a partner 0.339 0.473 
C_College =1 if the child’s highest education is college or post college 0.324 0.468 
C_SomeCollege =1 if the child’s highest education is some college (13–15 yrs of formal education) 0.212 0.408 
C_HighSchool =1 if the child’s highest education is high school or lower (reference group) 0.345 0.475 
C_EducMiss =1 if the child’s formal education is missing/unknown by parents 0.119 0.324 

C_kids_partner † The number of children of the child when the child is married 1.403 1.522 
C_kids_single The number of children of the child when the child is single 0.352 0.937 
Wave    
Wave1998 =1 if the data is from wave 1998 (reference group) 0.550 0.497 
Wave2004 =1 if the data is from wave 2004 0.249 0.433 
Wave2010 =1 if the data is from wave 2010 0.200 0.400 
Note:    
^ Both parents if a spouse/partner is present.   
* Average if a spouse/partner is present.   
# The one with higher education if a spouse/partner is present. 
† Information about grandchildren in the 1998 wave is missing for observations in the AHEAD cohorts. We 

use information from the next HRS wave in 2000. 

   

  



 
 

Table 3: Estimated Parameters 
  Probit [1] Constant ρ; 𝑢𝛼=0 [2] Constant 𝑢𝛼 and ρ [3] Full model [4] 
 coefficient s.e. Coefficient s.e. coefficient s.e. coefficient s.e. 
P_father_widow 0.101*** 0.036 0.104** 0.046 0.109** 0.048 0.093 0.060 
P_father_nonwidow -0.339*** 0.038 -0.351*** 0.047 -0.377*** 0.049 -0.318*** 0.065 
P_mother_widow 0.132*** 0.022 0.132*** 0.028 0.135*** 0.029 0.066* 0.039 
P_mother_nonwidow -0.037 0.029 -0.021 0.035 -0.023 0.037 -0.137** 0.054 
P_age 0.005** 0.002 0.005** 0.002 0.005** 0.002 0.003 0.002 
P_white -0.080*** 0.024 -0.087*** 0.030 -0.090*** 0.031 -0.092*** 0.032 
P_health -0.061*** 0.012 -0.065*** 0.015 -0.069*** 0.016 -0.048** 0.020 
P_College -0.227*** 0.026 -0.227*** 0.032 -0.246*** 0.033 -0.254*** 0.043 
P_SomeCollege -0.076*** 0.024 -0.072** 0.030 -0.074** 0.031 -0.094** 0.039 
P_<HighSchool 0.060** 0.023 0.068** 0.030 0.080*** 0.031 0.046 0.038 
Geo_MedPop -0.009 0.022 -0.009 0.027 -0.007 0.028 -0.007 0.029 
Geo_LowPop -0.091*** 0.021 -0.091*** 0.026 -0.095*** 0.027 -0.095*** 0.028 
House 0.093*** 0.020 0.087*** 0.025 0.091*** 0.026 0.096*** 0.026 
C_age -0.014*** 0.002 -0.015*** 0.002 -0.014*** 0.002 -0.008*** 0.003 
C_male_single -0.137*** 0.034 -0.139*** 0.034 -0.134*** 0.033 0.023 0.100 
C_male_partner -0.375*** 0.037 -0.386*** 0.036 -0.378*** 0.035 -0.249** 0.100 
C_female_partner -0.374*** 0.037 -0.376*** 0.037 -0.367*** 0.036 -0.341*** 0.045 
C_College -0.406*** 0.025 -0.396*** 0.026 -0.393*** 0.026 -0.423*** 0.035 
C_SomeCollege -0.070*** 0.026 -0.066** 0.026 -0.069*** 0.026 -0.071** 0.034 
C_kids_partner 0.021*** 0.008 0.021*** 0.008 0.021*** 0.008 0.021*** 0.008 

α0 (=𝑢𝑖𝛼 in model [3] and a constant term in log𝑢𝑖𝛼 in [4])  0.171*** 0.023 -0.951*** 0.364 
   P_father_widow       0.107 0.178 
   P_father_nonwidow       -0.308 0.317 
   P_mother_widow       0.329** 0.135 
   P_mother_nonwidow       0.481*** 0.170 
   P_health       -0.111** 0.051 
   P_College       0.067 0.117 
   P_SomeCollege       0.119 0.109 
   P_<HighSchool       0.205* 0.108 
   C_male       -0.328 0.222 
   C_College       0.155 0.108 
   C_SomeCollege       0.009 0.113 

α1 (additional term in 𝑢𝑖𝛼 when more than one child lives near)    0.048 0.144 

α2 (additional term in 𝑢𝑖𝛼 for the third and fourth child living near)    -0.038 0.105 

γ0 (constant term in the cooperation term 𝑢𝑖
𝛾)    0.628*** 0.201 

C_age       -0.008*** 0.003 

    C_male_single       -0.178 0.117 
    C_male_partner       -0.124 0.111 
    C_female_partner       -0.050 0.057 

γ1 (additional term in 𝑢𝑖
𝛾 when two siblings join child i)    -0.058 0.174 

ρ0  (constant term in ρ ) 
 

0.238*** 0.014 0.361*** 0.021 0.476*** 0.035 
Dage       -0.008** 0.003 
Dsex 

    
  -0.114*** 0.024 

Log L -11,951.04 
 

-11,788.79 
 

-11,759.61  -11,693.94  
% correct prediction         
All children 62.50%  61.40%  61.58%  61.95%  
All families 38.37%  38.71%  39.14%  39.62%  
   1-child families 57.13%  57.33%  58.94%  59.95%  
   2-child families 43.03%  41.83%  42.18%  43.06%  
   3-child families 29.70%  31.60%  31.65%  31.35%  
   4-child families 20.11%  21.51%  21.36%  21.59%  

Note: N=18,647. *, **, and *** indicate statistical significance at 10%, 5%, and 1% respectively. The top half reports the coefficients of the 
𝑢𝑖
𝛽(= 𝑋𝑖

𝛽𝛽) term, followed by the coefficients in 𝑢𝑖𝛼,𝑢𝑖
𝛾 , and 𝜌. The 𝑢𝑖𝛼 term in the full model [4] is specified in the exponential function 

as in Eq.(5). For all models the 𝑢𝑖
𝛽 term includes the following unreported variables: a constant term, Geo_missing, C_EducMiss, 

C_kids_single, Wave2004, and Wave2010. Model [4] also includes Wave2004, Wave2010, and C_EducMiss in the 𝑢𝑖𝛼 term. 



 
 

 
 

Table 4: Observed and Family-Optimal Location Configurations in Three-Child 
Families 

 

Number of children living near the parent in the 
joint-utility optimal location configuration 

Number of children living near the parent in SPNE 
(observed location configurations): 

Nobody 
near 1 2 3 

Nobody near 100% 46.6% 1.9% 0.0% 
1 child 0.0% 53.4% 26.7% 0.0% 

2 children 0.0% 0.0% 67.3% 0.0% 
3 children 0.0% 0.0% 4.2% 100.0% 

Note: Results are based on empirical distribution with Monte Carlo simulation for the error terms with 1,000 random 
draws. Three-child families are chosen for illustration purposes. Similar patterns of under-provision are observed for two-
child and four-child families (available upon request). 
 

 

Table 5: Observed and Family-Optimal Location Configurations by Family Size 

 

Number of children living near the parent in SPNE 
(observed location configurations)  Number of children living near the parent in the 

joint-utility optimal location configuration 

Family size: 

Nobody 
near 1 2 3 4  Nobody 

near 1 2 3 4 

1-child family 48.7% 51.3%  
 

  48.7% 51.3%    
2-child family 39.6% 43.0% 17.4%  

  24.4% 51.0% 24.6%   
3-child family 30.3% 34.3% 23.8% 11.7% 

  8.0% 46.5% 35.3% 10.2%  
4-child family 20.5% 30.4% 24.1% 16.3% 8.7%  1.9% 36.5% 39.6% 14.1% 7.9% 
Overall average 35.7% 40.2% 16.8% 5.9% 1.5%  21.0% 47.4% 25.2% 5.1% 1.3% 
Average (𝑁𝑖 ≥ 2) 32.5% 37.5% 20.9% 7.3% 1.8%  14.2% 46.5% 31.3% 6.3% 1.6% 

Note: The last row shows average numbers over multi-child families. Results are based on empirical distribution with 
Monte Carlo simulation for the error terms with 1,000 random draws. 
 

 
Table 6: Characteristics of Simultaneous Normal-Form Games in Two-Child 

Families 

 

Location patterns in SPNE 
(observed location configurations) 

  

Who has dominant strategy: 
(Far–Far) (Far–Near) (Near–Far) (Near–Near) Total 

Total 
when 𝑢𝑖𝛼×2.0 

Both children 99.5% 66.5% 71.1% 99.2% 86.2% 62.7% 
Only 1st child 0.3% 16.0% 9.9% 0.5% 5.9% 14.9% 
Only 2nd child 0.5% 14.0% 19.0% 0.3% 7.1% 16.3% 

Neither 0.0% 3.5% <0.1% <0.1% 0.8% 6.1% 

 

Location patterns in SPNE 
(observed location configurations) 

  

Equilibrium patterns in simultaneous 
normal-form games: 

(Far–Far) (Far–Near) (Near–Far) (Near–Near) Total 
Total 

when 𝑢𝑖𝛼×2.0 
No normal-form equilibrium 0.0% <0.1% 0.0% <0.1% <0.1% <0.1% 

Unique equil. (Far–Far) 100.0% 0.0% 0.0% 0.1% 39.6% 23.9% 
Unique equil. (Far–Near) 0.0% 94.6% 0.0% 0.0% 21.9% 27.5% 
Unique equil. (Near–Far) 0.0% 2.0% 99.9% 0.0% 20.3% 24.6% 
Unique equil. (Near–Near) 0.0% 0.0% 0.0% 99.9% 17.3% 18.0% 
Two equil. (coordination) 0.0% 0.0% 0.0% <0.1% <0.1% <0.1% 

Two equil. (anti-coordination) 0.0% 3.5% <0.1% 0.0% 0.8% 6.1% 
Note: An event that occurs for less than 0.1% of the population is denoted as “<0.1%”. Two equil. (coordination) means multiple 
equilibrium that consists of (Near-Near) and (Far-Far), and Two equil. (anti-coordination) means (Near-Far) and (Far-Near). Results 
are based on empirical distribution with Monte Carlo simulation for the error terms with 1,000 random draws. 
 



 
 

 

 

Table 7: Efficiency Type by Family Size 

 

[1] Based on estimated distribution of 𝑢𝑖𝛼 and 𝑢𝑖
𝛾  [2] Based on 𝑢𝑖𝛼×2.0 and 𝑢𝑖

𝛾×1.0 

Family size: 

Joint-utility 
optimal 

Joint-utility 
suboptimal but 
Pareto efficient 

Prisoners’ 
dilemma  Joint-utility 

optimal 

Joint-utility 
suboptimal but 
Pareto efficient 

Prisoners’ 
dilemma 

1-child family 100.0% 0.0% 0.0%  100.0% 0.0% 0.0% 
2-child family 76.7% 21.7% 1.6%  71.8% 25.9% 2.3% 
3-child family 65.6% 32.0% 2.4%  66.9% 30.0% 3.1% 
4-child family 65.6% 31.7% 2.7%  66.3% 30.3% 3.4% 
Overall Average 76.8% 21.6% 1.6%  75.1% 22.7% 2.3% 
Average among multi-

child families, (𝑁𝑖 ≥ 2) 71.2% 26.8% 2.0%  69.0% 28.1% 2.8% 

 

[3] Based on 𝑢𝑖𝛼×1.0 and 𝑢𝑖
𝛾×0.0  [4] Based on 𝑢𝑖𝛼×2.0 and 𝑢𝑖

𝛾×2.0 

Family size: 

Joint-utility 
optimal 

Joint-utility 
suboptimal but 
Pareto efficient 

Prisoners’ 
dilemma  Joint-utility 

optimal 

Joint-utility 
suboptimal but 
Pareto efficient 

Prisoners’ 
dilemma 

1-child family 100.0% 0.0% 0.0%  100.0% 0.0% 0.0% 
2-child family 82.8% 17.0% 0.1%  65.6% 30.0% 4.4% 
3-child family 73.5% 26.3% 0.2%  61.7% 32.9% 5.4% 
4-child family 74.3% 25.4% 0.3%  63.1% 32.0% 4.9% 
Overall Average 82.2% 17.6% 0.1%  70.8% 25.3% 3.9% 
Average among multi-

child families, (𝑁𝑖 ≥ 2) 77.9% 21.9% 0.2%  63.8% 31.4% 4.8% 

Note: Panels [2]-[4] report the results of simulations under different externality parameter values. E.g., in Table 2, the value of 𝑢𝑖𝛼 is 
multiplied by 2.0 for every observation. A joint-utility optimal location configuration is a location arrangement that maximizes the sum 
of children’s utility. Prisoners’ dilemma means a location configuration that has another Pareto-dominating location configuration. The 
last row shows average numbers over multi-child families. Results are based on empirical distribution with Monte Carlo simulation for 
the error terms with 1,000 random draws. 
 
 
 
 
 

Table 8: Location Patterns and Efficiency Type in Two-Child Families 

 

Efficiency type 
 

 

Joint-utility 
optimal 

Joint-utility suboptimal but 
Pareto efficient 

Prisoners’ 
dilemma Total 

Location patterns in SPNE (observed location configurations) 
(Far – Far) 31.5% / 61.5% 67.3% / 35.8% 70.5% / 2.6% 39.6% / 100% 
(Far – Near) 23.6% / 78.7% 21.3% / 19.4% 29.5% / 1.9% 23.2% / 100% 
(Near – Far) 22.6% / 87.9% 11.4% / 12.1% 0.0% / 0.0% 19.9% / 100% 
(Near – Near) 22.4% / 100% 0.0% / 0.0% 0.0% / 0.0% 17.4% / 100% 

Total 100% / 77.4% 100% / 21.1% 100% / 1.5% 100% / 100% 
The joint-utility optimal location configuration  

(Far – Far) 31.5% / 100% 0.0% / 0.0%  0.0% / 0.0% 24.4% / 100% 
(Far – Near) 23.6% / 69.3% 36.7% / 29.4% 24.2% / 1.4% 26.3% / 100% 
(Near – Far) 22.6% / 70.8% 31.9% / 27.3% 32.8% / 2.0% 24.7% / 100% 
(Near – Near) 22.4% / 70.5% 31.4% / 26.9% 43.0% / 2.6% 24.6% / 100% 

Total 100% / 77.4% 100% / 21.1% 100% / 1.5% 100% / 100% 
Note: The first number in each cell represents its column share and the second number its row share. A joint-utility optimal location 
configuration is a location arrangement that maximizes the sum of children’s utility. Results are based on empirical distribution with 
Monte Carlo simulation for the error terms with 1,000 random draws.  

 

 



 
 

 

 

 

Table 9: Reverse-Order SPNE in Two-Child Families 

 

Location patterns in the subgame-perfect Nash equilibrium 
(observed location configurations) 

  

Location patterns in 
Reverse-order SPNE: 

(Far–Far) 
N=1,125: 
39.6% 

(Far–Near) 
N=658: 
23.2% 

(Near–Far) 
N=564: 
19.9% 

(Near–Near) 
N=493: 
17.4% 

 
Total 

 

(Far–Far) 99.9% 0.0% 0.0% 0.1% 39.6%  

(Far–Near) 0.0% 92.2% 0.0% 0.0% 21.4%  

(Near–Far) 0.0% 7.8% 100% <0.1% 21.7%  

(Near–Near) <0.1% <0.1% 0.0% 99.9% 17.4%  

 

Location patterns in the subgame-perfect Nash equilibrium 
(observed location configurations) 

  

Utility changes in 
reverse-order SPNE: 

(Far–Far) 
N=1,125 

(Far–Near) 
N=658 

(Near–Far) 
N=564 

(Near–Near) 
N=493 Total 

Total 
when 𝑢𝑖𝛼×2.0 

No change 99.9% 92.2% 100% 99.9% 98.2% 90.8% 
1st child (–); 2nd (+); total (–) 0.0% 3.7% 0.0% 0.0% 0.9% 4.8% 
1st child (–); 2nd (+); total (+) 0.0% 4.1% 0.0% 0.0% 1.0% 4.5% 

Note: Events that occur for less than 0.1% of the population are denoted as “<0.1%”. Although we do not report it here because it 
is extremely rare, the first child’s utility may increase in a reverse-order SPNE. Also the second child’s utility may decrease, but 
these two events never occur at the same time (no second-mover advantage). Results are based on empirical distribution with 
Monte Carlo simulation for the error terms with 1,000 random draws. 
 

 

 
Table 10: Comparison of Alternative Behavioral Assumptions 

Behavioral assumption: Independent 
maximization 

Non-cooperative, 
sequential 

(preferred model) 

Joint 
maximization 

Non-cooperative, 
private 

information 

Non-cooperative, 
reverse-order 

sequential 

Functional form 
assumption: 

𝑢𝛼=𝑢𝛾=ρ =0 
(Model [1]) 

𝑢𝛼, ρ constant; 
𝑢𝛾=0 

(Model [3]) 

heterogeneous 
externalities 
(Model [4]) 

heterogeneous 
externalities 

heterogeneous 
externalities 

heterogeneous 
externalities 

Log L -11,951.0 -11,759.6 -11,693.9 -11,957.7 -11,727.8 -11,711.4 
Number of parameters 26 28 52 52 52 52 

AIC 23,954.1 23,575.2 23,491.9 24,019.5 23,559.5 23,526.9 
% correct prediction:       
All children 62.50% 61.58% 61.95% 61.31% 61.91% 61.94% 
All families 38.37% 39.14% 39.62% 38.63% 39.35% 39.66% 

1-child families 57.13% 58.94% 59.95% 58.20% 61.29% 60.55% 
2-child families 43.03% 42.18% 43.06% 42.25% 41.87% 42.61% 
3-child families 29.70% 31.65% 31.35% 30.77% 31.30% 31.69% 
4-child families 20.11% 21.36% 21.59% 20.42% 21.12% 21.59% 

Note: Based on 18,647 child observations in 7,670 families. When 𝑢𝛼=𝑢𝛾=ρ =0, there is no externality or dependency among siblings, 
and independent utility maximization and joint utility maximization coincide. AIC stands for the Akaike information criterion. The 
percentage of correct prediction is based on the predicted location outcome for each family observation that is defined as the location 
configuration with the highest implied probability among all possible location configurations. 

 
  



 
 

 
Table A1: Robustness of Results 

 
Full model [4] Without siblings of age 

difference < 2 years [5] 
Multi-child 
families [6] 

Simplified model without potentially 
endogenous variables [7] 

P_father_widow 0.093 0.093 0.076   
P_father_nonwidow -0.318*** -0.338*** -0.263***   
P_mother_widow 0.066* 0.077 0.041   
P_mother_nonwidow -0.137** -0.172*** -0.176***   
P_age 0.003 0.000 0.003 P_age 0.006*** 
P_white -0.092*** -0.086** -0.057* P_white -0.150*** 
P_health -0.048** -0.073*** -0.034   
P_College -0.254*** -0.262*** -0.241*** P_College -0.274*** 
P_SomeCollege -0.094** -0.092** -0.104 P_SomeCollege -0.132*** 
P_<HighSchool 0.046 0.038 0.014 P_<HighSchool 0.038 
Geo_MedPop -0.007* -0.024 -0.004 Geo_MedPop -0.002 
Geo_LowPop -0.095*** -0.097*** -0.097*** Geo_LowPop -0.100*** 
House 0.096*** 0.100*** 0.105*** House 0.088*** 
C_age -0.008*** -0.005 -0.011*** C_age -0.005** 
C_male_single 0.023 -0.072 0.218 C_male -0.117 
C_male_partner -0.249** -0.370*** -0.040   
C_female_partner -0.341*** -0.345*** -0.337***   
C_College -0.423*** -0.438*** -0.441*** C_College -0.422*** 
C_SomeCollege -0.071** -0.058 -0.066 C_SomeCollege -0.064 
C_kids_partner 0.021*** 0.018** 0.025***   

α0 (constant term) -0.951*** -1.129*** -0.495 α0 -0.338** 
  P_father_widow 0.107 0.178 0.091   
  P_father_nonwidow -0.308 -0.199 -0.365   
  P_mother_widow 0.329** 0.280** 0.297**   
  P_mother_nonwidow 0.481*** 0.553*** 0.344**   
  P_health -0.111** -0.104** -0.097*   
  P_College 0.067* 0.126 0.043     P_College 0.011 
  P_SomeCollege 0.119 0.171 0.132     P_SomeCollege 0.213 
  P_<HighSchool 0.205* 0.360*** 0.155     P_<HighSchool 0.374** 
  C_male -0.328 -0.045 -0.622**     C_male 0.166 
  C_College 0.155 0.145 0.086     C_College 0.077 
  C_SomeCollege 0.009 -0.047 -0.019     C_SomeCollege -0.053 

α1 0.048 -0.142 0.214** α1 0.252 

α2 -0.038 -0.267 0.073 α2 0.074 

γ0 (constant term) 0.628*** 0.710*** 0.701*** γ0 0.498*** 

C_age -0.008*** -0.011*** -0.005* C_age -0.011*** 

    C_male_single -0.178 -0.103 -0.281*    C_male 0.078 

    C_male_partner -0.124 0.038 -0.249*   

    C_female_partner -0.050 -0.013 -0.064   

γ1 -0.058 -0.197 0.311* γ1 -0.130 

ρ0 (constant term) 0.476*** 0.490*** 0.364*** ρ0 0.511*** 

Dage -0.008** -0.003 -0.009*** Dage -0.008 

Dsex -0.114*** -0.108*** -0.122*** Dsex -0.094*** 

N of child observations 18,467 13,029 16,974  18,467 
Log L -11,693.94 -8,241.08 -10,694.73  -11,846.95 
% correct prediction      
All children 61.95% 62.22% 62.07%  60.87% 
All families 39.62% 42.58% 34.66%  38.14% 
   1-child families 59.95% 60.35% NA  57.33% 

   2-child families 43.06% 42.49% 42.71%  40.88% 
   3-child families 31.35% 32.09% 31.69%  30.92% 
   4-child families 21.59% 23.49% 21.59%  21.28% 

Note: *, **, and *** indicate statistical significance at 10%, 5%, and 1% respectively. See Eq. (5) for the functional specification. All 
models include in the 𝑢𝑖

𝛽 term: a constant term, Geo_missing, C_EducMiss, C_kids_single (except for model [4]), Wave2004, and 
Wave2010. The 𝑢𝑖𝛼 term also includes C_EducMiss, Wave2004, and Wave2010. 


