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Abstract

I propose a nonparametric iid bootstrap that achieves asymptotic refine-

ments for t tests and confidence intervals based on the generalized method of

moments (GMM) estimators even when the model is misspecified. In addition,

my bootstrap does not require recentering the bootstrap moment function,

which has been considered as critical for GMM. Regardless of model misspec-

ification, the proposed bootstrap achieves the same sharp magnitude of re-

finements as the conventional bootstrap methods which establish asymptotic

refinements by recentering in the absence of misspecification. The key idea is

to link the misspecified bootstrap moment condition to the large sample theory

of GMM under misspecification of Hall and Inoue (2003, Journal of Econo-

metrics 114, 361-394). Examples of possibly misspecified moment condition

models with Monte Carlo simulation results are provided: (i) Combining data

sets, and (ii) invalid instrumental variables.
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1 Introduction

This paper proposes a novel bootstrap procedure for the generalized method of mo-

ments (GMM) estimators of Hansen (1982). It extends the existing literature by es-

tablishing the same asymptotic refinements for t tests and confidence intervals (CI’s)

(i) without recentering the bootstrap moment function, and (ii) without assuming

correct model specification. In contrast, the conventional bootstrap achieves the re-

finements only if recentering is done and the assumed moment condition is correctly

specified. Thus, the contribution of this paper may look too good to be true at first

glance, but it becomes apparent once we realize that those two eliminations are in

fact closely related, because recentering makes the bootstrap non-robust to misspec-

ification.

Bootstrapping has been considered as an alternative to the first-order GMM

asymptotic theory, which has been known to provide poor approximations of finite

sample distributions of test statistics especially when the model is highly non-linear

or the number of moments is large, e.g., Blundell and Bond (1998), Bond and Wind-

meijer (2005), Hansen, Heaton, and Yaron (1996), Kocherlakota (1990), and Tauchen

(1986).1 Hahn (1996) proves the first-order validity of the bootstrap distribution of

GMM estimators. Hall and Horowitz (1996) show asymptotic refinements of the boot-

strap for t tests and the J test (henceforth the Hall-Horowitz bootstrap). Andrews

(2002) proposes a computationally attractive k-step bootstrap procedure based on the

Hall-Horowitz bootstrap. Inoue and Shintani (2006) extend the Hall-Horowitz boot-

strap by allowing correlation of moment functions beyond finitely many lags. Brown

and Newey (2002) suggest an alternative bootstrap procedure using the empirical

likelihood (EL) probability (henceforth the Brown-Newey bootstrap).

In the existing bootstrap methods for GMM estimators, recentering is critical.

Horowitz (2001) explains why recentering is important when applying the bootstrap

to overidentified moment condition models, where the dimension of a moment func-

tion is greater than that of a parameter. In such models, the sample mean of the

moment function evaluated at the estimator is not necessarily equal to zero, though

it converges almost surely to zero if the model is correctly specified. In principle,

the bootstrap considers the sample and the estimator as if they were the popula-

1The 1996 special issue of the Journal of Business & Economic Statistics deals with this problem
in various contexts.
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tion and the true parameter, respectively. This implies that the bootstrap version

of the moment condition, that the sample mean of the moment function evaluated

at the estimator should equal to zero, does not hold when the model is overidenti-

fied. Recentering makes the bootstrap version of the moment condition hold. The

Hall-Horowitz bootstrap analytically recenters the bootstrap moment function with

respect to the sample moment condition. The Brown-Newey bootstrap recenters

the bootstrap moment condition by employing the EL probability in resampling the

bootstrap sample. Thus, both the Hall-Horowitz bootstrap and the Brown-Newey

bootstrap can be referred as the recentered bootstrap.

A naive bootstrap is to apply the standard bootstrap procedure as is done for just-

identified models, without any additional correction, such as recentering. However, it

turns out that this naive bootstrap fails to achieve asymptotic refinements for t tests

and CI’s, and jeopardizes first-order validity for the J test. Hall and Horowitz (1996)

and Brown and Newey (2002) explain that the bootstrap and sample versions of test

statistics would have different asymptotic distributions without recentering, because

of the violation of the moment condition in the sample.

Although they address that the failure of the naive bootstrap is due to the mis-

specification in the sample, they do not further investigate the conditional asymptotic

distribution of the bootstrap GMM estimator under misspecification. Instead, they

eliminate the misspecification problem by recentering. In contrast, I observe that

the conditional asymptotic covariance matrix of the bootstrap GMM estimator under

misspecification is different from the standard one. The conditional asymptotic co-

variance matrix is consistently estimable by using the result of Hall and Inoue (2003),

and I construct the t statistic of which distribution is asymptotically standard normal

even under misspecification.

Hall and Inoue (2003) show that the asymptotic distributions of GMM estima-

tors under misspecification are different from those of the standard GMM theory.2

In particular, the asymptotic covariance matrix has additional non-zero terms in the

presence of misspecification. Hall and Inoue’s formulas for the asymptotic covariance

matrix encompass the case of correct specification as a special case. The variance

estimator using their formula is denoted by the Hall-Inoue variance estimator, here-

inafter. Imbens (1997) also describes the asymptotic covariance matrices of GMM

estimators robust to misspecification by using a just-identified formulation of overi-

2Hall and Inoue (2003) does not deal with bootstrapping, however.
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dentified GMM. However, his description is general, rather than being specific to the

misspecification problem defined in this paper.

I propose a bootstrap procedure that uses the Hall-Inoue variance estimators in

constructing the sample and the bootstrap t statistics. It ensures that the bootstrap

t statistic satisfies the asymptotic pivotal condition without recentering. Moreover,

the sample t statistic is also asymptotically pivotal regardless of misspecification

in the population. In other words, my bootstrap applies to the robust t statistic

which is studentized with the Hall-Inoue variance estimator. Therefore, it works

without assuming correct model specification in the population, and is referred to as

the misspecification-robust (MR) bootstrap. In contrast, the conventional first-order

asymptotics as well as the recentered bootstrap would not work under misspecifica-

tion, because the conventional t statistic is not asymptotically pivotal anymore.

The MR bootstrap achieves asymptotic refinements, a reduction in the error of

test rejection probability and CI coverage probability by a factor of n−1 for symmetric

two-sided t tests and symmetric percentile-t CI’s, over the asymptotic counterparts.

The magnitude of the error is O(n−2), which is sharp. This is the same magnitude of

error shown in Andrews (2002), that uses the Hall-Horowitz bootstrap for independent

and identically distributed (iid) data with slightly stronger assumptions than those

of Hall and Horowitz (1996).

I note that the MR bootstrap is not for the J test. To get the bootstrap distribu-

tion of the J statistic, the bootstrap should be implemented under the null hypothesis

that the model is correctly specified. The recentered bootstrap imposes the null hy-

pothesis of the J test because it eliminates the misspecification in the bootstrap world

by recentering. In contrast, the MR bootstrap does not eliminate the misspecification

and thus, it does not mimic the distribution of the J statistic under the null. Since the

conventional asymptotic and bootstrap t tests and CI’s are valid only in the absence

of misspecification, it is important to conduct the J test and report the result that

the model is not rejected. However, even a significant J statistic would not invalidate

the estimation results if possible misspecification of the model is assumed and the

validity of t tests and CI’s is established under such assumption, as is done in this

paper.

Three papers in the literature are in a similar vein in terms of bootstrap methods

under misspecification. Corradi and Swanson (2006) show the first-order validity of

the block bootstrap for conditional distribution tests under dynamic misspecification.
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Kline and Santos (2012) examine the higher-order properties of the wild bootstrap in

a linear regression model when the mean independent assumption of the error term is

misspecified. In particular, a referee suggested clarifying the marginal contribution of

the paper with respect to the work of Gonçalves and White (2004) which proves the

first-order validity of the bootstrap for t tests based the quasi-maximum likelihood

(QML) estimators studentized with the misspecification-robust variance estimator of

White (1982).

First, the QML estimator is a special case of the GMM estimator when one uses

the first-order condition of the QML as the moment condition. This also puts an

additional restriction that the model is just-identified. Therefore, this paper covers

a broader class of models than Gonçalves and White (2004). For example, the pro-

posed bootstrap applies to the two-stage least squares (2SLS) estimator. In addition,

the definition of misspecified moment condition model should be distinguished from

that of misspecified likelihood function. The former arises only when the model is

overidentified, which implies that the first-order condition of the QML forms a cor-

rectly specified moment condition even if the likelihood function is misspecified. Thus,

the misspecification-robust QML variance estimator corresponds to the conventional

GMM variance estimator under correct specification, rather than the Hall-Inoue vari-

ance estimator.3

Second, Gonçalves and White (2004) neither provide a guidance whether to re-

center or not, nor explain the relationship between recentering and misspecification.

One of the contributions of Hall and Horowitz (1996) is that bootstrapping for GMM

is non-standard so that one should recenter the moment function to achieve asymp-

totic refinements. I argue that recentering can be detrimental but is not needed if we

use the Hall-Inoue variance estimator, and provides a theoretical justification of the

argument. The key idea is to link the misspecified moment condition in the bootstrap

world to the large sample theory of GMM under misspecification of Hall and Inoue

(2003).

The remainder of the paper is organized as follows. Section 2 discusses theoretical

and empirical implications of misspecified models and explains the advantage of using

the MR bootstrap t tests and CI’s. Section 3 outlines the main result. Section 4

defines the estimators and test statistics. Section 5 defines the nonparametric iid MR

3Hall and Inoue (2003) explain their marginal contribution over Gallant and White (1988), White
(1996), and Maasoumi and Phillips (1982) in this regard.
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bootstrap for iid data. Section 6 states the assumptions and establishes asymptotic

refinements of the MR bootstrap. Section 7 presents Monte Carlo simulation results.

Section 8 concludes the paper. Appendix A contains Lemmas and proofs. Appendix

B contains Tables and Figures.

2 Why We Care About Misspecification

Empirical studies in the economics literature often report a significant J statistic along

with GMM estimates, standard errors, and CI’s. Such examples include Imbens and

Lancaster (1994), Jondeau, Le Bihan, and Galles (2004), Parker and Julliard (2005),

and Agüero and Marks (2008), among others. Significant J statistics are also quite

common in the instrumental variables literature using the 2SLS estimator, which is

a special case of the GMM estimator.

A significant J statistic means that the test rejects the null hypothesis of correct

model specification. For 2SLS estimators, this implies that at least one of the instru-

ments is invalid. The problem is that, even if models are likely to be misspecified,

inferences are made using the asymptotic theory for correctly specified models and

the estimates are interpreted with economic implications. Various authors justify this

by noting that the J test over-rejects the correct null in small samples.

On the other hand, comparing and evaluating the relative fit of competing models

have been an important research topic. Vuong (1989), Rivers and Vuong (2002), and

Kitamura (2003) suggest a test of the null hypothesis that tests whether two possibly

misspecified models provide equivalent approximation to the true model in terms of

the Kullback-Leibler information criteria (KLIC). Recent studies such as Chen, Hong,

and Shum (2007), Marmer and Otsu (2012), and Shi (2011) generalize and modify

the test in broader settings. Hall and Pelletier (2011) show that the limiting distribu-

tion of the Rivers-Vuong test statistic is non-standard that may not be consistently

estimable unless both models are misspecified. In this framework, therefore, all com-

peting models are misspecified and the test selects a less misspecified model. For

applications of the Rivers-Vuong test, see French and Jones (2004), Gowrisankaran

and Rysman (2009), and Bonnet and Dubois (2010).

Either for the empirical studies that report a significant J statistic, or for a model

selected by the Rivers-Vuong test, inferences about the parameters should take into

account a possible misspecification in the model. Otherwise, such inferences would
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be misleading.

Example: Combining Micro and Macro Data

Imbens and Lancaster (1994) suggest an econometric procedure that uses nearly exact

information on the marginal distribution of economic variables to improve accuracy

of estimation. As an application, the authors estimate the following probit model for

employment: For an individual i,

P (Li = 1|Agei, Edui) = Φ(X ′iθ) (2.1)

= Φ(θ0 + θ1 · Edui + θ2 · (Agei − 35) + θ3 · (Agei − 35)2),

with Xi = (1, Edui, Agei − 35, (Agei − 35)2)′ and Φ(·) is the standard normal cdf.

Li is labor market status (Li = 1 when employed), Edui is education level in five

categories, and Agei is age in years. The sample is a micro data set on Dutch labor

market histories and the number of observations is 347. Typically, the probit model

is estimated by the ML estimator. The first row of Table 1 presents the ML point

estimates and the standard errors. None of the coefficients are statistically significant

except for that of the intercept.

To reduce the standard errors of the estimators, the authors use additional in-

formation on the population from the national statistic. By using the statistical

yearbooks for the Netherlands which contain 2.355 million observations, they calcu-

lated the probability of being employed given the age category (denoted by pk where

the index for the age category k = 1, 2, 3, 4, 5) and the probability of being in a par-

ticular age category (denoted by qk). These probabilities are considered as the true

population parameters.

Intercept Edu Age− 35 (Age− 35)2 J test
θ0 θ1 θ2 θ3 χ2(5)

ML 1.44∗
(.317)

−.009
(.093)

−.002
(.015)

−.002
(.002)

-

GMM 1.86∗
(.268)

−.109
(.084)

−.003
(.002)

−.003∗
(.0003)

11.4
[.044]

Note: Standard errors in parentheses. p-value in bracket.

∗: significant at 1% level

Table 1: Tables II and V of Imbens and Lancaster (1994)
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The authors suggest to use GMM estimators with the moment function that uti-

lizes the information from the aggregate statistic. The second row of Table 1 reports

the two-step efficient GMM point estimates and the standard errors. Now the coef-

ficient θ3 is statistically significant at 1% level and the authors argue “...Age is not

ancillary anymore and knowledge about its marginal distribution is informative about

θ.”

Although they could successfully improve the accuracy of the estimators by com-

bining two data sets, their argument has a potential problem. The last column of

Table 1 reports the J test statistic and its p-value. Since the p-value is 4.4%, the

model is marginally rejected at 5% level. The problem is that, if the model is truly

misspecified, the reported GMM standard errors are inconsistent because the con-

ventional standard errors are only consistent under correct specification. Then the

authors’ argument about the coefficient estimates may be flawed. This problem could

be avoided if the standard errors which are consistent even under misspecification were

used. The formulas for the misspecification-robust standard errors for the GMM es-

timators are available in Section 4.4

When the model is misspecified, Eg(Xi, θ) 6= 0 for all θ, where θ is a parameter

of interest, Xi is a random vector, g(Xi, θ) is a known moment function, and E[·]
denotes mathematical expectation. Let θ̂ be the GMM estimator and Ω−1 be a

positive definite matrix, which is the probability limit of a weight matrix. According

to Hall and Inoue (2003), (i) the probability limit of θ̂ is the pseudo-true value that

depends on Ω−1 such that

θ0(Ω−1) = arg min
θ

Eg(Xi, θ)
′Ω−1Eg(Xi, θ), (2.2)

and (ii) the asymptotic distribution of the GMM estimator is

√
n(θ̂ − θ0(Ω−1))→d N(0,ΣMR), (2.3)

where ΣMR is the asymptotic covariance matrix under misspecification that is different

from ΣC , the asymptotic covariance matrix under correct specification. If the model

4Since the original data sets used in Imbens and Lancaster (1994) are not available, I could not
calculate the robust standard errors. Instead, I provide simulation result with a simple hypothetical
model that utilizes additional population information in estimation in Section 7.1.
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is correctly specified, then θ0(Ω−1) and ΣMR simplify to θ0 and ΣC , respectively.

The pseudo-true value can be interpreted as the best approximation to the true

value, if any, given the weight matrix. The dependence of the pseudo-true value

on the weight matrix may make the interpretation of the estimand unclear. Never-

theless, the literature on estimation under misspecification considers the pseudo-true

value as a valid estimand, see Sawa (1978), White (1982), and Schennach (2007) for

more discussions. Other pseudo-true values that minimize the generalized empiri-

cal likelihood (GEL) without using a weight matrix, have better interpretations but

comparing different pseudo-true values is beyond the scope of this paper.

Although we cannot fix a potential bias in the pseudo-true value in general, we can

report the standard error of the GMM estimator as honest as possible. (2.3) implies

that the conventional t tests and CI’s are invalid under misspecification, because the

conventional standard errors are based on the estimate of ΣC . Misspecification-robust

standard errors are calculated using the Hall-Inoue variance estimator of ΣMR. By

using the robust standard errors, the resulting asymptotic t tests and CI’s are robust

to misspecification. The MR bootstrap t tests and CI’s improve upon these MR

asymptotic t tests and CI’s in terms of the magnitude of errors in test rejection

probability and CI coverage probability. A summary on the advantage of the MR

bootstrap over the existing asymptotic and bootstrap t tests and CI’s is given in

Table 2.

One may consider local misspecification to model a slight misspecification which

may not be detected by the J test. A recent development on this topic includes the

works of Bravo (2010), Berkowitz, Caner, and Fang (2008, 2012), DiTraglia (2012),

Guggenberger (2012), Guggenberger and Kumar (2011), Hall (2005), and Otsu (2011).

Local misspecification enables us to make a better interpretation of the pseudo-true

value. To see this, let a triangular array {Xn,i}i≤n be iid over i for fixed n, where n

is the sample size. The moment condition is locally misspecified if

Eg(Xn,i, θ0) =
δ√
n
,

where θ0 is a true parameter and δ is an unknown vector of constants. Since the

GMM estimator θ̂ is not
√
n-consistent for θ0 in this setting, the MR bootstrap CI as

well as the conventional CI’s does not give asymptotically correct coverage for θ0.

9



Correct Model Misspecified Model

t test/CI† First-order Asymptotic First-order Asymptotic
Validity Refinements Validity Refinements

MR
Y Y Y Y

Bootstrap‡

Hall-Inoue
Y - Y -

Asymptotic

Conventional
Y - - -

Asymptotic

Naive
Y - - -

Bootstrap

Recentered
Y Y - -

Bootstrap

†: The critical values are for symmetric two-sided t tests and confidence intervals.

‡: MR bootstrap denotes the misspecification-robust bootstrap proposed by the author.

Table 2: Comparison of the Asymptotic and Bootstrap Critical Values

3 Outline of the Results

In this section, I outline the MR bootstrap. The idea of the MR bootstrap procedure

can be best understood in the same framework with Hall and Horowitz (1996) and

Brown and Newey (2002), as is described below.

Suppose that the random sample is χn = {Xi : i ≤ n} from a probability distri-

bution P . Let F be the corresponding cumulative distribution function (cdf). The

empirical distribution function (edf) is denoted by Fn. The GMM estimator, θ̂, min-

imizes a sample criterion function, Jn(θ). Suppose that θ is a scalar for notational

brevity. Let Σ̂ be a consistent estimator of the asymptotic variance of
√
n(θ̂−plim(θ̂)).

I also define the bootstrap sample. Let χ∗nb = {X∗i : i ≤ nb} be a sample of

random vectors from the empirical distribution P ∗ conditional on χn with the edf Fn.

In this section, I distinguish n and nb, which helps understanding the concept of the

conditional asymptotic distribution.5 I set n = nb from the following section. Define

J∗nb(θ) and Σ̂∗ as Jn(θ) and Σ̂ are defined, but with χ∗nb in place of χn. The bootstrap

5nb is the resample size and should be distinguished from the number of bootstrap replication
(or resampling), often denoted by B. See Bickel and Freedman (1981) for further discussion.
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GMM estimator θ̂∗ minimizes J∗nb(θ).

Consider a symmetric two-sided test of the null hypothesis H0 : θ = θ0 with level

α. The t statistic under H0 is T (χn) = (θ̂ − θ0)/

√
Σ̂/n, a functional of χn. One

rejects the null hypothesis if |T (χn)| > z for a critical value z. I also consider a

100(1− α)% CI for θ0, [θ̂ ± z
√

Σ̂/n]. For the asymptotic test or the asymptotic CI,

set z = zα/2, where zα/2 is the 1−α/2 quantile of a standard normal distribution. For

the bootstrap test or the symmetric percentile-t interval, set z = z∗|T |,α, where z∗|T |,α

is the 1− α quantile of the distribution of |T (χ∗nb)| ≡ |θ̂
∗ − θ̂|/

√
Σ̂∗/nb.

Let Hn(z, F ) = P (T (χn) ≤ z|F ) and H∗nb(z, Fn) = P (T (χ∗nb) ≤ z|Fn). According

to Hall (1992), under regularity conditions, Hn(z, F ) and H∗nb(z, Fn) allow Edgeworth

expansion of the form

Hn(z, F ) = H∞(z, F ) + n−1/2q1(z, F ) + n−1q2(z, F ) + o(n−1), (3.1)

H∗nb(z, Fn) = H∗∞(z, Fn) + n
−1/2
b q1(z, Fn) + n−1

b q2(z, Fn) + op(n
−1
b ) (3.2)

uniformly over z, where q1(z, F ) is an even function of z for each F , q2(z, F ) is an

odd function of z for each F , q2(z, Fn)→ q2(z, F ) almost surely as n→∞ uniformly

over z, H∞(z, F ) = limn→∞Hn(z, F ) and H∗∞(z, Fn) = limnb→∞H
∗
nb

(z, Fn). If T (·) is

asymptotically pivotal, then H∞(z, F ) = H∗∞(z, Fn) = Φ(z) where Φ is the standard

normal cdf, because H∞(z, F ) and H∗∞(z, Fn) do not depend on the underlying cdf.

Using (3.1) and the fact that q1 is even, it can be shown that under H0,

P (|T (χn)| > zα/2) = α +O(n−1), P (θ0 ∈ CI) = 1− α +O(n−1), (3.3)

where CI = [θ̂ ± zα/2
√

Σ̂/n]. In other words, the error in the rejection probability

and coverage probability of the asymptotic two-sided t test and CI is O(n−1).

For the bootstrap t test and CI, subtract (3.1) from (3.2), use the fact that q1 is

even, and set nb = n to show, under H0,

P (|T (χn)| > z∗|T |,α) = α + o(n−1), P (θ0 ∈ CI∗) = 1− α + o(n−1) (3.4)

where CI∗ = [θ̂±z∗|T |,α
√

Σ̂/n]. The elimination of the leading terms in (3.1) and (3.2)

is the source of asymptotic refinements of bootstrapping the asymptotically pivotal

statistics (Beran, 1988; Hall, 1992).
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First suppose that the model is correctly specified, Eg(Xi, θ0) = 0 for unique θ0,

where E[·] is the expectation with respect to the cdf F. The conventional t statistic

TC(χn) = (θ̂ − θ0)/

√
Σ̂C/n, where Σ̂C is the standard GMM variance estimator, is

asymptotically pivotal. However, a naive bootstrap t statistic without recentering,6

TC(χ∗nb) = (θ̂∗ − θ̂)/
√

Σ̂∗C/nb, is not asymptotically pivotal because the moment con-

dition under Fn is misspecified, EFng(X∗i , θ̂) = n−1
∑n

i=1 g(Xi, θ̂) 6= 0 almost surely

when the model is overidentified, where EFn [·] is the expectation with respect to Fn.

If the moment condition is misspecified, the conventional GMM variance estimator

is no longer consistent. Note that the bootstrap moment condition is evaluated at θ̂,

where θ̂ is considered as the true value given Fn.

The recentered bootstrap makes the bootstrap moment condition hold so that

the recentered bootstrap t statistic is asymptotically pivotal. For instance, the

Hall-Horowitz bootstrap uses a recentered moment function g∗(X∗i , θ) = g(X∗i , θ) −
n−1

∑n
i=1 g(Xi, θ̂) so that EFng

∗(X∗i , θ̂) = 0 almost surely. The Brown-Newey boot-

strap uses the EL distribution function F̂EL(z) = n−1
∑n

i=1 p̂i1(Xi ≤ z) in resampling,

where p̂i is the EL probability and 1(·) is an indicator function, instead of using Fn,

so that EF̂ELg(X∗i , θ̂) = 0 almost surely, where EF̂EL [·] is the expectation with respect

to F̂EL.

The MR bootstrap uses the original non-recentered moment function in imple-

menting the bootstrap and resamples according to the edf Fn. This is similar to the

naive bootstrap. The distinction is that the MR bootstrap uses the Hall-Inoue vari-

ance estimator in constructing the sample and the bootstrap versions of the t statistic

instead of using the conventional GMM variance estimator. The sample t statistic

is TMR(χn) = (θ̂ − θ0)/

√
Σ̂MR/n, where Σ̂MR is a consistent estimator of ΣMR, the

asymptotic variance of the GMM estimator regardless of misspecification. TMR(χn)

is asymptotically pivotal.

The MR bootstrap t statistic is TMR(χ∗nb) = (θ̂∗− θ̂)/
√

Σ̂∗MR/nb, where Σ̂∗MR uses

the same formula as Σ̂MR with χ∗nb in place of χn. Σ̂∗MR is consistent for the conditional

asymptotic variance of the bootstrap GMM estimator, ΣMR|Fn , almost surely, even if

the bootstrap moment condition is not satisfied. As a result, TMR(χ∗nb) is asymptoti-

cally pivotal. Therefore, the MR bootstrap achieves asymptotic refinements without

recentering under correct specification.

6A naive bootstrap for GMM is constructing θ̂∗ and Σ̂∗ in the same way we construct θ̂ and Σ̂,
using the bootstrap sample χ∗nb in place of χn.
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Now suppose that the model is misspecified in the population, Eg(Xi, θ) 6= 0 for

all θ. The advantage of the MR bootstrap is that neither the sample t statistic nor

the bootstrap t statistic requires the assumption of correct model. Since TMR(χn) and

TMR(χ∗nb) are constructed by using the Hall-Inoue variance estimator, they are asymp-

totically pivotal regardless of model misspecification. Thus, the ability of achieving

asymptotic refinements of the MR bootstrap is not affected.

The conclusion changes dramatically for the recentered bootstrap, however. First

of all, the conventional t statistic TC(χn) is no longer asymptotically pivotal and this

invalidates the use of the asymptotic t test and CI. Moreover, the recentered bootstrap

t test and CI are not first-order valid because (i) they use the inconsistent conventional

standard error and, (ii) they impose a wrong moment condition by recentering.7

Let z∗|TMR|,α be the 1−α quantile of the distribution of |TMR(χ∗nb)| and let CI∗MR =

[θ̂±z∗|TMR|,α

√
Σ̂MR/n]. Using the MR bootstrap without assuming the correct model,

I show that, under H0,

P (|TMR(χn)| > z∗|TMR|,α) = α +O(n−2), P (θ0 ∈ CI∗MR) = 1− α +O(n−2). (3.5)

This rate is sharp. The further reduction in the error from o(n−1) of (3.4) to O(n−2) of

(3.5) is based on the argument given in Hall (1988). Andrews (2002) shows the same

sharp bound using the Hall-Horowitz bootstrap and assuming the correct model.

4 Estimators and Test Statistics

Given an Lg×1 vector of moment conditions g(Xi, θ), where θ is Lθ×1, and Lg ≥ Lθ,

define a correctly specified and a misspecified model as follows: The model is correctly

specified if there exists a unique value θ0 in Θ ⊂ RLθ such that Eg(Xi, θ0) = 0, and

the model is misspecified if there exists no θ in Θ ⊂ RLθ such that Eg(Xi, θ) = 0.

That is, Eg(Xi, θ) = g(θ) where g : Θ → RLg such that ‖g(θ)‖ > 0 for all θ ∈ Θ, if

the model is misspecified. Assume that the model is possibly misspecified.

The (pseudo-)true parameter θ0 minimizes the population criterion function,

J(θ,Ω−1) = Eg(Xi, θ)
′Ω−1Eg(Xi, θ), (4.1)

7The conditional and unconditional distributions of the recentered bootstrap t statistic is de-
scribed in Supplementary Appendix available at the author’s webpage.
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where Ω−1 is the probability limit of a weight matrix. Since the model is possibly

misspecified, the moment condition and the population criterion may not equal to

zero for any θ ∈ Θ. In this case, the minimizer of the population criterion depends

on Ω−1 and is denoted by θ0(Ω−1). We call θ0(Ω−1) the pseudo-true value. The

dependence vanishes when the model is correctly specified.

Consider two forms of GMM estimator. The first one is a one-step GMM esti-

mator using the identity matrix ILg as a weight matrix, which is the common usage.

The second one is a two-step GMM estimator using a weight matrix constructed

from the one-step GMM estimator. Under correct specifications, the common choice

of the weight matrix is an asymptotically optimal one. However, the optimality is

not established under misspecification because the asymptotic covariance matrix of

the two-step GMM estimator cannot be simplified to the efficient one under correct

specification.

The one-step GMM estimator, θ̂(1), solves

min
θ∈Θ

Jn(θ, ILg) =

(
n−1

n∑
i=1

g(Xi, θ)

)′(
n−1

n∑
i=1

g(Xi, θ)

)
. (4.2)

The two-step GMM estimator, θ̂(2) solves

min
θ∈Θ

Jn(θ,Wn(θ̂(1))) ≡

(
n−1

n∑
i=1

g(Xi, θ)

)′
Wn(θ̂(1))

(
n−1

n∑
i=1

g(Xi, θ)

)
, (4.3)

where8

Wn(θ) =

(
n−1

n∑
i=1

(g(Xi, θ)− gn(θ))(g(Xi, θ)− gn(θ))′

)−1

, (4.4)

and gn(θ) = n−1
∑n

i=1 g(Xi, θ). Suppress the dependence of Wn on θ and write Wn ≡
Wn(θ̂(1)). Under regularity conditions, the GMM estimators are consistent: θ̂(1) con-

verges to a pseudo-true value θ0(I) ≡ θ0(1), and θ̂(2) converges to a pseudo-true value

θ0(W ) ≡ θ0(2). Under misspecification, θ0(1) 6= θ0(2) in general. The probability limit

8One may consider an Lg × Lg nonrandom positive-definite symmetric matrix for the one-step
GMM estimator or the uncentered weight matrix, Wn(θ) = (n−1

∑n
i=1 g(Xi, θ)g(Xi, θ)

′)−1, for the
two-step GMM estimator. This does not affect the main result of the paper, though the resulting
pseudo-true values are different. In practice, however, the uncentered weight matrix may not behave
well under misspecification, because the elements of the uncentered weight matrix include bias terms
of the moment function. See Hall (2000) for more discussion on the issue.
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of the weight matrix Wn is W =
{
E[(g(Xi, θ0(1))− g0(1))(g(Xi, θ0(1))− g0(1))

′]
}−1

,

where g0(j) = Eg(Xi, θ0(j)) for j = 1, 2.

To further simplify notation, let G(Xi, θ) = (∂/∂θ′)g(Xi, θ),

G0(j) = EG(Xi, θ0(j)), G
(2)
0(j) = E

[
∂

∂θ′
vec
{
G(Xi, θ0(j))

}]
, (4.5)

for j = 1, 2, and Lθ × Lθ matrices H0(1) = G′0(1)G0(1) + (g′0(1) ⊗ ILθ)G
(2)
0(1) and H0(2) =

G′0(2)WG0(2) + (g′0(2)W ⊗ ILθ)G
(2)
0(2). Let

Gn(θ) = n−1

n∑
i=1

G(Xi, θ), G(2)
n (θ) = n−1

n∑
i=1

∂

∂θ′
vec {G(Xi, θ)} , (4.6)

Gn(j) = Gn(θ̂(j)) for j = 1, 2, and Hn(1) = G′n(1)Gn(1) + (g′n(1) ⊗ ILθ)G
(2)
n(1) and Hn(2) =

G′n(2)WnGn(2) + (g′n(2)Wn⊗ ILθ)G
(2)
n(2). Let Ω1 and Ω2 denote positive-definite matrices

such that

√
n

(
(gn(θ0(1))− g0(1))

(Gn(θ0(1))−G0(1))
′g0(1)

)
→d N

(
0, Ω1

(Lg+Lθ)×(Lg+Lθ)

)
, (4.7)

and

√
n

 (gn(θ0(2))− g0(2))

(Gn(θ0(2))−G0(2))
′Wg0(2)

(Wn −W )g0(2)

→d N

(
0, Ω2

(2Lg+Lθ)×(2Lg+Lθ)

)
. (4.8)

To obtain the MR asymptotic covariance matrix for the GMM estimator, I use

Theorems 1 and 2 of Hall and Inoue (2003):

√
n(θ̂(j) − θ0(j))→d N(0,ΣMR(j)), (4.9)

where ΣMR(j) = H−1
0(j)VjH

−1
0(j), for j = 1, 2,

V1 =
[
G′0(1) ILθ

]
Ω1

[
G′0(1) ILθ

]′
, (4.10)

V2 =
[
G′0(2)W ILθ G′0(2)

]
Ω2

[
G′0(2)W ILθ G′0(2)

]′
.

Under correct specifications, ΣMR(1) and ΣMR(2) reduce to the standard asymptotic
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covariance matrices of the GMM estimators, ΣC(1) and ΣC(2) respectively, where

ΣC(1) = (G′0G0)−1G′0ΩCG0(G′0G0)−1, ΣC(2) = (G′0Ω−1
C G0)−1, (4.11)

G0 = EG(Xi, θ0), ΩC = E[g(Xi, θ0)g(Xi, θ0)′], and θ0 satisfies Eg(Xi, θ0) = 0.

A consistent estimator of ΣMR(j) is Σ̂MR(j) = H−1
n(j)Vn(j)H

−1′

n(j) for j = 1, 2, where

Vn(1) =
[
G′n(1) ILθ

]
Ωn(1)

[
G′n(1) ILθ

]′
, (4.12)

Vn(2) =
[
G′n(2)Wn ILθ G′n(2)

]
Ωn(2)

[
G′n(2)Wn ILθ G′n(2)

]′
,

and Ωn(j) is a consistent estimator of Ωj, with the population moments replaced by

the sample moments. In particular,

Ωn(1) = n−1

n∑
i=1

(
g(Xi, θ̂(1))− gn(1)

(G(Xi, θ̂(1))−Gn(1))
′gn(1)

)(
g(Xi, θ̂(1))− gn(1)

(G(Xi, θ̂(1))−Gn(1))
′gn(1)

)′
, (4.13)

Ωn(2) = n−1

n∑
i=1

 g(Xi, θ̂(2))− gn(2)

(G(Xi, θ̂(2))−Gn(2))
′Wngn(2)

Wign(2)


 g(Xi, θ̂(2))− gn(2)

(G(Xi, θ̂(2))−Gn(2))
′Wngn(2)

Wign(2)


′

,

where9

Wi = −Wn ·
(

(g(Xi, θ̂(1))− gn(θ̂(1)))(g(Xi, θ̂(1))− gn(θ̂(1)))
′ −W−1

n

)
·Wn. (4.14)

The diagonal elements of the covariance estimator Σ̂MR(j) for j = 1, 2 are the Hall-

Inoue variance estimators. In practice, the estimation of the MR covariance matrices

does not involve much complication. What we need to calculate additionally is the

second derivative of the moment function.

Let θk, θ0(j),k, and θ̂(j),k denote the kth elements of θ, θ0(j), and θ̂(j) respectively.

Let (Σ̂MR(j))kk denote the (k, k)th element of Σ̂MR(j). The t statistic for testing the

null hypothesis H0 : θk = θ0(j),k is

TMR(j) =
θ̂(j),k − θ0(j),k√
(Σ̂MR(j))kk/n

, (4.15)

9Note that Wn −W = −W (W−1n −W−1)Wn.
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where j = 1 for the one-step GMM estimator and j = 2 for the two-step GMM

estimator. TMR(j) is robust to misspecification because it has an asymptotic N(0, 1)

distribution under H0, without assuming the correct model. TMR(j) is different from

the conventional t statistic, because Σ̂C(j) 6= Σ̂MR(j) in general even under correct

specification, for j = 1, 2.10 Note that Σ̂C(j) is a consistent estimator for ΣC(j), the

asymptotic covariance matrix under correct specification for j = 1, 2.

The MR bootstrap described in the next section achieves asymptotic refinements

over the MR asymptotic t test and CI, rather than the conventional non-robust

ones. Define the MR asymptotic t test and CI as follows. The symmetric two-

sided t test with asymptotic significance level α rejects H0 if |TMR(j)| > zα/2, where

zα/2 is the 1 − α/2 quantile of a standard normal distribution. The corresponding

CI for θ0(j),k with asymptotic confidence level 100(1 − α)% is CIMR(j) = [θ̂(j),k ±
zα/2

√
(Σ̂MR(j))kk/n], j = 1, 2. The error in the rejection probability of the t test with

zα/2 and coverage probability of CIMR(j) is O(n−1): Under H0, P
(
|TMR(j)| > zα/2

)
=

α +O(n−1) and P
(
θ0(j),k ∈ CIMR(j)

)
= 1− α +O(n−1), for j = 1, 2.

5 The Misspecification-Robust Bootstrap

The nonparametric iid bootstrap is implemented by sampling X∗1 , · · · , X∗n randomly

with replacement from the sample X1, · · · , Xn.

The bootstrap one-step GMM estimator, θ̂∗(1) solves:

min
θ∈Θ

J∗n(θ, ILg) =

(
n−1

n∑
i=1

g(X∗i , θ)

)′(
n−1

n∑
i=1

g(X∗i , θ)

)
, (5.1)

10Applied researchers may be interested in the choice between TMR(1) and TMR(2). However, it is

hard to compare them because (i) θ̂(1) and θ̂(2) have different probability limits, and (ii) efficiency
gain of the two-step GMM does not hold anymore under misspecification. Nevertheless, comparing
TC(j) and TMR(j) would be helpful in practice, where TC(j) is the conventional t statistic studentized

with Σ̂C(j) for j = 1, 2. For example, one might want to use TC(1) instead of TC(2) to avoid a
potential finite sample bias in the two-step GMM. In this case, it is recommended to calculate
TMR(1) and compare it with TC(1). In general, TMR(1) is a better choice than TC(1) because it is
robust to misspecification while it is not necessarily less powerful than TC(1) (see Section 7). A
similar argument applies to TC(2) and TMR(2).
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and the bootstrap two-step GMM estimator θ̂∗(2) solves

min
θ∈Θ

J∗n(θ,W ∗
n(θ̂∗(1))) =

(
n−1

n∑
i=1

g(X∗i , θ)

)′
W ∗
n(θ̂∗(1))

(
n−1

n∑
i=1

g(X∗i , θ)

)
, (5.2)

where

W ∗
n(θ) =

(
n−1

n∑
i=1

(g(X∗i , θ)− g∗n(θ))(g(X∗i , θ)− g∗n(θ))′

)−1

, (5.3)

and g∗n(θ) = n−1
∑n

i=1 g(X∗i , θ). Suppress the dependence of W ∗
n on θ and write

W ∗
n ≡ W ∗

n(θ̂∗(1)). To further simplify notation, let

G∗n(θ) = n−1

n∑
i=1

∂

∂θ′
g(X∗i , θ), G(2)∗

n (θ) = n−1

n∑
i=1

∂

∂θ′
vec

{
∂

∂θ′
g(X∗i , θ)

}
, (5.4)

G∗n(j) = G∗n(θ̂∗(j)) for j = 1, 2, and H∗n(1) = G∗
′

n(1)G
∗
n(1) + (g∗

′

n(1) ⊗ ILθ)G
(2)∗
n(1) and H∗n(2) =

G∗
′

n(2)W
∗
nG
∗
n(2) + (g∗

′

n(2)W
∗
n ⊗ ILθ)G

(2)∗
n(2).

The bootstrap version of the robust covariance matrix estimator Σ̂MR(j) is Σ̂∗MR(j) =

H∗−1
n(j)V

∗
n(j)H

∗−1′

n(j) for j = 1, 2, where

V ∗n(1) =
[
G∗

′

n(1) ILg

]
Ω∗n(1)

[
G∗

′

n(1) ILg

]′
, (5.5)

V ∗n(2) =
[
G∗

′

n(2)W
∗
n ILg G∗

′

n(2)

]
Ω∗n(2)

[
G∗

′

n(2)W
∗
n ILg G∗

′

n(2)

]′
,

and Ω∗n(j) is constructed by replacing the sample moments in Ωn(j) with the bootstrap

sample moments. In particular,

Ω∗n(1) = n−1

n∑
i=1

(
g(X∗i , θ̂

∗
(1))− g∗n(1)

(G(X∗i , θ̂
∗
(1))−G∗n(1))

′g∗n(1)

)(
g(X∗i , θ̂

∗
(1))− g∗n(1)

(G(X∗i , θ̂
∗
(1))−G∗n(1))

′g∗n(1)

)′
, (5.6)

Ω∗n(2) = n−1

n∑
i=1

 g(X∗i , θ̂
∗
(2))− g∗n(2)

(G(X∗i , θ̂
∗
(2))−G∗n(2))

′W ∗
ng
∗
n(2)

W ∗
i g
∗
n(2)


 g(X∗i , θ̂

∗
(2))− g∗n(2)

(G(X∗i , θ̂
∗
(2))−G∗n(2))

′W ∗
ng
∗
n(2)

W ∗
i g
∗
n(2)


′

,

where

W ∗
i = −W ∗

n ·
(

(g(X∗i , θ̂
∗
(1))− g∗n(θ̂∗(1)))(g(X∗i , θ̂

∗
(1))− g∗n(θ̂∗(1)))

′ −W ∗−1
n

)
·W ∗

n . (5.7)
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The MR bootstrap t statistic is

T ∗MR(j) =
θ̂∗(j),k − θ̂(j),k√
(Σ̂∗MR(j))kk/n

, (5.8)

for j = 1, 2. Let z∗|TMR(j)|,α denote the 1 − α quantile of |T ∗MR(j)|, j = 1, 2. Following

Andrews (2002), we define z∗|TMR(j)|,α to be a value that minimizes |P ∗(|T ∗MR(j)| ≤
z)− (1−α)| over z ∈ R, since the distribution of |T ∗MR(j)| is discrete. The symmetric

two-sided bootstrap t test of H0 : θk = θ0(j),k versus H1 : θk 6= θ0(j),k rejects if

|TMR(j)| > z∗|TMR(j)|,α, j = 1, 2, and this test is of asymptotic significance level α. The

100(1− α)% symmetric percentile-t interval for θ0(j),k is, for j = 1, 2,

CI∗MR(j) =

[
θ̂(j),k ± z∗|TMR(j)|,α

√
(Σ̂MR(j))kk/n

]
. (5.9)

The MR bootstrap t statistic differs from the recentered bootstrap t statistic.

First, unlike the Hall-Horowitz bootstrap, the MR bootstrap GMM estimator is cal-

culated from the original moment function with the bootstrap sample. Second, the

Hall-Inoue variance estimator is used to construct the bootstrap t statistic. In the

recentered bootstrap, the conventional variance estimator of Hansen (1982) is used.

6 Main Result

6.1 Assumptions

The assumptions are analogous to those of Hall and Horowitz (1996) and Andrews

(2002). The main difference is that I do not assume correct model specification. If

the model is misspecified, then the probability limits of the one-step and the two-

step GMM estimators are different. Thus, we need to distinguish θ0(1) from θ0(2), the

probability limit of θ̂(1) and θ̂(2), respectively. The assumptions are modified to hold

for both pseudo-true values. If the model happens to be correctly specified, then the

pseudo-true values become identical.

Let f(Xi, θ) denote the vector containing the unique components of g(Xi, θ) and

g(Xi, θ)g(Xi, θ)
′, and their derivatives through order d1 ≥ 6 with respect to θ. Let

(∂m/∂θm)g(Xi, θ) and (∂m/∂θm)f(Xi, θ) denote the vectors of partial derivatives with

respect to θ of order m of g(Xi, θ) and f(Xi, θ), respectively.
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Assumption 1. Xi, i = 1, 2, ... are iid.

Assumption 2. (a) Θ is compact and θ0(1) and θ0(2) are interior points of Θ.

(b) θ̂(1) and θ̂(2) minimize Jn(θ, ILg) and Jn(θ,Wn) over θ ∈ Θ, respectively; θ0(1) and

θ0(2) are the pseudo-true values that uniquely minimize J(θ, ILg) and J(θ,W ) over θ ∈
Θ, respectively; for some function Cg(x), ‖g(x, θ1)−g(x, θ2)‖ < Cg(x)‖θ1−θ2‖ for all

x in the support of X1 and all θ1, θ2 ∈ Θ; and ECq1
g (X1) <∞ and E‖g(X1, θ)‖q1 <∞

for all θ ∈ Θ for all 0 < q1 <∞.

Assumption 3. The followings hold for j = 1, 2.

(a) Ωj is positive definite.

(b) H0(j) is nonsingular and G0(j) is full rank Lθ.

(c) g(x, θ) is d = d1 + d2 times differentiable with respect to θ on N0(j), where N0(j) is

some neighborhood of θ0(j), for all x in the support of X1, where d1 ≥ 6 and d2 ≥ 5.

(d) There is a function C∂f (X1) such that ‖(∂m/∂θm)f(X1, θ)−(∂m/∂θm)f(X1, θ0(j))‖ ≤
C∂f (X1)‖θ − θ0(j)‖ for all θ ∈ N0(j) for all m = 0, ..., d2.

(e) ECq2
∂f (X1) < ∞ and E‖(∂m/∂θm)f(X1, θ0(j))‖q2 ≤ Cf < ∞ for all m = 0, ..., d2

for some constant Cf (that may depend on q2) and all 0 < q2 <∞.

(f) f(X1, θ0(j)) is once differentiable with respect to X1 with uniformly continuous

first derivative.

Assumption 4. For t ∈ Rdim(f) and j = 1, 2, lim sup‖t‖→∞
∣∣E (exp(it′f(X1, θ0(j)))

)∣∣ <
1, where i =

√
−1.

Assumption 1 says that we restrict our attention to iid sample. Hall and Horowitz

(1996) and Andrews (2002) deal with dependent data. I focus on iid sample and non-

parametric iid bootstrap to emphasize the role of the Hall-Inoue variance estimator in

implementing the MR bootstrap without recentering and to avoid the complications

arising when constructing blocks to deal with dependent data. For example, the Hall-

Horowitz bootstrap needs an additional correction factor as well as recentering for

dependent data. The correction factor would be also needed in implementing the MR

bootstrap for dependent data. I do not investigate this issue further in this paper.

Assumptions 2-3 are similar to Assumptions 2-3 of Andrews (2002), except that

I eliminate the correct model assumption. In particular, I relax Assumption 2 of

Hall and Horowitz (1996) and Assumption 2(b)(i) of Andrews (2002). The moment

conditions in Assumptions 2-3 are not primitive, but they lead to simpler results as
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in Andrews (2002). Assumption 4 is the standard Cramér condition for iid sample,

that is needed to get Edgeworth expansions.

6.2 Asymptotic Refinements of the Misspecification-Robust

Bootstrap

Theorem 1 shows that the MR bootstrap symmetric two-sided t test has rejection

probability that is correct up to O(n−2), and the same magnitude of convergence

holds for the MR bootstrap symmetric percentile-t interval. This result extends the

results of Theorem 3 of Hall and Horowitz (1996) and Theorem 2(c) of Andrews

(2002), because their results hold only under correctly specified models. In other

words, the following Theorem establishes that the MR bootstrap achieves the same

magnitude of asymptotic refinements with the existing bootstrap procedures, without

assuming the correct model and without recentering.

Theorem 1. Suppose Assumptions 1-4 hold. Under H0 : θk = θ0(j),k, for j = 1, 2,

P (|TMR(j)| > z∗|TMR(j)|,α) = α+O(n−2) or P (θ0(j),k ∈ CI∗MR(j)) = 1−α+O(n−2),

where z∗|TMR(j)|,α is the 1− α quantile of the distribution of |T ∗MR(j)|.

Since P
(
|TMR(j)| > zα/2

)
= α+O(n−1), the bootstrap critical value has a reduc-

tion in the error of rejection probability by a factor of n−1 for symmetric two-sided t

tests. The symmetric percentile-t interval is formulated by the symmetric two-sided

t test, and the CI also has a reduction in the error of coverage probability by a factor

of n−1.

We note that neither asymptotic refinements nor first-order validity for the J test

are established in Theorem 1. The MR bootstrap is implemented with a misspecified

moment condition in the sample, E∗g(X∗i , θ̂) 6= 0, where E∗ is the expectation over

the bootstrap sample. Thus, the distribution of the MR bootstrap J statistic does

not consistently approximate that of the sample J statistic under the null hypothesis,

which is Eg(Xi, θ0) = 0.

The proof of the Theorem proceeds by showing that the misspecification-robust t

statistic studentized with the Hall-Inoue variance estimator can be approximated by

a smooth function of sample moments. Once we establish that the approximation is

close enough, we can use the result of Edgeworth expansions for a smooth function
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in Hall (1992). The proof extensively follows those of Hall and Horowitz (1996) and

Andrews (2002). The differences are that I allow for distinct probability limits of the

one-step and the two-step GMM estimators, and that no special bootstrap version

of the test statistic is needed for the MR bootstrap. Indeed, the recentering creates

more complication than it seems even under correct specification, because θ̂(1) 6= θ̂(2) in

general, which in turn implies that there are two (pseudo-)true values in the bootstrap

world. This issue is not explicitly explained in Hall and Horowitz (1996) and Andrews

(2002). In contrast, I explicitly distinguish the pseudo-true values in the bootstrap

world as well as in the population, which makes the proof given in this paper be more

straightforward than theirs.

7 Monte Carlo Experiments

In this section, I compare the actual finite sample coverage probabilities of the asymp-

totic and bootstrap CI’s under correct specification and misspecification.

The conventional asymptotic CI with coverage probability 100(1− α)% is

CIC =

[
θ̂ ± zα/2

√
Σ̂C/n

]
, (7.1)

where zα/2 is the 1−α/2th quantile of a standard normal distribution. The MR asymp-

totic CI using the Hall-Inoue variance estimator with coverage probability 100(1−α)%

is

CIMR =

[
θ̂ ± zα/2

√
Σ̂MR/n

]
. (7.2)

The only difference between CIMR and CIC is the choice of the variance estimator.

Under correct model specification, both the asymptotic CI’s have coverage probability

100(1−α)% asymptotically and the error in the coverage probability is O(n−1). Under

misspecification, CIMR still provides asymptotically correct coverage, but CIC does

not because Σ̂C is inconsistent.

The Hall-Horowitz and the Brown-Newey bootstrap CI’s with coverage probability
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100(1− α)% are given by

CI∗HH =

[
θ̂ ± z∗|THH |,α

√
Σ̂C/n

]
, (7.3)

CI∗BN =

[
θ̂ ± z∗|TBN |,α

√
Σ̂C/n

]
, (7.4)

where z∗|THH |,α is the 1 − αth quantile of the Hall-Horowitz bootstrap distribution

of the t statistic and z∗|TBN |,α is the 1 − αth quantile of the Brown-Newey bootstrap

distribution of the t statistic, respectively. Both the recentered bootstrap CI’s are

expected to perform better than CIC under correct specification. However, similar

to CIC , they do not provide asymptotically correct coverage under misspecification.

The MR bootstrap CI with coverage probability 100(1− α)% is:

CI∗MR =

[
θ̂ ± z∗|TMR|,α

√
Σ̂MR/n

]
, (7.5)

where z∗|TMR|,α is the 1−αth quantile of the MR bootstrap distribution of the t statistic.

CI∗MR is expected to perform better than CIMR regardless of misspecification by

Theorem 1.

7.1 Example 1: Combining Data Sets

Suppose that we observe Xi = (Yi, Zi)
′ ∈ R2, i = 1, ...n, and we have an econometric

model based on Zi with a moment function g1(Zi, θ), where θ is a parameter of

interest. Also, suppose that we know the mean (or other population information) of

Yi. If Yi and Zi are correlated, we can exploit the known information on EYi to get

more accurate estimates of θ. This situation is common in survey sampling: A sample

survey consists of a random sample from some population and aggregate statistics

from the same population. Imbens and Lancaster (1994) and Hellerstein and Imbens

(1999) show how to efficiently combine data sets and make an inference. For more

examples, see Imbens (2002) and Section 3.10 of Owen (2001).

Let g1(Zi, θ) = Zi−θ, so that the parameter of interest is the mean of Zi. Without

the knowledge on EYi, the natural estimator is the sample mean of Zi. If an additional
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information, EYi = 0, is available, then we form the moment function as

g(Xi, θ) =

(
Yi

Zi − θ

)
. (7.6)

Since the number of moment restrictions (Lg = 2) is greater than that of the parame-

ter (Lθ = 1), the model is overidentified and we can use GMM estimators to estimate

θ. If the assumed mean of Y is not true, i.e., EYi 6= 0, then the model is misspecified

because there is no θ that satisfies Eg(Xi, θ) = 0.

The one-step GMM estimator solving (4.2) is given by θ̂(1) = Z̄ ≡ n−1
∑n

i=1 Zi.

The two-step GMM estimator solving (4.3) and the pseudo-true value are given by

θ̂(2) = Z̄ − Ĉov(Yi, Zi)

V̂ ar(Yi)
Ȳ →p θ0(2) = EZi −

Cov(Yi, Zi)

V ar(Yi)
EYi, (7.7)

where V̂ ar(Yi) = n−1
∑n

i=1(Yi − Ȳ )2 and Ĉov(Yi, Zi) = n−1
∑n

i=1(Yi − Ȳ )(Zi − Z̄).

Note that the pseudo-true value reduces to θ0(2) = EZi when EYi = 0, i.e., the model

is correctly specified.

The conventional asymptotic variance of θ̂(2) is ΣC(2) = (G′0Ω−1
C G0)−1. The MR

asymptotic variance of θ̂(2) is ΣMR(2), where the formula for ΣMR(2) is given in the

previous section. Note that ΣC(2) is a special case of ΣMR(2) imposing no misspecifica-

tion. The following example makes this case clear. Consider a simple data generating

process (DGP) (
Yi

Zi

)
∼ N

((
δ

0

)
,

(
1 ρ

ρ 1

))
, (7.8)

where 0 < ρ < 1 is a correlation between Yi and Zi, and (Yi, Zi)
′ is iid. The assumed

mean of Yi, zero, may not equal to the true value, δ. Therefore, δ measures a degree

of misspecification. As δ gets larger, the degree of misspecification becomes larger.

The pseudo-true value is θ0(2) = −ρδ, and the asymptotic variances ΣC(2) and ΣMR(2)

are11

ΣC(2) = 1− ρ2, ΣMR(2) = (1− ρ2)(1 + δ2). (7.9)

If the model is correctly specified, then using the additional information reduces the

variance of the estimator by ρ2, because the asymptotic variance of the sample mean

11See Supplementary Appendix for details about the calculation.
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Z̄ is V ar(Zi) = 1. However, this reduction may not occur when the additional in-

formation is misspecified, and furthermore, the conventional variance estimator is

inconsistent for the true asymptotic variance, ΣMR(2). In contrast, the Hall-Inoue

variance estimator is consistent for the true asymptotic variance regardless of mis-

specification.

To better compare the coverage probabilities of the CI’s, I modify the DGP (7.8):(
Yi

Z0
i

)
∼ N

((
δ

0

)
,

(
1 ρ

ρ 1

))
, Zi = eσZ

0
i − eσ2/2, (7.10)

where σ is a shape parameter.12 In this case, Zi has a shifted log-normal distribution,

and the mean and the variance are 0 and (eσ
2 − 1)eσ

2
, respectively. Estimating the

mean of Zi is a common problem in economics, as many economic data are well

approximated by log-normal distributions. The information on the mean of Yi is

assumed to be relatively accurate, but may not be exact which is modeled as a source

of misspecification.

Table 3 shows the coverage probabilities of 90% and 95% CI’s based on the two-

step GMM estimator, θ̂(2), when ρ = 0.5 and σ = 1.5 in (7.10). The number of Monte

Carlo repetition (r) is 5,000, and the number of bootstrap replication (B) is 1,000.

J (J∗) at 5% denotes the actual rejection probabilities of the asymptotic and the

Hall-Horowitz bootstrap J test at 5% level.

For a correctly specified model (δ = 0), the bootstrap CI’s show better perfor-

mance than the asymptotic CI’s for n = 50, 200, and 1, 000. One might suspect that

CI∗MR and CIMR may not work well compared to the conventional CI’s under correct

specification (δ = 0). Interestingly, CI∗MR works as good as CI∗HH and CI∗BN , and

CIMR works as good as CIC under correct specification. This implies that the two

variance estimators Σ̂MR and Σ̂C do not differ much, but the difference is enough

to achieve asymptotic refinements of the bootstrap without recentering. Since Σ̂MR

involves estimation of the fourth moment of the moment function g(Xi, θ), rather

than the second moment, Σ̂MR may not work well if we consider more complicated

nonlinear models and DGP’s. Their relative performance under correct specification

deserves more research.

For misspecified models (δ = −0.3,−0.6, 0.6), only CI∗MR and CIMR have asymp-

12Unreported simulation results based on the DGP (7.8) are similar to the reported one, although
the size distortion of the asymptotic CI’s are less severe.
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totically correct coverage. CI∗MR performs better than CIMR regardless of misspecifi-

cation, which supports asymptotic refinements robust to misspecification. In contrast,

the conventional asymptotic and bootstrap CI’s are first-order invalid. Their coverage

is either significantly lower (when δ = −0.6) or significantly higher (when δ = 0.6)

than the nominal coverage.13 In particular, the result when δ = 0.6 implies that the

conventional CI’s may be neither asymptotically correct nor shorter in finite sample

under misspecification. Figure 1 shows the coverage probabilities of the CI’s when

n = 200 for different values of δ, and also supports the findings above.

7.2 Example 2: Invalid Instrumental Variables

Suppose that there is endogeneity in the linear model yi = xiβ0 + εi, where yi, xi ∈ R
and Exiεi 6= 0, so that the OLS estimator is inconsistent for β0. Suppose that we

have two instruments, z1i and z2i. We can estimate β0 using both instruments by

GMM. The moment function is

g(Xi, β) =

(
z1i(yi − xiβ)

z2i(yi − xiβ)

)
, (7.11)

where Xi = (yi, xi, z1i, z2i)
′. This moment function is correctly specified when both

instruments are valid, i.e., Ez1iεi = Ez2iεi = 0. In practice, a commonly used weight

matrix is Wn = (n−1
∑n

i=1 ziz
′
i)
−1, where zi = (z1i, z2i)

′. With this choice of the weight

matrix, the one-step GMM estimator β̂(1) is equivalent to the 2SLS estimator. If at

least one of the instruments is invalid, then only the Hall-Inoue variance estimator

Σ̂MR is consistent for the true asymptotic variance of β̂(1). Neither the conventional

GMM variance estimator nor the 2SLS variance estimator is consistent.14

13Under misspecification, the estimation of the empirical likelihood probabilities for the Brown-
Newey bootstrap did not work well. For example, convergence failure occurred about 30% of the
Monte Carlo repetition when δ = 0.6 and n = 1, 000. If this happens, CI∗BN has a length zero,
which trivially does not cover the pseudo-true value.

14Maasoumi and Phillips (1982) points out the calculation of the asymptotic variance of overiden-
tified and misspecified IV estimator is very complicated. Their asymptotic variance is a special case
of Hall and Inoue (2003).
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Let the DGP be

yi = xiβ0 + εi; xi = z1iγ1 + z2iγ2 + ui, z2i = z0
2i +

δ

(e− 1)e
εi; (7.12)

εi = ε0
i − e0.5; ui = u0

i − e0.5;(
z1i

z0
2i

)
∼ N

((
0

0

)
,

(
1 0

0 1

))
,

(
ε0
i

u0
i

)
∼ logN

((
0

0

)
,

(
1 .99

.99 1

))
,

where (z1i, z
0
2i)
′, (ε0

i , u
0
i )
′ are iid. The error terms are log-normally distributed with

the mean zero. This DGP satisfies Exiεi 6= 0, Ez1iεi = 0, and Ez2iεi = δ, where δ

measures a degree of misspecification. Therefore, the instrument z1i is valid, while

z2i may not. Let β0 = 0 for simplicity. The probability limit of β̂(1) is

β0(1) =

((
1 + δ2

(e−1)e

)
γ2 + δ

(e−1)e
ρεu

)
δ(

1 + δ2

(e−1)e

)
γ2

1 +
((

1 + δ2

(e−1)e

)
γ2 + δ

(e−1)e
ρεu

)2 , (7.13)

where ρεu = Eεiui. The pseudo-true value β0(1) depends on δ, ρεu, γ1 and γ2. Thus,

it is different from β0 = 0 in general. However, larger misspecification does not

necessarily imply larger potential bias in the pseudo-true value. To see this, let

γ2 = − δρεu
(e− 1)e+ δ2

. (7.14)

Then β0(1) = β0 = 0 regardless of the value of δ, ρεu, and γ1. Therefore, we can

consistently estimate the structural parameter even with invalid instrument in this

special case. Moreover, this particular choice of γ2 can be considered as a strong

but potentially invalid instrument. Let γ1 = 0.25 so that the first instrument z1i

is relatively weak.15 When δ = 0, then γ2 = 0 so that z2i has no explanatory

power. However, the instrument becomes stronger as δ deviates from zero given ρεu

is not zero. We can significantly improve the finite sample coverage probability of

CI’s by using this instrument. Monte Carlo simulation results support this thought

experiment.

Table 4 shows the coverage probabilities of 90% and 95% CI’s based on the one-step

15The strength of instruments depends on the magnitude of the reduced form coefficient as well as
the number of instruments, e.g., Hahn and Hausman (2002, 2005) and Guggenberger (2008). Since
the weak instruments problem is not the main issue of this paper, I do not further investigate it.

27



GMM estimator, β̂(1) with γ1 = 0.25 and γ2 in (7.14). First consider the case when

δ = 0 so that both the instruments are valid but the second one has no explanatory

power. The bootstrap CI’s provide more accurate coverage than the asymptotic CI’s

when the model is correctly specified, but the bootstrap does not solve the problem of

using a relatively weak instrument, see Hall and Horowitz (1996) for more discussions.

Interestingly, the MR CI’s show better performance than the conventional CI’s when

n = 50 and n = 200. This finding further supports the use of the MR CI’s in practice,

especially when one suspects a over-rejection of the J test. There is a noticeable size

distortion in the reported J tests. The Hall-Horowitz bootstrap J test show smaller

size distortion than the asymptotic one. Note that the MR bootstrap is not for the J

test, because it does not impose the correct specification of the model in implementing

the bootstrap.

Now consider the misspecified cases, δ = 0.25 and δ = 0.5. By using the invalid

but relatively strong instrument, the coverage of the MR CI’s improve overall. CI∗MR

performs better than CIMR regardless of misspecification, and there is a significant

improvement even when n = 1, 000. In contrast, the conventional CI’s are first-

order invalid. The J tests show smaller power to reject the null hypothesis compared

to Example 1 (Table 3). Furthermore, the Hall-Horowitz bootstrap J test are less

powerful than the asymptotic J test.

Figure 2 shows the coverage probabilities of the CI’s over different degrees of mis-

specification. It reinforces the previous finding: (i) The ability of achieving asymp-

totic refinements of the bootstrap CI’s is clearly demonstrated at δ = 0, and CI∗MR

maintain the ability regardless of misspecification, and (ii) the MR CI’s may perform

even better than the conventional CI’s under correct specification.

7.3 Power

Asymptotic refinements of the bootstrap focus on the size, not the power of t tests.

Although not established, one may wonder the power property of the asymptotic and

bootstrap t tests. The null hypothesis is H0 : θ = θ0(j) for j = 1, 2. Similar to the

CI’s, we consider five types of two-sided symmetric t tests. We have two t statistics,
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TC(j) and TMR(j):

TC(j) =
θ̂(j) − θ0(j)√

Σ̂C(j)/n
, TMR(j) =

θ̂(j) − θ0(j)√
Σ̂MR(j)/n

,

where Σ̂C(j) and Σ̂MR(j) are the conventional variance estimator and the Hall-Inoue

variance estimator, respectievly. Let the asymptotic significance level be α. The

conventional asymptotic t test rejects the null if |TC(j)| > zα/2, and is denoted by

tC . The MR asymptotic t test rejects the null if |TMR(j)| > zα/2, and is denoted by

tMR. The Hall-Horowitz and the Brown-Newey bootstrap t tests reject the null if

|TC(j)| > z∗|THH |,α and |TC(j)| > z∗|TBN |,α, and are denoted by t∗HH and t∗BN , respectively.

Finally, the MR bootstrap t test rejects the null if |TMR(j)| > z|TMR|,α, and is denoted

by t∗MR.

Figures 3 and 4 show the power curves of the t statistics in Examples 1 and 2.

Since the t tests show large size distortion as we saw in the previous section, I use

the 10% size-corrected critical values for the asymptotic and bootstrap t tests. The

number of Monte Carlo repetition (r) is 1,000 and the number of bootstrap replication

(B) is 1,000. For each generated sample, the t statistics are evaluated at various values

of θ around the null and the rejection frequency of the t tests is computed using the

size-corrected critical values.

The conclusion is mixed. We find from the figures that under correct specification,

(i) the asymptotic t tests show better power properties than the bootstrap t tests (tMR

over t∗MR; tC over t∗HH and t∗BN), but (ii) it is difficult to rank between the asymptotic

t tests (tMR and tC), and among the bootstrap t tests (t∗MR, t∗HH , and t∗BN). Under

misspecification, the conventional asymptotic and bootstrap t tests are inconsistent.

The power of the MR asymptotic and bootstrap t tests are not necessarily weaker

than the ones using standard t statistic (Figure 4 Panels 2 and 3). In addition, the

MR bootstrap t test can be more powerful than the MR asymptotic t test (Figure 4

Panel 3).

8 Conclusion

Bootstrap critical values allow more accurate inferences and CI’s than the asymptotic

critical values. To get the bootstrap refinements for GMM estimators, an ad hoc pro-
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cedure called recentering has been considered as critical in the existing literature.

In addition, the conventional bootstrap methods are not robust to unknown model

misspecification. In contrast, the proposed MR bootstrap achieves the same rate of

asymptotic refinements without recentering, and without assuming correct specifica-

tion of the model. The key idea is to link the misspecified moment condition in the

bootstrap world to the large sample theory of GMM under misspecification of Hall

and Inoue (2003).

Possible extensions of this paper would be (i) to see whether the MR bootstrap still

works conditional on the event that the J test fails to reject the null as this is likely

to happen in practice, and (ii) to apply the MR bootstrap to the GEL estimators.

A Appendix: Lemmas and Proofs

The proofs of the Theorem and Lemmas are analogous to those of Hall and Horowitz (1996) and

Andrews (2002) by allowing possible model misspecification. Throughout the Appendix, write

gi(θ) = g(Xi, θ), g
∗
i (θ) = g(X∗i , θ), Gi(θ) = G(Xi, θ), G

∗
i (θ) = G(X∗i , θ), fi(θ) = f(Xi, θ), and

f∗i (θ) = f(X∗i , θ) for notational brevity.

A.1 Proof of Theorem 1

The usage of the Hall-Inoue variance estimators in constructing the sample and bootstrap versions of

the t statistic without recentering the bootstrap moment function is taken into account by Lemmas

6 and 8. Once we establish the Edgeworth expansions of TMR(j) and T ∗MR(j) for j = 1, 2, the proof

of the Theorem is the same with that of Theorem 2(c) of Andrews (2002) with his Lemmas 13 and

16 replaced by our Lemmas 6 and 8. His proof relies on the argument of Hall (1988, 1992)’s methods

developed for “smooth functions of sample averages,” for iid data. Q.E.D.

A.2 Lemmas

Lemma 1 modifies Lemmas 1, 2, 6, and 7 of Andrews (2002) for nonparametric iid bootstrap under

possible misspecification. The modified Lemmas 1, 2, 6, and 7 are denoted by AL1, AL2, AL6, and

AL7, respectively. In addition, Lemma 5 of Andrews (2002) is denoted by AL5 without modification.

The complete proofs of the Lemmas are in a separate supplementary appendix available at the

author’s website: https://sites.google.com/site/misspecified/

Lemma 1.

(a) Lemma 1 of Andrews (2002) holds by replacing X̃i and N with Xi and n, respectively, under

our Assumption 1.
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(b) Lemma 2 of Andrews (2002) for j = 1 holds under our Assumptions 1-3.

(c) Lemma 6 of Andrews (2002) holds by replacing X̃i and N with Xi and n, respectively, and by

letting l = 1 and γ = 0, under our Assumption 1.

(d) Lemma 7 of Andrews (2002) for j = 1 holds by replacing X̃i and N with Xi and n, respectively,

and by letting l = 1 and γ = 0, under our Assumptions 1-3.

Proof. (a) Assumption 1 of Andrews (2002) is satisfied if our Assumption 1 holds. Then, Lemma 1

of Andrews (2002) holds.

(b) We use the proof of Lemma 2 of Andrews (2002) which relies on that of Lemma 2 of Hall and

Horowitz (1996). Since their proof does not require Eg(Xi, θ0) = 0, the Lemma holds under our

Assumptions 1-3.

(c) Assumption 1 of Andrews (2002) is satisfied if our Assumption 1 holds. Then, Lemma 6 of

Andrews (2002) holds for nonparametric iid bootstrap.

(d) We use the proof of Lemma 7 of Andrews (2002) which relies on that of Lemma 8 of Hall

and Horowitz (1996). Since their proof does not require Eg(Xi, θ0) = 0, the Lemma holds for

nonparametric iid bootstrap under our Assumptions 1-3. Q.E.D.

Lemmas 2-3 prove that the one-step and two-step GMM estimators are consistent for the

(pseudo-)true values, θ0(1) and θ0(2), respectively, under possible misspecification.

Lemma 2. Suppose Assumptions 1-3 hold. Then, for all c ∈ [0, 1/2) and all a ≥ 0,

lim
n→∞

naP (‖θ̂(1) − θ0(1)‖ > n−c) = 0.

Proof. The proof is similar to that of Lemma 3 of Andrews (2002) with the following exceptions.

Instead of his (9.25), we have

θ̂(1) − θ0(1) = −
(

∂2

∂θ∂θ′
Jn(θ̃)

)−1
∂

∂θ
Jn(θ0(1)) (A.1)

with probability 1− o(n−a), where

∂

∂θ
Jn(θ0(1)) =

{
G′0(1)(gn(θ0(1))− g0(1)) + (Gn(θ0(1))−G0(1))

′gn(θ0(1))
}
, (A.2)

∂2

∂θ∂θ′
Jn(θ) ≡ 2H̃n(θ, ILg ) = 2

{
(gn(θ)′ ⊗ ILθ )G(2)

n (θ) +Gn(θ)′Gn(θ)
}
,

and θ̃ is between θ̂(1) and θ0(1) and may differ across rows. Note that the first and second derivatives

of Jn(θ) include additional terms that do not appear under correct specification, g0(1) = 0. Then,

instead of his (9.26), we have

lim
n→∞

naP
(∥∥∥H̃n(θ̃, ILg )− H̃n(θ0(1), ILg )

∥∥∥ > ε
)

= 0, (A.3)

lim
n→∞

naP
(∥∥∥H̃n(θ0(1), ILg )−H0(1)

∥∥∥ > ε
)

= 0,

lim
n→∞

naP
(∥∥Gn(θ0(1))−G0(1)

∥∥ > n−c
)

= 0,

lim
n→∞

naP
(∥∥gn(θ0(1))− g0(1)

∥∥ > n−c
)

= 0.
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(A.3) can be shown by applying the triangle and Cauchy-Schwarz inequalities as well as AL1.

Q.E.D.

Lemma 3. Suppose Assumptions 1-3 hold. Then, for all c ∈ [0, 1/2) and all a ≥ 0,

lim
n→∞

naP (‖θ̂(2) − θ0(2)‖ > n−c) = 0.

Proof. The proof is similar to that of Lemma 4 of Andrews (2002), except that we apply AL1 and

and Lemma 2 instead of his Lemma 1 and Lemma 3. Q.E.D.

Lemmas 4-5 are the bootstrap versions of Lemmas 2-3, respectively, and consistency of the MR

bootstrap is established under possible misspecification. Note that the bootstrap GMM estimators

are different from the Hall-Horowitz bootstrap GMM estimators, which use the recentered bootstrap

moment function.

Lemma 4. Suppose Assumptions 1-3 hold. Then, for all c ∈ [0, 1/2) and all a ≥ 0,

lim
n→∞

naP (P ∗(‖θ̂∗(1) − θ̂(1)‖ > n−c) > n−a) = 0.

Proof. First, we prove the result with n−c replaced by a fixed ε > 0. The proof is similar to that of

Lemma 9 of Andrews (2002) except that we use AL2 and AL7 instead of his Lemma 2 and Lemma

7.

Next, we prove the result stated in the Lemma. Write J(θ) ≡ J(θ, ILg ) and J∗n(θ) ≡ J∗n(θ, ILg )

for notational brevity. The first-order condition is (∂/∂θ)J∗n(θ̂∗(1)) = G∗n(θ̂∗(1))
′g∗n(θ̂∗(1)) = 0 with P ∗

probability 1− o(n−a) except, possibly, if χ is in a set of P probability o(n−a). By the mean value

theorem,

θ̂∗(1) − θ̂(1) = −
(

∂2

∂θ∂θ′
J∗n(θ̃∗)

)−1
∂

∂θ
J∗n(θ̂(1)), (A.4)

with P ∗ probability 1− o(n−a) except, possibly, if χ is in a set of P probability o(n−a), where θ̃∗ is

between θ̂∗(1) and θ̂(1) and may differ across rows. Now the Lemma follows combining the following

results:

lim
n→∞

naP

(
P ∗
(∥∥∥∥ ∂∂θJ∗n(θ̂(1))

∥∥∥∥ > n−c
)
> n−a

)
= 0, (A.5)

lim
n→∞

naP
(
P ∗
(∥∥∥H̃∗n(θ̃∗, ILg )− H̃∗n(θ0(1), ILg )

∥∥∥ > ε
)
> n−a

)
= 0,

lim
n→∞

naP
(
P ∗
(∥∥∥H̃∗n(θ0(1), ILg )−H0(1)

∥∥∥ > ε
)
> n−a

)
= 0,

where H̃∗n(θ, ILg ) = (g∗n(θ)′ ⊗ ILθ )G
(2)∗
n (θ) +G∗n(θ)′G∗n(θ) and (∂2/∂θ∂θ′)J∗n(θ) = 2H̃∗n(θ, ILg ). The

proof follows that of Lemma 2 with some modifications for the bootstrap version using AL6. Q.E.D.

Lemma 5. Suppose Assumptions 1-3 hold. Then, for all c ∈ [0, 1/2) and all a ≥ 0,

lim
n→∞

naP (P ∗(‖θ̂∗(2) − θ̂(2)‖ > n−c) > n−a) = 0.
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Proof. We first show that

lim
n→∞

naP (P ∗(‖W ∗n(θ̂∗(1))−W‖ > n−c) > n−a) = 0. (A.6)

The proof is analogous to that of Lemma 4 in Andrews (2002), except that we use our Lemma 4

and AL6 instead of his Lemma 3 and Lemma 1, respectively. The rest of the proof is analogous to

that of Lemma 4. Q.E.D.

We now introduce some additional notation. Let Sn be the vector containing the unique com-

ponents of n−1
∑n
i=1

(
fi(θ0(1))

′, fi(θ0(2))
′)′ on the support of Xi, and S = ESn. Similarly, let S∗n

denote the vector containing the unique components of n−1
∑n
i=1

(
f∗i (θ̂(1))

′, f∗i (θ̂(2))
′
)′

on the sup-

port of Xi, and S∗ = E∗S∗n. Note that the definitions of Sn and S∗n are different from those of

Hall and Horowitz (1996) and Andrews (2002), because they do not distinguish θ0(1) and θ0(2) by

assuming the unique true value θ0. Under misspecification, θ0(1) and θ0(2) are different and thus,

θ̂(1) and θ̂(2) have different probability limits. In addition, Hall and Horowitz (1996) and Andrews

(2002) define S∗n by using the recentered moment function.

Lemma 6. Let ∆n and ∆∗n denote n1/2(θ̂(j)−θ0(j)) and n1/2(θ̂∗(j)− θ̂(j)), or TMR(j) and T ∗MR(j) for

j = 1, 2. For each definition of ∆n and ∆∗n, there is an infinitely differentiable function A(·) with

A(S) = 0 and A(S∗) = 0 such that the following results hold.

(a) Suppose Assumptions 1-4 hold with d1 ≥ 2a+ 2, where 2a is some nonnegative integer. Then,

lim
n→∞

sup
z
na|P (∆n ≤ z)− P (n1/2A(Sn) ≤ z)| = 0.

(b) Suppose Assumptions 1-4 hold with d1 ≥ 2a+ 2, where 2a is some nonnegative integer. Then,

lim
n→∞

naP

(
sup
z
|P ∗(∆∗n ≤ z)− P ∗(n1/2A(S∗n) ≤ z)| > n−a

)
= 0.

Proof. (a) The proof is analogous to that of Lemma 13 of Andrews (2002) which uses that of

Proposition 1 of Hall and Horowitz (1996), except that it allows different probability limits for the

one-step and the two-step GMM estimators. First we show that θ̂(j) − θ0(j) can be approximated

by a function of sample moments for j = 1, 2. We take the Taylor expansion of the first-order

conditions up to order d1. The proof for the one-step GMM is similar to that of Proposition 1 of Hall

and Horowitz (1996). For the two-step GMM, write Jn(θ̂, θ̃) ≡ Jn(θ̂,Wn(θ̃)) and let (∂1/∂θ)J(·, ·)
denote the gradient of Jn(·, ·) with respect to its first argument. Then, ∂1Jn(θ̂(2), θ̂(1))/∂θ = 0

with probability 1− o(n−a) by the first-order condition of the two-step GMM. We take the Taylor

expansion of ∂1Jn(θ̂(2), θ̂(1))/∂θ through order d1 about (θ, θ̃) = (θ0(2), θ0(1)), while Hall and Horowitz

(1996) takes the Taylor expansion around (θa, θb) = (θ0, θ0), the unique true value because θ0(2) =

θ0(1) under correct specification.

Andrews (2002) and Hall and Horowitz (1996) consider TC(j) while we consider TMR(j), but the

proofs are similar because (i) the only difference is that the variance estimators are different, and (ii)

the covariance matrix estimator, Σ̂MR(j), is a function of θ̂(j), j = 1, 2, by construction. To ensure
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the existence of the derivatives of TMR(j), we need at least d1 +1 times differentiability of gi(θ) with

respect to θ because ΣMR(j) involves second derivatives of the moment function. By Assumption

3(c), this is satisfied.

(b) The proof for ∆∗n = n1/2(θ̂∗(j) − θ̂(j)) for j = 1, 2, mimics that of Proposition 2 of Hall and

Horowitz (1996) except that we take the Taylor expansion up to oder d1 rather than order 4. For the

rest of the proof, observe that ∆∗n has the same form of ∆n by replacing Sn and θ0(j) with S∗n and

θ̂(j), respectively, because ∆∗n does not involve any recentering procedure as in Hall and Horowitz

(1996). Therefore, the remainder of the proof proceeds as in the previous proof for part (a) of the

Lemma. We use Lemmas 4-5 instead of Lemmas 2-3. Q.E.D.

We define the components of the Edgeworth expansions of the test statistic TMR(j) and its

bootstrap analog T ∗MR(j). Let Ψn = n1/2(Sn − S) and Ψ∗n = n1/2(S∗n − S∗). Let Ψn,k and Ψ∗n,k
denote the kth elements of Ψn and Ψ∗n respectively. Let νn,a and ν∗n,a denote vectors of moments

of the form nα(m)E
∏m
µ=1 Ψn,kµ and nα(m)E∗

∏m
µ=1 Ψ∗n,kµ , respectively, where 2 ≤ m ≤ 2a + 2,

α(m) = 0 if m is even, and α(m) = 1/2 if m is odd. Let νa = limn→∞ νn,a. The limit exists under

Assumption 1 of Andrews (2002), and thus under our Assumption 1.

Let πi(δ, νa) be a polynomial in δ = ∂/∂z whose coefficients are polynomials in the elements of

νa and for which πi(δ, νa)Φ(z) is an even function of z when i is odd and is an odd function of z

when i is even for i = 1, ..., 2a, where 2a is an integer. The Edgeworth expansions of TMR(j) and

T ∗MR(j) depend on πi(δ, νa) and πi(δ, ν
∗
n,a), respectively.

The following Lemma shows that the bootstrap moments ν∗n,a are close to the population mo-

ments νa in large samples. The Lemma is an iid version of Lemma 14 of Andrews (2002).

Lemma 7. Suppose Assumptions 1 and 3 hold with d2 ≥ 2a + 1 for some a ≥ 0. Then, for all

c ∈ [0, 1/2),

lim
n→∞

naP (‖ν∗n,a − νa‖ > n−c) = 0.

Proof. Since Xi’s are iid by Assumption 1, we set γ = 0 and replace 0 ≤ ξ < 1/2−γ with ∀c ∈ [0, 1/2)

in Lemma 14 of Andrews (2002). Since Assumptions 1 and 3 of Andrews (2002) hold under our

Assumptions 1 and 3, the Lemma holds by the proof of Lemma 14 of Andrews (2002). Q.E.D.

Lemma 8. For j = 1, 2, (a) Suppose Assumptions 1-4 hold with d1 ≥ 2a + 2, where 2a is some

nonnegative integer. Then,

lim
n→∞

na sup
z∈R

∣∣∣∣∣P (TMR(j) ≤ z)−

[
1 +

2a∑
i=1

n−i/2πi(δ, νa)

]
Φ(z)

∣∣∣∣∣ = 0.

(b) Suppose Assumptions 1-4 hold with d1 ≥ 2a+ 2 and d2 ≥ 2a+ 1, where 2a is some nonnegative

integer. Then,

lim
n→∞

naP

(
sup
z∈R

∣∣∣∣∣P ∗(T ∗MR(j) ≤ z)−

[
1 +

2a∑
i=1

n−i/2πi(δ, ν
∗
n,a)

]
Φ(z)

∣∣∣∣∣ > n−a

)
= 0.

Proof. By Lemma 6 for ∆n = TMR(j) and ∆∗n = T ∗MR(j), it suffices to show that n1/2A(Sn) and

n1/2A(S∗n) possess Edgeworth expansions with remainder o(n−a), where A(·) is an infinitely differ-

entiable real-valued function. The function A(·) is normalized so that the asymptotic variances of
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n1/2A(Sn) and n1/2A(S∗n) are one.16 To see this, observe that the asymptotic variances of n1/2A(Sn)

and TMR(j) are the same by Lemma 6(a), and the conditional asymptotic variances of n1/2A(S∗n)

and T ∗MR(j) are the same, except if χn is in a sequence of sets with probability o(n−a) by Lemma

6(b). By Theorem 1 and 2 of Hall and Inoue (2003), the asymptotic variance of TMR(j) is one for

j = 1, 2. To find the conditional asymptotic variance of T ∗MR(j), we use the proof of Theorem 2.1. of

Bickel and Freedman (1981). Conditional on χn, where χn is in a sequence of sets with P probability

1− o(n−a), the usual central limit theorem and the law of large numbers imply

√
n(θ̂∗(j) − θ̂(j))→d N(0,ΣMR(j)|Fn), (A.7)

and Σ̂∗MR(j) →p ΣMR(j)|Fn where ΣMR(j)|Fn is obtained by replacing the population moments by

the sample moments in the formula of ΣMR(j). By Slutsky’s theorem, T ∗MR(j) has the asymptotic

variance of one for j = 1, 2, conditional on χn, where χn is in a sequence of sets with P probability

1− o(n−a). The rest of the proof is analogous to that of Lemma 16 of Andrews (2002) except that

we use n1/2A(·) in place of his N1/2G(·). Q.E.D.
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d’Économie et de Statistique, 25-57.

36



Hall, A. R. (2000): “Covariance Matrix Estimation and the Power of the Overidentifying Re-

strictions Test,” Econometrica 68, 1517-1527.

Hall, A. R. (2005): Generalized Method of Moments, Oxford University Press.

Hall, A. R. and A. Inoue (2003): “The Large Sample Behavior of the Generalized Method of

Moments Estimator in Misspecified Models,” Journal of Econometrics 114, 361-394.

Hall, A. R. and D. Pelletier (2011): “Non-Nested Testing in Models Estimated via General-

ized Method of Moments,” Econometric Theory 27, 443-456.

Hall, P. (1988): “On Symmetric Bootstrap Confidence Intervals,” Journal of the Royal Statistical

Society, Series B, 50, 35-45.

Hall, P. (1992): The Bootstrap and Edgeworth expansion, New York: Springer-Verlag.

Hall, P. and J. L. Horowitz (1996): “Bootstrap Critical Values for Tests Based on Generalized-

Method-of-Moments Estimators,” Econometrica 64, 891-916.

Hansen, L. P. (1982): “Large Sample Properties of Generalized Method of Moments Estimators,”

Econometrica 50, 1029-1054.

Hansen, L. P., J. Heaton and A. Yaron (1996): “Finite-Sample Properties of Some Alternative

GMM Estimators,” Journal of Business & Economic Statistics 14, 262-280.

Hellerstein, J. and G. W. Imbens (1999): “Imposing Moment Restrictions From Auxiliary

Data by Weighting,” Review of Economics and Statistics 81, 1-14.

Horowitz, J. L. (2001): “The Bootstrap,” in James J. Heckman and E. Leamer eds., Handbook

of Econometrics, Vol. 5, New York: Elsevier Science.

Imbens, G. W. (1997): “One-step Estimators for Over-Identified Generalized Method of Moments

Models,” The Review of Economic Studies 64, 359-383.

Imbens, G. W. (2002): “Generalized Method of Moments and Empirical Likelihood,” Journal of

Business & Economic Statistics 20, 493-506.

Imbens, G. W. and T. Lancaster (1994): “Combining Micro and Macro Data in Microecono-

metric Models,” The Review of Economic Studies 61, 655-680.

Inoue, A. and M. Shintani (2006): “Bootstrapping GMM Estimators for Time Series,” Journal

of Econometrics 133, 531-555.

Jondeau, E., H. Le Bihan and C. Galles (2004): “Assessing Generalized Method-of-Moments

Estimates of the Federal Reserve Reaction Function,” Journal of Business & Economic Statis-

tics 22, 225-239.

Kitamura, Y. (2003): “A Likelihood-Based Approach to the Analysis of a Class of Nested and

Non-Nested Models,” Unpublished working paper, University of Pennsylvania.

Kline, P. and A. Santos (2012): “Higher order properties of the wild bootstrap under misspec-

ification,” Journal of Econometrics 171(1), 54-70.

37



Kocherlakota, N. R. (1990): “On Tests of Representative Consumer Asset Pricing Models,”

Journal of Monetary Economics 26, 285-304.

Maasoumi, E. and P. C. B. Phillips (1982): “On the Behavior of Inconsistent Instrumental

Variable Estimators,” Journal of Econometrics 19, 183-201.

Marmer, V. and T. Otsu (2012): “Optimal Comparison of Misspecified Moment Restriction

Models under Chosen measure of Fit,” Journal of Econometrics 170, 538-550.

Otsu, T. (2011): “Moderate deviations of generalized method of moments and empirical likelihood

estimators,” Journal of Multivariate Analysis 102, 1203-1216.

Owen, A. B. (2001): Empirical Likelihood, London: Chapman and Hall.

Parker, J. A. and C. Julliard (2005): “Consumption Risk and the Cross Section of Expected

Returns,” Journal of Political Economy 113, 185-222.

Rivers, D. and Q. H. Vuong (2002): “Model Selection Tests for Nonlinear Dynamic Models,”

Econometrics Journal 5, 1-39.

Sawa, T. (1978): “Information Criteria for Discriminating Among Alternative Regression Models,”

Econometrica 46, 1273-1291.

Schennach, S. M. (2007): “Point Estimation with Exponentially Tilted Empirical Likelihood,”

The Annals of Statistics 35, 634-672.

Shi, X. (2011): “Size Distortion and Modification of Classical Vuong Tests,” Unpublished working

paper, University of Wisconsin-Madison.

Tauchen, G. (1986): “Statistical Properties of Generalized Method-of-Moments Estimators of

Structural Parameters Obtained from Financial Market Data,” Journal of Business & Eco-

nomic Statistics 4, 397-425.

Vuong, Q. H. (1989): “Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses,”

Econometrica 57, 307-333.

White, H. (1982): “Maximum Likelihood Estimation of Misspecified Models,” Econometrica 50,

1-25.

White, H. (1996): Estimation, Inference and Specification Analysis, Cambridge University Press.

38



Degree of n = 50 n = 200 n = 1000

Misspecification Nominal Value 0.90 0.95 0.90 0.95 0.90 0.95

CI∗MR 0.799 0.863 0.848 0.896 0.887 0.933
CIMR 0.743 0.787 0.824 0.868 0.872 0.923

δ = 0 CIC 0.740 0.789 0.823 0.868 0.871 0.923
(correct CI∗HH 0.807 0.865 0.851 0.898 0.888 0.934

specification) CI∗BN 0.806 0.862 0.850 0.898 0.887 0.935

J (J∗) at 5% 4.7% (4.7%) 5.2% (5.5%) 5.3% (5.5%)

CI∗MR 0.783 0.842 0.834 0.893 0.873 0.919
CIMR 0.715 0.761 0.801 0.852 0.854 0.904

δ = −0.3 CIC 0.633 0.692 0.692 0.764 0.716 0.797
(moderate CI∗HH 0.728 0.799 0.757 0.825 0.755 0.837

misspecification) CI∗BN 0.706 0.783 0.744 0.816 0.749 0.832

J (J∗) at 5% 55.2% (55.3%) 99.1% (99.0%) 100% (100%)

CI∗MR 0.777 0.834 0.824 0.877 0.861 0.910
CIMR 0.701 0.753 0.788 0.836 0.844 0.892

δ = −0.6 CIC 0.521 0.597 0.561 0.636 0.576 0.662
(large CI∗HH 0.674 0.747 0.656 0.750 0.635 0.732

misspecification) CI∗BN 0.612 0.709 0.614 0.716 0.539 0.628

J (J∗) at 5% 98.6% (98.4%) 100% (100%) 100% (100%)

CI∗MR 0.893 0.936 0.915 0.957 0.916 0.961
CIMR 0.864 0.914 0.900 0.949 0.906 0.956

δ = 0.6 CIC 0.925 0.958 0.972 0.989 0.988 0.997
(large CI∗HH 0.960 0.983 0.982 0.994 0.991 0.998

misspecification) CI∗BN 0.954 0.973 0.941 0.950 0.685 0.689

J (J∗) at 5% 98.6% (98.6%) 100% (100%) 100% (100%)

Table 3: Coverage Probabilities of 90% and 95% Confidence Intervals for θ0(2) based

on the Two-step GMM Estimator, θ̂(2), in Example 1 DGP (7.10). r = 5, 000 and
B = 1, 000. J and J∗ at 5% denote the rejection probabilities of the asymptotic and
the HH bootstrap J test at 5% level, respectively.
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Degree of n = 50 n = 200 n = 1000

Misspecification Nominal Value 0.90 0.95 0.90 0.95 0.90 0.95

CI∗MR 0.647 0.726 0.786 0.852 0.862 0.914
CIMR 0.526 0.578 0.728 0.781 0.851 0.891

δ = 0 CIC 0.425 0.473 0.647 0.701 0.838 0.880
(correct CI∗HH 0.584 0.650 0.750 0.809 0.859 0.912

specification) CI∗BN 0.576 0.648 0.727 0.790 0.858 0.911

J (J∗) at 5% 27.4% (17.4%) 20.8% (12.0%) 8.8% (4.9%)

CI∗MR 0.759 0.827 0.850 0.901 0.937 0.961
CIMR 0.653 0.703 0.807 0.845 0.909 0.937

δ = 0.25 CIC 0.535 0.586 0.663 0.694 0.736 0.769
(small CI∗HH 0.675 0.737 0.742 0.785 0.778 0.822

misspecification) CI∗BN 0.666 0.736 0.706 0.752 0.746 0.787

J (J∗) at 5% 33.5% (21.4%) 43.6% (28.4%) 77.7% (58.6%)

CI∗MR 0.866 0.904 0.904 0.934 0.896 0.958
CIMR 0.778 0.815 0.839 0.868 0.810 0.893

δ = 0.5 CIC 0.672 0.711 0.687 0.713 0.539 0.659
(moderate CI∗HH 0.774 0.816 0.783 0.815 0.715 0.769

misspecification) CI∗BN 0.770 0.821 0.738 0.778 0.649 0.711

J (J∗) at 5% 33.8% (20.2%) 50.7% (29.3%) 90.6% (64.9%)

Table 4: Coverage Probabilities of 90% and 95% Confidence Intervals for β0(1) based

on the One-step GMM Estimator, β̂(1) in Example 2 DGP (7.12). r = 5, 000 and
B = 1, 000. J and J∗ at 5% denote the rejection probabilities of the asymptotic and
the HH bootstrap J test at 5% level, respectively.
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Figure 1: Coverage Probabilities of 90% Confidence Intervals for θ0(2) based on the

Two-step GMM Estimator, θ̂(2), when n = 200 in Example 1 DGP (7.10): CI∗MR

(solid), CIMR (dashed), CIC (dashed with stars), CI∗HH (solid with +’s), CI∗BN (solid
with x’s)
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Figure 2: Coverage Probabilities of 95% Confidence Intervals for β0(1) based on the

One-step GMM Estimator, β̂(1), n = 200 in Example 2 DGP (7.12): CI∗MR (solid),
CIMR (dashed), CIC (dashed with stars), CI∗HH (solid with +’s), CI∗BN (solid with
x’s)
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(a) Panel 1: δ = 0, n = 200
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(b) Panel 2: δ = 0.6, n = 200
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(c) Panel 3: δ = −0.6, n = 200

Figure 3: (Size corrected) Power curves of t statistics that tests H0 : θ = θ0(2) with
10% asymptotic significance level in Example 1 with δ = 0, 0.6,−0.6 and n = 200:
t∗MR (solid), tMR (dashed), tC (dashed with stars), t∗HH (solid with +’s), t∗BN (solid
with x’s)
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(a) Panel 1: δ = 0, n = 200
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(b) Panel 2: δ = 0.25, n = 200
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(c) Panel 3: δ = 0.5, n = 200

Figure 4: (Size corrected) Power curves of t statistics that tests H0 : β = 0 with 10%
asymptotic significance level in Example 2 DGP 2 with δ = 0, 0.25, 0.5 and n = 200:
t∗MR (solid), tMR (dashed), tC (dashed with stars), t∗HH (solid with +’s), t∗BN (solid
with x’s)
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