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Abstract

We consider a time-varying parameter vector autoregressive model with stochastic volatility
and mixture innovations to study the empirical relevance of the Lucas critique for the postwar
U.S. economy. The model allows blocks of parameters to change at endogenously-estimated
points of time. Contrary to the Lucas critique, there are large changes at certain points of
time in the parameters associated with monetary policy that do not correspond to changes in
“reduced-form” parameters for inflation or the unemployment rate. However, the structure
of the U.S. economy has evolved considerably over the postwar period, with an apparent
reduction in the late 1980s in the impact of monetary policy shocks on inflation, though not
on the unemployment rate. Related, we find changes in the Phillips Curve tradeoff between
inflation and cyclical unemployment (measured as the deviation from the time-varying steady-state
unemployment rate implied by the model) in the 1970s and especially since the mid-1990s.
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1 Introduction

“[T]he question of whether a particular model is structural is an empirical, not theoretical, one.”
— Lucas and Sargent (1981)

The U.S. economy has experienced large shifts in monetary policy regimes since World War II,
as discussed by Lucas (1976) and Sargent (1999), amongst many others. Therefore, econometric
models designed to study this phenomenon should allow at least some parameters to change over
time. In addition, a substantial decline in the volatility of macroeconomic variables, often referred
to as “the Great Moderation”, has occurred since the mid-1980s. Together, these changes imply that
a conventional vector autoregressive (VAR) model with constant parameters and homoskedastic
shocks is inadequate for the postwar U.S. data.

In order to allow for changes in model parameters most of the literature has focused on two
different approaches: Markov-switching (MS) models and time-varying parameter (TVP) models.
MS-VAR models assume that the economy switches abruptly between a few (possibly recurrent)
regimes for conditional mean and/or variance parameters, where the magnitude of change across
regimes can be large (see, for example, Sims and Zha, 2006). By contrast, TVP-VAR models
assume gradual changes (every period of time corresponds to a distinct regime) in conditional
mean and/or variance parameters (see, for example, Cogley and Sargent (2001, 2005), Primiceri
(2005), and Cogley et al. (2010)).

Recently, a few models that bridge the MS and TVP approaches have been proposed. Koop
and Potter (2007) develop a non-reversible change-point model with unknown number of regime
shifts and Poison-distributed regime durations, while Giordani and Kohn (2008) introduce an
alternative flexible framework called a ‘dynamic mixture model’ or ‘mixture innovation model’
in which the timing of regime shifts is determined by a latent variable and subgroups of model
parameters are allowed to vary independently.! Building on these studies, Koop et al. (2009)
apply the mixture innovations framework to extend the standard TVP-VAR of Primiceri (2005).
They do so by introducing independent binary latent variables for three blocks of parameters
corresponding to conditional mean parameters, variances, and the contemporaneous cross-equation
impacts of shocks, allowing the data to determine the occurrence of a regime shift for each block
in each period of time. However, principal components analysis of the variance-covariance matrix

governing the magnitude of changes in TVP-VAR parameters conducted by Cogley and Sargent

'Notably, models with mixture innovations often have improved forecasting performance relative to simpler
models, supporting their usefulness in describing the time series properties of the macroeconomic data. For
example, Giordani and Villani (2010) forecast nine quarterly macroeconomic series from the United States, Sweden,
and Australia using a mixture innovation model and find it outperforms related models with restrictions such as
homoskedastic errors or smooth, continuous changes in parameters. Likewise, Groen et al. (2013) find very accurate
real-time point and density forecasts for a multivariate model of U.S. inflation with mixture innovations.



(2005) shows that conditional mean parameters appear to vary in a highly structured way that
does not correspond to uniform changes across these parameters. Specifically, a small number
of principal components explain most of the time variation in conditional mean parameters, with
loadings varying considerably across parameters. Cogley and Sargent (2005) speculate that this
pattern could be due to cross-equation restrictions associated with private agents’ optimization
and foresight in the context of adaptive learning by the policymaker, as considered in Sargent
(1999). Meanwhile, if some parameters vary more frequently and more strongly, while others
are approximately time-invariant, then estimation of a standard TVP-VAR model will tend to
overstate variation in some parameters and understate variation in others, which could distort our
understanding of the structural evolution of the U.S. economy.

Motivated by the possibility that not all conditional mean parameters need to change together,
we extend Koop et al.’s (2009) analysis to allow for variation at different points of time in subgroups
of VAR parameters, including different blocks of the conditional mean parameters. Because
changes in each block of parameters are controlled by a Bernoulli distributed latent variable, the
posterior density of the probability parameter for the Bernoulli distribution reflects the frequency of
occurrence of breaks in a given block. Then, if the true model is the stochastic volatility TVP-VAR
model, as in Primiceri (2005), the data will push the probability parameter for each block to one.
Otherwise, if the true model is a MS-VAR model, the probability parameters will be much smaller
than one, with differences in probability parameters across blocks suggesting different economic
forces driving the structural changes. This approach is related to Inoue and Rossi (2011), who
allow for a structural break at an unknown break date in subgroups of VAR parameters. However,
our model is more flexible in that it allows for multiple stochastic shifts in the different blocks of
parameters, which appear to be relevant in practice according to our results.

Building on Koop et al.’s (2009) modeling strategy, our paper makes three contributions: First,
because we divide the VAR parameters into “policy” and “non-policy” blocks, the frequency
of changes in the non-policy blocks relative to that of the policy block can be used to test the
empirical relevance of Lucas (1976) critique, which states that a shift in systematic policy should
induce a change in the “reduced-form” parameters describing the time series behaviour of the
macroeconomic variables affected by policy. This test is different than simulation-based approaches
to testing the Lucas critique often considered in the literature; see, for example, Estrella and Fuhrer
(2003), Lindé (2001), Rudebusch (2005) and Lubik and Surico (2010). Our approach reveals the
extent to which the Lucas critique is empirically relevant for the time-varying VAR parameters,
including the variances of error terms. Notably, we find that Lucas critique is often not relevant.
Second, based on standard short-run restrictions, we identify monetary policy shocks and study
their effects on inflation and unemployment over time. Our findings can be compared with those

in Primiceri (2005) and Koop et al. (2009), who find that there are no statistically significant



changes in impulse responses for monetary policy shocks over the postwar period, and Kuttner
and Mosser (2002) and Boivin and Giannoni (2006), who find that the effects of monetary policy
on the U.S. economy have weakened since 1980s. Based on our model, we find that the effects
of monetary policy on inflation have only changed over time at the 3-9 quarter horizon, while the
effects on the unemployment rate appear not to have changed at any horizon. Third, we estimate
the natural rate of unemployment as the time-varying steady-state of the unemployment rate, as
in Phelps (1994) and King and Morley (2007). Based on the estimated natural rate, we test for
the existence of a Phillips curve tradeoft between inflation and cyclical unemployment. We find
evidence of a short-run tradeoff, with some support for a nonlinear relationship that is stronger
for higher levels of lagged inflation. However, the tradeoff has clearly weakened since the late
1970s and has even disappeared since the mid-1990s, coinciding with the anchoring of inflation
expectations at relatively low levels in recent years.

The rest of this paper is organized as follows. Section 2 presents our model. Section 3 describes
the data and elicitation of priors. Section 4 provides model fit and robustness analysis. Section 5
considers the empirical relevance of Lucas critique. Section 6 reports on the evolution of impulse
response functions for a monetary policy shock on inflation and the unemployment rate. Section
7 examines the natural rate of unemployment and the short-run tradeoff between inflation and

cyclical unemployment. Section 8 concludes.

2 Model

One of the contributions of this paper is to broaden the number of blocks of VAR parameters linked
to latent variables relative to Koop et al. (2009). This allows us to consider a new approach to
testing the empirical relevance of Lucas critique that does not rely on simulations from a dynamic
stochastic general equilibrium (DSGE) model. For our analysis, we consider two intuitive and
plausible, although informal and atheoretic, ways of imposing structural changes in reduced-form
VAR parameters: (1) by equations; (2) by variables. The details of the model structure are given

in the next two subsections.

2.1 A Stochastic Volatility TVP-VAR Model and Identification of a Monetary
Policy Shock

The reduced-form TVP-VAR of order p can be cast in the following form:

yi = X160, + My ~ iid. N(0,€)

X, = In@[l’ Vi y;—p]’



where “®” denotes the Kronecker product, y, is an n X 1 vector including the current observations
of endogenous variables, X, is an m X n matrix including intercepts and lagged variables, 6, stacks
time-varying reduced-form VAR coefficients and €2, is the time-varying variance-covariance matrix
of the error term ;. In our analysis, y, includes inflation, the unemployment rate and a short-term
interest rate, so n = 3 and m = 21 because we set p = 2 to keep the dimension of parameter space
manageable and to be consistent with much of the existing literature.?

To identify the monetary policy shock, a structural VAR representation is recovered based
on a triangular identification scheme—i.e., we place endogenous variables in the order of y, =
[7, u, i), where &, u,,i, are inflation, the unemployment rate and the short-term interest rate,
respectively. This order of endogenous variables assumes that inflation and unemployment only
respond to a monetary policy shock with at least a one-period lag.® In practice, structural shocks
are recovered via a Cholesky decomposition of the variance-covariance matrix of the reduced-form

error terms as follows:

AQA =33,  Allg =y, & = %6, & ~ iid.N(0, I;)

1 0 0 o 000
At =1 A2 1 0 N Z, = 0 022t 0
asiy Aszny 1 353 0 0 033 353

where & = (&, &4 €], with the three elements representing structural shocks to inflation,
unemployment, and monetary policy, respectively. Then, the reduced-form time-varying VAR

model can be rewritten as

v =X6+A g, & ~ iid.N(0,X.X))

X =L®[ly_ y_]. (1)

2.2 Mixture Innovations for Time-Varying Parameters and the Variance-Covariance
Matrix

The law of motion for the time-varying parameters 6, is a driftless random walk, following much

of the literature on TVP-VAR models, but with more flexible mixture innovations:

Ht = Qt—l + thh ft ~ lld N(O’ Q)7 (2)

2A trivariate VAR model like ours is quite common in the literature; see, for example, Rotemberg and Woodford
(1997), Cogley and Sargent (2001, 2005), Primiceri (2005), and Koop et al. (2009).

31t is well understood that the order of variables in a recursive identification scheme will matter given correlation
between the reduced-form errors. However, our results for a monetary policy shock are largely robust to swapping the
order of inflation and the unemployment rate.



where Q is positive definite and K; is a diagonal matrix whose diagonal elements are latent variables
kiq,i =1,2,3,4, taking on the value of 1 if there is a change in the corresponding coefficients and
0 otherwise. We consider two types of restrictions on 6,. In the first case, slopes in the same
equation move together, while in the second case, slopes on the same variables move together. In
both cases, the intercepts vary together to capture any changes in the long-run levels of inflation,
the unemployment rate, and the nominal interest rate. The controlling matrix K, in the two cases is

denoted by K" = diag{KS), Kg), Kg), KE),

Ky, KV, K} (by equations) and K = diagik\?, K\, K3, K, K, K, K} (by
variables), respectively, where
k, 0 O ky 0 O ks 0 O
K/)=K?=|0 k, 0| K'=|0 k 0] K'=/0 k 0|
0 0 ky 0 0 ky 0 0 k3
KV=|0 ky 0|, KX=|0 ky 0
0 0 ky 0 0 ky

In terms of the variance-covariance matrix for the VAR errors, let ; be a vector collecting the
non-diagonal and non-zero elements in A, and o, be a vector collecting the diagonal elements in

2,. Then the evolution of elements in «, and o is as follows:
@ = a1 +ksm, m ~iid. N(O,S), 3)
ln O_l‘ = lIl 0—1‘,1 + kﬁl§t9 gt ~ lld. N(O, W), (4)

where S, W are positive definite and S is block diagonal with each block corresponding to parameters
in different equations and similarly, k;, = 1, j =5, 6, if a change in the subset of parameters occurs
and kj; = 0, j=35,6, otherwise.
We assume that all of the innovation blocks in the dynamic system are uncorrelated contemporaneously

and at all lags and leads—i.e., they are jointly normally distributed with the following variance-covariance

matrix V:
€ L 0 0 O
V =Var & = 0000
1 0O 0SS O
& 0O 0 0 W

Estimation of parameters in this framework relies on Markov Chain Monte Carlo (MCMC)

methods. In particular, under the assumption that the k;;’s are independent of one another, contemporaneously

6



and at all lags and leads, K}, ks;, ks, can be drawn based on the reduced conditional sampling
algorithm proposed in Gerlach et al. (2000) without conditioning on the state vector 6,. This
approach greatly improves the efficiency of the sampler when K, and 6, are highly correlated.*
Then, following Primiceri (2005), we adapt methods in Carter and Kohn (1994) and Kim et
al. (1998) to draw state vectors 6,, a; and In o, from three Gaussian linear state-space systems

separately.’ See the detailed MCMC algorithm in the technical appendix.

3 Data and Priors

3.1 Data

As discussed above, we consider a small three-variable VAR model to study the evolution of U.S.
monetary policy, measured by short-term nominal interest rate (federal funds rate, averaged from
daily rates, series ID: FEDFUNDS), and its impact on inflation (seasonally adjusted compounded
annual rate of change of Personal Consumption Expenditures, series ID: PCECTPI) and the unemployment
rate (seasonally adjusted civilian unemployment rate, all workers over 16, series ID: UNRATE).®
The series are quarterly and run from 1954Q3 to 2007Q4, where the end of the sample is chosen to
avoid the recent zero-lower-bound period that would require a more complicated model to capture
U.S. monetary policy than can be easily accommodated in the mixture innovations framework.
We execute 70, 000 replications of the Gibbs sampler, with the first 20, 000 draws, known as the
“burn-in”, discarded to allow for convergence to the ergodic distribution. Every 107 draw is saved
from the remaining 50,000 draws to economize the storage space. Therefore, Bayesian inferences
are carried out based on 5,000 draws from the posterior distribution. Convergence diagnostics

are conducted by inspecting sample ACFs and recursive means for parameter draws. As shown

4As noted by Koop et al. (2009), modeling correlations between the kj’s would bring a huge cost in terms of
increasing the computation burden. Meanwhile, any dependence in the timing of changes across different parameter
blocks should be evident from ex post correlations in the posterior estimates of changes in the different parameters.

SRecently, Del Negro and Primiceri (2013) have made a correction to the MCMC procedures in Primiceri (2005).
They retain most of the procedures except that sampling of stochastic volatilities is preceded by sampling of states for
mixture components approximations to errors with log chi-square distributions. We follow their updated procedures.

All of the data series were downloaded from FRED managed by the Federal Reserve Bank of St. Louis
at http://research.stlouisfed.org/fred2/. The results are generally robust to different measurements of inflation and
short-term interest rates, for example, using the GDP deflator or the 3-month Treasury bill rate. The Personal
Consumption Expenditures (PCE) deflator is used because it has been, at least in recent years, the Fed’s preferred
measure of the cost of living. When the 3-month Treasury bill rate is considered instead of the federal funds rate,
an unemployment puzzle (i.e., a contractionary monetary policy associated with a decline in the unemployment rate)
appears, as in Koop et al. (2009). Therefore, we take the federal funds rate (FFR), which is directly under the control of
the Fed, as the monetary policy instrument. Another potential concern is that the FFR might be less representative as a
policy instrument from 1979 to 1982 during which the Fed officially framed its policy in terms of monetary aggregates.
But Cook (1989) argues that, even in that episode, the FFR serves as a satisfactory policy indicator. Hence, we believe
it is appropriate to treat the FFR as the policy instrument across most of the postwar period, except for the recent
zero-lower-bound period that we do not consider in our analysis.

7



in Figure 1, the 20”-order autocorrelations for almost all of parameters draws (including for the
hyperparameters) are below 0.15 and only a few are as high as 0.2 — 0.3. Thus, the posterior draws

are mixing well and the convergence check is satisfactory.
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Figure 1: 20"-Order Autocorrelations for Parameter Draws. From left to right, condition mean parameters
6, from 1-3612, covariances @, from 3613-4128, variances o from 4129-4644, hyperparameters Q, S, W
from 4645-5103, and probability parameters p; from 5104-5109, where t = 1,2,--- ,T and j = 1,2,--- ,6.

3.2 Priors

Priors for state vectors and hyperparameters are calibrated following Primiceri (2005) and Koop
et al. (2009), with a few minor modifications. Data for the first ten years of the sample (42
observations, 1954Q3 — 1964Q4) are employed to calibrate the priors. Specifically, a time-invariant
VAR model is estimated using conditional MLE, which produces point estimates, 6, for the
conditional mean parameters and their corresponding variances, V(8,). Estimates, Qq, of the
variance-covariance matrix for the VAR errors are obtained as well and &, J are derived from
decomposing QO. The variance, V(&), of @ is obtained by simulation from a Wishart distribution
with scatter matrix QO and degree of freedom set to 40. We set the variance of In(d) to 1015

which is large in log-scale, implying a small weight is put on the prior. As for the hyperparameters
S
0,8 = [ 01 S ] , W, the priors are inverse-Wishart distributions. In order to put as little weight
2

as possible on prior beliefs, the degree of freedom for each inverse-Wishart distribution is set to the
minimum plausible value dim(Q) + 1 = 22, dim(S) + 1 =2, dim(S,) + 1 =3, dim(W) + 1 =4,



respectively. In summary, the priors are as follows:

6 ~ N(bo, 4V (b)),

ap ~ N(&o, 4V(Qo)),
Inoy ~ N(In &, 1013),

Q ~ IW(40k,V (By), 22),

S1 ~ IWQKV(d0), 2),

Sy ~ IW(3k V(d2), 3),

W ~ IW(4k, 15, 4),

where kg = ky = 0.01, kg = 0.1, and @ o, &> correspond to each block of ao.’
To complete the model, hierarchical priors for K;, ks, and k¢, need to be specified. We adopt a

Bernoulli distribution Ber(p;) with
Prob(kj; = 1) = pj, j=12,---,6, 5)

where p; is the probability of a parameter change occurring at time ¢ for kj,. The prior for p; is
a Beta distribution Beta(A,j, A»;), j = 1,2,---,6, which forms a conjugate prior with a Bernoulli
distribution. The values of A;; and A,; reflect prior beliefs about the frequency of parameter
changes in the model. Small values of A;; and large values of A,; imply a “structural break”
(SB) model with few changes in the parameters (e.g., 4;; = 0.01, 4;; = 10 for all j, would imply
E(p;) =0.001, sd(p,) = 0.01). Large values of 4;; and small values of A,; approaches the standard
stochastic volatility TVP model in Primiceri (2005) (e.g., 4;; = 1,4,; = 0.01 for all j, would
imply E(p;) = 0.99,sd(p;) = 0.08). For our benchmark model, we set 4;; = A,; = 1 for all j,
such that E(p;) = 0.5, sd(p;) = 0.29, meaning that a priori we believe the occurrence of a change
in each period is somewhere around a 50% chance. The prior is reasonably diffuse, although it
places very little weight on parameter values corresponding to SB and TVP versions of the model
based on the tight priors for the p;’s suggested above. Table 1 provides a summary of our priors
onp; j=172---,6, where the label BEQ denotes the benchmark model varying with respect
to equations, the label BVA denotes the benchmark model varying with respect to variables, and
SBEQ, SBVA, TVPEQ and TVPVA are analogous labels for the versions of the model with strong
priors on the p;’s. In general, we combine these priors for the p;’s with those for state vectors

6,, a;, o, and hyperparameters Q, S, W provided above.

7See Primiceri (2005) for a full discussion of the reasons behind these values of ko, ks, kw.



Table 1: Priors for p; = Prob(kj; = 1) : Beta(Ayj, A2j),j=1,2,---,6, Vt.
Models /11j /12j
BEQ/BVA 1 1
TVPEQ/TVPVA 1 0.01
SBEQ/SBVA 0.01 10

4 Model Fit and Robustness Analysis

Table 2 reports on the fit of the benchmark model, the SB model, and the TVP model using 1)
posterior medians of p;’s and ii) the expected value of log-likelihood function as described in
Carlin and Louis (2000). Note that marginal likelihoods are difficult to calculate in this setting
given the high-dimensional parameter space.

The first result that stands out in Table 2 is that the BEQ model with slopes in the same equation
changing together receives strongest support based on the expected log-likelihood E(log L|Y).?
Somewhat supportive of Primiceri (2005), Cogley and Sargent (2005), and Koop et al. (2009),
the probabilities of parameter change for the BEQ model suggest that the shock volatilities have
changed frequently over time with E(pg|Y) = 0.9790 (standard deviation 0.0205). However, the
slopes in unemployment equation appear to be relatively stable with E(ps|Y) = 0.0329 (standard
deviation 0.0139), which is substantially smaller than the probabilities of parameter change in other
blocks. This result implies that a change in the slopes of the unemployment equation is expected
to occur only once every 25 quarters, whereas intercepts and slopes in inflation and interest rate
equations are expected to change every one or two quarters. These results provide strong evidence
for the idea that changes in the VAR parameters are highly structured ,with much stronger support
for blocks based on equations than based on variables.’

Second, we find that, even when extremely tight priors on p;’s are considered with the SB
and TVP versions of the model, the information in the data is so strong that it pushes posterior
inferences much of the distance towards the estimates for the benchmark model. This can be

treated as robustness analysis for our modeling strategy. For example, in the SBEQ model, the

8The expected log-likelihood is measured by averaging the log-likelihood from the state-space model (1) and (2)
based on each draw of o”, 0", 0, S, W, K", kI kI, A, where (and hereafter) x” = (x, x,,--- , x7). Taking into account
a penalty for number of parameters, the ranking of competing models is robust to the Akaike information criterion
(AIC) and the Schwartz information criterion (SIC) computed at the expected likelihood. In frequentist econometrics,
AIC and SIC are evaluated at the mode of likelihood function. Although the MCMC sampler does not provide a
precise estimate of the posterior mode, we have checked AIC and SIC with respect to the highest likelihood values
obtained from the sampler and found that the BEQ model again performs best, with the ordering of other models the
same except the rankings of the BVA and Primiceri models are interchanged.

% As evident from Table 2, the slopes generally change less frequently for the BVA model than for the BEQ model.
We note that our general findings are reasonably robust to considering blocking by variables instead of equations.
However, we find less variation in impulse responses over time and the estimation uncertainty about the time-varying
tradeoff between inflation and cyclical unemployment is much greater than for the BEQ model.

10



Table 2: Model comparison

Models | E(pilY)  E(palY) E(pslY)  E(pslY) | E(pslY) | E(pslY) | E(log L|Y)

BEQ 0.8607 0.8773 0.0329 0.8882 | 0.4866 | 0.9790 1984.2
(0.0345) (0.0367) (0.0139) (0.0364) | (0.2882) | (0.0205)

BVA 0.7444  0.0057 0.2398 0.1221 0.4950 | 0.9733 1821.8
(0.0348) (0.0056) (0.0324) (0.0247) | (0.3034) | (0.0258)

TVPEQ | 0.9999 0.9999 0.0353 0.9999 0.9941 0.9998 1839.3
(0.0008) (0.0005) (0.0143) (0.0006) | (0.0492) | (0.0019)

TVPVA | 0.0058 0.9998 0.0058 0.9999 0.9935 0.9998 1269.0
(0.0058) (0.0015) (0.0058) (0.0008) | (0.0491) | (0.0017)

SBEQ 0.3333 0.1664  0.1344  0.0956 | 0.0009 0.0003 896.4
(0.0395) (0.0289) (0.0254) (0.0225) | (0.0096) | (0.0029)

SBVA 0.1144  0.1132 0.1841 0.0554 | 0.0010 | 0.0010 1137.6
(0.0242) (0.0235) (0.0294) (0.0171) | (0.0102) | (0.0075)

KLS 0.9757 0.5047 0.9618 1846.5
(0.0118) (0.2892) | (0.0375)

Primiceri - - - 1784.7

Standard deviations are listed in parentheses. “KLS” represents the benchmark model in Koop et al. (2009)
for which ki; = ky; = k3, = kg, for all ¢. For “Primiceri”, k;; = 1,i=1,2,---,6, for all ¢, as in Primiceri
(2005).

parameters of Beta(A,j, A,;) priors on p;’s are set to 4;; = 0.01,4,; = 10,j = 1,2,---,6, and
E(p;) = 0.001, sd(p;) = 0.01 which means that on average a break is expected to happen once
every 1000 quarters a priori. Nevertheless, the posterior mean values of p;’s show that E(p,|Y) =
0.3333,E(p,|Y) = 0.1664, E(ps|Y) = 0.1344, E(p4|Y) = 0.0956, E(ps|Y) = 0.0009, E(p¢|Y) =
0.0003 with standard deviations 0.0395, 0.0289, 0.0254,
0.0225,0.0096 and 0.0029, respectively. The posterior expected probabilities with respect to the
conditional mean parameters suggest that parameter changes happen approximately every 3 to 10
quarters, which strongly rejects a prior belief that very few breaks occur over time. Meanwhile, in
the TVPEQ model, 4,; and A,; are set to 1 and 0.01, respectively. So E(p;) = 0.99 with standard
deviation 0.08 clearly favors a time-varying parameter with stochastic volatility model. However,
the posterior mean value of p; is 0.0353 with standard deviation 0.0143. Thus, the posterior
probability of observing a break in the slopes in unemployment equation in every period declines
substantially from the prior. This suggests that the slopes in the unemployment rate equation are
more stable than the other blocks in the model and also supports the idea of highly structured
changes in the VAR parameters.

As a more general robustness check, we investigate the standard deviations of the reduced-form

VAR errors for three alternative models: BEQ, KLS, and Primiceri. Figure 2 plots the posterior
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medians of standard deviations for these errors. A decline in volatility since the mid-1980s is
evident from the plots. The stochastic volatility estimates for the KLS and Primiceri models track
each other closely for all three errors. Meanwhile, the stochastic volatility estimates for inflation
and interest rate errors from our BEQ model are almost the same as those for the KLLS and Primiceri
models. By contrast, the stochastic volatility estimates for unemployment rate errors derived from
our BEQ model are slightly higher than for the KLS and Primiceri models. This difference is
not surprising because the conditional mean parameters in the unemployment equation vary much
more frequently in the KLS and Primiceri models than in our BEQ model, as evident in Table 2.
Thus, less of the overall variation in the unemployment rate is ascribed to the VAR errors for Koop
et al. (2009) and Primiceri (2005) compared to our BEQ model. However, consistent with the
finding by Koop et al. (2009), we find that the restrictions on the structure of time-varying features
of conditional mean parameters do not fundamentally change the volatility estimates, especially in
terms of general changes over time, although they do influence the impulse response functions, as
will be discussed in Section 6.

In summary, the BEQ model receives the strongest support in the model comparison, while
it captures similar features in the data such as volatility levels and changes when compared with
related models. Hereafter, the empirical results about the evolution of U.S. economy are based on

estimates for this model.

S5 Testing the Lucas Critique

Ever since Lucas’s (1976) seminal study, it has been widely-recognized by macroeconomists that
reduced-form econometric models could be inappropriate for policy analysis if there are changes
in parameters describing policy. However, a relatively large literature—see Fevero and Hendry
(1992), Estrella and Fuhrer (2003), Lindé (2001) and Rudebusch (2005), amongst others—casts
doubt on the empirical relevance of Lucas critique by considering Chow tests and superexogeneity
tests. In a recent study, Lubik and Surico (2010) find that, by taking stochastic volatility in the
reduced-form errors into account, one cannot reject the empirical relevance of Lucas critique.
Specifically, a shift in policy rule has a great impact not only on reduced-form conditional mean
parameters, but also on the variances of reduced-form error terms. They criticize the Chow and
superexogeneity tests employed in previous studies for implicitly assuming homoskedasticity of
the reduced-form error terms, undermining the power of the tests.'°

Most of the recent studies testing the Lucas critique rely on simulating data from a specified

DSGE model as if the model were the “true” data generating process (DGP) of the macro variables

10 Another potential issue is the low power of the superexogeneity test in small samples, as discussed in Lindé (2001)
and Collard et al. (2001).
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Figure 2: Posterior medians of standard deviations of error terms in observation equations.
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of interest. By contrast, we make no assumption that the metaphors involved in a given modeling
approach are literally true when testing the Lucas critique. Instead, our approach lets the data speak
as to whether “policy” and “non-policy” parameters change at the same time.

Ideally, we would like to be able to directly identify changes in the parameters for a structural
policy equation. However, our approach only allows us to consider changes in blocks of conditional
mean parameters for the reduced-form VAR model.!! But this is less of a problem than it may
at first appear because a change in parameters for the structural policy equation should induce
a change in the parameters for the reduced-form policy equation. Then, if the Lucas critique
holds, the change in the policy parameters should also induce a change in the parameters of the
reduced-form equations for the non-policy variables, at least for variables affected by monetary
policy. It is true that a simultaneous change in the reduced-form parameters for the policy and
non-policy equations could instead be due to a change in non-policy structural parameters, as
suggested by Inoue and Rossi (2011). But a change in the reduced-form policy parameters without
a corresponding change in the reduced-form non-policy parameters should only occur if the Lucas
critique does not hold (again, assuming policy impacts the relevant variable and, of course, that the
model is reasonably well-specified). It is this possibility that we consider in our empirical analysis.

Table 3 reports on the timing of breaks across parameter blocks. The reduced-form intercepts
(controlled by k), reduced-form slopes in the inflation equation (controlled by k,), reduced-form
slopes in the interest rate equation (controlled by k4), contemporaneous cross-equation impacts
of structural shocks (controlled by ks), and standard deviations of structural shocks (controlled
by ke) co-move frequently with the probability of co-movement varying from 48% to as high as
88%. By contrast, the relationship between the reduced-form slopes in the unemployment equation
(controlled by k3) and other parameter blocks suggests much less pairwise dependence, with the
probability of co-movement varying between 3% and 52%. It should be noted that this relatively
weak pairwise dependence between k3 and k;, i # 3 is not the result of the unemployment rate being
unrelated to the interest rate or inflation. As discussed in the next section, monetary policy shocks
have statistically significant effects on the unemployment rate throughout the sample period. So, if

the Lucas critique holds, the reduced-form parameters should all move together.

"TAlthough we need to consider changes in conditional mean parameters for the reduced-form VAR model,
our approach does allow for identification of changes in the structural shock variances and the contemporaneous
cross-equation impact of the structural shocks on the observables. Also, it should be noted that we would be able
to directly identify changes in the structural policy equation if our identification of monetary policy shocks involved
placing the interest rate first, rather than last, in the causal ordering. This would correspond to the idea that policy
only responds to inflation and the unemployment rate with a lag, which could be justified based on data availability
issues. We note that the impulse responses for a policy shock for this alternative ordering are qualitatively similar
to those for the standard ordering employed in our analysis. Also, the results for the Lucas critique tests are similar
for this alternative identification (the fact there are any differences being due to the fact that the ordering matters for
the identification of the structural shock variances and the contemporaneous cross-equation impact of the structural
shocks on observables, which are linked to ks and kg, respectively).
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Table 3: Posterior median values of fractions of k;; = kjs, i, j=1,2,--+,6,i # j

k,‘, = kjt,i * ] k2 k3 k4 k5 k(J

ki 0.7733  0.1628  0.7791 0.4826  0.8547
(0.0340) (0.0224) (0.0299) (0.2125) (0.0261)

ky - 0.1395 0.7907 0.4826  0.8721
- (0.0252) (0.0335) (0.2222) (0.0302)

ks - - 0.1395  0.5174  0.0349
— — (0.0287) (0.2741) (0.0175)

ky - - - 0.4826  0.8779
- - - (0.2295) (0.0308)

ks - - - - 0.4826
- - - - (0.2813)

Standard deviations are listed in parentheses.

Table 4: Test of the Lucas critique: Posterior probabilities of changes in parameter blocks conditional on a
change in intercept or slope parameters in the interest rate equation

Probability 95% Credible Interval

Inf* 0.8987° [0.8809, 0.9069]
Unem 0.0297 [0.0280, 0.0300]
VarErr 0.9918 [0.9902, 0.9921]

(a). Inf: slopes in the inflation equation; Unem: slopes in the unemployment equation; VarErr: variances of
reduced-form error terms.  (b). Probability: posterior medians.

As an even more direct way to look at co-movement related to changes in policy parameters,
Table 4 reports on changes in blocks of parameters conditional on a change in intercept or slope
parameters in the interest rate equation. The results initially suggest support for Lucas critique for
the behaviour of inflation and the variance-covariance matrix (consistent with Lubik and Surico,
2010), although, again, not for the behaviour of the unemployment rate. Specifically, given a
change in slope parameters for the interest rate equation, there is a 90% or higher probability of a
change in the other parameters, except for the slopes in the unemployment equation, which only
have a 3% conditional probability of change. However, looking back at Table 2, it is clear that
certain parameters almost always change. For example, the structural shock variances appear to
change about 98% of the time. So whenever the interest rate slope parameters change 88% of the
time, we would expect a high conditional probability that the variance-covariance matrix changes
too. But the question remains as to whether these parameter changes are causally related to each
other.

To determine whether simultaneous parameter changes are merely coincidental, we calculate
the correlation between changes in policy parameters and non-policy parameter blocks conditional

on changes in the intercept or slope parameters from the interest rate equation. Table 5 reports
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posterior inferences for these correlations. Most of the correlations are essentially zero.'? That
is, even if policy and non-policy parameters change at the same time, they do not appear to
change together in any systematic fashion. Thus, the evidence argues against the Lucas critique.
Nonetheless, there are some statistically significant correlations, suggesting that the small correlations
are not merely the consequence of the modeling assumption of independent switching in different
blocks of parameters. For example, one of the more significant correlations is corr(Act, A@ﬂm) =
0.3162, which suggests an increase in the intercept for the interest rate equation is positively related
to higher persistence in inflation. The other two most significant correlations are corr(A@jn, A@Zt) =
~0.3050 and corr(AG,,,

interest rate to inflation or the unemployment rate (assuming a general positive response to inflation

A@Zt) = —0.3540, which suggest that a larger magnitude response of the

and a negative response to the unemployment rate) corresponds to a smaller tradeoft between the
unemployment rate and inflation. These correlations suggest that systematic policy can affect
private sector behaviour, but their reasonably small magnitude is a far cry from what one would
expect if the persistence of inflation or changes in the slope of the Phillips curve were driven
primarily by changes in the policy regime.

Figure 3 plots the posterior medians of first principal components for innovations to the policy
and non-policy blocks, respectively. Both principal components explain well over 80% of the
overall innovations in the corresponding blocks over time. It can be seen from the figure that
variation in the policy block does not systematically relate to variation in the non-policy block
(the sample correlation between the two series is only 0.1285). Notably, the principal component
related to the policy block is reasonably persistent, while it is closer to white noise for the non-policy
block. This finding supports the idea that changes in non-policy parameters are more likely driven
by random shifts in technology and preferences than by changes in systematic monetary policy.

One alternative explanation for our findings could be model misspecification. A key assumption
in our analysis is that we are capturing the main information set considered by policymakers when
setting monetary policy. However, if this assumption is flawed, changes in policy parameters could
be reflecting systematic responses to omitted variables. However, to the extent that inflation and
the unemployment rate are the main drivers of systematic policy, as suggested by many variants
of the Taylor rule, and assuming there have been shifts in this systematic policy throughout the
postwar period, the Lucas critique clearly implies that we should find a stronger relationship
between changes in policy parameters and the other reduced-form parameters than we actually
do."

12The results are robust for leads and lags of cross correlations, with posterior medians always almost exactly equal
to zero. Furthermore, the results are robust to consideration of only ‘large” (greater than one standard deviation)
changes in policy parameters.

13 Another intriguing caveat to using our VAR model for testing the Lucas critique is that fiscal policy may have
acted to offset the effects of changes in systematic monetary policy on the private sector. However, when we look
at a measure of fiscal shocks based on Blanchard and Perotti’s (2002) constant-parameter VAR model, we find no
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Table 5: Contemporaneous cross correlations between changes in policy parameters and non-policy
parameters conditional on a change in the corresponding policy parameters in the interest rate equation

Non-Policy ~ Policy Block _
Block Ac; Aé;t Aélm Aé; Aa3 1t Aa32’[
Act -0.0276  0.0189  0.0661 -0.0125 0.0031  0.0033
(0.2046) (0.1492) (0.1424) (0.1450) (0.1503) (0.1455)
Act 0.1415 0.0111  -0.0409 0.0260 -0.0014 -0.0016

(0.2007) (0.1484) (0.1418) (0.1471) (0.1507) (0.1464)

-

AG,, 0.3162 -0.1886 -0.0933  0.1467 -0.0010  0.0034
(0.1305) (0.1473) (0.1443) (0.1489) (0.1488) (0.1474)
A@Z, -0.0739  -0.3050 -0.3540 -0.1559  0.0007  0.0036
(0.1453) (0.1386) (0.1275) (0.1470) (0.1498) (0.1526)
Aég -0.1847  -0.0344 -0.1519 -0.0273 -0.0018  0.0018

(0.1380) (0.1429) (0.1362) (0.1444) (0.1502) (0.1504)

A6, -0.0475  -0.0027 -0.0069 -0.0228 -0.0005  0.0018
(0.0845) (0.0871) (0.0856) (0.0851) (0.1497) (0.1524)

A@Zt 0.0044  -0.0050 -0.0064 -0.0021  0.0008  0.0018
(0.0858) (0.0859) (0.0860) (0.0853) (0.1505) (0.1495)

A@Z -0.0123  -0.0133  -0.0365 -0.0518 -0.0021  0.0022
(0.0866) (0.0847) (0.0835) (0.0832) (0.1513) (0.1506)

Aay;, -0.0014  -0.0023  -0.0009 -0.0018 -0.0003  0.0009

(0.0837) (0.0819) (0.0825) (0.0823) (0.1444) (0.1513)

Standard deviations are listed in parentheses. A is the difference operator. For the equation for

. . . =k . . . . .
variable k, c¥ is the intercept and 6 ¢ 18 the sum of slopes on variable j, where j, k = 7, u, i,
corresponding to inflation, the unemployment rate, and the interest rate, respectively.

17



0.01

Policy
Non-policy

0.005 h

—-0.005 b

-0.01 .

I

_0.015 1 1 1 1 1 1 1
1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 3: Posterior medians of first principal components for innovations to policy and non-policy blocks.

6 Evolution of Impulse Responses

There is considerable academic debate about whether monetary policy is responsible for stabilizing
the U.S. economy since the mid-1980s, a phenomenon known as the “Great Moderation”. One way
to investigate the potential sources of the decline in volatility is to consider changes in the responses
of macroeconomic variables to monetary policy shocks over time. Along these lines, Primiceri
(2005) and Koop et al. (2009) find no evidence for a major role played by monetary policy because
they find that impulse responses for inflation and the unemployment rate to a monetary policy
shock do not change significantly over time. However, Kuttner and Mosser (2002) and Boivin and
Giannoni (2006) find that the impact of monetary policy on output and inflation appears somewhat
weaker in recent years compared to before 1980s.'4

Figures 4-6 plot the evolution of impulse responses for inflation, the unemployment rate, and
the interest rate to a one percentage point monetary policy shock at selected dates: 1975Q1,
1981Q3, 1996Q1 and 2006Q3."5 The estimated magnitudes of the responses of inflation, the

relationship between the estimated fiscal shocks from that model, which should reflect omitted shift in systematic
fiscal policy, and the changes in parameters from the interest rate equation in our model. We leave analysis of a
mixture innovations fiscal VAR model for future research.

14 Another way to investigate sources of the decline in volatility is to consider counterfactual analysis. Using this
approach, Sims and Zha (2006) find that smaller shocks are responsible, while Inoue and Rossi (2011) find that a
change in monetary policy also played a role.

SFor easy comparison, these dates are the same as those considered in Primiceri (2005) or Koop et al. (2009). The
first date is an NBER trough, the second date is an NBER peak, and the last two dates are more normal times. Thus,
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unemployment rate, and the interest rate are generally smaller since 1980s. However, the differences
from the 1975Q1 responses are not statistically significant, except for the responses of inflation at
the 3-9 quarter horizon.

Our results contrast somewhat with those in Primiceri (2005), Koop et al. (2009) and Boivin
and Giannoni (2006).'% Boivin and Giannoni (2006) study time-invariant VAR models of inflation,
output, and the interest rate for two subsamples 1959Q1 - 1979Q3 and 1979Q4 - 2002Q2 and
compare impulse responses evaluated from subsamples based on the recursive identification scheme.
However, they only show point estimates of the impulse responses without conducting a statistical
test of whether impulse responses have changed across subsamples. As for Primiceri (2005) and
Koop et al. (2009), their modeling strategy is quite similar to ours. Thus, it is fairly easy to
determine the source of the different results. Specifically, every structural parameter is a mapping
from the reduced-form VAR parameters given a particular identification scheme. Then, the impulse
responses are functions of the structural parameters. Therefore, if the reduced-form VAR parameter
estimates are misleading due to model misspecification, the impulse response functions will be
contaminated as well. As discussed in Sections 3 and 4, the TVPEQ and TVPVA models with
the tight priors implying a break in parameters each period of time are essentially the same as
the stochastic volatility TVP model in Primiceri (2005). Also, our benchmark models, BEQ and
BVA, would collapse to the model in Koop et. al. (2009) if parameters change or stay the same
simultaneously. However, as clearly shown in Table 2, the BEQ model receives the strongest
support from the data, implying that it is the greater flexibility in how the VAR parameters change
that makes a difference in shaping impulse responses. Specifically, because the BEQ model is
preferred to TVP and SB models, we argue that the impulse responses derived from this model
provide better estimates of the effects of a monetary policy shock. These estimates suggest a

weaker response of inflation to a monetary policy shock since the 1980s.

we can see how responses change over the business cycle, as well as how they have evolved in recent times at a similar
stage of the business cycle. Note that we consider the Fed Funds Rate and inflation based on the PCE deflator, while
the previous studies consider the 3-month Treasury bill rate as a proxy for the policy instrument and measure inflation
using the GDP deflator. However, we find that the impulse response results are generally robust to considering other
measures of the interest rate and inflation.

16There is an apparent “price puzzle” in 1975Q1 and 1981Q3, which is common for small monetary VAR models
with triangular identification schemes for pre-1980 U.S. data. This might suggest misspecification of the model—i.e.,
some informative variables that impact the Fed and private sectors’ decision-making processes are missing from the
model. As suggested by Sims (1992), one promising way to solve this problem is to include a commodity price index.
Nevertheless, for the sake of computational feasibility given the already large dimension of the parameter space, we
stick with the trivariate model. Also, we are interested in the evolution of impulse responses instead of impulse
responses per se. Thus, the price puzzle should not be as much of a hindrance for understanding variations in impulse
responses as it is for understanding the responses themselves.
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Figure 4: Response of inflation to a one percentage point monetary policy shock in 1975Q1, 1981Q3,
1996Q1 and 2006Q3: (a) medians of impulse responses; (b) response in 1981Q3 minus response in 1975Q1
with 80% equal-tailed credible interval; (c) response in 1996Q1 minus response in 1975Q1 with 80%
equal-tailed credible interval; (d) response in 2006Q3 minus response in 1996Q1 with 80% equal-tailed
credible interval.
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Figure 5: Response of the unemployment rate to a one percentage point monetary policy shock for 1975Q1,
1981Q3, 1996Q1 and 2006Q3: (a) medians of impulse responses; (b) response in 1981Q3 minus response
in 1975Q1 with 80% equal-tailed credible interval; (c) response in 1996Q1 minus response in 1975Q1 with
80% equal-tailed credible interval; (d) response in 2006Q3 minus response in 1996Q1 with 80% equal-tailed
credible interval.
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Figure 6: Response of the interest rate to one percentage point monetary policy shock for 1975Q1, 1981Q3,
1996Q1 and 2006Q3: (a) medians of impulse responses; (b) response in 1981Q3 minus response in 1975Q1
with 80% equal-tailed credible interval; (c) response in 1996Q1 minus response in 1975Q1 with 80%
equal-tailed credible interval; (d) response in 2006Q3 minus response in 1996Q1 with 80% equal-tailed
credible interval.
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7 The Natural Rate of Unemployment and the Short-Run Phillips

Curve

7.1 Dynamics of the Natural Rate of Unemployment

Following Milton Friedman’s (1968) presidential address to the American Economic Association,
the natural rate of unemployment (NRU) and the related concept of the non-accelarating inflation
rate of unemployment (NAIRU) have been central concepts in macroeconomic modeling. Traditional
approaches to estimating the natural rate often impose some restrictions to make the natural rate
constant or, at most, allow for a few discrete jumps at certain periods of time (e.g., Papell et al.,
2000), force the NRU to be a function of time using a “spline” (e.g., Staiger et al., 1997), or employ
other techniques such as calibrated unobserved-components models (e.g., Gordon, 1997), low-pass
filtering (e.g., Staiger et al., 2001) and the Hodrick-Prescott filter (e.g., Ball and Mankiw, 2002).
King and Morley (2007) endogenize the NRU as the steady-state derived from a VAR model in the
spirit of the following quote from Phelps (1994):

“In a useful shorthand one may characterize the theory here as endogenizing the natural rate of
unemployment — defined now as the current equilibrium steady-state rate, given the current

capital stock and any other state variables.”

Hence, the natural rate of unemployment is not necessarily a constant. Instead, King and Morley
(2007) estimate a time-varying steady state of the unemployment rate following Beveridge and
Nelson (1981) by calculating the long-run forecast in levels y, = lim,_,. E;y;+;, conditional on the
information set available at time z.

King and Morley (2007) assume a time-invariant VAR model for output growth, inflation,
and the first difference of the unemployment rate. However, as shown above, there is considerable
variation in the parameters for the VAR models of inflation, the unemployment rate, and the interest
rate considered in this paper. Thus, it would be interesting to see if this time variation has any
implications for the time-varying NRU. To do this, we follow King and Morley (2007) by first
casting a VAR model into its companion form:

Y=g+ FY +éey..

Then, we use the companion form to calculate forecasts by assuming that VAR parameters remain
constant at their current values as time goes forward—i.e., in each period of time, a time-invariant

VAR model is assumed based on the time-varying parameter estimates for that period.!” Conditional

"This “local-to-date” assumption is common in the literature on bounded rationality and learning (see the
“anticipated-utility” model in Kreps, 1998). It should be noted that when we simulate a long-run forecast of the
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on the information set available at time ¢, including g, and F}, the long-run forecast is
—_— h —_—
Y, = lim ¥, = lim (;ng, + F,hY,) and @ = s5,Y,, (6)

where s, is a selector vector for the unemployment rate and #, is the time-varying NRU. '8

The natural rate of unemployment and the actual unemployment rate are plotted in Figure 7.
The point estimates for the NRU range from 4.0 — 7.2 percent, which is less volatile compared to
the range of 1.8 — 9.5 percent for the point estimates obtained by King and Morley (2007), but is
comparable to Phelps’s (1994) estimates. The uncertainty around the point estimate has declined
since the mid-1980s, which may be due to the substantial decline in the volatility of exogenous
shocks around that time. In addition to the difference in the range of the NRU, our estimate is a
lot smoother than that reported in King and Morley (2007). This is possibly due to the fact that
our model allows blocks of the VAR coefficients to stay constant at their previous values in some

periods, so that the trend of the unemployment rate is not forced to be stochastic in every period.

7.2 Test of the Short-Run Phillips Curve

Because we have estimated the natural rate of unemployment, we can construct cyclical unemployment
and test for the existence of the short-run Phillips curve.! Following Gordon (1997), we investigate
a “triangle” model (although without explicit supply shocks). Also, Peach et al. (2011) recently
consider a threshold Phillips curve model with respect to cyclical unemployment to investigate
possible nonlinearities. They find that the tradeoff between inflation and cyclical unemployment
depends on slack of the labor market. Related to this, we sometimes include interaction terms to
capture possible state dependence in the tradeoff between inflation and cyclical unemployment.
Specifically, we consider the following four specifications:
4
Linear: m; = 0im_i + B utc + wy, @)

i=1

4
NL-Full: n, = Z 0T, +ﬁ1u,c + Bou; - u,c + B3, - u,c + wy, (8)
i=1

unemployment rate based on all shocks in the model, including those to the time-varying parameters, we obtain a
similar measure of the NRU. For consistency with our impulse response analysis, for which a simulated approach
would be much more computationally demanding, we report the results for the local-to-date measure.

18 Although we do not impose stationarity on F,, it turns out that almost all of the draws from our sampler satisfy
the stationary conditions, making the NRU well behaved. Note that King and Morley (2007) calculate the long-run
forecast of the level of the unemployment rate given a stationary VAR model that includes its first differences. By
contrast, we calculate the long-run forecast of the level of the unemployment rate given a VAR model that includes
its levels. However, the time-varying intercept allows for a stochastic trend in the unemployment rate, so the two
approaches are similar as long as the companion matrix F; for our VAR model has all of its eigenvalues less than one
in modulus.

1We construct cyclical unemployment by subtracting the median NRU from the actual unemployment rate.
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Figure 7: Natural rate of unemployment: posterior median and 50% equal-tailed credible interval

4
. c c
NL-m: n, = Z Oty + Pru, + Bamy - u; + wy, 9
i=1

4
NL-u: m, = Z 0T, +,31uf + Bou; - utc + wy, (10)

i=1

where u€ is our measure of cyclical unemployment and w, is a regression error. “Linear” denotes
the linear model. “NL-Full” denotes a nonlinear model with interaction terms 7, - u* and u, - u€.
“NL-7" and “NL-#” denote nonlinear models related only to the level of lagged inflation or the
unemployment rate, respectively.

Table 6 reports regression results based on OLS for the full sample and two subsamples of
1965Q1-1990Q4 and 1991Q1-2007Q4.2° Two things stand out: First, along the lines of a Solow-Tobin
test (see Solow, 1968, and Tobin, 1968), we might consider the natural rate hypothesis (i.e., a
vertical long-run Phillips curve) by testing whether the sum of ¢’s is significantly less than 1. Of
course, as famously pointed out by Sargent (1971), the Solow-Tobin test is only informative about
the natural rate hypothesis when inflation contains a unit root. Regardless, the 95% confidence

intervals for the sum of the ’s reported in Table 6 always contain 1. Hence, the natural rate

200ur results are robust to also including an intercept or lags of cyclical unemployment. Also, in terms of a possible
error-in-variables problem due to measurement error for cyclical unemployment, we have conducted a Hausman test
using the lagged unemployment rate and lagged first differences of the unemployment rate as instruments and found
no evidence of endogeneity. Meanwhile, the timing of the subsamples is chosen based on Atkeson and Ohanian (2001)
and King and Morley (2007).
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hypothesis is supported by the data.?! Second, there is strong evidence supporting the existence
and nonlinearity of a short-run tradeoff between inflation and cyclical unemployment for the full
sample and the first subsample. For the full sample, the best specification is the nonlinear model
related to the level of lagged inflation only (NL-7) according to adjusted R-squared, AIC and
SIC. The nonlinearity coeflicient 83 = —0.134 is statistically significant at the 5% level, implying
that a higher level of inflation corresponds to a greater tradeoff. A likely explanation for this
nonlinearity is that inflation expectations are not as well-anchored at high levels of inflation, with
cyclical unemployment generating a larger change in inflation in this case. The same result and
general reasoning apply for the first subsample in which the best model is the full nonlinear model
(NL-Full) measured by adjusted R-squared and AIC, or the NL-m model based on the SIC. In
this case, the nonlinearity coefficient S is statistically significant at 5% level and quantitatively
similar for both models, specifically, —0.145 in the NL-Full model and —0.143 in the NL-7 model.
By contrast, for the second subsample, the short-run tradeoff has weakened and possibly even
disappeared, as none of the tradeoff coefficients 5,5, and S5 is statistically significant for the
models considered. The vanishing tradeoff between inflation and cyclical unemployment in the
second subsample is in accordance with the findings of Atkeson and Ohanian (2001) and could
reflect a strong anchoring of inflation expectations in the recent sample period (see IMF, 2013).

In addition to the regression analysis, we investigate time variation in the short-run tradeoff
between inflation and cyclical unemployment using the impulse responses discussed in the previous
section. Specifically, we consider the ratio of the 3-9 quarter average response of inflation relative
to the 3-9 quarter average response of the unemployment rate for each structural shock. Figure
8 plots the posterior medians of the ratios of the inflation and unemployment rate responses for
each structural shock. The short-run tradeoffs vary across the structural shocks and across time.
The posteriors are generally quite wide and include zero, except for a shock to the unemployment
rate, for which the ratio is always negative and significant up until the mid-1990s based on 50%
equal-tailed credible intervals, as reported in Figure 9.22 This tradeoff strengthened until around
1977 and then weakened and possibly disappeared by the mid-1990s, consistent with our findings
on a nonlinear Phillips curve with respect to the level of lagged inflation based on the OLS

regressions reported in Table 6 given that inflation was relatively high in the 1970s.

2I'The decrease in the estimated sum of the &’s in the latter subsample is likely due to the decline in the persistence
of inflation, as discussed in Cogley and Sargent (2001).

22To the extent that the structural shocks in the unemployment rate and interest rate equations represent aggregate
demand shocks, we would expect a similar tradeoff for both shocks. So the differences in the estimated tradeoffs could
reflect estimation uncertainty, with the effects of monetary policy shocks not as well identified given their relative
unimportance in explaining fluctuations in the unemployment rate and inflation. This is consistent with the relatively
wide posterior bands for the tradeoff given a monetary policy shock compared to an unemployment shock. Meanwhile,
a common pattern of a diminished tradeoff for both shocks is clearly evident in Figure 8.
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Figure 8: The posterior medians of the ratios of the inflation and unemployment rate responses (averaged
over the 3-9 quarter horizon) for each structural shock
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Figure 9: The posterior median and 50% equal-tailed credible interval for the ratio of the inflation
and unemployment rate responses (averaged over the 3-9 quarter horizon) for a structural shock to the
unemployment rate
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Figure 10 presents a related measure of the decline in the short-run tradeoff since the 1990s.
This figure plots the 95% joint credible set for the ratios of the inflation and unemployment rate
responses to a structural shock to the unemployment rate based on estimates from time periods A
and B and conditional on a negative simulated ratio in period A. The periods for comparison that
we consider in the four panels are 1975Q1 vs. 1990Q3, 1975Q1 vs. 1991Q1, 1975Q1 vs. 2000Q1
and 1990Q3 vs. 2000Q1. These are based on key business cycle reference dates of trough, peak,
trough, and normal time for the four respective dates. The results evident in Figure 10 can also
be summarized by the statistic FZ, which is defined as the fraction of simulated ratios that are
greater in period B than in period A. For example, consider F|o00 = 85.2%. This means that 85.2%
of the simulated ratios in 1990Q3 are greater than those in 1975Q1. The equivalent statistics for
the other dates are F|goi = 85%, Figos = 91.8%, and F1)00 = 84.7%. Thus, from Figure 10 and
the corresponding F¥ statistic, we can conclude that the short-run tradeoff between inflation and

cyclical unemployment has declined since the beginning of the 1990s.
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Figure 10: 95% joint credible sets of ratios of inflation and unemployment rate responses (averaged over
the 3-9 quarter horizon) for a structural shock to the unemployment rate across certain periods of time: (a)
1975Q1 vs. 1990Q3; (b) 1975Q1 vs. 1991Q1; (c) 1975Q1 vs. 2000Q1; (d) 1990Q3 vs. 2000Q1. 95% joint
credible sets are constructed by excluding 2.5% equal-taileded draws from the two marginal distributions.

30



8 Conclusion

In this paper, we have developed a stochastic volatility time-varying parameter vector autoregressive
model with mixture innovations parameters and allowing different blocks of parameters to change
at different points of time. Notably, this model fits the U.S. macroeconomic data better than models
that assume continuous or infrequent change in all of the model parameters at the same time. As
part of the flexible variation allowed in the parameters, we do not force non-policy parameters to
change at the same time as those related to monetary policy. This allows us to test and reject the
empirical relevance of Lucas critique notion that changes in policy parameters drive changes in
reduced-form parameters.

Even though we do not find support for the Lucas critique, our estimates suggest that the
structure of the U.S. economy has evolved considerably over the postwar period, with diminished
effects of monetary policy shocks on inflation and changes in the slope of the Phillips curve in
recent years. However, it is notable that the structural changes have been gradual and small enough
in the recent sample that estimates from the model could be useful for predicting the effects of

monetary policy in the future, at least once the U.S. economy exits the zero-lower-bound period.
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Technical Appendix: The Markov Chain Monte Carlo
(MCMC) Algorithm for Simulating the Posterior Density

Appendix A. Simulating p(6’,a", 0", 0,5, W, K" kL, k[, Aly")

In order to simulate the joint posterior density p(6”,a", 0", Q,S, W, K" kI, k}, Aly"), where T is
6

the sample size, A = {/11‘,-, /12.,-}],:1 and K7 = (le, k3, k3, kf), we draw from full conditionals, except

for drawing K”, kI, k! which are based on reduced conditional sampling algorithm suggested by

Gerlach et al. (2000), as follows:

Al. Drawing latent variables K”, k! and k/

In the first step, latent variables K7 = (le, k3, k3, k{) are drawn from the Gaussian linear state-space
model (1) and (2). Note that

vi = X6, + A'e, (A.1)

0 = 0.1 + K& (A.2)

Remember that K; has two specifications with respect to restrictions on the reduced VAR
parameters according to equations or variables, but it suffices to present the simulation procedures
with only one unified notation. To draw K, we resort to the reduced conditional sampling algorithm
developed by Gerlach et al. (2000), which integrates the states out and draws K, without conditioning
on the states. This algorithm greatly improves efficiency especially when the states 6, and K, are

highly correlated as usually the case. K, can be drawn from

pKily".a" o", 0.8, W, K\, ki, Kk, )
= p(KIy', ", 0", 0,2
o« pO K" ", 0", 0.0 p(K ", 0", Q,2)
oc p(* MY KT " 0T, Q) pOily™ L KM @ 0T, Q) p(KiIA)

4
o< po"* YL KT o o7, Q) piy L KM e T, Q) x [ ] pikil),
j=1

where K\, = K'\K, and x*' = (X;, X541, , X;), § < t. The terms p(kil|d), j=1,2,3,4, can be easily
obtained from the hierarchical priors. To evaluate p(y**'7|Y'", KT, o, 0T, Q) and p(y,y""~!, K, o, 0T, Q),
please see the details in Gerlach et al. (2000).
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As for ks, and k¢;, we adapt the algorithm of Gerlach et al. (2000) to another two state-space
models and draw ks, and k¢, separately. Specifically, under the assumption that S is block diagonal,
ks; is drawn from the Gaussian linear state-space model with respect to the state @, derived in
Primiceri (2005):

Vi = Dy, + L6, (A.3)
;= a1 + ks, (A.4)
0 0 0
where D, = | =9, 0 0 |. On the other hand, following Kim et al. (1998), we consider
0 D —Jo

the non-Gaussian linear state-space model with respect to the state 4, = In o, as follows:
Yo =2h+e, (A.5)
he =hi 1 + k6t§t’ (A.6)

where y;* = [vi; ¥y yil, vt = ln[(y;‘)2 +cl, ¥y = AQ: — X]6), c = 0001 and ¢, =
el ey e3] in which ey, j = 1,2,3 are log-chi-square distributed. Based on a mixture of
normals approximation of ej’s log-chi-square distribution, we can approximate A.5 and A.6 to a
sound precision by a Gaussian linear state-space model from which k¢, can be drawn by adapting
reduced conditional sampling algorithm of Gerlach et al. (2000). Please see the details of the

mixture of normals approximation in the Section A7 below.
A2. Drawing parameters of Beta priors A

Denote the Beta priors for p;, j=1,2,--- ,6 by Beta(illj, /_lzj), therefore, the posterior distribution

of p;is Beta(d;, A»;), where %

T T
Aj=2,,+ ) ke and Ty= 4, +T = k.
= t=1

A3. Drawing reduced VAR parameters 67

Z3Hereafter, the underlined parameters stand for the parameters of priors and the overlined parameters represent the
parameters of posteriors.
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Conditional on y’, e, 0", 0,8, W, K", ki, k[, A, the states 6" can be drawn from the state-space
model A.1 and A.2 by Gibbs sampling developed in Carter and Kohn (1994). Note that

p@la", o, 0.8, W, K" k5 kg, A, y")
=p@la", 0", 0,y", K")
T-1
= p(9T|Q'T, O-Ta Qa yTy KT) 1_[ p(9t|91+19yta a/Ta 0-T7 Q7 Kt+l)’

=1

where

o | 49;+1,y', a'T, O'T, 0, K. ~ N(0t|t+laPt|t+l)’
9t|t+l = E(9t|9t+layt’ aTa O-T, Q, Kt+l)7
Py = Var(0t|9t+l,yt, Q'T, O'Ta 0, Ki+1).

The last recursion of forward Kalman filter gives 877 and Prjy from which 67 can be simulated.
Then 6,4, and Pyy,t = 1,2,--- , T — 1, are obtained by backward recursions from 6 and Prr.
From N(6y+1, Pyir1), we are able to simulate the smoothed estimates of 6,,¢ = 1,2,---,T — 1.

Please see the details of the Gibbs sampling procedure in Appendix B.
A4. Drawing hyperparameter QO

Because we assume the prior of Q is the inverse-Wishart distribution I'W(Q, ZQ), Q7! is governed

by Wishart distribution as:
o'~ WQ vy

Then, the posterior for Q™! conditional on other blocks is Wishart as well:
06" a" 0T S WKT KL KL A~ WD L),

where

-1

T

— 1 B , _

0 ="+ O -0 -0)| and Vo=v,+T.
=1

A5. Drawing covariances o’

Again, consider the Gaussian linear state-space model A.3 and A.4 under the assumption of
block-diagonal S. Because y;, is determined by exogenous identity shock €, and o;,, then

conditional on other blocks, J;, is predetermined in J,,’s equation. Similarly, $;, and ,, are
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predetermined in y3,’s equation. Therefore, @, can be obtained by applying the Kalman filter
and the backward recursion equation by equation. Let @, = [a;,, a@,]’, where a;;, = a»;, and
@y = a3, as,] are corresponding to different blocks in S, then the smoothed estimate of ¢, is

derived from

¢ T T
iy | @ig1,Y,0°,85,0 Jksper ~  N(@igrer> Nige+1)s
_ ¢ T T
Qi1 = E(@iglaip,y', 0 ,8,0 ks 1),

_ t nT T .
Ai,l‘|l+1 - Var(ai,l‘lai,l‘+1’y ’9 7Si70- ’k5,l+1)’ 1= 1a2'

A6. Drawing hyperparameter S

Recall that we separate S into two blocks S| and S, each governed by inverse-Wishart distribution
WS i Zsj)’ j = 1,2. Equivalently, S ]‘.1 ~ W(S j‘l, 1_/Sj), j = 1,2. Thus, the conditional posterior

for S ;, j=1,2,1s as follows:
ST 6" 0" o, QW KT KL KA~ WS, V),

where

-1

T T
—1
_ -1 ’ 5
S, =187+ D @ @)@ — )| and Vs, =vg + > k.
=1 t=1

A7. Drawing stochastic volatility o’

The stochastic volatility o’

is drawn from the non-Gaussian linear state-space model A.5 and
A.6 based on a mixture of seven normals approximation as in Kim et al. (1998) with component
probabilities ¢;, means m; — 1.2704 and variances vlz,l = 1,2,---,7. Please see the constants
{q;, my, vlz} chosen for matching a number of moments of the log(y*(1)) distribution in Kim et al.
(1998). Note that y;* and y%/ are independent of one another for i # j, hence, e; is independent of
ej; as well. Thus, we can employ the same mixture of normals to approximate any element in e;.
Define the state-indicator matrix s = [sq, 82, -, 871, 8 = [Sir Sop 53], sip € {1,2,---,7},
j=1,2,3andt = 1,2,---,T, which shows in each period of time which member of the mixture
of normals is used for each element of ¢,. Then, s’ can be updated as in Kim et al. (1998) for each

s i independently from the discrete density
Pr(sy = 1ly5, hy) o qufn(Viy12hy +m = 1.2704,v)),  j=1,2,3,1=1,2,---,7,

where fy(-) stands for the normal density.

39



Conditional on other blocks, after determining the members of the mixture of normals used for
approximation for e,, the system obtained is a Gaussian linear state-space model in which A, can
be easily drawn based on standard Kalman filtering and backward recursions as in previous steps.

Specifically, smoothed estimates of /, can be drawn recursively from

hy | hm,yt, QT, a'T, VV,I%T, st~ N(ht|t+la Ht\t+l),
ht|t+1 = E(htlhl”rl’yt’ GT’QT’ Wkg’ ST)9
Hl‘|l+] = Var(hllhl+17yt’ QT’ a,TaWkg’ ST)-

Finally, the smoothed estimate of o, can be recovered by the transformation o, = exp{0.5k,}.
A8. Drawing hyperparameter W

Note that W ~ TW(W,v,,), i.e. Wl ~ W(E‘l,\_zw), where W(-,-) and IW(., -) stand for Wishart
distribution and inverse-Wishart distribution, respectively. Hence, the posterior for W~! conditional

on other blocks reads:
W6l 0T, 0.8 KT KL KD A~ WW T,
where

-1

T T
—1 , _
W= |W > g = k) = k)| and Yy = vy + > ke
=1 =1

Appendix B. Gibbs Sampling for State-Space Models

We cast the Gaussian linear state-space models considered in this paper into the following state-space

form:
Measurement equation: v, = FB; +u,,
State equation: B: =Bt + vy,
where
R, O
B N Ll N .
Vi Vi 0 0
Define

ﬁtls = E(Btlys9 FS,RS, Q)’
Py = Var(B/ly', F*,R*, Q).
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Given the mean and variance of the initial state, By and Py, the forward Kalman filter yields:

Bu-1 = Br-11-1
Py =Py + O,
K = Py F,(F.Py_1F, +R)™,
B = Bu—1 + k(yr — FiBi-1),
Py = Py — ke F Py

After obtaining Sy and Prip, we draw S from N(Brir, Pryr). Then the draw of Sr and the
output derived from the above forward Kalman filter are used for backward recursion as follows:

ﬂt|t+1 = ,Bz|t + Pt|tP,_+11|,(ﬁz+1 _ﬁth)»
Pt|t+l = Ptlt - PtltP_l Pt|t’

t+1]t

which provide Br_jr and Py_;r that are used to generate Sr_;. Likewise, Br_o,Br-3, -, are

drawn from N(Br_yr-1, Pr-ar-1), N(Br-3ir-2, Pr-3ir-2), - -+ , N(Bipp, P1p), respectively.
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