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Abstract

A sender chooses ex ante how information will be disclosed ex post. A receiver

obtains public information and information disclosed by the sender. Then he takes

one of two actions. The sender wishes to maximize the probability that the receiver

takes the desired action. I show that the sender optimally discloses only whether the

receiver�s utility is above a cuto¤. I derive necessary and su¢ cient conditions for the

sender�s and receiver�s welfare to be monotonic in information. Most notably, the

sender�s welfare increases with the precision of the sender�s potential information and

decreases with the precision of public information.

JEL Classi�cation: C44, D81, D82, D83

Keywords: information, disclosure, persuasion, stochastic orders

1 Introduction

Economists have long been interested in how an interested party can communicate her

private information to a decision maker when their interests are imperfectly aligned (seminal

contributions include Spence (1973), Milgrom (1981), and Crawford and Sobel (1982)). I
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suggestions.
yUniversity of New South Wales, School of Economics. Email: a.kolotilin@unsw.edu.au.

1



study a situation in which before obtaining information, the interested party can choose a

mechanism that speci�es what information will be disclosed to the decision maker. This

situation has been largely unexplored until recently (the pioneering articles are Rayo and

Segal (2010) and Kamenica and Gentzkow (2011)).

The drug approval process by the Food and Drug Administration (FDA) is a good

example of such a situation. If a pharmaceutical company (manufacturer) wants a new

drug to be approved, it has to submit a research protocol for all tests that are going to be

undertaken. The FDA closely monitors the record keeping and the adherence to the research

protocol. So the FDA essentially observes both the design and results of all tests. Finally,

based on the results of these tests, the FDA either approves the drug or rejects it. Because

of the large cost of the process and large bene�ts of approval, the manufacturer has strong

incentives to optimally design tests to maximize the probability of the FDA�s approval.1

What is the optimal design of tests? How much and what types of information these tests

should reveal? What determines the success rate of drug trials and what determines the

average quality of approved drugs?

I give exhaustive answers to these important questions by considering the following

sender-receiver game. The receiver has a binary action choice: to act or not to act. The

sender�s utility depends only on the action taken by the receiver, and she prefers the receiver

to act. The receiver�s utility depends both on his action and on information. The receiver

takes an action that maximizes his expected utility given his beliefs. He forms his beliefs

based on public information and information disclosed by the sender. The sender chooses

ex ante how information will be disclosed to the receiver ex post. Formally, she can publicly

choose any conditional distribution of messages given information. I call this distribution a

mechanism. The sender chooses the mechanism that maximizes her expected utility �the

ex ante probability that the receiver will act. No monetary transfers between the sender

and receiver are allowed.

This model is a special case of Kamenica and Gentzkow (2011) who consider a general

model with an arbitrary set of actions, and arbitrary utility functions for the sender and

receiver. They derive some interesting properties of the optimal mechanism. To completely

characterize the optimal mechanism, I impose more structure that still �ts many real-

life examples well. Most importantly, however, I derive general monotone comparative

statics results that relate the sender�s and receiver�s expected utilities to the probability

distribution of information. Speci�cally, I provide necessary and su¢ cient conditions for

1The description of the drug approval process is taken from Lipsky and Sharp (2001).
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the sender and receiver to prefer one distribution of information to another for all values of

the receiver�s opportunity cost of acting. I now present the main results of the paper using

the drug approval process.

The manufacturer optimally chooses a test that produces two outcomes: positive and

negative. The former makes the FDA indi¤erent between approving and rejecting the drug,

and the latter makes the FDA strictly prefer to reject the drug. These results follow directly

from Kamenica and Gentzkow (2011). On top of these results, I show that the positive

outcome occurs if and only if the drug�s quality is above a cuto¤.

What factors a¤ect the manufacturer�s welfare (or equivalently the probability of the

drug approval)? The manufacturer�s welfare is higher if the manufacturer is able to design

more informative tests (in the mean-preserving spread sense) and if better drugs enter

the testing phase (in the �rst-order stochastic dominance sense). Interestingly, under the

absence of public information, these two conditions are not only su¢ cient but also necessary

if the manufacturer�s welfare is required to be higher for all values of the FDA�s opportunity

cost of approving the drug. Under the presence of public information, the manufacturer�s

welfare is higher if (and under some additional conditions, also only if) public information

is less precise and more positive about the drug�s quality.

What factors a¤ect the FDA�s welfare (or equivalently the expected quality of approved

drugs)? Surprisingly, the FDA�s welfare remains the same if the manufacturer is able to

design more informative tests. However, the FDA�s welfare is higher if public information

is more precise and more positive about the drug�s quality. These two conditions are also

necessary if the FDA�s welfare is required to be higher for all values of the opportunity

cost of approving the drug. Finally, the overall welfare of the manufacturer and FDA is

increasing in the precision of potential information of the manufacturer but is not monotonic

in the precision of public information.

Although the above monotone comparative statics results are intuitive, they do not hold

in the large existing literature where the sender chooses what information to disclose when

she already has her private information. In particular, they do not hold under cheap talk

and veri�able communication (Green and Stokey (2007) and Ivanov (2010)). The di¤erence

is due to the sender�s incentive compatibility constraint on information disclosure, which is

absent in my model, because the sender chooses what information to reveal at the ex ante

stage.

Public information in the model captures not only information that will literally become

public, such as the results of required tests, but also any veri�able private information of
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the manufacturer or the FDA that they have at the ex ante stage, such as the results of

preclinical trials or rival applications previously submitted to the FDA. Indeed, using an

argument similar to Milgrom (1981), I show that such information gets fully disclosed.

The manufacturer�s unveri�able information, such as private opinions of its experts, on the

contrary, can be ignored because the manufacturer can never credibly transmit it.

The most related paper is Kamenica and Gentzkow (2011) discussed above. Rayo and

Segal (2010) and Kolotilin (2012) study optimal information disclosure when the receiver

has unveri�able private information. Lerner and Tirole (2006), Brocas and Carrillo (2007),

and Benoit and Dubra (2011) study information disclosure in environments similar to mine,

but in their models, the sender is exogenously constrained in choosing a mechanism, so they

do not characterize the optimal mechanism. Bergemann and Pesendorfer (2007) and Eso

and Szentes (2007) study optimal information disclosure in environments in which monetary

transfers are allowed. Finally, Athey and Levin (2001) derive monotone comparative statics

results in certain single-person decision problems.

The rest of the paper is organized as follows. Section 2 presents the model. Sec-

tion 3 completely characterizes the optimal information disclosure mechanism and presents

monotone comparative statics results. Section 4 extends the model to allow the sender and

receiver to have private information at the ex ante stage. Section 5 concludes. All proofs

and technical details are relegated to the appendices.

2 Model

Consider a communication game between a female sender and a male receiver. The receiver

takes a binary action a = 0; 1. Say that the receiver acts if he takes a = 1, and the receiver

does not act if he takes a = 0. The sender�s utility depends only on a, but the receiver�s

utility depends both on a and on (s; r), where components s and r denote the sender�s type

and public type, respectively. Without loss of generality, the sender�s utility is a, and the

receiver�s utility is u0 if a = 0 and s if a = 1.2 Before (s; r) is realized, the sender can

commit to a mechanism that sends a message m to the receiver as a (stochastic) function

2De�ning the sender�s preferred action as a = 1 and applying an a¢ ne transformation gives that his

utility is a. Suppose now that the receiver�s utility is u0 (s; r) if a = 0 and u1 (s; r) if a = 1. Because the

action is binary, only the di¤erence u1 (s; r)�u0 (s; r) matters for the receiver�s choice of action, so u0 (s; r)
can be normalized to u0 (or even to 0). Further, for any given r, which is observed both by the sender and

the receiver, the sender�s type can be transformed according to u1 (:; r) to ensure that the receiver�s utility

from acting is s.
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of (s; r); speci�cally, the sender chooses the conditional distribution � (mjs; r) of m given

(s; r).

Assume that the set of messages M contains at least two elements m0 and m1, the set

of sender�s types S is [s; s], the set of public types R is an arbitrary set that satis�es mild

regularity conditions that ensure that all conditional expectations exist.3 The information

(s; r) has some joint distribution. For simplicity, assume that all distributions admit strictly

positive densities unless stated otherwise. In particular, the marginal distribution G (r) of

r and the conditional distribution F (sjr) of s given r admit strictly positive densities g (r)
and f (sjr).
The timing of the communication game is as follows:

1. The sender publicly chooses a mechanism � (mjs; r).

2. A triple (m; s; r) is drawn according to �, F , and G.

3. The receiver observes (m; r) and takes an action a.

4. Utilities of the sender and receiver are realized.

The solution concept used is Perfect Bayesian Equilibrium (PBE). I view PBEs as

identical if they have the same equilibrium mapping from information (s; r) to the receiver�s

action a. At the third stage, the receiver forms beliefs and acts if and only if the conditional

expectation E� [sjm; r] of s given (m; r) is at least u0. (Note that PBE requires that the
receiver takes the sender�s preferred action whenever he is indi¤erent between the two

actions.) At the �rst stage, the sender chooses an optimal mechanism that maximizes her

expected utility, the probability that the receiver acts.

Using the revelation principle, restrict attention to mechanisms that send only two

messages: m0 that persuades the receiver not to act and m1 that persuades the receiver

to act. Adopt the convention that � (m1js; r) denotes the probability of the message m1

given (s; r). Hereafter, all notions are in the weak sense. For example, increasing means

not decreasing and higher means not lower.

To see that my model is a good approximation of the drug approval process, let us

reinterpret the manufacturer as the sender and the FDA as the receiver. The FDA�s

approval decision is the receiver�s action, and the research protocol is the sender�s choice

of a mechanism. Any information that can potentially be revealed by some tests is the

3For example, R is allowed to be a complete separable metric space endowed with the Borel sigma

algebra (Theorems 1.4.12 and 4.1.6 in Durrett (1996)).
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sender�s information, the results of the required tests is public information, and the results

of the remaining tests is a message. The manufacturer has a lot of freedom in choosing the

design of tests. For example, it chooses dosage and characteristics of volunteer patients,

such as gender, age, and health condition. Moreover, the manufacturer can make speci�cs

of subsequent tests to be contingent on the results of the required tests. Due to the FDA�s

regulation and close monitoring, the FDA observes both the design and results of all tests,

and then approves the drug if its bene�ts outweigh its costs and risks.

3 Analysis

I start this section by deriving the optimal mechanism, which has a simple cuto¤ structure.

This result makes the model suitable for sharp comparative statics analysis. I �rst illustrate

the main comparative statics results under the absence of public information. It is not trivial

to generalize the results when the public information is present because each public type

generates a di¤erent distribution of the sender�s type.4 At the end of the section, I present

this generalization and discuss its practical importance using the drug approval process.

3.1 Optimal Mechanism

The optimal mechanism �� has a simple cuto¤ structure.

Theorem 1 The optimal mechanism is given by

�� (m1js; r) =
(
1 if s � s� (r) ;
0 if s < s� (r) :

(1)

If
R s
s
sf (sjr) ds � u0, then s� (r) = s; otherwise s� (r) < u0 is the unique solution toR s

s�(r) (s� u0) f (sjr) ds = 0.

Clearly, the optimal mechanism is conditioned on each piece of public information r.

This implies that it does not matter whether the sender commits to a mechanism before

or after the realization of r. I give the intuition for Theorem 1 conditional on some value

r. If it is not possible to induce the receiver to always act, then the optimal mechanism

induces the receiver to act if and only if his utility is above the cuto¤. The cuto¤ is such

4Therefore, to compare two information structures one needs to compare two distributions of distribu-

tions of the sender�s type instead of simply comparing two distributions of the sender�s type as under the

absense of public information.
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that the receiver is indi¤erent between the two actions whenever he acts. Intuitively, the

optimal mechanism has two de�ning features: (i) it makes the receiver indi¤erent between

the two actions whenever he acts; and (ii) it makes the receiver know whether his utility is

above the cuto¤. If the �rst feature were violated, then the receiver would strongly prefer

to act whenever he acts. Thus, it would be possible to increase the probability that the

receiver acts by sending m1 for a slightly larger set of types s. If the second feature were

violated, then it would be possible to construct a mechanism that sends m1 with the same

total probability, but for higher types s. This mechanism would violate the �rst feature, so

it would be possible to increase the probability that the receiver acts.

Theorem 1 and subsequent results extend when the distribution of (s; r) does not admit

a density, as I show in Appendix C. The only di¤erence is that the optimal mechanism may

randomize over messages at the cuto¤as the following example shows. Suppose that u0 = 0,

public information is absent, and F is a discrete distribution that assigns probabilities 1=3

and 2=3 to 1 and �1. The optimal mechanism sends the message m1 if s = 1, and the

messages m1 and m0 with equal probabilities if s = �1. As a result, the receiver who gets
m1 is indi¤erent between the two actions and the probability of m1 is 2=3.

Weaker versions of Theorem 1 appear in the literature. Lerner and Tirole (2006) show

that the mechanism from Theorem 1 is optimal in a smaller class of feasible mechanisms in

a more speci�c setting than mine. Kamenica and Gentzkow (2011) establish Theorem 1 for

the above discrete example. For a more general setting than mine, they derive interesting

properties of the optimal mechanism. In particular, these properties imply that m1 makes

the receiver indi¤erent between the two actions and thatm0 can only be sent to types s < u0.

However, they do not imply that that the optimal mechanism has a cuto¤ structure in that

m0 is sent if and only if s < s� (r). Moreover, my proof is simpler.

3.2 Comparative Statics without Public Information

In this section, assume the absence of public information. Theorem 2 presents monotone

comparative statics results that relate the sender�s and receiver�s expected utilities under the

optimal mechanism to the distribution of the sender�s type. This theorem uses the standard

de�nitions from the literature on stochastic orders. Let P1 and P2 be two distributions. P2
is higher than P1 in the increasing convex order if there exists a distribution P such that

P2 �rst-order stochastically dominates P and P is a mean-preserving spread of P1.5

5See De�nition 1 and Lemma 1 in Appendix A for more de�nitions and results on stochastic orders.
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Theorem 2 Let F1 and F2 be two distributions of s that do not depend on r.

1. The sender�s expected utility under the optimal mechanism is higher under F2 than

under F1 for all u0 if and only if F2 is higher than F1 in the increasing convex order.

2. The receiver�s expected utility under the optimal mechanism is higher under F2 than

under F1 for all u0 if and only if EF2 [s] � EF1 [s].

Part 2 holds because the optimal mechanism is as uninformative as possible from the

receiver�s perspective, as follows from Theorem 1. Indeed, under the optimal mechanism, if

the receiver acts, then he either holds the prior belief or is indi¤erent between the two ac-

tions. Thus, the receiver�s expected utility under the optimal mechanism is max fE [s] ; u0g,
which is equal to his expected utility under a mechanism that sends the same message re-

gardless of s.

Part 1 is more interesting. It says that the sender�s expected utility is higher if the dis-

tribution of s is (i) more favorable for acting (in the �rst-order stochastic dominance sense)

and (ii) more variable (in the mean-preserving spread sense). Condition (i) is straightfor-

ward: more favorable distribution makes it easier for the sender to persuade the receiver.

As to condition (ii), shifting probability weights to the ends of the support of [s; s] de-

creases E [sjs < F�1 (p�)] and increases E [sjs � F�1 (p�)] allowing the sender to increase
the probability 1�p� that the receiver acts, as follows from Theorem 1. Interestingly, these
two conditions are not only su¢ cient but also necessary if the sender�s expected utility is

required to be higher for any value of u0.6

To get a deeper understanding of the results involving condition (ii) above, notice that

the model has the following equivalent interpretation. There is an underlying binary state

!. The receiver�s utility is ! if he acts (and u0 if he does not). The sender�s type s is

a noisy signal about ! normalized to E [!js]. The sender chooses a mechanism � (mjs),
which determines how much information about s is disclosed to the receiver. Indeed,

let ! take values ! = s and ! = s with probabilities p = (s� E [s]) = (s� s) and p =
1 � p; let the density functions of s given ! be h (sj!) = f (s) (s� s) = (s� E [s]) and
h (sj!) = f (s) (s� s) = (E [s]� s). For this construction, ph (sj!) + ph (sj!) = f (s) and

E [!js] = s, which establishes the equivalence.
Under this interpretation, variability condition (ii) corresponds to an informativeness of

potential information s (Blackwell (1953)). The following corollary of Theorem 2 presents

6As can be seen from the proof, it is straightforward to write a strong version of Theorem 2 in which

the sender�s and receiver�s expected utilities are strictly higher under F2.
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comparative statics with respect to such changes in informativeness.

Corollary 1 Let the receiver�s utility from acting ! be either ! or ! with probabilities p

and p. Let H1 (sj!) and H2 (sj!) be two conditional distributions of s given ! that admit
densities h1 (sj!) and h2 (sj!).

1. The sender�s expected utility under the optimal mechanism is higher under H2 than

under H1 for all u0 if and only if there exists a distribution Q (s1js2) of s1 given s2
such that for all ! and s1,

H1 (s1j!) =
Z
Q (s1js2)h2 (s2j!) ds2: (2)

2. The receiver�s expected utility under the optimal mechanism is the same under H2
and under H1 for all u0.

Part 2 holds again because the optimal mechanism leaves no rent to the receiver, so the

receiver�s expected utility max fE [!] ; u0g does not depend on potential information s. In
part 1, the distribution H1 is a garbling of the distribution H2 in that H1 is obtained from

H2 by adding noise. Thus, any mechanism �1 (mjs1) under H1 can be replicated under H2
by �2 (mjs2) =

R
�1 (mjs1) dQ (s1js2), which implies that the sender�s expected utility is

higher under a more informative distribution H2. Based on this intuition, the comparative

statics results can be extended beyond this model as long as the sender can choose any

mechanism at the ex ante stage. This assumption, however, is critical for the results.

Under a cheap talk version of my model, the sender would not be able to disclose any

information because she always prefers the receiver to act. Thus, the sender�s expected

utility would not change as her information becomes more precise. More generally, Green

and Stokey (2007) and Ivanov (2010) show that the sender�s expected utility may strictly

decrease in the precision of her information. This happens because having less precise

information may reduce the sender�s incentive to misrepresent information.

Similarly, under a veri�able communication version of my model, the sender would

disclose all her information by the unravelling argument due to Milgrom (1981). Thus, by

Theorem 1, it is optimal for the sender to know only whether the receiver�s utility is above

the cuto¤, which is less informative than knowing the receiver�s utility exactly. That is,

the sender�s utility may strictly decrease as her information becomes more precise.

In the drug approval process, the manufacturer�s welfare is the success rate of drug

trials and the FDA�s welfare is the average quality of approved drugs. Note that these
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variables can actually be observed in the data, so the theoretical comparative statics results

are amenable to empirical analysis. Others being equal, the success rate is higher if the

manufacturer has a better drug discovery process, or if the manufacturer has better testing

capabilities. The average quality of approved drugs is also higher under the �rst scenario,

but is the same under the second scenario.

3.3 Comparative Statics with Public Information

This section generalizes the previous section by introducing public information. Notice

that each piece of public information r is associated with a distinct conditional distribution

F (:jr) of the sender�s type s. For convenience, I identify r with F (:jr) so that the only
primitive of the model is a distribution G of r. Thus, to compare two environments, we

need to compare two distributions G of r, where r is multidimensional because it is a

distribution of s.

To avoid technical issues that arise due to multidimensionality, I start with the case

of binary s. Speci�cally, assume that s = s; s and r = Pr (sjr). Proposition 1 presents
monotone comparative statics results that relate the sender�s and receiver�s expected util-

ities to the primitive G. This theorem uses a new stochastic order. P2 is higher than

P1 in the increasing concave order if there exists P such that P2 �rst-order stochastically

dominates P and P1 is a mean-preserving spread of P .

Proposition 1 Let the support of F (:jr) consist of s and s where r is identi�ed with
Pr (sjr) for all r 2 R = [0; 1]. Let G1 and G2 be two distributions of r.

1. The sender�s expected utility under the optimal mechanism is higher under G2 than

under G1 for all u0 if and only if G2 is higher than G1 in the increasing concave order.

2. The receiver�s expected utility under the optimal mechanism is higher under G2 than

under G1 for all u0 if and only if G2 is higher than G1 in the increasing convex order.

Part 1 of Proposition 1 states that the sender�s expected utility increases as the dis-

tribution of public information becomes (i) more favorable for acting (in the �rst-order

stochastic dominance sense) and (ii) less variable (in the mean-preserving spread sense).

The intuition for condition (i) is again straightforward: more favorable public information

makes it easier for the sender to persuade the receiver. As to condition (ii), when public

information is less polarized, the receiver has a weaker opinion about his best action, so it

is easier for the sender to in�uence him.
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Part 2 of Proposition 1 states that the receiver�s expected utility increases as the distri-

bution G of public information becomes (i) more favorable for acting and (ii) more variable.

As before the receiver has the same expected utility under the optimal mechanism and the

mechanism �0 that sends the same message regardless of s. Since the receiver�s utility from

not acting is �xed at u0, the receiver is better o¤ as G becomes more favorable for acting by

the revealed preference argument. As to condition (ii), the receiver with a stronger opinion

enjoys a higher expected utility from his preferred action. Interestingly, conditions (i) and

(ii) for both parts of Proposition 1 are not only necessary but also su¢ cient if the sender

and receiver are required to be better o¤ under G2 for all values of u0.

Mathematically, Proposition 1 is exhaustive because it gives tight comparative statics

results with respect to the primitive G. But economically, changes in G in the �rst-order

stochastic dominance sense are not meaningful if the prior distribution of s is �xed. Indeed,

if the prior probability of s is �xed at p and r is a public signal about s (normalized as before

to Pr (sjr)), then any feasible distribution G of r must satisfy
R
rdG (r) = p. Therefore,

changes in G should be mean-preserving under this interpretation of public information.

Mean-preserving changes in G correspond to variability conditions (ii), which in turn

correspond to informativeness of public information (Blackwell (1953)). The following

corollary of Proposition 1 presents comparative statics with respect to such changes.

Corollary 2 Let s take only two values s and s where Pr (s) = p. Let H1 and H2 be two

distributions of public signals r1 and r2 given s. The sender�s (receiver�s) expected utility

under the optimal mechanism is higher (lower) under H2 than under H1 for all u0 if and

only if there exists a distribution Q (r2jr1) of r2 given r1 such that for all s and r2,

H2 (r2js) =
Z
Q (r2jr1)h1 (r1js) dr1: (3)

The corollary states that it is easier for the sender to persuade a less informed receiver,

but the receiver is better o¤ with more precise public information.7 Indeed, public infor-

mation is less precise under H2 because H2 only adds noise to H1. Intuitively, under H2,

the sender can replicate any mechanism �1 available under H1 by using a mechanism that

sends two messages sequentially. The �rst stage of this mechanism will then make public

information more precise, from H2 to H1, and the second stage will implement �1. The

receiver, in contrast, prefers more precise public information H1 because she can take a

better informed action under H1.

7Again, in the cheap talk literature, the sender�s and receiver�s expected utilities are not monotonic in

the precision of public information (Chen (2012)).
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Theorem 3 shows that in the general case of continuous s, changes in the distribution

G according to conditions (i) and (ii) have the same qualitative e¤ects on the sender�s

and receiver�s expected utilities as in Proposition 1. However, in this case, r being a

distribution of s becomes in�nite dimensional, so we need to extend the stochastic orders

to the multidimensional case and impose a partial order on R (see Appendix D for details).

Theorem 3 Let R be the set of distributions on [s; s] endowed with an increasing convex

order in that r2 is higher than r1 if F (:jr2) is higher than F (:jr1) in the increasing convex
order. Let G1 and G2 be two distributions of r.

1. The sender�s expected utility under the optimal mechanism is higher under G2 than

under G1 for all u0 if G2 is higher than G1 in the increasing concave order.

2. The receiver�s expected utility under the optimal mechanism is higher under G2 than

under G1 for all u0 if G2 is higher than G1 in the increasing convex order.

An important implication of Theorem 3 is that the sender becomes worse o¤ and the

receiver better o¤ as public information becomes more precise. However, the social welfare

does not necessarily increase with the precision of public information even if it puts a very

small weight on the sender�s utility. Indeed, suppose that initially public information is

absent. As public information appears, the marginal increase in the receiver�s expected

utility is 0 by the Envelope Theorem, as noted by Radner and Stiglitz (1984), but the

marginal decrease in the sender�s expected utility is strictly positive.

Continuing the drug approval process example, any commonly known information at

the time the manufacturer designs drug trials or any information that the FDA requires to

be revealed during drug trials can be viewed as public information. The above results mean

that requiring the manufacturer to run more tests, increases the average quality of approved

drugs but decreases the success rate of drug trials. In the next section, I show that even

the manufacturer�s and FDA�s private information can be viewed as public information

in certain cases, which implies that the derived comparative statics results have broader

applications.

4 Extensions

In this section, I show that any veri�able ex ante private information of the sender and

receiver gets fully disclosed at no cost to the sender in the unique equilibrium. This result
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has practical importance. It implies that the monotone comparative statics results from

the previous section continue to hold after reinterpreting any veri�able information as

public information. In particular, applying these results to the drug approval process gives

that the average quality of approved drugs increases and the success rate decreases if the

manufacturer carries out more thorough preclinical trials or if the FDA has more precise

private information about the tested drug from other sources.

4.1 Receiver�s Veri�able Private Information

In this section, the receiver has veri�able private information at the ex ante stage. As usual,

veri�able information is the information that cannot be lied about but can be concealed.

In this case, the sender extracts the receiver�s information at no cost and then discloses her

information optimally as if the receiver�s type was public. Therefore, all results of Section

3 apply.

To illustrate this result, assume that the type r is privately known by the receiver rather

than publicly known. In other respects, the environment is the same as in Section 2. In

particular, players, actions, the information structure, and preferences are the same. In

addition, assume that the set of receiver�s types R is given by [r; r] and is ordered in such

a way that s� (r) is strictly increasing in r where s� (r) is given by Theorem 1.

Similarly to Milgrom (1981), assume that the set of receiver�s reports is N (r) = [r; r].

That is, the receiver can report any type that is lower than his true type. Intuitively, the

report n can be viewed as the receiver�s claim that his true type r is at least n and the

receiver�s claims are required to be truthful in that r must belong to [n; r].

Now a mechanism � sends a message m to the receiver as a (stochastic) function of

(s; n). Finally, the timing of the game is as follows: 1. The sender publicly chooses a

mechanism � (mjs; n). 2. The receiver�s type r is drawn according to G. 3. The receiver
makes a report n. 4. A pair (m; s) is drawn according to � and F . 5. The receiver gets a

message m and takes an action a. 6. Utilities are realized.

Again, the solution concept used is PBE. Theorem 4 characterizes the unique PBE.

Theorem 4 In the unique PBE, the receiver reports his true type n = r and the sender

chooses the optimal mechanism �� given by Theorem 1.

The proof of existence of fully revealing equilibrium is fairly standard (Milgrom (1981)).

To show the uniqueness, I construct a mechanism which is arbitrarily close to �� and which

makes the receiver strictly prefer to disclose his information. This theorem shows that
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without loss of generality we can view the receiver�s veri�able private information as public

information.

Note that the mechanism �� and truthful reporting of the receiver constitutes a PBE

even if the sender has partial commitment in that she can choose a mechanism only after

the receiver�s report. However, this PBE is not unique in this new model. For example,

there exists a PBE in which the receiver always reports n = 0.8

4.2 Sender�s Ex Ante Private Information

In this section, the sender has private information before she chooses a mechanism. As

a result, the sender discloses all of her veri�able information and none of her unveri�able

information. Thus, without loss of generality, the sender�s veri�able information can be

viewed as public information, and the sender�s ex ante unveri�able information can be

integrated out. Again, all results of Section 3 apply.

In this section, the type r is privately known by the sender rather than publicly known.

In other respects, the environment is the same as in Section 2. In addition, assume that R

is given by [r; r] and is ordered in such a way that s� (r) is strictly decreasing in r.

The timing of the game is as follows: 1. The sender�s type r is drawn according to G.

2. The sender makes a report n. 3. The sender publicly chooses a mechanism � (mjs; n).
4. A pair (m; s) is drawn according to � and F . 5. The receiver gets a report n and a

message m and takes an action a. 6. Utilities are realized.

Again, the solution concept is PBE. The sender�s information is veri�able if the set of

her reports is N (r) = [r; r], where the report n can be viewed as the receiver�s truthful

claim that his type is at least n. The sender�s information is unveri�able if the set of her

reports is N = [r; r] regardless of r.9 Theorem 5 characterizes the unique PBE for both

cases of veri�able and unveri�able information of the sender.

Theorem 5 If the sender�s ex ante private information is veri�able, then in the unique

PBE, the sender reports n = r and chooses the optimal mechanism �� given by Theorem 1.
8Indeed, suppose that the sender believes that each out-of-equilibrium report n 6= 0 is made by the

receiver with type r = n. Note that under such a belief, the sender chooses a mechanism �� (mjs; n) for
any n 6= 0. Thus, the receiver�s interim expected utility from reporting n 6= 0 is max fu0;E [sjr]g, which is
smaller than that from reporting n = 0.

9Relatedly, the reader may wonder whether the main results of the paper would change if the message

m generated by the mechanism � was privately observed by the sender. Gentzkow and Kamenica (2012)

show that the optimal mechanism does not change and m is fully disclosed by the sender if m is veri�able.

Obviously, the sender cannot disclose any information if m is unveri�able, so all mechanisms are equivalent.
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If the sender�s ex ante private information is unveri�able, then in the unique PBE, the

sender reports some �xed n regardless of r and chooses the optimal mechanism ��� given

by Theorem 1 where F (sjr) is replaced with
R
F (sjr) dG (r) for all r.

The result that the sender discloses all her veri�able private information is again in

spirit of the unravelling result. The sender conceals all her unveri�able private informa-

tion, because regardless of her information, she always wants to pretend that she has the

best news for the receiver. Note that if the sender could commit to a mechanism before

the realization of r, then by Theorem 1, the optimal mechanism would be ��� de�ned in

Theorem 5. That is, the full commitment optimum is achieved as the equilibrium outcome

if the sender�s information is unveri�able. This observation is consistent with Theorem

3, which shows that the sender�s expected utility decreases with the precision of public

information.

5 Conclusions

In this paper, I have studied optimal information disclosure mechanisms. I have imposed

the following key assumptions. First, at the ex ante stage, the sender can publicly choose

how her information will be disclosed ex post; speci�cally, she can choose any conditional

distribution of messages given her information. Second, the receiver has a binary action

choice. Third, the sender�s utility depends on the receiver�s action but does not depend on

information.

The model is highly tractable and can be used as a building block. Compared to no

disclosure, the optimal disclosure mechanism gives the same expected utility to the receiver

but persuades him to act with a higher probability. Thus, in a richer model with many

receivers, the receivers will gain or lose from the optimal information disclosure mechanism

depending only on whether externalities from acting are positive or negative.

The monotone comparative statics results imply that it is straightforward to enrich the

model with strategic decisions that a¤ect the information structure. Returning to the drug

approval process example, the manufacturer can increase the success rate of drug trials

(i) by improving the discovery process such that better drugs enter the testing phase and

(ii) by improving the testing phase such that a better design of drug trials can be chosen.

The FDA, on the other hand, can improve the quality of approved drugs by imposing

more required tests that the manufacturer must carry out, thereby obtaining more precise

information about the tested drug.
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I have also shown that the sender and receiver disclose all of their veri�able private

information at the ex ante stage, so all of my results apply after reinterpreting this private

information as public. However, in this paper, I have not explored the possibility of the re-

ceiver having private information that cannot be elicited by the sender ex ante. Generically,

the receiver does have such private information at least by the time he takes an action. For

example, the FDA carries out an independent review after receiving the application from

the manufacturer. Moreover, the manufacturer is uncertain about preferences and beliefs

of the FDA regarding the safety and e¢ cacy of a new drug. Since the optimal mechanism

leaves no rent to the receiver if the receiver is uninformed, as a trivial result, the optimal

mechanism is (weakly) more informative if the receiver is privately informed. The detailed

analysis of this situation is my central goal in Kolotilin (2012).

Appendix A: Stochastic Orders

De�nition 1 presents the unidimensional stochastic orders used in Section 3.2.

De�nition 1 Let X1 and X2 be two random variables with distributions P1 and P2 on

[x; x]. Say that

1. P2 �rst-order stochastically dominates P1 (denoted by P2 �st P1) if P2 (x) � P1 (x)

for all x.

2. P2 is a mean-preserving spread of P1 (denoted by P2 �cx P1) if there exist two random
variables bX2 and bX1, de�ned on the same probability space, with distributions P2 and

P1 such that E
h bX2j bX1

i
= bX1.

3. P2 is higher than P1 in the increasing convex order (denoted by P2 �icx P1) if there
exists a distribution P such that P2 �st P �cx P1.

4. P2 is higher than P1 in the increasing concave order (denoted by P2 �icv P1) if there
exists a distribution P such that P2 �st P and P1 �cx P .

Lemma 1 gives useful equivalent representations of the above stochastic orders.

Lemma 1 Let P1 and P2 be two distributions that admit densities on [x; x].

1. P2 �st P1 if and only if E [h (X2)] � E [h (X1)] for all increasing functions h.
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2. P2 �cx P1 is equivalent to each of the following conditions:

(a) E [h (X2)] � E [h (X1)] for all convex functions h;

(b)
R x
x
P2 (ex) dex � R xx P1 (ex) dex for all x 2 [x; x] with equality for x = x;

(c)
R 1
p
P�12 (ep) dep � R 1

p
P�11 (ep) dep for all p 2 [0; 1] with equality for p = 0.

3. P2 �icx P1 is equivalent to each of the following conditions:

(a) E [h (X2)] � E [h (X1)] for all increasing convex functions h;

(b)
R x
x
P2 (ex) dex � R xx P1 (ex) dex for all x 2 [x; x];

(c)
R 1
p
P�12 (ep) dep � R 1

p
P�11 (ep) dep for all p 2 [0; 1].

4. P2 �icv P1 is equivalent to each of the following conditions:

(a) E [h (X2)] � E [h (X1)] for all increasing convex functions h;

(b)
R x
x
P2 (ex) dex � R xx P1 (ex) dex for all x 2 [x; x];

(c)
R p
0
P�12 (ep) dep � R p

0
P�11 (ep) dep for all p 2 [0; 1].

Proof. See Shaked and Shanthikumar (2007) Section 1.A.1 for part 1, Section 3.A.1 for

part 2, and Section 4.A.1 for parts 3 and 4.

De�nition 2 presents the multidimensional stochastic orders used in Section 3.3.

De�nition 2 Let P be the set of distributions on [x; x] endowed with some partial order

�P . Let X1 and X2 be two random elements with distributions Q1 and Q2 on P. Say that

1. Q2 �rst-order stochastically dominates Q1 (denoted by Q2 �mst Q1) if PrQ2 (X2 2 U) �
PrQ1 (X1 2 U) for all measurable increasing sets U � P in that P �P P 0 and P 0 2 U
imply P 2 U .

2. Q2 is a mean-preserving spread of Q1 (denoted by Q2 �mcx Q1) if there exist two
random elements bX2 and bX1, de�ned on the same probability space, with distributions

Q2 and Q1 such that E
hbX2jbX1

i
= bX1.

3. Q2 is higher than Q1 in the increasing convex order (denoted by Q2 �micx Q1) if there
exists a distribution Q such that Q2 �mst Q �mcx Q1.

4. Q2 is higher than Q1 in the increasing concave order (denoted by Q2 �micv Q1) if
there exists a distribution Q such that Q2 �mst Q and Q1 �mcx Q.
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Lemma 1 gives equivalent representations of the multidimensional stochastic orders.

Lemma 2 Let Q1 and Q2 be two distributions on P.

1. Q2 �mst Q1 if and only if E [h (X2)] � E [h (X1)] for all increasing functions h in that

h (P2) � h (P1) for all P1; P2 2 P such that P2 �P P1.

2. Q2 �mcx Q1 if and only if E [h (X2)] � E [h (X1)] for all convex functions h in that

h (�P1 + (1� �)P2) � �h (P1) + (1� �)h (P2) for all P1; P2 2 P and all � 2 (0; 1).

3. Q2 �micx Q1 if and only if E [h (X2)] � E [h (X1)] for all increasing convex functions

h.

4. Q2 �micv Q1 if and only if E [h (X2)] � E [h (X1)] for all increasing concave functions

h.

Proof. See Shaked and Shanthikumar (2007) Section 6.B.1 for part 1, and Section 7.A.1

for parts 2, 3, and 4.

Appendix B: Proofs

Proof of Theorem 1. The optimal mechanism �� solves

maximize
�(m1js;r)2[0;1]

Z
S�R

f (sjr) g (r)� (m1js; r) drds

subject to Z
S

(s� u0) f (sjr)� (m1js; r) ds � 0 for all r 2 R

where the objective function is the probability that the receiver acts and the constraint

requires that the receiver prefers to act whenever he receives m1.

The Lagrangian for this problem is given by:

L =
Z
S�R

(1 + [s� u0]� (r)) f (sjr) g (r)� (m1js; r) drds;

where � (r) g (r) is a multiplier for the constraint. Since the choice variable � (m1js; r)
belongs to the unit interval, we have � (m1js; r) = 1 if s � u0 � 1

�(r)
and � (m1js; r) = 0 if

s < u0 � 1
�(r)

where � (r) is 0 if EF [sjr] > u0 and is such that the constraint is binding if
EF [sjr] � u0.
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Proof of Theorem 2. I start by proving the �rst part. Let s�i be given by Theorem 1

where F is replaced with Fi. If F2 �icx F1 (see De�nition 1), then the sender can induce
the receiver to act with a higher probability under F2 than under F1 becauseZ s

F�12 (F1(s�1))
(s� u0) dF2 (s) =

Z 1

F1(s�1)

�
F�12 (ep)� u0� dep

�
Z 1

F1(s�1)

�
F�11 (ep)� u0� dep

=

Z s

s�1

(s� u0) dF1 (s) � 0;

where the equalities hold by the appropriate change of variables, the �rst inequality holds by

Lemma 1 part 3 (c), and the last inequality holds by Theorem 1. Conversely, if F2 �icx F1,
then by Lemma 1 part 3 (c), there exists p such that

R 1
p
F�12 (ep) dep < R 1

p
F�11 (ep) dep. Setting

u0 =
R 1
F�12 (p)

sdF2 (s) = (1� p) and using an analogous argument, we get that the receiver
acts with a strictly higher probability under F1 than under F2:Z s

F�11 (p)

(s� u0) dF1 (s) =

Z 1

p

�
F�11 (ep)� u0� dep

>

Z 1

p

�
F�12 (ep)� u0� dep

=

Z s

F�12 (p)

(s� u0) dF2 (s) = 0:

Now I prove the second part. The receiver�s expected utility under Fi ismax fEFi [s] ; u0g
by Theorem 1. Clearly, if EF2 [s] � EF1 [s], then max fEF2 [s] ; u0g � max fEF1 [s] ; u0g for
all u0. Conversely, if EF2 [s] < EF1 [s], then max fEF2 [s] ; u0g < max fEF1 [s] ; u0g for any
u0 2 (EF2 [s] ;EF1 [s]).
Proof of Corollary 1. The distribution of the posterior Pr (!js) under H2 is a mean-
preserving spread of that under H1 if and only if there exists Q such that (2) holds, as

Blackwell (1953) shows. Since the posterior Pr (!js) = (s� !) = (! � !) is linear in s,
the distribution of the posterior Pr (!js) under H2 is a mean-preserving spread of that
under H1 if and only if F2 �cx F1 where Fi is the distribution of s under Hi, given by
Fi (s) = Hi (sj!) q + Hi (sj!) q for i = 1; 2. Part 1 then follows by repeating all steps of

the proof of Theorem 2 with the only di¤erence that Lemma 1 part 2 (c) is used instead of

Lemma 1 part 3 (c). Part 2 holds because the receiver�s expected utility is max fE [!] ; u0g
by Theorem 1, and E [!] = !q + !q does not depend on H.
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Proof of Proposition 1. The sender�s expected utility under the optimal mechanism is:

US =

Z
R

min

�
s� s
u0 � s

Pr (sjr) ; 1
�
dG (r)

=

Z 1

0

min

�
s� s
u0 � s

r; 1

�
dG (r)

= 1� s� s
u0 � s

Z u0�s
s�s

0

G (r) dr; (4)

where the �rst equality holds by Theorem 6, the second by convention Pr (sjr) = r, and

the third by integration by parts. Part 1 of the proposition follows immediately by Lemma

1 part 4 (b).

The receiver�s expected utility under the optimal mechanism is:

UR =

Z
R

max fu0;E [sjr]g dG (r)

=

Z 1

0

max fu0; s+ (s� s) rg dG (r)

= s� (s� s)
Z 1

u0�s
s�s

G (r) dr; (5)

where the �rst equality holds by Theorem 6, the second by convention Pr (sjr) = r, and

the third by integration by parts. Part 2 of the proposition follows immediately by Lemma

1 part 3 (b).

Proof of Corollary 2. The distribution of the posterior Pr (sjr) under H1 is a mean-
preserving spread of that under H2 if and only if there exists Q such that (3) holds, as

Blackwell (1953) shows. Applying Lemma 1 part 2 (b) to (4) and (5) proves the corollary.

Proof of Theorem 3. The probability that the receiver acts is
R
R
p� (r) dG (r) where the

conditional probability p� (r) that the receiver acts is given by 1� F (s� (r) jr) with s� (r)
given by Theorem 1. The function p� is increasing in r in the increasing convex order by

Theorem 2 part 1. Moreover, p� is concave in r, as I show in the next paragraph. Therefore,

part 1 of the theorem follows by Lemma 2 part 4.

For concavity of p�, it su¢ ces to show that there exists a mechanism � that induces

the receiver to act with probability �p� (r1) + (1� �) p� (r2) when the distribution of s is
�F (sjr1) + (1� �)F (sjr2). Without loss of generality, suppose that s� (r1) � s� (r2). The
required mechanism is simply a mechanism that implements ��1 and �

�
2 with probabilities

� and 1��. Speci�cally, if s � s� (r1), the receiver gets the message m1. If s < s� (r2), the
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receiver gets the message m0. Finally, if s 2 [s� (r2) ; s� (r1)), the receiver gets the messages
m1 and m0 with probabilities p1 and 1� p1 where

p1 �
(1� �) (F (s� (r1) jr2)� F (s� (r2) jr2))

� (F (s� (r1) jr1)� F (s� (r2) jr1)) + (1� �) (F (s� (r1) jr2)� F (s� (r2) jr2))
:

The receiver�s expected utility under the optimal mechanism is

UR =

Z
R

max fu0;E [sjr]g dG (r) :

The function E [sjr] is linear in r because the expectation is linear in F (:jr), which is
identi�ed with r. Moreover, E [sjr] is increasing in r by Lemma 1 part 3 (a) because
h (s) = s is increasing and convex in s and R is endowed with an increasing convex order.

Thus, the function max fu0;E [sjr]g is increasing and convex in r. Part 2 of the theorem
follows by Lemma 2 part 3.

Proof of Theorem 4. I start by showing that the described strategies constitute a PBE.

If the receiver reports n = r, then his interim expected utility is max fu0;E [sjr]g as follows
from Theorem 1. If the receiver reports n < r, then his interim expected utility is again

max fu0;E [sjr]g because s� (r) is increasing in r. Thus, given the mechanism ��, it is a

best response for the receiver to report his true type n = r. To see that it is optimal for the

sender to choose �� at the �rst stage, note that �� is the optimal mechanism in the relaxed

problem where r is publicly known, so �� gives a higher expected utility to the sender than

any other feasible mechanism.

To complete the proof, I show that in all PBEs, the sender chooses �� and the receiver

reports n = r. Suppose to get a contradiction that there exists another PBE. In this PBE,

the sender�s expected utility is strictly less than in the above PBE because �� is the optimal

mechanism in the relaxed problem. Consider a mechanism e� that sends the message m1

if and only if s � s� (r) + � where � > 0 is su¢ ciently small. Under this mechanism,

the receiver strictly prefers to report his true type r and the sender�s expected utility is

arbitrarily close to that under ��. A contradiction.

Proof of Theorem 5. Suppose that given the sender�s report n, r is distributed according

to Gn. Given this report, the receiver believes that s is distributed according to Fn (s) =R
R
F (sjr) dGn (r). By sequential rationality, at the third stage, the sender chooses the

optimal mechanism ��n that sends m1 if and only if s � s�n where s�n is given by Theorem 1

where F (sjr) is replaced with Fn (s).
I start by considering the case where the sender�s information is veri�able. In this case,

the sender r can make a report n only if r � n. Thus, the support of Gn does not intersect
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[r; n). Suppose to get a contradiction that there exists an equilibrium report n such that Hn
is supported on [rn; rn] with rn > n. This means that with a strictly positive probability, the

sender rn makes the report n and induces the receiver to act with probability 1�F (s�njrn).
If this sender made the report rn instead, then she would induce the receiver to act with

a strictly higher probability because s�rn < s
�
n, as I show in the next paragraph. Thus, Gn

assigns probability one to r = n, meaning that the sender reports n = r for all r.

The inequality s�rn < s
�
n holds because s

�
rn � s� (rn) < s�n. Suppose to get a contradiction

that s�n � s� (rn), thenZ s

s�n

(s� u0) dFn (s) =
Z rn

rn

�Z s

s�n

(s� u0) dF (sjr)
�
dGn (r) < 0;

contradicting the de�nition of s�n. The equality holds by Fubini�s Theorem and the de�nition

of Fn (s). The inequality holds becauseZ s

s�n

(s� u0) dF (sjr) <
Z s

s�(r)

(s� u0) dF (sjr) = 0

for all r < rn as follows from s�n < s� (r) < u0 which is implied by the supposition s�n �
s� (rn) and the assumption that s� (r) is strictly decreasing in r. Noting that the support

of Grn does not intersect [r; rn) and using a similar argument gives s
�
rn � s� (rn).

Now, I consider the case where the sender�s information is unveri�able. Suppose to get

a contradiction that there exist two equilibrium reports n1 and n2 such that s�n1 < s�n2.

Then the sender would always prefer to report n1 regardless of r. A contradiction.

Appendix C: Discontinuous Distributions

This appendix relaxes the assumption that all distributions are continuous. Instead, assume

that G (r) and F (sjr) are arbitrary distributions whose supports are subsets of R and

S = [s; s]. Theorem 6, a generalization of Theorem 1, characterizes the optimal mechanism.

Theorem 6 The optimal mechanism is given by

�� (m1js; r) =

8>><>>:
1 if s > s� (r) ;

�� (r) if s = s� (r) ;

0 if s < s� (r) :

(6)

If
R s
s
sdF (sjr) � u0, then s� (r) = s and �� (r) = 1; otherwise s� (r) � 0 and q� (r) �

�� (r) Pr (s = s� (r) jr) 2 [0;Pr (s = s� (r) jr)] are the unique solution to

E�� [s� u0jm1] =

Z
(s�(r);s]

(s� u0) dF (sjr) + (s� (r)� u0) q� (r) = 0: (7)
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Proof. By Fubini�s Theorem, the optimal mechanism �� solves

maximize
�(m1js;r)2[0;1]

Z
R

�Z
S

� (m1js; r) dF (sjr)
�
dG (r)

subject to Z
S

(s� u0)� (m1js; r) dF (sjr) � 0 for all r 2 R.

We can see that the problem is separable; speci�cally, for each r, the optimal mechanism ��

maximizes the inside integral subject to the constraint. Therefore, �� (m1js; r) = e�� (mjs),
where e�� (mjs) is the optimal mechanism in the model in which r is �xed, and the dis-

tribution of s is given by F (sjr). Thus, we can omit r from consideration as if it was

�xed.

Now I prove that if
R s
s
sdF (s) < u0, then the optimal mechanism �� satis�es (6)

where (s�; ��) solves (7). The remaining parts of Theorem 6 are immediate. Suppose

to get a contradiction that there exists a mechanism e� that results in a higher prob-
ability that the receiver acts: Pre� (m1) > Pr�� (m1). In the next paragraph, I show

that F�� (sjm1) � Fe� (sjm1) for all s 2 [s; s] with strict inequality for s 2 [s�; s), and,

thus, E�� [sjm1] > Ee� [sjm1] by the well-known result (a strong version of Lemma 1 part

1). Therefore, Ee� [sjm1] < u0 because E�� [sjm1] = u0 by (7). The conclusion that

Ee� [sjm1] < u0 contradicts the assumption that the message m1 induces the receiver to

act.

To complete the proof, I show that F�� (sjm1) � Fe� (sjm1) for all s 2 [s; s] with strict
inequality for s 2 [s�; s). The inequality trivially holds for s < s� because F�� (sjm1) = 0

and for s = s because F�� (sjm1) = Fe� (sjm1) = 1. Denote the joint distribution of

m and s by � (m; s). The following sequence of equalities and inequalities proves that

F�� (sjm1) < Fe� (sjm1) for s 2 [s�; s):

1� F�� (sjm1) =
�� (m1; s)� �� (m1; s)

Pr�� (m1)

=
F (s)� F (s)
Pr�� (m1)

=
e� (m1; s)� e� (m1; s)

Pr�� (m1)
+
e� (m0; s)� e� (m0; s)

Pr�� (m1)

�
e� (m1; s)� e� (m1; s)

Pr�� (m1)

>
e� (m1; s)� e� (m1; s)

Pre� (m1)

= 1� Fe� (sjm1) :
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The �rst and last equalities hold by Bayes�rule. The second equality holds by (6), which de-

�nes �� (m; s). The third equality holds by the consistency condition: � (m1; s)+� (m0; s) =

F (s) for all mechanisms � and all s 2 [s; s]. The �rst inequality holds because � (m0; :)

is a distribution function of s. The second inequality holds by the assumption that

Pre� (m1) > Pr�� (m1).

Theorem 2 holds regardless of whether F1 and F2 admit densities. The original proof

of the second part of Theorem 2 applies to arbitrary F1 and F2. To prove the �rst part of

Theorem 2, one should replace the inverse functions with the quantile functions in Lemma

1 part 3 (c) and in the original proof. Speci�cally, for an arbitrary distribution P , the

quantile function is de�ned as ' (p) � inf fx : p � P (x)g. If F2 �icx F1, then the receiver
acts with a higher probability under F2 than under F1 becauseZ 1

F1(s�1)�q�1
'2 (ep) dep � Z 1

F1(s�1)�q�1
'1 (ep) dep = Z

(s�1;s]
sdF1 (s) + s

�
1q
�
1:

Conversely, if F2 �icx F1, there exists p such that
R 1
p
'2 (ep) dep < R 1p '1 (ep) dep, so the receiver

acts with a strictly higher probability under F1 than under F2 if u0 =
R 1
p
'2 (ep) dep= (1� p).

Using similar logic, it is straightforward to extend all results to the case of arbitrary dis-

tribution functions.

Appendix D: Discussion of Theorem 3

Theorem 3 extends Proposition 1 to the general case of continuous s. Since r is multidi-

mensional in this case, the theorem relies on multidimensional stochastic orders presented

in Appendix A (see De�nition 2 and Lemma 2). For �rst-order stochastic dominance and

any other stochastic order based on it, we need to introduce a partial order on R. In the

case of binary s, the set R is the unit interval [0; 1], a totally ordered set. But what order

can we impose on R when R is the set of distributions on [s; s]? To answer this question,

consider two degenerate distributions G1 and G2 that assign probability 1 to r1 = F1 and

r2 = F2, respectively. Theorem 2 implies that the sender and receiver are better o¤ under

G2 if F2 �icx F1. To be able to compare such G1 and G2, Theorem 3 uses an increasing

convex order as a partial order on R.

We lose necessity in Theorem 3 because an increasing convex order is not a total order

when s takes more than two values. In part 2 of Theorem 3, we can actually use a total

order on R and regain necessity. By Theorem 1, only the distribution of E [sjr] matters
for the receiver. Identifying r with E [sjr], we obtain the following result. The receiver�s
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expected utility under the optimal mechanism is higher under G2 than under G1 for all u0
if and only if G2 �icx G1, as follows from Lemma 1 part 3 (b) and

UR =

Z
R

max fu0;E [sjr]g dG (r) =
Z r

r

max fu0; rg dG (r) = r �
Z r

u0

G (r) dr:

For the results concerning the sender�s expected utility, we must use an increasing convex

order on R because of Theorem 2 part 1. But the fact that the sender�s expected utility

is higher under G2 than under G1 for all u0 does not imply that G2 �micv G1, so necessity
cannot be regained. To see this, consider the following counterexample. Let G1 assign

probabilities
�
2
3
; 1
3
; 0
�
to
�
rA; rB; rC

�
, and G2 assign probabilities (0; 0; 1) to

�
rA; rB; rC

�
where rA assigns probabilities

�
rA1 ; r

A
2 ; r

A
3

�
=
�
0; 1

2
; 1
2

�
to (s1; s2; s3) =

�
0; 1

2
; 1
�
, rB assigns

probabilities
�
0; 7

8
; 1
8

�
to (s1; s2; s3), and rC assigns probabilities

�
3
8
; 0; 5

8

�
to (s1; s2; s3).

By Theorem 6, the receiver acts with probability min
n

1
4u0�2 ; 1

o
under rA, with proba-

bilitymin
n

1
16u0�8 ; 1

o
under rB, and with probabilitymin

n
5
8u0
; 1
o
under rC . By considering

all cases (u0 � 9
16
, 9
16
< u0 � 5

8
, 5
8
< u0 � 3

4
, 3
4
< u0 � 1, and u0 > 1), it is straightforward

to check that the sender�s expected utility is always higher under G2 than under G1.

By Lemma 1 part 3 (b), for any r and r0 supported on (s1; s2; s3), we have r �icx r0 if
and only if r3 � r03 and r2s2+r3s3 � r02s2+r03s3. Thus, the function h (r) = 10

�
r2
2
+ r3

�
+r3

is increasing in r in the increasing convex order. Moreover, h is concave in r because it is

linear in r. However, the expectation of h is strictly higher under G1 than under G2, which

implies that G2 �micv G1.
Similarly to Proposition 1, using Blackwell (1953), we can obtain the following corollary

of Theorem 3.

Corollary 3 Let the prior density of s be given by f . Let h1 and h2 be two densities of

public signals r1 and r2 given s. The sender�s (receiver�s) expected utility under the optimal

mechanism is higher (lower) under h2 than under h1 for all u0 if there exists a density

q (r1jr2) of r1 given r2 such that for all s and r2,

h2 (r2js) =
Z
q (r2jr1)h1 (r1js) dr1:
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