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Abstract
We propose the use of likelihood-based confidence sets for the timing of structural

breaks in parameters from time series regression models. The confidence sets are valid
for the broad setting of a system of multivariate linear regression equations under fairly
general assumptions about the error and regressors and allowing for multiple breaks in
mean and variance parameters. In our asymptotic analysis, we determine the critical
values for a likelihood ratio test of a break date and the expected length of a likelihood-
based confidence set constructed by inverting the likelihood ratio test. Notably, the
likelihood-based confidence set is considerably shorter than for other methods employed
in the literature. Monte Carlo analysis confirms better performance than other methods
in terms of length and coverage accuracy in finite samples, including when the mag-
nitude of breaks is small. An application to postwar U.S. real GDP and consumption
leads to a much tighter 95% confidence set for the timing of the “Great Moderation” in
the mid-1980s than previously found. Furthermore, when taking cointegration between
output and consumption into account, confidence sets for structural break dates are
even more precise and suggest a sudden “productivity growth slowdown” in the early
1970s and an additional large, abrupt decline in long-run growth in the mid-1990s.
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1 Introduction

The exact timing of structural breaks in parameters from time series models is generally

unknown a priori. Much of the literature on structural breaks has focused on accounting for

uncertainty about this timing when testing for the existence of structural breaks (e.g., An-

drews (1993)). However, there has also been considerable interest in how to make inference

about the timing itself, with an important contribution made by Bai (1997). Employing

the asymptotic thought-experiment of a slowly shrinking magnitude of a break, Bai derives

the distribution of a break date estimator in a linear time series regression model and uses

a related statistic to construct confidence intervals for the timing of breaks. One problem

for Bai’s approach is that the confidence intervals tend to undercover in finite samples, even

given moderately-sized breaks. Elliott and Müller (2007) propose a different approach based

on the inversion of a test for an additional break under the null hypothesis of a given break

date and employing the asymptotic thought-experiment of a quickly shrinking magnitude of

break. Their approach produces a confidence set (not necessarily an interval) for the timing

of a break that has very accurate coverage rates in finite samples, even given small breaks.

However, it is only applicable for a single break and tends to produce wide confidence sets,

including when breaks are large.

In this paper, we propose the use of likelihood-based confidence sets for the timing of

structural breaks in parameters from time series regression models. Under the asymptotic

thought-experiment of a judiciously-chosen slowly shrinking magnitude of break, as in Bai

(1997) and originally proposed by Picard (1985), we show that likelihood-based confidence

sets are valid in Qu and Perron’s (2007) broad setting of quasi-maximum likelihood es-

timation based on Normal errors for a system of multivariate linear regression equations

under fairly general assumptions about regressors and errors. This setting allows for multi-

ple breaks in mean and variance parameters and, as shown by Bai, Lumsdaine, and Stock

(1998) and Qu and Perron (2007), potentially produces more precise inferences as additional

equations are added to the system. Our asymptotic analysis provides critical values for a

likelihood ratio test of a hypothesized break date and an analytical expression for the ex-

pected length of a likelihood-based confidence set based on inverting the likelihood ratio test.
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Notably, we find that the asymptotic expected length of a 95% likelihood-based confidence

set is approximately half of that for Bai’s (1997) approach.1

Our proposed approach is motivated by Siegmund (1988), who considers likelihood-based

confidence sets in the simpler context of a changepoint model of independent Normal obser-

vations with a one-time break in mean. We follow Siegmund’s suggestion of constructing an

inverted likelihood ratio (ILR) confidence set for the break date.2 In addition, our calculation

of the asymptotic expected length of an ILR confidence set follows from his analysis in the

simpler setting. Another related study is by Dümbgen (1991), who derives the asymptotic

distribution of a break date estimator given independent, but not necessarily Normal obser-

vations and proposes inverting a bootstrap version of a likelihood ratio test to construct a

confidence set for the break date. More recently, Hansen (2000) proposes the use of an ILR

confidence set in the related context of a threshold regression model. However, he maintains

the assumption of a stationary threshold variable, thus precluding the use of a deterministic

time trend as a threshold variable in order to capture a structural break. Despite a somewhat

different setup, our asymptotic analysis builds closely off of Hansen’s.

We consider a range of Monte Carlo experiments in order to evaluate the finite-sample

performance of the competing methods for constructing confidence sets of structural break

dates. We allow both large and small breaks in mean and variance, including in the pres-

ence of serial correlation, multiple breaks, and a multivariate setting.3 The Monte Carlo

analysis supports the asymptotic results in the sense that the ILR confidence sets always

1Expected length is more difficult to determine for Elliott and Müller’s (2007) approach. However, if the
asymptotic power for the test of an additional break is strictly less than one when the true break date is
within some fixed fraction of the sample period away from the hypothesized break, the expected length of
their confidence set will increase with the sample size. This pattern is confirmed in our Monte Carlo analysis,
even for an extremely large magnitude of break for which the power of a test for the existence of a break
will be high regardless of its timing.

2Siegmund (1988) also suggests constructing a likelihood-based confidence set using what can be thought
of as the marginal “fiducial distribution” of a break date. In particular, a marginal fiducial distribution of
a break date is equivalent to a Bayesian marginal posterior distribution for the break date given a flat prior
and integrating out other parameters over the likelihood. The motivation for using a fiducial distribution to
construct a frequentist confidence set for a break date, which Siegmund (1988) attributes to Cobb (1978),
ultimately comes from Fisher’s (1930) idea of using fiducial inference to construct a confidence set for a
location parameter. In practice, we find that both methods of constructing likelihood-based confidence sets
perform very similarly, but inverting a likelihood ratio test is far more computationally efficient. Thus, we
focus on ILR confidence sets in this paper.

3Following Elliott and Müller (2007), we refer to ‘large’ breaks as those that can be detected with near
certainty using a test for structural instability and ‘small’ breaks as those that cannot.

2



have the shortest length, at the same time maintaining accurate, if somewhat conservative,

coverage. Bai’s (1997) approach produces confidence intervals that are much longer than

for the likelihood-based approach, consistent with the asymptotic results, and they tend to

undercover for even moderately-sized breaks, including when considering a bootstrap ver-

sion. Meanwhile, as emphasized by Elliott and Müller (2007), their approach has accurate

coverage in finite samples. However, their confidence sets are always longer than for the

likelihood-based approach, including for small breaks and especially for larger sample sizes.

To demonstrate the empirical relevance of the shorter expected length of the ILR confi-

dence sets, we apply the various methods to make inference about the timing of structural

breaks in postwar U.S. real GDP and consumption. Consistent with the asymptotic and

Monte Carlo results, we find the ILR confidence set for the timing of the so-called “Great

Moderation” in quarterly output growth is less than half of what it is for standard ap-

proaches. Indeed, the 95% ILR confidence set is similar to the 67% confidence interval

reported in Stock and Watson (2002) based on Bai’s (1997) approach.4 The short length of

the ILR confidence set supports the idea that the Great Moderation was an abrupt change

in the mid-1980s, rather than a gradual reduction in volatility, potentially providing insight

into its possible sources (see, Morley (2009)). Meanwhile, when taking cointegration between

output and consumption into account, confidence sets for structural break dates are even

more precise, which is consistent with the findings in Bai, Lumsdaine, and Stock (1998). In

addition to the Great Moderation, we find evidence of large, abrupt declines in the long-

run growth rate of the U.S. economy in the early 1970s, corresponding to the “productivity

growth slowdown”, and again in the mid-1990s.

The rest of this paper is organized as follows. Section 2 establishes the asymptotic prop-

erties of the likelihood-based confidence sets for the timing of structural breaks in parameters

4Stock and Watson (2002) consider the four-quarter growth rate for U.S. real GDP, rather than the
annualized quarterly growth rate, as considered here. They discuss that because they use Bai’s (1997)
approach by regressing the absolute value of residuals from an autoregression of real GDP growth on a
constant and allowing a break in the constant from the auxiliary regression, the break estimator has a
non-Normal and heavy-tailed distribution, and the 95% confidence interval would be very wide, hence their
reporting of the 67% interval. Meanwhile, our ILR confidence sets are much more similar to the 95%
credibility set for the timing of the Great Moderation found in Kim, Morley, and Piger (2008) based on the
marginal posterior distribution of the break date given a flat/improper prior for the parameters of a linear
time series regression model, which is computationally (but not conceptually) equivalent to the approach
based on a fiducial distribution suggested by Siegmund (1988).
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from time series regression models. Section 3 presents Monte Carlo analysis comparing the

finite-sample performance of the likelihood-based approach to the widely-used methods de-

veloped by Bai (1997) and Elliott and Müller (2007). Section 4 provides an application

to the timing of structural breaks in postwar U.S. real GDP and consumption. Section 5

concludes.

2 Asymptotics

In this section, we make explicit some assumptions for which the likelihood-based confidence

set of a structural break date is asymptotically valid. In particular, we consider Qu and

Perron’s (2007) broad setting of a system of multivariate linear regression equations with

possible multiple breaks in mean and variance parameters. However, it should be emphasized

that this setting encompasses the simpler univariate and single-equation models that are

often considered in structural break analysis (see, for example, Bai (1997) and Bai and

Perron (1998, 2003)).

Our asymptotic analysis proceeds as follows: First, we present the general model and

assumptions. Second, we discuss quasi-maximum likelihood estimation of the model and

establish results for the asymptotic distribution of the likelihood ratio test of a structural

break date and a confidence set for the break date based on inverting the likelihood ratio

test.

2.1 Model and Assumptions

We consider a multivariate regression model with multiple structural changes in the regres-

sion coefficients and/or the covariance matrix of the errors. The model is assumed to have n

equations with m structural breaks (i.e. m+ 1 regimes) with break dates Υ = (τ1, . . . , τm).

Following the notation of Qu and Perron (2007), the model in the jth regime is given as

yt = (In ⊗ z′t)Sβj + ut, for τj−1 < t ≤ τj (1)

where yt is a n×1 vector, zt = (z1t, . . . , zqt)
′ is a q×1 vector of regressors, βj is a p×1 vector
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of regression coefficients, ut is a n × 1 vector of errors with mean 0 and covariance matrix

Σj, and j = 1, ...,m + 1. The matrix S is a selection matrix for regressors zt. It consists

of 0 or 1 elements and has the dimension nq × p with full column rank.5 Note that, if all

the regressors are included in each equation, nq = p. Also, it is possible to impose a set of

r cross- and within-equation restrictions across or within structural regimes in the general

form of

g(β) = 0

where β̃ = (β′1, . . . , β
′
m+1) and g(·) is an r-dimensional vector. Then, for notational simplicity,

we can rewrite (1) as

yt = x′tβj + ut (2)

where the p× n matrix xt is defined by x′t = (In ⊗ z′t)S.

In developing our asymptotic results, we closely follow the assumptions in Bai (1997,

2000) and Qu and Perron (2007). Let ||X||r =
(∑

i

∑
j E|Xij|r

)1/r

for r ≥ 1 denote the

Lr norm of a random matrix X, < · > denote the usual inner product, λmin and λmax

denote the smallest and largest eigenvalues respectively, and [·] denote the greatest integer

function. Also, let the true values of the parameters be denoted with a superscript 0. Then,

the assumptions are given as follows:

Assumption 1 τ 0
j = [Tλ0

j ] for j = 1, . . . ,m+ 1 with 0 < λ0
1 < · · · < λ0

m < 1.

Assumption 2 For each j = 1, . . . ,m+1 and lj ≤ τ 0
j −τ 0

j−1, (1/lj)×
∑τ0

j−1+lj

t=τ0
j−1+1

xtx
′
t
a.s.−→ H0

j

as lj → ∞ with H0
j a nonrandom positive definite matrix not necessarily the same for all

j. In addition, for ∆τ 0
j = τ 0

j − τ 0
j−1, as ∆τ 0

j → ∞, uniformly in s ∈ [0, 1], (1/∆τ 0
j ) ×∑τ0

j−1+[s∆τ0
j ]

t=τ0
j−1+1

xtx
′
t −→

p
sH0

j .

5Suppose there are two equations (n = 2) and three regressors (q = 3). If the first and second regressors
are used in the first equation and the first and third regressors are used in the second equation, the selection
matrix S would be specified as follows.

S =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1


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Assumption 3 There exists l0 > 0 such that for all l > l0, the matrices (1/l)×
∑τ0

j +l

t=τ0
j +1

xtx
′
t

and (1/l) ×
∑τ0

j

t=τ0
j −l

xtx
′
t have the minimum eigenvalues bounded away from zero for all

j = 1, . . . , j.

Assumption 4 The matrix
∑l

t=k xtx
′
t is invertible for l − k ≥ k0 for some 0 < k0 <∞.

Assumption 5 If xtut is weakly stationary within each segment, then

(a) {xtut,Ft} form a strongly mixing (α−mixing) sequence with size −4r/(r−2) for some

r > 2 for Ft = σ − fields {. . . , xt−1, xt, , xt+1, . . . , , ut−2, ut−1},

(b) E(xtut) = 0 and ||xtut||2r+δ < M <∞ for some δ > 0 and,

(c) letting Sk,j(l) =
∑τ0

j−1+l+k

t=τ0
j−1+l+1

xtut, j = 1, . . . ,m + 1, for each e ∈ Rn of length 1, var(<

e, Sk,l(0) >) ≥ v(k) for some function v(k)→∞ as k →∞.

Or, if xtut is not weakly stationary within each segment, assume (a)-(c) holds and, in addi-

tion, there exists a positive definite matrix Ω = [wi,s] such that, for any i, s = 1, . . . , p, we

have, uniformly in l, that |k−1E((Sk,j(l)iSk,j(l)s)− wi,s| ≤ C2k
−ψ for some C2 and ψ > 0.

Assumption 6 Assumption 5 holds with xtut replaced by ut or utu
′
t − Σ0

j for τj−1 < t ≤

τj (j = 1, . . . ,m+ 1).

Assumption 7 The magnitudes of the shifts satisfy β0
T,j+1−β0

T,j = vT δj, and Σ0
T,j+1−Σ0

T,j =

vTΦj where (δj,Φj) 6= 0 and they are independent of T. Moreover, vT is a sequence of positive

numbers that satisfy vT → 0 and T 1/2vT/(logT )2 → ∞. (Note that, for simplicity, we use

β0
j and Σ0

j from now on, suppressing the subscript T .)

Assumption 8 (β0,Σ0) ∈ Θ with Θ = {(β,Σ) : ||β|| ≤ c1, λmin(Σ) ≥ c2, λmax(Σ) ≤ c3} for

some c1 ≤ ∞, 0 < c2 ≤ c3 <∞.

Again, these assumptions are based on Qu and Perron (2007) and are discussed in detail

in their paper. However, we provide a brief explanation here. Assumption 1 restricts the

break dates to be asymptotically distinct and implies that we should allow for a reason-

able number of observations between the break dates. Assumption 2 is used for the central
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limit theorem and allows the regressors to have different distributions, although it excludes

unit root regressors and trending regressors. Assumption 3 requires that there is no local

collinearity in the regressors near the break dates. Assumption 4 is a standard invertibility

condition to ensure well-defined estimates. Assumptions 5 and 6 determine the structure of

the xtut and ut processes and imply short memory for xtut and utu
′
t with bounded fourth

moments. These assumptions guarantee strongly consistent estimates and a well-behaved

likelihood function while, at the same time, being mild in the sense of allowing for substantial

conditional heteroskedasticity and autocorrelation and encompassing a wide range of econo-

metric models, as discussed in Qu and Perron (2007). Assumption 7 implies that, although

the magnitude of structural change shrinks as the sample size increases, it is large enough

so that we can derive the limiting distributions for the estimates of the break dates which

are independent of the exact distributions of regressors and errors. This assumption follows

from Picard (1985) and Bai (1997), among many others. Note that Elliott and Müller (2007)

make the assumption that vT shrinks at a faster rate to consider a smaller magnitude of

break. We will also consider the implications of this different assumption in our Monte Carlo

analysis in the next section. Finally, Assumption 8 implies that the data are generated by

innovations with a nondegenerate covariance matrix and a finite conditional mean.

2.2 Estimation, Likelihood Ratio, and Likelihood-Based Confi-

dence Set

Following Qu and Perron (2007), the model in (2) can be consistently estimated by re-

stricted quasi-maximum likelihood based on the (potentially false) assumption of serially-

uncorrelated Normal errors in order to construct the likelihood. Let β̃ = (β1, . . . , βm+1)

and Σ̃ = (Σ1, . . . ,Σm+1). Then, conditional on a set of break dates Υ = (τ1, . . . , τm) =

(Tλ1, . . . , Tλm) where (λ1, . . . , λm) ∈
∧
ε = {(λ1, . . . , λm); |λj+1 − λj| ≥ ε, λ1 ≥ ε, λm ≥ ε},

the quasi-likelihood function is

LT (Υ, β̃, Σ̃) =
m+1∏
j=1

τj∏
t=τj−1+1

f (yt|xt; βj,Σj)
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where

f (yt|xt; βj,Σj) =
1

(2π)n/2|Σj|1/2
exp

{
−1

2
(yt − x′tβj)Σ−1

j (yt − x′tβj)
}
.

Then, the quasi log-likelihood ratio for the timing of break dates (not the existence of

structural breaks) evaluated at the true parameter values (β̃0, Σ̃0) is given by

lnLRT (Υ, β̃0, Σ̃0) =
m∑
j=1

τj∑
t=τj−1+1

lnf
(
yt|xt; β0

j ,Σ
0
j

)
−

m∑
j=1

τ0
j∑

t=τ0
j−1+1

lnf
(
yt|xt; β0

j ,Σ
0
j

)
=

m∑
j=1

lrj(τj − τ 0
j )

where, letting r = τj − τ 0
j ,

lrj(r) = 0 for r = 0

lrj(r) = −r
2

(ln|Σ0
j | − ln|Σ0

j+1|)

−1

2

τ0
j∑

t=τ0
j +r

(yt − x′tβ0
j+1)(Σ0

j+1)−1(yt − x′tβ0
j+1)− (yt − x′tβ0

j )(Σ
0
j)
−1(yt − x′tβ0

j ) for r < 0,

lrj(r) = −r
2

(ln|Σ0
j | − ln|Σ0

j+1|)

−1

2

τ0
j +r∑

t=τ0
j +1

(yt − x′tβ0
j )(Σ

0
j)
−1(yt − x′tβ0

j )− (yt − x′tβ0
j+1)(Σ0

j+1)−1(yt − x′tβ0
j+1) for r > 0.

From Assumption 7, let ∆βj = δjvT and ∆Σj = ΦjvT where vT → 0 such that

T 1/2vT/(lnT )2 → ∞. Also, letting ηt = (Σ0
j)
−1/2ut denote standardized errors, define some

8



parameters as follows:

B1,j = (Σ0
j)

1/2(Σ0
j+1)−1∆Σj(Σ

0
j)
−1/2,

B2,j = (Σ0
j+1)1/2(Σ0

j)
−1∆Σj(Σ

0
j+1)−1/2,

Q1,j = plim
T→∞

(τ 0
j − τ 0

j−1)−1

τ0
j∑

t=τ0
j−1+1

xt(Σ
0
j+1)−1x′t,

Q2,j = plim
T→∞

(τ 0
j+1 − τ 0

j )−1

τ0
j+1∑

t=τ0
j +1

xt(Σ
0
j)
−1x′t,

Π1,j = lim
T→∞

var

(τ 0
j − τ 0

j−1)−1/2

 τ0
j∑

t=τ0
j−1+1

xt(Σ
0
j+1)−1(Σ0

j)
1/2ηt

 ,

Π2,j = lim
T→∞

var

(τ 0
j+1 − τ 0

j )−1/2

 τ0
j+1∑

t=τ0
j +1

xt(Σ
0
j)
−1(Σ0

j+1)1/2ηt

 ,

Ω1,j = lim
T→∞

var

vec
(τ 0

j − τ 0
j−1)−1/2

τ0
j∑

t=τ0
j−1+1

(ηtη
′
t − I)

 ,

Ω2,j = lim
T→∞

var

vec
(τ 0

j+1 − τ 0
j )−1/2

τ0
j+1∑

t=τ0
j +1

(ηtη
′
t − I)

 ,

Γ1,j =

(
1

4
vec(B1,j)

′Ω0
1,jvec(B1,j) + ∆β′jΠ1,j∆βj

)1/2

Γ2,j =

(
1

4
vec(B2,j)

′Ω0
2,jvec(B2,j) + ∆β′jΠ2,j∆βj

)1/2

Ψ1,j =

(
1

2
tr(B2

1,j) + ∆β′jQ1,j∆βj

)
Ψ2,j =

(
1

2
tr(B2

2,j) + ∆β′jQ2,j∆βj

)

Given this setup, we can establish the following results for the asymptotic distribution of

a likelihood ratio test for a structural break date and the confidence set for the break date

based on inverting the likelihood ratio test:
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Proposition 1 Under Assumptions 1-8, for the jth break date

lrj(τ̂j − τ 0
j )⇒ max

v

 ω1,j

(
−1

2
|v|+Wj(v)

)
for v ∈ (−∞, 0]

ω2,j

(
−1

2
|v|+Wj(v)

)
for v ∈ (0,∞)

(3)

where Wj(v) is a standard Wiener processes defined on the real line,

ω1,j =
Γ2

1,j

Ψ1,j

, and ω2,j =
Γ2

2,j

Ψ2,j

.

Proposition 1 establishes the asymptotic distribution of the likelihood ratio test. Note

that the distribution is asymmetric unless ω1,j = ω2,j, in which case it is just a rescaled version

of the distribution maxv−1
2
|v| + W (v) studied in Bhattacharya and Brockwell (1976). In

practice, we can replace the true values of ω1,j and ω2,j with consistent estimates.

Proposition 2 Under Assumptions 1-8, the confidence set for the jth break date is given

by Cj(y) = {t|maxτj lnL(τj|y) − lnL(t|y) ≤ κα,j} where the asymptotic critical value used

to construct the 1− α likelihood-based confidence set is κα,j such that

(
1− exp(−κα,j

ω1,j

)

)(
1− exp(−κα,j

ω2,j

)

)
= 1− α.

Proposition 2 shows how to construct the likelihood-based confidence set for the jth

break date from the likelihood ratio test in Proposition 1, including how to determine the

asymptotic critical value at level α. By inverting the likelihood ratio test, we can construct

a confidence set given the critical value. Note that the likelihood-based confidence sets

in Proposition 2 are constructed under the assumption that the magnitude of the break

∆βT,j → 0 and ∆ΣT,j → 0 as T →∞, so that the actual coverage should exceed the desired

level (1 − α) for a given fixed magnitude of break, at least for Normal errors (see Hansen

(2000)).

Proposition 3 Under Assumptions 1-8 and as α → 0, the expected length of a 1 − α
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likelihood-based confidence set is

2
(
Γ2

1,j/Ψ
2
1,j

)
(1− exp(−κα,j/ω1,j))

{
κα,j/ω1,j −

1

2
(1− exp(−κα,j/ω1,j))

}
+ 2

(
Γ2

2,j/Ψ
2
2,j

)
(1− exp(−κα,j/ω2,j))

{
κα,j/ω2,j −

1

2
(1− exp(−κα,j/ω2,j))

}
.

Proposition 3 establishes the expected length of 1 − α likelihood-based confidence set.

The length is calculated by measuring the expected size of the break dates τj such that

lrj(τ̂j − τj) ≤ κα,j. Siegmund (1986, 1988) considers the simple case of a Normal random

variable with a structural break in mean and variance of unity. When the magnitude of mean

shift is fixed and known, he shows that the likelihood ratio lrj(τ̂ − τ 0) can be approximated

by the distribution of maxr−1
2
|r|+W (r) where r = τ̂−τ 0 and calculates the expected length

as α→ 0. Here, we consider a more general setting for which the limiting theory requires a

shrinking magnitude of break to allow for analytical results. Therefore, the distance between

the break dates under the null and alternative hypotheses is scaled using a change in variables

to attain the distribution in (3). As a result, v in maxv−1
2
|v| + W (v) is not the distance

between two break dates, unlike r = τ̂ − τ 0 in the simple case of Siegmund (1986, 1988). In

our case, we calculate the expected size based on the distribution of maxv−1
2
|v|+W (v) for

v ≥ 0 and v < 0, respectively, and rescaled by
(
Γ2

1,j/Ψ
2
1,j

)
for τj ≥ τ̂j and

(
Γ2

2,j/Ψ
2
2,j

)
for

τj < τ̂j. Note that the scales for the break dates,
(
Γ2

1,j/Ψ
2
1,j

)
and

(
Γ2

2,j/Ψ
2
2,j

)
, used to derive

the distribution do not affect the value of the likelihood ratio statistic directly, but they are

scale factors for the position of a break date, which means they should be considered when

calculating the expected length. See the proof for more details.

In the following two corollaries, we consider simplified cases for either breaks in condi-

tional mean or breaks in variance and solve for the simplified asymptotic distribution of the

likelihood ratio statistic for a break date, critical values, and expressions for expected length:

Corollary 1 Under Assumptions 1-8 and additionally if (i) there are only changes in condi-

tional mean and (ii) the errors form a martingale difference sequence, then for the jth break

date

lrj(τ̂j − τ 0
j )⇒ max

v

(
−1

2
|v|+Wj(v)

)
for v ∈ (−∞,∞)
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where Wj(v) is a standard Wiener processes defined on the real line. Also, as α → 0, the

asymptotic critical value of a 1− α likelihood-based confidence set is

κα,j = − ln
(
1− (1− α)1/2

)
and the expected length of the confidence set is

(
1

∆β′jQ1∆βj
+

1

∆β′jQ2∆βj

)
2(1− exp(−κα,j))

{
κα,j −

1

2
(1− exp(−κα,j))

}
.

or, equivalently,

(
1

∆β′jQ1∆βj
+

1

∆β′jQ2∆βj

)
2(1− α)1/2{− ln[1− (1− α)1/2]− 1

2
(1− α)1/2}.

Remark 1 If, in addition to Assumptions in Corollary 1, the distribution of the regressors

is stable, Π1,j = Q1,j = Π2,j = Q2,j and ωj = 1. Thus, the expected length of confidence set

would further simplify to

(
1

∆β′jQ∆βj

)
4(1− exp(−κα,j))

{
κα,j −

1

2
(1− exp(−κα,j))

}
.

or, equivalently,

(
1

∆β′jQ∆βj

)
4(1− α)1/2{− ln[1− (1− α)1/2]− 1

2
(1− α)1/2}.

Remark 2 If we replace the assumption of martingale difference errors in Remark 1 with the

assumption that the errors are identically distributed, Π = limT→∞ var
{
T−1/2

[∑T
t=1 xt(Σ

0)−1/2ηt

]}
,

Q = plimT→∞ T
−1
∑T

t=1 xt(Σ
0)−1x′t, and ωj =

∆β′jΠ∆βj

∆β′jQ∆βj
. Then, the expected length of the con-

fidence set is

∆β′jΠ∆βj

(∆β′jQ∆βj)2
4(1− exp(−κα,j/ωj))

{
κα,j/ωj −

1

2
(1− exp(−κα,j/ωj))

}
.
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or, equivalently,

∆β′jΠ∆βj

(∆β′jQ∆βj)2
4(1− α)1/2{− ln[1− (1− α)1/2]− 1

2
(1− α)1/2}.

Corollary 2 Under Assumptions 1-8 and additionally if (i) there are only changes in vari-

ance and (ii) the errors are identically Normally distributed, then for the jth break date

lrj(τ̂j − τ 0
j )⇒ max

v

(
−1

2
|v|+Wj(v)

)
for v ∈ (−∞,∞)

where Wj(v) is a standard Wiener processes defined on the real line Also, as α → 0, the

asymptotic critical value of a 1− α likelihood-based confidence set is

κα,j = − ln
(
1− (1− α)1/2

)
and the expected length of the confidence set is

(
2

tr(B2
1)

+
2

tr(B2
2)

)
2(1− exp(−κα,j))

{
κα,j −

1

2
(1− exp(−κα,j))

}
.

or, equivalently,

(
2

tr(B2
1)

+
2

tr(B2
2)

)
2(1− α)1/2{− ln[1− (1− α)1/2]− 1

2
(1− α)1/2}.

In the simplified cases of Corollaries 1 and 2, the critical values for the likelihood ratio

statistic are the same as reported in Table 1 of Hansen (2000) (divided by 2 given our

different scaling of the statistic). For example, the likelihood ratio statistic lrj(τ̂j − τ 0
j ) has

critical values of 2.97, 3.68 and 5.30 for a test at the 10%, 5%, and 1% levels, respectively.

Meanwhile, the expected length expressions again make use of results in Siegmund (1986,

1988) and allow for easy comparison with the expected length of Bai’s (1997) confidence

intervals for the timing of structural break dates.
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3 Monte Carlo Analysis

In this section, we present extensive Monte Carlo analysis of the finite-sample performance of

competing methods for constructing confidence sets of structural break dates. In addition to

the likelihood-based method proposed in the previous section, we also consider Bai’s (1997)

approach, a bootstrap version of Bai’s approach, and Elliott and Müller’s (2007) approach.

For brevity, we omit many of the details of these widely-used methods and encourage inter-

ested readers to consult the original articles. However, we make a few comments about these

two other methods in the following subsection to help motivate our Monte Carlo experiments

and facilitate interpretation of our results.

3.1 Bai (1997) and Elliott and Müller (2007)

Bai (1997) solves for the asymptotic distribution of the least squares break date estimator

under the asymptotic thought-experiment of a slowly shrinking magnitude of break. In

terms of the notation in the previous section, he assumes that vT → 0 and vTT
1/2−ε → ∞

for some ε ∈ (0, 1/2) when ∆β = vT δ. His confidence intervals are constructed based

on this estimator. Bai’s approach is designed for univariate analysis under fairly general

assumptions about the error term and even allowing for the possibility of a deterministic

time trend regressor. His approach has been generalized to more complicated settings of

multiple breaks and multivariate models (see Bai, Lumsdaine, and Stock (1998), Bai and

Perron (1998, 2003), Bai (2000), and Qu and Perron (2007)).

In order to calculate confidence intervals, Bai (1997) constructs the following statistic

with a non-standard distribution:

(∆β′1Q1∆β1)2

∆β′1Π1∆β1

(τ̂ − τ0)
d⇒ arg max

s
Z(s), (4)

where

Z(s) =

 W1(−s)− |s|/2 if s ≤ 0
√
ϕW2(s)− ς|s|/2 if s > 0,

(5)

with Wi(s), i = 1, 2 denoting two independent standard Wiener processes defined on [0,∞],
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ϕ =
∆β′1Π2∆β1

∆β′1Π1∆β1
, ς =

∆β′1Q2∆β1

∆β′1Q1∆β1
, and ∆βi, Qi, and Πi i = 1, 2 are as defined in the previous

section.6 The confidence intervals are then constructed by using least squares estimates and

equal-tailed quantile values:[
τ̂ − ∆β̂′1Π̂1∆β̂1

(∆β̂′1Q̂1∆β̂1)2
× q(1− α/2), τ̂ − ∆β̂′1Π̂1∆β̂1

(∆β̂′1Q̂1∆β̂1)2
× q(α/2)

]
,

where q(·) is the quantile function for the non-standard distribution in (4).

When regressors and errors are stationary across regimes (i.e. Q = Q1 = Q2 and Π = Q),

the asymptotic expected length of Bai’s (1997) confidence interval is given by

2
1

(∆β′Q∆β)
× q(1− α/2),

where the quantile function q(·) is determined by (5) under simplifying conditions that

ϕ = 1 and ς = 1. For example, the length of the confidence set at 95% confidence level is

approximately 22× 1
(∆β′Q∆β)

. Notably, this is almost twice the asymptotic expected length of

approximately 12× 1
(∆β′Q∆β)

for the equivalent 95% likelihood-based confidence set implied

by Corollary 1 in the previous section.

Despite its asymptotic justification, poor finite-sample properties of Bai’s asymptotic

confidence intervals have often been noted (e.g., Elliott and Müller (2007)). Thus, we fol-

low some of the applied literature and also consider a bootstrap version of Bai’s approach.

Specifically, we construct a bootstrap version of Bai’s confidence intervals by using equal-

tailed quantile values from the bootstrapped distribution of the statistic in (4) instead of

its asymptotic distribution. We consider a parametric bootstrap based on parameter esti-

mates and the assumption of Normal errors. The bootstrap quantiles are calculated using

the sample statistic and 199 draws from the boostrap distribution.

We also consider Elliott and Müller’s (2007) alternative approach to constructing a con-

fidence set (not interval) for a break date based on the inversion of a sequence of tests for an

additional break given a maintained break date. The validity of their approach is established

under a different asymptotic thought-experiment of a quickly shrinking magnitude of break

6Note that Qi and Πi are normalized by the conditional variance, as in Qu and Perron (2007), but
different to Bai (1997).
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(i.e. ∆β = δT−1/2). They argue that Bai’s approach has poor finite-sample performance

due to his asymptotic thought-experiment of a slowly-shrinking magnitude being inappro-

priate for the moderately-sized breaks that appear to occur in practice. It should be noted,

however, that Bai’s thought-experiment (originally due to Picard (1985)) is widely-used in

the literature on structural breaks, including by Qu and Perron (2007) and, therefore, in our

asymptotic analysis in the previous section as well. Meanwhile, it should also be noted that,

because Elliott and Müller’s approach is based on tests for an additional break, it is only

suitable for a one-time break and cannot be generalized to multiple breaks such as with Bai

and Perron (1998) for Bai’s approach or with the likelihood-based approach proposed here.

Another thing to note is that, even though the approaches of Bai (1997) and Elliott

and Müller (2007) are designed for a break in conditional mean, the generality of their

assumptions about the error distribution suggests that their approaches can be applied to

absolute or squared errors to calculate confidence sets for a break in variance. We use absolute

errors, following Stock and Watson (2002), in order to apply these standard methods to a

break in variance. However, we do not consider the bootstrap version of Bai’s approach in

this case as the assumption of Normal errors for the parametric bootstrap would clearly be

inappropriate.

3.2 Experiments

For our Monte Carlo experiments, we calculate the empirical coverage rates and average

lengths of 95% confidence sets (or intervals) of break dates given data generating processes

involving structural breaks. We first consider one break in mean and/or variance for a

simple univariate model with i.i.d. Normal errors for sample sizes of T = 60, 120, 240, 480

observations. Then, we consider more complicated settings of serial correlation in the errors,

multiple breaks, and a multivariate model, all with the sample size of T = 240 observations

for each simulated series, which roughly corresponds to postwar quarterly observations for

macroeconomic time series. We consider 10,000 replications for each experiment.
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3.2.1 One break in mean and/or variance

For the experiments of one break in mean or variance, the general univariate model for our

data generating processes is given by

yt = z′tβ1 + z′t∆β1[t > τ ] + ut, (6)

where 1[·] is an indicator function, ut =
(√

Σ1 + ∆Σ1[t > τ ]
)
et, and et ∼ i.i.d.N (0, 1). To

simplify comparisons for different sample sizes, we re-parameterize the structural break date

and break magnitudes in terms of the sample size as follows: τ = [rT ], ∆β = β2−β1 = δT−ν

and ∆Σ = Σ2 − Σ1 = ΦT−ν , where we set Φ = 0 for a break in mean and δ = 0 for a break

in variance. For our simulations, we set zt = 1, β1 = 0, Σ1 = 1, and the true break point

fraction to the the midpoint of the sample, r = 0.5, although we consider breaks closer to the

beginning and end of the sample when we consider multiple breaks in Section 3.2.3 below.

We make three different assumptions about the magnitude of the break in relation to the

sample size. First, we assume ν = 1/4, which corresponds to a slowly shrinking magnitude of

break, as in our asymptotic analysis. For the respective break in mean or variance, we have

δ = 4 or Φ = 8, which imply a moderately-sized break in the sense that the break is large

enough to be detected with high probability by a test for structural instability in typical

sample sizes available for macroeconomic data, but not so large that the exact break date

is known with near certainty. Second, we assume ν = 1/2, which corresponds to a quickly

shrinking magnitude of break, exactly as in Elliott and Müller’s (2007) asymptotic thought-

experiment. Again, we have δ = 4 or Φ = 8, which corresponds to the smallest magnitude

for the break in mean considered in their Monte Carlo analysis. Third, we assume ν = 0,

which corresponds to a fixed magnitude of break, such as what actually occurs in practice.

In this case, we set δ = 1 or Φ = 3, as 4 or 8 would imply very large magnitudes of breaks

when ν = 0.

For each simulated sample, we estimate the parameters of the corresponding model in (6)

via maximum likelihood using a sample trimming of the first and last 15% of observations for

the possible break date. In the case of a break in variance for the approaches of Bai (1997)

and Elliott and Müller (2007), quasi-maximum likelihood estimation based on Normal errors
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Table 1: Coverage Rate and Length of Confidence Sets: Slowly Shrinking Magnitude of
Break

(a) Break in Mean (δ = 4 and ∆β = δ/T 1/4)

T=60 T=120 T=240 T=480
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.

ILR 0.971 9.268 0.974 11.972 0.969 15.278 0.971 21.070
Bai 0.913 11.425 0.925 15.918 0.937 22.286 0.940 31.150
Bai Bootstrap 0.935 14.511 0.945 19.091 0.951 25.382 0.948 34.177
Elliott&Müller 0.948 16.224 0.951 23.192 0.950 35.198 0.952 54.754

(b) Break in Variance (Φ = 8 and ∆Σ = Φ/T 1/4)

T=60 T=120 T=240 T=480
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.

ILR 0.974 22.977 0.969 26.572 0.966 29.214 0.968 33.089
Bai 0.894 33.337 0.924 39.379 0.943 47.118 0.952 57.218
Elliott&Müller 0.949 33.925 0.954 46.905 0.948 59.321 0.952 79.524

is applied to the following model allowing for a break in mean of the absolute value of errors

from a first-stage regression based on (6) with a constant mean:√
π

2
|ut| = Σ1 + ∆Σ1[t > τ ]) + εt. (7)

Table 1 reports the coverage and length results for the slowly shrinking magnitude of

break in mean or variance (vT = T−1/4 with δ = 4,Φ = 0 for break in mean and δ =

0,Φ = 8 for break in variance). For both a break in mean and a break in variance, the ILR

confidence sets are somewhat conservative in the sense that the true break date is included

in the set slightly more than 95% of the time.7 However, this is clearly preferable to the

undercovering the true break date, as occurs for Bai’s (1997) approach in the smaller samples.

The bootstrap version of Bai’s approach does somewhat better in terms of coverage, but it

does so at the cost of additional length. By contrast, even though the ILR confidence sets

are conservative, the confidence sets are shorter in length than Bai’s approach, even when

7Although we are considering a slowly-shrinking magnitude of break across different sample sizes in these
Monte Carlo experiments, the break for any given sample size is, of course, of fixed magnitude. Thus, if the
asympotitic distribution of the likelihood ratio statistic for a slowly-shrinking magnitude of break provides
an upper bound on the distribution of a fixed magnitude of break, as it should according to Hansen (2000),
at least under Normal errors (and assumed in (6)), we would expect the coverage to be conservative for any
given experiment.
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Table 2: Coverage Rate and Length of Confidence Sets: Quickly Shrinking Magnitude of
Break

(a) Break in Mean (δ = 4 and ∆β = δ/T 1/2)

T=60 T=120 T=240 T=480
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.

ILR 0.961 35.463 0.961 69.640 0.952 136.862 0.951 273.012
Bai 0.867 57.669 0.866 114.157 0.859 220.442 0.852 434.885
Bai Bootstrap 0.783 83.186 0.785 170.525 0.779 338.456 0.778 679.379
Elliott&Müller 0.950 44.552 0.947 92.202 0.950 187.769 0.946 379.790

(b) Break in Variance (Φ = 8 and ∆Σ = Φ/T 1/2)

T=60 T=120 T=240 T=480
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.

ILR 0.971 37.328 0.968 69.505 0.959 130.766 0.957 249.193
Bai 0.880 197.081 0.883 145.857 0.883 275.740 0.886 480.221
Elliott&Müller 0.950 47.040 0.950 93.391 0.956 184.019 0.952 358.890

Bai’s approach undercovers. Thus, there is no tradeoff involved in using the likelihood-

based approach instead to Bai’s approach. Meanwhile, Elliott and Müller’s (2007) approach

produces even longer confidence sets than Bai’s approach, although its coverage is extremely

accurate, as was found in their original study. Of course, it may not be fair to evaluate the

performance of Elliott and Müller’s approach in this setting of a slowly-shrinking magnitude

of break because it was designed based on a different asymptotic thought-experiment.

With Elliott and Müller’s (2007) thought-experiment in mind, Table 2 reports the cov-

erage and length results for the quickly shrinking magnitude of break (vT = T−1/2, with

δ = 4,Φ = 0 for break in mean and δ = 0,Φ = 8 for break in variance). For both a break in

mean and a break in variance, the ILR confidence sets remain somewhat conservative, but

still has the shortest average length. Bai’s (1997) confidence interval performs particularly

poorly in this setting, with considerable undercoverage even in large samples and longer

average length than even Elliott and Müller’s confidence sets.8 The bootstrap version of

Bai’s approach fails to correct the coverage problem in this setting. Instead, bootstrapping

8This experiment is very similar to the experiment in Table 3 of Elliott and Müller (2007), although they
consider T = 100. However, Bai’s approach does not perform quite as poorly here as in Elliott and Müller
(2007). The reason is that we trim the possible break dates to exclude the first and last 15% of the sample
period, as is standard in the structural break literature, while Elliott and Müller (2007) only trim the first
and last 5% of the sample period.
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Table 3: Coverage Rate and Length of Confidence Sets: Fixed Magnitude of Break

(a) Break in Mean (δ = 1 and ∆β = δ/T 0)

T=60 T=120 T=240 T=480
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.

ILR 0.967 18.949 0.966 17.926 0.970 16.296 0.974 15.484
Bai 0.888 21.654 0.919 22.736 0.933 22.976 0.946 23.050
Bai Bootstrap 0.908 31.618 0.943 30.177 0.944 26.298 0.952 24.600
Elliott&Müller 0.948 26.959 0.953 30.530 0.950 35.978 0.952 45.536

(b) : Break in Variance (Φ = 3 and ∆Σ = Φ/T 0)

T=60 T=120 T=240 T=480
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.

ILR 0.971 22.325 0.970 20.386 0.969 18.840 0.971 17.456
Bai 0.890 33.205 0.945 32.013 0.965 32.588 0.960 32.370
Elliott&Müller 0.947 47.330 0.962 39.434 0.949 43.577 0.946 53.236

makes the undercoverage worse and the average length of the intervals even longer. Indeed,

the bootstrap version of Bai’s approach accomplishes the remarkable feat of undercovering

despite having an average length that is longer than the sample size! Yet, it is notable that

the failure of Bai’s approach appears not to be due to the asymptotic thought-experiment

per se because the likelihood-based approach developed under the same asymptotic thought-

experiment performs well in this setting even given the smallest magnitude of break (δ = 4)

considered by Elliott and Müller (2007).

In reality, the magnitude of a structural break is fixed. The idea of a shrinking break at

a judiciously-chosen rate is a useful construct for asymptotic analysis because it allows for

an analytical solution to the asymptotic distribution of the likelihood ratio statistic and it

provides an upper bound on the asymptotic distribution under a fixed break, at least under

Normal errors (see Hansen (2000)). Thus, it is interesting to consider how the different

methods for constructing confidence sets perform given a fixed magnitude of break. Table 3

reports the coverage and length results in this case (vT = 1, with δ = 1,Φ = 0 for break in

mean and δ = 0,Φ = 3 for break in variance). Again, for both a break in mean and a break in

variance, the ILR confidence set always has conservative coverage, but the shortest average

length. Bai’s approach undercovers in smaller samples, although the bootstrap version is

reasonably accurate for T = 120 and above. For the likelihood-based approach and Bai’s
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Table 4: Coverage Rate and Length of Confidence Sets: Break in Mean and Variance with
Slowly Shrinking Magnitude of Break (δ = 4, Φ = 8 and ∆β = δ/T 1/4)

T=60 T=120 T=240 T=480
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.

ILR 0.975 14.162 0.974 16.030 0.966 17.945 0.976 21.219

approach, the average lengths converge to a similar proportion as the asymptotic expected

lengths calculated in the Section 3.1, although the convergence is slower for the break in

mean than the break in variance. Meanwhile, Elliott and Müller’s (2007) approach has

extremely accurate coverage, but a large average length that increases with the sample size.

Despite a focus on a break in mean or variance in the preceding experiments, it is straight-

forward to consider a break in mean and variance for the likelihood-based approach. Table

4 reports the coverage and length results for the ILR confidence set given a slowly shrinking

magnitude of break in mean and variance (vT = T−1/4, with δ = 4,Φ = 8). As before, the

ILR confidence sets are conservative. Meanwhile, the average lengths are somewhere in be-

tween the results for a break in mean and a break in variance in Table 1, although it should

be noted that the asymptotic expected length is not the same as for the cases of a break

in mean or break in variance only. Importantly, the average length is always better than

that for Elliott and Müller’s (2007) approach in Table 1, while Elliott and Müller (2007) find

that the average length of their approach worsens when the variance also undergoes a break

(comparing Table 3 to Table 4 in their paper).

Overall, the likelihood-based approach provides the most precise inferences about the

timing of break dates. It tends to have conservative coverage, consistent with the analysis

in Hansen (2000) for ILR confidence sets of threshold parameters under Normal errors, as

are assumed in these Monte Carlo experiments. Elliott and Müller’s (2007) approach does

remarkably well in terms of coverage rates in finite samples, but it produces much less

precise confidence sets than the proposed likelihood-based approach. Bai’s (1997) approach

undercovers in smaller samples and has fairly wide confidence intervals. A bootstrap version

of Bai’s approach improves coverage for large breaks at the expense of even longer average

length when considering large breaks, but its performance is worse on all dimensions given

small breaks.
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3.2.2 Serial correlation

In this subsection, we extend the univariate data generating process in (6) to allow for serial

correlation. For simplicity, we focus on a break in mean (Φ = 0) given sample size T = 240

and with magnitude of break δ = 4 for a slowly-shrinking break, vT = T−1/4.

First, we assume an AR(1) error process:

ut = ρut−1 + et, et ∼ i.i.d.N (0, 1).

We consider two cases of low and high persistence in the errors: ρ = 0.3 (as in Table 5

of Elliott and Müller (2007)) and ρ = 0.9. For this setting, estimation of the parameters

of the model in (6) is via quasi maximum likelihood and we employ a HAC estimator of

the long-run variance of ut in order to calculate scaled test statistics with asymptotically

pivotal distributions for the purposes of constructing confidence sets. Following Elliott and

Müller (2007) and Qu and Perron (2007), we consider the HAC estimator due to Andrews

and Monahan (1992). Note that, in addition to serial correlation, this estimator would also

address heteroskedasticity if it were present, although we focus on the problem of serially

correlated errors in this Monte Carlo experiment.

Second, we consider an AR(1) model for yt. Specifically, we set zt = (1 yt−1) and

β1 = (0 ρ)′ in (6) and, again, consider two cases of low and high persistence: ρ = 0.3

and ρ = 0.9. The structural break in mean corresponds to a change in the intercept such

that ∆β = (δT−1/4 0)′. For this setting, estimation of parameters in (6) is via conditional

maximum likelihood.

Table 5 reports the coverage and length results for a break in mean with serially-correlated

errors. As in the previous subsection, the likelihood-based approach performs best. Indeed,

in this case, the coverage is extremely accurate and the length is even better than in the

equivalent case in Table 1. The other approaches perform more similarly to the equivalent

case in Table 1, with Bai’s (1997) approach undercovering and Elliott and Müller’s (2007)

approach having the longest average length.

Table 6 reports the coverage and length results for a break in mean for an AR(1) model.

Again, the likelihood-based approach performs best, although it reverts to being conservative,
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Table 5: Coverage Rate and Length of Confidence Sets: Break in Mean with Serially-
Correlated Errors (δ = 4 and ∆β = δ/T 1/4, T = 240)

Low Persistence (ρ=0.3) High Persistence (ρ=0.9)
Cov. Lgth. Cov. Lgth.

ILR 0.950 13.910 0.950 13.841
Bai 0.934 22.385 0.930 21.982
Bai Bootstrap 0.943 25.526 0.942 24.991
Elliott&Müller 0.951 35.363 0.945 35.088

Table 6: Coverage Rate and Length of Confidence Sets: Break in Mean for an AR(1) Model
(δ = 4 and ∆β = (δ/T 1/4 0)′, T = 240)

Low Persistence (ρ=0.3) High Persistence (ρ=0.9)
Cov. Lgth. Cov. Lgth.

ILR 0.967 15.746 0.943 17.213
Bai 0.924 21.345 0.846 16.541
Bai Bootstrap 0.948 26.964 0.926 29.330
Elliott&Müller 0.947 42.556 0.955 231.536

as in the previous subsection. The results given low persistence in the process are very similar

to the equivalent results in Table 1, while the results given high persistence in the process

show a worsening of the coverage properties of Bai’s (1997) approach and dramatic increase

in the average length of Elliott and Müller’s (2007) approach.

Overall, serial correlation poses no problem for the likelihood-based approach, while it

sometimes worsens the performance of the other methods when there is high persistence.

Meanwhile, the assumption of high persistence is far from a theoretical curiousity, as it

appears to be the relevant case for some of the data in our empirical application below.

3.2.3 Multiple breaks

Next, we consider a data generating process with multiple breaks:

yt = β1 + ∆β11[t > τ1] + ∆β21[t > τ2] + ut, (8)
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Table 7: Coverage Rate and Length of Confidence Sets: Multiple Breaks in Mean and/or
Variance (r1 = 0.3 and r2 = 0.7, δ = 4 and ∆β = δ/T 1/4, Φ = 8 and ∆Σ = Φ/T 1/4, T = 240)

2 Breaks in Mean 2 Breaks in Var. 2 Breaks in Mean/Var.
Cov. Lgth. Cov. Lgth. Cov. Lgth.

ILR 1st Break 0.969 16.455 0.968 17.364 0.972 12.563
2nd Break 0.968 16.415 0.972 17.338 0.972 12.613

where ut =
(√

Σ1 + ∆Σ11[t > τ1] + ∆Σ21[t > τ2]
)
et and et ∼ i.i.d.N (0, 1). Again, we re-

parameterize the structural break dates and break magnitudes in terms of the sample size:

τj = [rjT ], ∆βj = βj+1 − βj = δjT
−ν , and ∆Σj = Σj+1 − Σj = ΦjT

−ν , where j = 1, 2.

As in the previous subsection, we focus on ν = 1/4 and T = 240. In all cases, we set

β1 = 0 and Σ1 = 1. For breaks in mean, δ1 = δ2 = 4 and Φ1 = Φ2 = 0. For breaks in

variance, Φ1 = Φ2 = 8 and δ1 = δ2 = 0. For breaks in mean and variance, δ1 = δ2 = 4 and

Φ1 = Φ2 = 8. The true break date fractions are r1 = 0.3 and r2 = 0.7. Estimation of (8) is

via maximum likelihood.

Table 7 reports the coverage and length results for the likelihood-based approach in the

three cases of two breaks in mean, two breaks in variance, and two breaks in mean and

variance. Again, the coverage of the ILR confidence sets is conservative. The average length

in the case of breaks in mean is slightly worse than the equivalent case in Table 1. However,

the average length in the case of breaks in variance and breaks in mean and variance are

better than in Tables 1 and 4. The general point is that there is no obvious deterioration in

the performance of the likelihood-based confidence sets when break dates are closer to the

beginning or end of the sample and when more than one break is considered.

3.2.4 Multivariate setting

Our last Monte Carlo experiment involves a multivariate setting for a structural break, as

in Bai, Lumsdaine, and Stock (1998), Bai (2000), and Qu and Perron (2007). For our data

generating processes, we consider a bivariate model with correlation between errors across

equations:
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Table 8: Coverage Rate and Length of Confidence Sets: Break in Mean for Bivariate Model
with Correlated Errors across Equations (δ = 4 and ∆β = δ/T 1/4, T = 240)

Break for One Variable Break for Both Variables
Cov. Lgth. Cov. Lgth.

ILR 0.969 13.158 0.954 9.237

y1t

y2t

 =

β1,1 + ∆β1,11[t > τ0]

β2,1 + ∆β2,11[t > τ0]

+

e1t

e2t

 ,
e1t

e2t

 ∼ N

0,

1 ρ

ρ 1

 (9)

where ∆βi,1 = βi,2 − βi,1 = δiT
−ν , i = 1, 2. As in the previous two subsections, we focus on

ν = 1/4 and T = 240. For our simulations, we set βi,1 = 0, i = 1, 2, and ρ = 0.3. Then,

we consider two cases of i) a break in the mean of the first series only, δ1 = 4 and δ2 = 0,

and ii) a break in the mean of both series, δ1 = δ2 = 4. Estimation of (9) is via maximum

likelihood.

Table 8 reports the coverage and length results for the likelihood-based approach in

the multivariate setting. For both a break in mean of one series and a break in mean of

both series, the ILR confidence sets are conservative, as in most of the earlier experiments.

However, the notable result is that the average lengths are shorter than in the univariate case

in Table 1. This is especially true in the case of a break in mean for both variables, which

is perhaps not so surprising. However, there is also an improvement in the average length

just by including information from a second variable that does not undergo a break, but has

a stable correlation with the first variable. These results are consistent with the findings

in Bai, Lumsdaine, and Stock (1998) and Qu and Perron (2007) that adding equations to a

multivariate model can produce more precise inferences.

4 Structural Breaks in Postwar U.S. Real GDP and

Consumption

We apply our proposed likelihood-based method of constructing confidence sets to investigate

structural breaks in postwar quarterly U.S. real GDP and consumption of nondurables and

services. We first consider univariate models of the growth rates of output and consumption
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and then we consider a multivariate model that imposes balanced long-run growth between

output and consumption. The data for real GDP and consumption were obtained from the

BEA website for the sample period of 1947Q1 to 2012Q1.9 Annualized quarterly growth

rates are calculated as 400 times the first differences of the natural logarithms of the levels

data.

4.1 Univariate Models

The typical approach to investigating structural breaks in a time series is to consider a uni-

variate model. Although this can be less efficient than considering a multivariate model, as

we found in our Monte Carlo analysis, it has the benefit of making the interpretation of esti-

mated breaks straightforward. Thus, we begin our analysis with univariate models of output

growth and consumption growth, respectively, as the results will help with understanding

the results for the multivariate model presented below.

For the univariate analysis, we assume that log output has a stochastic trend with drift

and a finite-order autoregressive representation. Specifically, our model for quarterly output

growth is an AR(p) process:

∆yt = γy +

p∑
j=1

ζy,j∆yt−j + eyt, eyt ∼ i.i.d.N (0, σ2
y) (10)

Similarly, we assume log consumption has a stochastic trend with drift and a finite-order

autoregressive representation. Thus, our model for quarterly consumption growth is also an

AR(p) process:

∆ct = γc +

p∑
j=1

ζc,j∆yt−j + ect, ect ∼ i.i.d.N (0, σ2
c ) (11)

For lag selection, we employ Kurozumi and Tuvaandorj’s (2011) modified BIC to account

for the possibility of multiple structural breaks. Given an upper-bound of four lags and four

breaks, with the common adjusted sample of 1948Q2 to 2012Q1, we find that the highest

9The raw data are from the BEA Tables 1.1.5 and 1.1.6 for the vintage of April 27, 2012. We need both
real and nominal measures for total consumption and consumption of durables in order to construct a chain-
weighted measure of real consumption of nondurables and services based on Whelan’s (2000) suggestion of
a Tornqvist approximation to the ideal Fisher index.
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Figure 1: U.S. Real GDP Growth and Confidence Sets for AR(1) ModelFigure 1: Output Growth and Confidence Sets
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lag order selected is p = 1 for output growth and p = 2 for consumption growth.

Figure 1 plots the output growth series over the postwar period. Although the series

clearly resembles the realization of a low-order autoregressive process with fairly low per-

sistence, the parameters for this process may have changed over time. Applying Qu and

Perron’s (2007) testing procedure to an AR(1) model estimated over the longest available

sample period for conditional maximum likelihood of 1947Q3 to 2012Q1, we find evidence

of one break (the same as the number of breaks chosen by the modified BIC statistic men-

tioned above). The break is estimated to occur in 1983Q2, which corresponds closely to the

timing of the so-called “Great Moderation” widely reported in the past literature (e.g., Kim

and Nelson (1999) and McConnell and Perez-Quiros (2000)). The break is significant at the

5% level and there is no support for an additional break, even at the 10% level. Estimates

for the long-run growth rate, largest eigenvalue measure of persistence, and the conditional

standard deviation are reported in Table 9.10 Likelihood ratio tests of parameter restrictions

suggest that the break corresponds to a change only in the conditional standard deviation,

which is estimated to have dropped by more than 50%.11

The likelihood-based confidence set based on inverting a likelihood ratio test for a break

date is also reported in Figure 1. The confidence set is the relatively short interval of 1981Q4-

1985Q4. Notably, as mentioned in the introduction, this interval is similar in length to the

10For easy comparison across models, we measure persistence by the (modulus of the) largest eigenvalue
of the companion matrix for the stationary representations of an autoregressive model or a vector error
correction model. For the AR(1) model, this is simply the autoregressive coefficient.

11Note that, for simplicity, we always consider the unrestricted model when constructing confidence sets, as
this allows for a more straightforward comparison of results across models when certain parameter restrictions
are rejected for only one model, but not for another.
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Table 9: Autoregressive Model of U.S. Real GDP Growth: 1947:Q3-2012:Q1

Regime Break Date LR Growth Rate Largest Eig. Cond. SD
1 3.458 0.330 4.487
2 1983:Q2 2.714 0.538 2.045

67% interval for the Great Moderation reported in Stock and Watson (2002) based on Bai’s

(1997) approach. For illustration, we compare our confidence set to the 95% confidence

interval calculated by Qu and Perron’s (2007) procedures using the same model and data.

This confidence interval is based on the distribution of the break date estimator, as in Bai

(1997), but is also applicable in the multivariate setting that we consider in the second part

of our application (see Qu and Perron (2007) for more details). Notably, the Qu and Perron

confidence interval is much wider, running from 1969Q1-1984Q1, thus also including the

possible “productivity growth slowdown” in the early 1970s (see, for example, Perron (1989)

and Hansen (2001)). Thus, the interval is much less informative about when the structural

break occurred, including whether it was abrupt.

Figure 2 plots the consumption growth series. Although consumption is by far the largest

expenditure component of U.S. real GDP, it is not as important for quarterly fluctuations in

output given the volatility of other components, especially investment. Thus, it is not auto-

matic that consumption growth will exhibit the same volatility reduction in the mid-1980s.

Instead, it appears that there are breaks in consumption growth that do not manifest them-

selves in the overall behaviour of aggregate output. Indeed, applying Qu and Perron’s (2007)

testing procedure to an AR(2) model estimated over the longest available sample period for

conditional maximum likelihood of 1947Q4 to 2012Q1, we find evidence of two breaks (again

the same as the number chosen by the modified BIC statistic) that are estimated to have

occurred in 1958Q3 and 1993Q3, respectively. The breaks are significant at the 5% level and

there is no support for additional breaks at the 10% level. Estimates for the long-run growth

rate, largest eigenvalue measure of persistence, and the conditional standard deviation are

reported in Table 10. Likelihood ratio tests of parameter restrictions for this model suggest

that these are both breaks in the conditional standard deviation of consumption growth,

with the second break also corresponding to a decrease in the long-run growth rate and an

increase in persistence.
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Figure 2: U.S. Consumption Growth and Confidence Sets for AR(2) Model
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The confidence sets for the two structural breaks in consumption growth are also reported

in Figure 2. As with output growth, the ILR confidence sets are shorter than those based

on Qu and Perron (2007). Also, the ILR confidence sets reject earlier possible break dates

compared to Qu and Perron (2007), again similar to the case of output growth. Notably, the

confidence sets exclude the periods of a possible productivity growth slowdown in the early

1970s and the Great Moderation in the mid-1980s that correspond to the most widely-

hypothesized breaks in U.S. economic activity. Given these apparently different breaks

from output growth, it is an open question of whether a multivariate model of output and

consumption would lead to different or more precise inferences about structural breaks in

these two series, as found, for example, by Bai, Lumsdaine, and Stock (1998). We turn to

this question next.

4.2 Multivariate Model

Following Cochrane (1994), we assume that real GDP and consumption of nondurables and

services have balanced long-run growth due to a common stochastic trend, possibly reflect-

ing common shocks to productivity as suggested by a stochastic neoclassical growth model

(see Bai, Lumsdaine, and Stock (1998) for a full theoretical motivation of this assumption).

The empirical justification for the balanced-growth assumption comes from the apparent

cointegrating relationship between these particular measures of consumption and output. If
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Table 10: Autoregressive Model of U.S. Consumption Growth: 1947:Q4-2012:Q1

Regime Break Date LR Growth Rate Largest Eig. Cond. SD
1 3.067 -0.044 3.092
2 1958:Q3 3.264 0.511 1.841
3 1993:Q3 1.965 0.900 0.951

we impose a balanced long-run relationship corresponding to a cointegrating vector of (1 −1)

for the natural logarithms of consumption and output from 1947Q1 to 2012Q1, we find that

we can reject a unit root with a p-value of 0.008 for an ADF test for the consumption rate,

ct − yt with a constant in the test regression and BIC for lag selection. Thus, there is em-

pirical support for the idea that output and consumption (appropriately measured) have a

balanced long-run relationship.

Assuming log output and consumption have a finite-order vector autoregressive represen-

tation, cointegration with known cointegrating vector (1 − 1) implies that the growth rates

of output and consumption can be captured by the following VECM(p) model:

∆yt = γy +

p∑
j=1

ζyy,j∆yt−j +

p∑
j=1

ζyc,j∆ct−j + πy(ct−1 − yt−1) + eyt, (12)

∆ct = γc +

p∑
j=1

ζcy,j∆yt−j +

p∑
j=1

ζcc,j∆ct−j + πc(ct−1 − yt−1) + ect, (13)

where et ∼ N (0,Ω). This form of cointegration also directly implies that the long-run

consumption rate is constant and consumption and output share the same long-run growth

rate. We parameterize these two long-run rates as follows:

E[ct − yt] = κ,

E[∆yt] = E[∆ct] = µ.

It is possible then to solve for these two long-run parameters given estimates of the VECM

parameters in (12) and (13) as follows:
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 κ

µ

 =

−πy 1−
∑p

j=1(ζyy,j + ζyc,j)

−πc 1−
∑p

j=1(ζcy,j + ζcc,j)

−1  γy

γc

 . (14)

Thus, using the relationship in (14), we can uncover structural breaks in the long-run con-

sumption rate and the long-run growth rate by testing for structural breaks in the conditional

mean parameters of the VECM. Bai, Lumsdaine, and Stock (1998) emphasize that this is a

test for break in the long-run growth rate, µ, under the assumption of no break in uncondi-

tional mean of the cointegrating relationship, κ. However, we leave it as an empirical issue

whether a common break in the conditional mean parameters corresponds to a break in the

long-run consumption rate, long-run growth, or both.12

As with the univariate model for output growth, we find that the highest lag order

selected by the modified BIC is p = 1. However, under the assumption of no breaks, the

second lags of the growth rates are jointly significant at 5% level based on a likelihood ratio

test (notably, the second lag of consumption growth in (13) has t-statistic of 2.1). Therefore,

to avoid under-fitting, we consider a VECM(2), which we estimate by conditional maximum

likelihood for the sample period of 1947Q4 to 2012Q1. Note that p = 2 is also consistent

with the lag order selected by modified BIC for the univariate model of consumption growth.

Applying Qu and Perron’s (2007) testing procedure for structural breaks to the VECM(2)

model estimated over the longest available sample period for conditional maximum likeli-

hood of 1947Q4 to 2012Q1, we find evidence of three breaks estimated in 1958Q1, 1982Q4,

and 1996Q1 at the 5% level. The estimated timing of these breaks corresponds closely to the

timing for the breaks in the univariate models of output growth and consumption growth.

Thus, the first and third break likely correspond to a change in the behaviour of consump-

tion, while the second break corresponds to the Great Moderation. However, in contrast to

the univariate results, we now find evidence of four breaks estimated in 1961Q3, 1972Q4,

1982Q3, and 1996Q1 at the 10% level. Presumably the first, third, and fourth breaks again

12In a related study, Cogley (2005) considers a time-varying parameter version of Cochrane’s (1994) VECM
model of output and consumption to investigate changes in the long-run growth rate and long-run consump-
tion rate for the U.S. economy. He finds a gradual decline in the long-run growth rate from the mid-1960s to
the early 1990s, followed by a gradual increase in long-run growth in the 1990s. He also finds that the con-
sumption rate is very stable over the postwar period, although it gradually declines in the 1990s. However,
Bayesian estimation of the time-varying parameter model imposes the strong prior that structural change is
gradual, precluding the possibility of large, abrupt changes that are considered and found in this paper.
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Figure 3: U.S. Real GDP Growth, Consumption Growth, Log Consumption Rate, and
Confidence Sets for VECM(2) Model
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correspond closely to the breaks found in the univariate models. But the second break es-

timated in 1972Q4 appears to conform, at least in its timing, to the widely-hypothesized

productivity growth slowdown that should affect both output and consumption and may be

better identified by the consideration of a multivariate model that imposes the same long-run

growth rate for the two series.

Figure 3 plots the output growth, consumption growth, and the consumption rate series

over the postwar period. Visually, it is difficult to detect whether the estimated break in

1972Q4 corresponds to a break in the long-run growth rate or the long-run consumption rate.

However, it is easier to see that the estimated break in 1996Q1 corresponds to a reduction

in the long-run consumption rate, in addition to a change in the behaviour of consumption

growth detected in the univariate analysis. Indeed, the reasonable clarity of this change

could explain the slight change in timing of the estimated break date from 1993Q3 for a

change in consumption behaviour in the univariate analysis.

Table 11 reports the estimates of the long-run growth rate, long-run consumption rate,

largest eigenvalue measure of persistence, and conditional standard deviations of output
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Table 11: Vector Error Correction Model of U.S. Real GDP and Consumption Growth:
1947:Q4-2012:Q1

Regime Break Date LR Growth Rate LR Con. Rate Largest Eig. Cond. SDs
1 3.188 -181.218 0.776 4.566 2.719
2 1961:Q3 4.225 -188.367 0.783 3.068 1.571
3 1972:Q4 2.826 -184.370 0.803 3.713 1.666
4 1982:Q4 2.875 -188.825 0.807 1.496 1.273
5 1996:Q1 1.585 -196.138 0.746 1.842 0.948

growth and consumption growth for the VECM(2) model with four structural breaks. Con-

sistent with the univariate results, the first break in the early 1960s corresponds clearly to a

reduction in consumption growth volatility. The second break in the early 1970s corresponds

to a reduction in the long-run growth rate of 1.4 annualized percentage points, consistent

with the productivity growth slowdown, more than to a change in the long-run consumption

rate or a change in volatility or persistence. The third break in the mid-1980s corresponds

quite clearly to a reduction in output growth volatility, consistent with the Great Moder-

ation. The fourth break in the mid-1990s corresponds to an additional reduction in the

long-run growth rate of 1.3 annualized percentage points, as well as to the reduction in the

long-run consumption rate evident in Figure 3.13 Interestingly, the largest eigenvalue mea-

sure of persistence remains remarkably stable over the full sample period. Likelihood ratio

tests of parameter restrictions generally support our interpretation of the breaks, although

it can be harder to relate how rejections of restrictions on intercept, slope, and/or the con-

ditional variance/covariance parameters map into some of the parameters of interest. Thus,

we report confidence sets for the unrestricted model that allows all parameters to change

with each break.

The most striking result for the multivariate model is how precise the confidence sets

are in Figure 3. This is consistent with our Monte Carlo results for the multivariate model

and with the analysis in Bai, Lumsdaine, and Stock (1998) and Qu and Perron (2007) on

the usefulness of multivariate inference about break dates. All four breaks have very short

13Given the assumption of balanced growth for output and consumption, the magnitude of the estimated
reduction in the long-run growth rate in Table 11 reflects changes in the average growth rates for both
output and consumption. However, it should be noted that, on its own, the average growth rate for output
declined by 1.1 annualized percentage points between regimes 4 and 5, quite consistent with a sizeable growth
slowdown of 1.3 annualized percentage points reported in the table.
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ILR confidence sets, suggesting that the structural changes were abrupt. Even Qu and

Perron’s (2007) confidence intervals are reasonably short, although they are less precise than

the ILR confidence sets. It is, perhaps, not surprising that confidence sets for breaks in

parameters that are common to both output and consumption in the VECM model, such

as the long-run growth rate, are more precise. But, notably, the confidence sets for the

Great Moderation, which appears to be a much more important phenomenon for output

growth than for consumption growth, also become a lot more precise, with the length of the

ILR confidence set shrinking from 20 quarters to just 5 quarters. Thus, the improvement

in inferences arises from both the model structure and from the additional multivariate

information.

5 Conclusion

We have proposed a likelihood-based approach to constructing confidence sets for the timing

of structural breaks. The confidence sets include all possible break dates that cannot be

rejected based on a likelihood ratio test. The asymptotical validity for this approach is

established for a broad setting of a system of multivariate linear regression equations under

the asymptotic thought-experiment of a slowly-shrinking magnitude of a break, with the

asymptotic expected length of the likelihood-based confidence sets being about half that of

the standard method employed in the literature. Monte Carlo analysis supports the finite-

sample performance of the proposed approach in a number of realistic experiments, including

given small breaks. An application to U.S. real GDP and consumption demonstrates the

relevance of the performance gains of the proposed approach relative to the standard method.

Specifically, the empirical analysis provides much more precise inferences about the timing

of the “productivity growth slowdown” in the early 1970s and the “Great Moderation” in

the mid-1980s than previously found. It also suggests the presence of an additional large,

abrupt decline in the long-run growth rate of the U.S. economy in the mid-1990s, at least

when taking cointegration between output and consumption into account.
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A Appendix

Proof of Proposition 1. Qu and Perron (2007, Theorem 1) show that the estimates

of the break dates (τ̂0, . . . , τ̂j) and the coefficients ( ˆ̃β, ˆ̃Σ) are asymptotically independent so

that the distribution of the estimates of break dates conditional on the true values of the

coefficients (β̃0, Σ̃0) are not affected by the restrictions imposed on the coefficients as long

as we restrict our analysis to values of the parameters in the set CM where

CM = {(Υ, β̃, Σ̃) : v2
T |τj − τ 0

j | ≤M for j = 1, . . . ,m,

|
√
T (βj − β0

j )| ≤M, |
√
T (Σj − Σ0

j)| ≤M for j = 1, . . . ,m+ 1}

and M is a fixed positive number which is large enough so that the estimates fall in this set

with probability arbitrarily close to 1.

Without loss of generality, consider the j-th break date and the estimate of the break

date is before the true break date. For τj − τ 0
j = r = −1,−2, . . . ,

lrj(r) = −r
2

(
ln |Σ0

j | − ln |Σ0
j+1|
)

−1

2

τ0
j∑

t=τ0
j +r

u′t
(
(Σ0

j+1)−1 − (Σ0
j)
−1
)
ut

−1

2

τ0
j∑

t=τ0
j +r

(β0
j+1 − β0

j )
′xt(Σ

0
j+1)−1x′t(β

0
j+1 − β0

j )

+

τ0
j∑

t=τ0
j +r

(β0
j+1 − β0

j )
′xt(Σ

0
j+1)−1ut (A.1)
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Qu and Perron (2007) show that for the first term on RHS of equation (A.1)

−r
2

(
ln |Σ0

j | − ln |Σ0
j+1|
)

= −r
2

ln |(Σ0
j − Σ0

j+1 + Σ0
j+1)(Σ0

j+1)−1|

= −r
2

ln |I + (Σ0
j − Σ0

j+1)(Σ0
j+1)−1|

= −r
2

ln |I + (−ΦjvT )(Σ0
j+1)−1|

=
r

2
vT tr

(
Φj(Σ

0
j+1)−1

)
+
r

4
v2
T tr
(
(Φj(Σ

0
j+1)−1)2

)
+ o(v2

T ).(A.2)

From the third line to the fourth line, we approximate it by using Taylor expansion around

vT = 0 up to the second order since vT → 0. Also, for the second term in equation (A.1)

−1

2

τ0
j∑

t=τ0
j +r

u′t
(
(Σ0

j+1)−1 − (Σ0
j)
−1
)
ut

= −1

2

τ0
j∑

t=τ0
j +r

tr
{

((Σ0
j+1)−1 − (Σ0

j)
−1)(utu

′
t − Σ0

j + Σ0
j)
}

= −1

2
tr


τ0
j∑

t=τ0
j +r

((Σ0
j+1)−1 − (Σ0

j)
−1)((Σ0

j)
1/2ηtη

′
t(Σ

0
j)

1/2 − Σ0
j) + ((Σ0

j+1)−1 − (Σ0
j)
−1)Σ0

j


= −1

2
tr


τ0
j∑

t=τ0
j +r

(Σ0
j)

1/2((Σ0
j+1)−1 − (Σ0

j)
−1)(Σ0

j)
1/2(ηtη

′
t − I)

− 1

2
tr


τ0
j∑

t=τ0
j +r

(Σ0
j+1)−1Σ0

j − I


= −1

2
tr

(Σ0
j)

1/2(Σ0
j+1)−1(I − Σ0

j+1(Σ0
j)
−1)(Σ0

j)
1/2

τ0
j∑

t=τ0
j +r

(ηtη
′
t − I)
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r

2
tr
{

(Σ0
j+1)−1(Σ0

j − Σ0
j+1)

}

= −1

2
tr

(Σ0
j)

1/2(Σ0
j+1)−1(Σ0

j − Σ0
j+1)(Σ0
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t=τ0
j +r

(ηtη
′
t − I)
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r

2
tr
{

(Σ0
j+1)−1(Σ0

j − Σ0
j+1)

}

=
1

2
tr

(Σ0
j)

1/2(Σ0
j+1)−1Φj(Σ

0
j)
−1/2vT

τ0
j∑

t=τ0
j +r

(ηtη
′
t − I)

− r

2
vT tr

(
(Σ0

j+1)−1Φj

)
. (A.3)

From equations (A.2) and (A.3), the sum of the first two terms in equation (A.1) is given
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by

−1

2

τ0
j∑

t=τ0
j +r

u′t
(
(Σ0

j+1)−1 − (Σ0
j)
−1
)
ut −

r

2

(
ln |Σ0

j+1| − ln |Σ0
j |
)

=
r

2
vT tr

(
Φj(Σ

0
j+1)−1

)
+
r

4
v2
T tr
(
(Φj(Σ

0
j+1)−1)2

)
+ o(v2

T )

+
1

2
tr

(Σ0
j)

1/2(Σ0
j+1)−1Φj(Σ

0
j)
−1/2vT

τ0
j∑

t=τ0
j +r

(ηtη
′
t − I)

− r

2
vT tr

(
Φj(Σ

0
j+1)−1

)

=
1

2
tr

(Σ0
j)

1/2(Σ0
j+1)−1Φj(Σ

0
j)
−1/2vT

τ0
j∑

t=τ0
j +[s/v2T ]

(ηtη
′
t − I)

+
r

4
v2
T tr
(
(Φj(Σ

0
j+1)−1)2

)
+ o(v2

T )

⇒ 1

2
tr
(
(Σ0

j)
1/2(Σ0

j+1)−1Φj(Σ
0
j)
−1/2ζ1,j(s)

)
+
s

4
tr
(
(Φj(Σ

0
j+1)−1)2

)
=

1

2
tr (A1,jζ1,j(s)) +

s

4
tr
(
A2

1,j

)
(A.4)

where A1,j = (Σ0
j)

1/2(Σ0
j+1)−1Φj(Σ

0
j)
−1/2 and A2,j = (Σ0

j+1)1/2(Σ0
j)
−1Φj(Σ

0
j+1)−1/2.

Since vt → 0 and T 1/2vT/(lnT )2 → ∞, rv2
T = [sv−2

T ]v2
T → s uniformly over bounded s

and for s < 0

1

v−1
T

τ0
j∑

t=τ0
j +[sv−2

T ]

(ηtη
′
t − I)⇒ ζ1,j(s)

by the functional central limit theorem (E[ηtη
′
t] = I) where the weak convergence is in the

space D[0,∞)n
2

and where the entries of the n×n matrix ζ1,j(s) is a nonstandard Brownian

motion process with var {vec(ζ1,j(s))} = Ω0
1,j.

Then, for the third term in equation (A.1)

−1

2

τ0
j∑

t=τ0
j +r

(β0
j − β0

j+1)′xt(Σ
0
j+1)−1x′t(β

0
j − β0

j+1)

= −1

2
v2
T

τ0
j∑

t=τ0
j +[s/v2T ]

δ′jxt(Σ
0
j+1)−1x′tδj

→p
s

2
δ′jQ1,jδj. (A.5)
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and for the fourth term in equation (A.1)

τ0
j∑

t=τ0
j +r

(β0
j+1 − β0

j )
′xt(Σ

0
j+1)−1ut

= vT

τ0
j∑

t=τ0
j +[s/v2T ]

δ′jxt(Σ
0
j+1)−1(Σ0

j)
1/2ηt

⇒ δ′j(Π1,j)
1/2U1,j(s) (A.6)

where the weak convergence is in the space D[0,∞)p and where the entries of the p vector

U1,j(s) are Wiener processes. Note that the assumption E[ηtkηtlηth] = 0 for all k, l, h and for

all t ensures that U1,j(s) and ζ1,j(s) are independent.

Combining all the terms in equation (A.1) from the derived results in (A.4)-(A.6) shows

that for s < 0,

lrj([
s

v2
T

])⇒ 1

2
tr (A1,jζ1,j(s)) +

s

4
tr
(
A2

1,j

)
+
s

2
δ′jQ1,jδj + δ′j(Π1,j)

1/2U1,j(s). (A.7)

We define

Λ1,j =

(
1

4
vec(A1,j)

′Ω0
1,jvec(A1,j) + δ′jΠ1,jδj

)1/2

Λ2,j =

(
1

4
vec(A2,j)

′Ω0
2,jvec(A2,j) + δ′jΠ2,jδj

)1/2

Ξ1,j =

(
1

2
tr(A2

1,j) + δ′jQ1,jδj

)
Ξ2,j =

(
1

2
tr(A2

2,j) + δ′jQ2,jδj

)
.

The sum of the second and third terms in (A.7) is

s

4
tr
(
A2

1,j

)
+

1

2
sδ′jQ1,jδj = −|s|

2

(
1

2
tr(A2

1,j) + δ′jQ1,jδj

)
≡ −|s|

2
Ξ1,j

Note that 1
2
tr (A1,jζ1,j(s)) = 1

2
vec(A1,j)

′vec(ζ1,j(s))
d
=
(

1
4
vec(A1,j)

′Ω0
1,jvec(A1,j)

)1/2
V1,j(s)

and δ′j(Π1,j)
1/2U1,j(s)

d
=
(
δ′jΠ1,jδj

)1/2
U1,j(s) where V1,j(s) and U1,j(s) are independent stan-
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dard Wiener processes. Then,

(
1

4
vec(A1,j)

′Ω0
1,jvec(A1,j)

)1/2

V1,j(s) +
(
δ′jΠ1,jδj

)1/2
U1,j(s)

d
=

(
1

4
vec(A1,j)

′Ω0
1,jvec(A1,j) + δ′jΠ1,jδj

)1/2

W1,j(s)

≡ Λ1,jW1,j(s)

where W1,j(s) is a standard Wiener process.

In sum, for s ≤ 0,

lrj([
s

v2
T

])⇒ −|s|
2

Ξ1,j + Λ1,jW1,j(s)

and for s > 0 similarly

lrj([
s

v2
T

])⇒ −|s|
2

Ξ2,j + Λ2,jW2,j(s).

Since W1,j(s) and W2,j(s) are independent and starting at s = 0 where W1,j(0) =

W2,j(0) = 0,

lrj(τ̂j − τ 0
j )⇒ max

s

 −
|s|
2

Ξ1,j + Λ1,jWj(s) for s ≤ 0

− |s|
2

Ξ2,j + Λ2,jWj(s) for s > 0.

Now, let ξ = lrj(τ̂j − τ 0
j ) = max[ξ1, ξ2] where ξ1 = sups≤0

(
− |s|

2
Ξ1,j + Λ1,jWj(s)

)
and

ξ2 = supv>0

(
− |s|

2
Ξ2,j + Λ2,jWj(s)

)
.

By a change in variables s = (Λ2
1,j/Ξ

2
1,j)v and the distributional equality with W (a2x) ≡

aW (x), for s ≤ 0

ξ1 = sup
s≤0

(
−|s|

2
Ξ1,j + Λ1,jWj(s)

)
= sup

v≤0

Λ2
1,j

Ξ1,j

(
−|v|

2
+Wj(v)

)
= ω1,j × ξ1 (A.8)

where ξ1 = supv≤0

(
− |v|

2
+Wj(v)

)
and

Λ2
1,j

Ξ1,j

=
Λ2

1,jv
2
T

Ξ1,jv2
T

=
Γ2

1,j

Ψ1,j

≡ ω1,j.
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Similarly, for s > 0 with s = (Λ2
2,j/Ξ

2
2,j)v

ξ2 = sup
s>0

(
−|s|

2
Ξ2,j + Λ2,jWj(s)

)
= sup

v>0

Λ2
2,j

Ξ2,j

(
−|v|

2
+Wj(v)

)
= ω2,j × ξ2 (A.9)

where ξ2 = supv<0

(
− |v|

2
+Wj(v)

)
and
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=
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2,jv
2
T

Ξ2,jv2
T

=
Γ2

2,j

Ψ2,j

≡ ω2,j.

Proof of Proposition 2. Bhattacharya and Brockwell (1976) show that ξ1 and ξ2

in (A.8) and (A.9) are iid exponential random variables with distribution function P (ξ1 ≤

x) = 1− exp(−x) and P (ξ2 ≤ x) = 1− exp(−x) for x > 0 respectively. Thus,

P (ξ ≤ κ) = P (max[ω1,jξ1, ω2,jξ2] ≤ κ)

= P (ξ1 ≤ κ/ω1,j)P (ξ2 ≤ κ/ω2,j)

= (1− exp(−κ/ω1,j)) (1− exp(−κ/ω2,j))

Let C(y) = {t|maxτj lnL(τj|y) − lnL(t|y) ≤ κα,j}. We construct a 1 − α confidence set

for τj−1 +1 ≤ t < τj, C(y), by inverting the likelihood ratio test. The probability of coverage

of C(y) for any τ 0
j is given by Pτ0

j

(
τ 0
j ∈ C(y)

)
.

We can easily find a unique κα,j such that

Pτ0
j

(
τ 0
j ∈ C(y)

)
= (1− exp(−κα,j/ω1,j)) (1− exp(−κα,j/ω2,j)) = 1− α (A.10)

since for all κ > 0,
d (1− exp(−κ/ω1,j)) (1− exp(−κ/ω2,j))

dκ
> 0.

Lemma 1 For v ∈ (−∞,∞), if ξ(v̂)
d⇒ maxv

(
−1

2
|v|+W (v)

)
and α→ 0, E

[
λ{v|ξ(v) ≤ κα}

]
=

4(1− exp(−κα))
{
κα − 1

2
(1− exp(−κα))

}
.
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Proof of Lemma 1. Let us start with a simple case in which the magnitude of mean

shift is known and variance of regression errors is normalized to one. Siegmund (1986, 1988)

shows that in this case

lnL(τ̂)− lnL(τ 0)
d⇒ max

v

(
−1

2
|v|+W (v)

)
(A.11)

and v̂ = τ̂ − τ 0 = arg max
v

(
−1

2
|v|+W (v)

)
where W (v) is a standard Wiener process.

He also shows that when α → 0 the expected length for a 1 − α confidence set for the

case is given by

Eτ0 [λ{C(Y )1−α}] = Eτ0 [λ{t|t ∈ C(Y )1−α}]

=

∫ ∞
−∞

Pτ0 (t ∈ C(Y )1−α) dt

= 4(1− α)1/2

{
− ln[1− (1− α)1/2]− 1

2
(1− α)1/2

}
(A.12)

where λ denotes Lebesque measure. See Siegmund (1986) for more details.

As shown in the proof of Proposition 2, we can similarly find a critical value κα such that

P
(
ξ(v̂) ≤ κα

)
= (1− exp(−κα))(1− exp(−κα)) = 1− α

and it implies that

κα = − ln[1− (1− α)1/2]. (A.13)

By substituting (A.13) into (A.12), we can express the expected length for the 1 − α

confidence set as a function of the critical value κα rather than the level (1− α) as follows.

Eτ0 [λ{C(Y )1−α}] = 4(1− exp(−κα))

{
κα −

1

2
(1− exp(−κα))

}
. (A.14)

Using (A.14) we can show that if ξ(v̂)
d⇒ maxv

(
−1

2
|v|+W (v)

)
for v ∈ (−∞,∞) in (A.11),

the expected length of v such that ξ(v) ≤ κα is 4(1 − exp(−κα))
{
κα − 1

2
(1− exp(−κα))

}
.
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Proof of Proposition 3. For the general case, as in our setup under Assumptions 1-8,

first consider the period before the true jth break date, τj − τ 0
j ≤ 0 (i.e. v ≤ 0).

Given a critical value κα,j, the expected length of the 1−α confidence set in the segment

τj − τ 0
j ≤ 0 can be shown as follows.

E
[
λ{τj|lrj(τj − τ 0

j ) ≤ κα,j, τj − τ 0
j ≤ 0}

]
= E

[
λ{τj |

lrj(τj − τ 0
j )

ω1,j

≤ (κα,j/ω1,j), τj − τ 0
j ≤ 0}

]
=

(
Γ2

1,j/Ψ
2
1,j

)︸ ︷︷ ︸
(i)

E
[
λ{v | ξ(v) ≤ (κα,j/ω1,j), v ≤ 0}

]︸ ︷︷ ︸
(ii)

=
(
Γ2

1,j/Ψ
2
1,j

)
2(1− exp(−κα,j/ω1,j))

{
κα,j/ω1,j −

1

2
(1− exp(−κα,j/ω1,j))

}
︸ ︷︷ ︸

(ii)′

(A.15)

In (A.15), the second line is from Proposition 1

lrj(τ̂j − τ 0
j )

d⇒ max
v

ω1,j

(
−1

2
|v|+Wj(v)

)
for v ≤ 0

where Wj(v) is a standard Wiener processes and

P

(
max
v

ω1,j

(
−1

2
|v|+Wj(v)

)
≤ κα,j

)
= P

(
max
v

(
−1

2
|v|+Wj(v)

)
≤ κα,j/ω1,j

)
= 1− α.

(ii) in the third line is the expected length of the confidence set measured on v ∈ (−∞, 0]

so that it is multiplied by (i),
(
Γ2

1,j/Ψ
2
1,j

)
, since v is defined by

τj − τ 0
j = r = s/v2

T = (Λ2
1,j/Ξ

2
1,j)v/v

2
T = (Λ2

1,jv
2
T/Ξ

2
1,jv

4
T )v

=

{
1
4
vec (B1,j)

′Ωjvec (B1,j) + ∆β′jΠ1,j∆βj(
1
2
tr(B2

1,j) + ∆β′jQ1,j∆βj
)2

}
v

=
(
Γ2

1,j/Ψ
2
1,j

)
v. (A.16)

We can find the scale
(
Γ2

1,j/Ψ
2
1,j

)
in (A.16) from the change in variables used in the proof of

Proposition 1. The critical value for ξ(v) is κα,j/ω1,j. Then, the fourth line is derived from

Lemma 1. Substituting κ1,α = κα,j/ω1,j into the calculated expected length, the expected
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length is calculated for the segment τj−τ 0
j ≤ 0 so that (ii)′ in (A.15) is a half of the expected

length in Lemma 1.

Similarly, the expected length for τ̂j − τ 0
j > 0 is given by

2
(
Γ2

2,j/Ψ
2
2,j

)
(1− exp(−κα,j/ω2,j))

{
κα,j/ω2,j −

1

2
(1− exp(−κα,j/ω2,j))

}
.

Then, the expected length for a 1− α likelihood-based confidence set is given by

2
(
Γ2

1,j/Ψ
2
1,j

)
(1− exp(−κα,j/ω1,j))

{
κα,j/ω1,j −

1

2
(1− exp(−κα,j/ω1,j))

}
+ 2

(
Γ2

2,j/Ψ
2
2,j

)
(1− exp(−κα,j/ω2,j))

{
κα,j/ω2,j −

1

2
(1− exp(−κα,j/ω2,j))

}
.

Note that when either ω1,j or ω2,j gets bigger (i.e. the magnitude of a structural change is

bigger), the expected length gets smaller since we can have more precise information about

the timing of structural break. When κ gets smaller, the expected length gets smaller since

the cut-off value for the likelihood ratio gets smaller.

Proof of Corollary 1. If there is no break in variance, B1,j = B2,j = 0. In addition, if

the distribution of the regressors is stable,

Π1,j = Π2,j = Π = lim
T→∞

var

{
T−1/2

[
T∑
t=1

xt(Σ
0)−1/2ηt

]}

and

Q1,j = Q2,j = Q = plim
T→∞

T−1

T∑
t=1

xt(Σ
0)−1x′t.

Thus, this implies that

ω1,j = ω2,j = ω =
∆β′jΠ∆βj

∆β′jQ∆βj

and
Γ2

1,j

Ψ2
1,j

=
Γ2

2,j

Ψ2
2,j

=
∆β′jΠ∆βj

(∆β′jQ∆βj)2
.

By substituting the results above into the critical value in Proposition 2 and the expected

length in Proposition 3, we can find the results in Corollary 1. The results in Remarks 1

and 2 follow in the same way.
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Proof of Corollary 2. If there is no break in conditional mean, ∆βj = 0. In addi-

tion, if the standardized errors, ηt, are identically Normally distributed, ηtη
′
t has a Wishart

distribution with var(vec(ηtη
′
t)) = In2 + Kn where Kn is the commutation matrix. Then,

Ω1,j = Ω2,j = Ω = In2 +Kn. Further, since Kn is an idempotent matrix,

vec(B1,j)
′Ω0vec(B1,j)/4

= vec(B1,j)
′(In2 +Kn)vec(B1,j)/4

= vec(B1,j)
′vec(B1,j)/2.

Thus,

ω1,j =
Γ2

1,j

Ψ1,j

=
1
4
vec(B1,j)

′Ω0
1,jvec(B1,j)

1
2
tr(B2

1,j)

=
1
2
vec(B1,j)

′vec(B1,j)
1
2
tr(B2

1,j)

= 1

since vec(B1,j)
′vec(B1,j) = tr(B2

1,j). Similarly, ω2,j = 1. Then,
Γ2

1,j

Ψ2
1,j

= 2
tr(B2

1)
, and

Γ2
2,j

Ψ2
2,j

=

2
tr(B2

2)
.

Fisher (1930) Bai and Perron (1998) Bai and Perron (2003) Siegmund (1986) Whelan

(2000) Kurozumi and Tuvaandorj (2011)
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