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Abstract. In this paper we investigate the effects of network topologies on asset

price dynamics. We introduce network communications into a simple asset pricing

model with heterogeneous beliefs. The agents may switch between several belief

types according to their performance. The performance information is available to

the agents only locally through their own experience and the experience of other

agents directly connected to them. We model the communications with four com-

monly considered network topologies: a fully connected network, a regular lattice,

a small world, and a random graph. The results show that the network topologies

influences asset price dynamics in terms of the regions of stability, amplitudes of

fluctuations and statistical properties.
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1 Introduction

Interpersonal communication plays an important role in the diffusion of information

across social and business communities (Shiller, 1995). In a survey of institutional

investors in the USA, Shiller and Pound (1989) found that money managers who

invested in stocks with extremely high growth of the price/earnings ratio were often

discussing their trades with colleagues. Arnswald (2001) found that among fund

managers in Germany information exchange with other financial and industry ex-

perts was the second most important factor influencing their investment decisions,

complemented by conversations with their colleagues and reports from media. Sim-

ilarly, a study of fund managers by Hong et al. (2005) provided strong support for

the importance of informal communication. Cohen et al. (2008) provide empiri-

cal evidence that connections between mutual fund managers and corporate board

members via shared education networks have a significant effect on mutual fund

portfolio performance.

Household investment decisions are also affected by interpersonal communica-

tion. Duflo and Saez (2002) showed that employees are more likely to join an in-

vestment retirement scheme if their colleagues have done so. Hong et al. (2004)

suggested, by reviewing data from the University of Michigan health and retire-

ment study, that interaction with neighbors and church attendance increased the

likelihood of a household investing in stocks.

Given this evidence, we study the impact that local interactions between in-

vestors have on the asset price dynamics in a theoretical model of asset pricing. We

bring together ideas from various streams of literature: the rapidly developing lit-

erature on networks, the literature on heterogeneous agent models and agent-based

models. We explore a range of local interaction patterns by introducing different

types of communication network topologies, a fully connected network, a regular
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lattice, a small world, and a random graph, into the stylized heterogeneous agent

model of Brock and Hommes (1998).

We show that our model with the fully connected network converges to the orig-

inal Brock and Hommes model when the number of agents is large, excluding the

degenerate case when all agents are of the same type. For the two-type model with

the random graph we derive a low dimensional representation for which we perform

stability and bifurcation analysis. The other network topologies are analyzed by

simulations. We find that qualitatively the asset price dynamics of the two-type

Brock and Hommes model are preserved under local interactions, but communica-

tion network topologies influence the regions of stability, amplitudes of fluctuations

and statistical properties. In particular, in the two-type model the latency in the in-

formation transmission caused by a specific communication network translates into

earlier bifurcation, smaller regions of stability and higher price fluctuations. How-

ever, the impact of a network topology may depend on a particular agent ecology,

that is, the specifications of belief types and their number. In particular, for the

four-type model we find qualitatively different dynamics for some of the network

topologies compared to the four-type Brock and Hommes model.

In the next section we survey models with boundedly rational and heterogeneous

agents. Section 3 examines different network topologies and their properties. Section

4 introduces our model with network interactions, derives a reduced form approxi-

mation and offers stability and bifurcation analysis for the two-type model with the

random graph. Section 5 uses simulations to analyze the two-type model under var-

ious network topologies, extends the analysis to the four-type model, presents and

discusses the results of the simulations. Section 6 concludes and discusses further

extensions.
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2 Bounded rationality and heterogeneity in asset pricing

The rational expectations theory in finance (Friedman, 1953) asserts that rational

investors would drive irrational traders out of financial markets. Numerous empirical

studies, however, have shown that successful traders follow a variety of investment

strategies (e.g. Frankel and Froot, 1987; Ito, 1990). DeLong et al. (1990) was among

the first studies to analytically demonstrate that irrational noise traders may survive

in a market with fully rational traders. This survival is possible because these noise

traders bear a higher risk which leads to higher returns in the long run. Other

researchers used heterogeneity of expectations to explain asset price dynamics. Day

and Huang (1990), Chiarella (1992), Kirman (1993) and Lux (1995) showed that

transactions between different agents that follow simple behavioral rules and interact

with each other lead to endogenous price fluctuations. Alfarano and Milakovic (2009)

enriched the Kirman-Lux model with explicit network structures. Anufriev and

Bottazzi (2013) analyzed the implication of heterogeneity in investment horizons.

Brock and Hommes (1998) introduced a structural asset pricing model with

heterogeneous agents switching between several belief types according to their per-

formance (denoted the BH model henceforth). The belief types differed in their

expectation about the future price of the risky asset. The performance measure of

each type was freely available to all agents. The BH model showed that the ratio-

nal expectation type do not necessarily drive out boundedly rational types. In fact,

these types could co-exist in a market. BH conducted stability analysis of the steady

states and derived the conditions for the occurrence of certain bifurcations. The BH

model was able to produce excess volatility and positive volatility/volume corre-

lations, the stylized facts which were not reproduced by the rational expectations

models.

Various extensions of the BH model have been considered in the literature.
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Hommes (2002) adapted the model to better reproduce volatility clustering. Brock

et al. (2005) extended the BH model to many trader types and Brock et al. (2009)

studied how the presence of risk hedging instruments in the form of Arrow securities

affects the market dynamics. Hommes et al. (2005) included a market maker into the

market pricing mechanism, while Anufriev and Panchenko (2006, 2009) investigated

the changes in the model outcomes due to various market architectures. Boswijk

et al. (2007) estimated the parameters of the BH model using annual US stock price

data. Chang (2007) enriched the model with exogenous social interactions of the

Brock and Durlauf (2001) type. Diks and van der Weide (2005) studied continuous

distribution of the agent beliefs. Gerasymchuk (2008) introduced prospect theory-

like preferences of the agents into a modified BH model. Diks and Dindo (2008) and

Goldbaum and Panchenko (2010) considered BH-type switching and learning in the

context of financial models with informational differences. Anufriev et al. applied

the BH model to form interest rate expectations and study the resulting dynamics

in a macroeconomic setting. Anufriev and Hommes (2012a,b) introduced a BH-style

heuristics switching model and estimated it using data from a learning-to-forecast

experiment. For a detailed survey of the heterogeneous agent literature see Hommes

(2006).

Another stream of asset pricing literature focuses on large-scale models of evolv-

ing, interacting artificial agents. Examples of this approach include the Santa Fe

artificial stock market (Arthur et al., 1997; LeBaron et al., 1999; Ehrentreich, 2006)

and the models of Chen and Yeh (2001) and Chen et al. (2001). A major advan-

tage of these models over the smaller scale heterogeneous agent models previously

discussed is that they allow for higher flexibility, richer behavioral assumptions, and

more realistic market architectures. This, however, comes at the price of increased

complexity. Analytical solutions are not typically attainable for these models, and

therefore computer simulations are often used to study their properties. The liter-
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ature on agent-based finance has also been influenced by the contributions of inter-

disciplinary statistical physicists. In particular, Iori (2002) and Cont and Bouchaud

(2000) explicitly considered network structures in their models of financial markets.

For further details and references on agent-based finance we refer the interested

reader to the review by LeBaron (2006).

In this paper we combine the work on networks with heterogeneous agent models

by introducing local interactions into the stylized BH model. Our aim is to study the

effects of different networks of local interactions on the asset price dynamics. In our

setting information about the performance of their investments is only available to

the agents locally through their own experience and the experience of other agents

directly connected to them. We derive transition equations reflecting these local

interactions and offer analytical approximations for some network topologies. When

analytical approximations are not available, we investigate the model using computer

agent-based simulations.

3 Social networks

Social networks are important in our lives. Decision making, trade activity, job

searching and disease transmission are all heavily influenced by the social and eco-

nomic networks. Network modeling is a rapidly growing part of the economic lit-

erature (see Jackson, 2008 for a detailed treatment). Watts (1999) indicates that a

typical social network has the following properties: 1) there are many participants

in the network; 2) each participant is connected to a small fraction of the entire net-

work, i.e., the network is sparse; 3) even the most connected node is still connected

only to a small fraction of the entire network, i.e., the network is decentralized; 4)

neighborhoods overlap, i.e., the network is clustered; and yet 5) the characteristic

path length or diameter of the network, i.e., the shortest path between the furthest
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Figure 1: Network topologies (adapted from Watts and Strogatz, 1998). π indicates
a link rewiring probability.

pair of nodes, is small.

To capture these properties Watts and Strogatz (1998) introduced a network

model called a small world. It is an intermediate network between a regular lattice

network, in which the agents (nodes) are linked in a geometrically regular way,

and a random graph, in which the links are random. The small world network

model approximates social interactions in real life. Networks with the small world

properties include social networks of the US corporate elite (Davis et al., 2003),

partnerships of investment banks in Canada (Baum et al., 2003), and many more.

Small world networks emerge when participating agents form networks through a

mix of random and strategic interactions (Baum et al., 2003 and Morone and Taylor,

2004).

Figure 1 shows four examples of network topologies. The degree of a node is

the number of links the node has to other nodes. In the fully connected network,

all nodes are linked to all other nodes. Denote the total number of nodes in the

network by N . In the regular lattice, each node is linked to a fixed number of

neighboring nodes, and hence, all nodes have the same degree, which we denote by

K; in our example in Figure 1 K = 4. In order to form a small world network, a

link is rewired to a different randomly chosen node on the lattice (avoiding self- and

double-connections) with a given rewiring probability π, 0 < π < 1. Such rewiring
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of the nodes continues until all the links are processed. In the limit when π = 1 the

network becomes the random graph of Erdős and Rényi (1959), with N nodes and

the probability of the link between any two nodes equals to K/(N − 1).

The structural properties of a network can be quantified in terms of three addi-

tional characteristics (Newman, 2003): a degree distribution, a clustering coefficient,

C, and a characteristic path length, L. The degree distribution is the distribution of

the degrees of all nodes in the network. Denote the average degree of the network

by k. In the Watts and Strogatz model k equals to K for any π and the degree

distribution is closely concentrated around its average K (Barrat and Weigt, 2000).

The clustering coefficient of a node is calculated by dividing the number of links

between the direct neighbors of this node by the maximum possible number of links

between them. It indicates how well the neighborhood of the node is connected or, in

other words, the ‘cliquishness’ of the neighborhood. By averaging over the clustering

coefficients of all the nodes in a network we obtain the clustering coefficient of the

network, C. The characteristic path length or diameter of the network, L, measures

the shortest path (minimum number of links) between any two nodes averaged over

all the nodes in the network.

Latora and Marchiori (2001) relate the clustering coefficient and the characteris-

tic path length to the local and global efficiency of the network, respectively. Local

efficiency measures fault tolerance, that is, how efficient is the communication be-

tween the immediate neighbors of node i, when i is removed. Global efficiency is

related to the signal transmission through the whole network.

For each value of the rewiring probability, π, we obtain a network with new

structural properties. These properties also depend on N and K. A small world

network can be formally defined as a decentralized, sparsely connected network with

a high clustering coefficient, C, and a small characteristic path length, L. Figure 2

shows the values of C and L, normalized by the corresponding characteristics of the
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(a) N = 100 (b) N = 1000

Figure 2: Clustering coefficient and characteristic path length for networks of dif-
ferent size. Note: logarithmic scale is used for abscissa. Vertical line indicates small
world value of π.

regular lattice, for different rewiring probabilities π for two network sizes N = 100

and N = 1000 and K = 4 in both cases. The small world network properties

emerge in a setting around π = 0.1 for N = 100 and π = 0.01 for N = 1000

(see, e.g., Albert and Barabási (2002) for a detailed discussion about the rewiring

probability and small world properties).

The Watts and Strogatz (1998) model is a popular choice in the social networks

literature, but as with any model it has some limitations. One of its main drawbacks

is that the model is unable to produce the degree distribution observed in typical

real social networks. Scale free networks suggested by de Solla Price (1965) and

advanced by Barabási and Albert (1999) address this problem, but are often unable

to generate realistic clustering as observed in social networks. Hence, in this paper,

we limit ourselves to the Watts and Strogatz networks.
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4 Heterogeneous belief model with local interactions

4.1 Brock-Hommes model

In this section we first describe the BH model, and then extend it by allowing for

local interactions. There are two assets that are traded in discrete time: a risk-free

asset paying a constant gross return, R = 1+r, and a risky asset paying a stochastic

dividend, yt, at the beginning of each trading period t. The dividend is assumed

to be independently and identically normally distributed (i.i.d.) with mean ȳ and

variance Var[y]. The price, pt, per-share (ex-dividend) of the risky asset in period t

is obtained from the Walrasian market clearing condition. The wealth dynamics is

specified by

Wt+1 = R(Wt − ptzt) + (pt+1 + yt+1)zt = RWt + (pt+1 + yt+1 −Rpt)zt, (1)

where Wt and Wt+1 are the wealth levels in period t and t+ 1 correspondingly, and

zt is the number of shares of the risky asset purchased at date t.

The agents are myopic maximizers of the mean-variance expected wealth:

max
zt

{
Et−1[Wt+1]−

a

2
Vt−1[Wt+1]

}
, (2)

where a is the absolute risk aversion coefficient, and Et and Vt denote conditional

expectation and conditional variance that are based on the publicly available infor-

mation set It = {pt, pt−1, pt−2, ...; yt, yt−1, yt−2, ...}. There are H belief types which

differ in their expectations about the future price. The demand for the risky asset

of type h is then given by:

zht (pt) =
Eht−1[pt+1 + yt+1]−Rpt
aVh

t−1[pt+1 + yt+1]
=

Eht−1[pt+1 + yt+1]−Rpt
aσ2

. (3)
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Operators Eht−1[·] and Vh
t−1[·] are the expectations, or the predictors, of type h

about mean and variance, respectively. The predictors for period (t+ 1) depend on

(t−1) information because the price at period t is not realized at the moment when

the predictors are produced (see Figure 3 for timing in the model). It is assumed

that all the types expect the same variance, Vh
t = σ2 and have the same value for

the risk-aversion coefficient, a.

Set the supply of outside shares of the risky asset to zero.1 Let nht be the fraction

of type h agents determined in the end of period t. The equilibrium of supply and

demand then determines the price, pt, in the market-clearing equation:

H∑
h=1

nht−1
Eht−1[pt+1 + yt+1]−Rpt

aσ2
= 0. (4)

Under the assumption of homogeneous beliefs (H = 1), the fundamental price,

p∗ is the unique constant solution to the market-clearing equation (4). It is equal to

the discounted infinite sum of the expected future dividends, i.e., p∗ = ȳ/r.

All beliefs are of the form

Eht−1[pt+1 + yt+1] = bh + p∗ + ȳ + gh(pt−1 − p∗), (5)

where bh is a constant bias and gh is an extrapolation parameter.

The main focus of this paper is on the ecology with two types (H = 2), funda-

mentalists and chartists. Both of these types have zero bias, b = 0. Fundamentalists

believe that price will be at the the fundamental level, p∗, and set the extrapolation

parameter, g, to 0, while chartists expect persistent deviations from the fundamental

value and use a positive extrapolation parameter, g > 0. (see section 4.1.2 of Brock

and Hommes, 1998) In Section 5.3 this ecology is extended to four types by intro-

1This is a standard assumption of the baseline BH model. Hommes et al. (2005) consider a
positive supply of the risky asset.
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ducing positively and negatively biased types (see section 4.3 of Brock and Hommes,

1998).

Define the performance measure, Uht , as a net profit of type h, that is

Uht = (pt + yt −Rpt−1)zht−1 − ch, (6)

where pt + yt −Rpt−1 is the excess return earned per unit of the risky asset, zt−1h ,

held in the agents’ portfolio at the end of period t− 1, and ch is the costs of type h.

In the ecology with two types these costs are set to zero for chartists and are strictly

positive for fundamentalists.2 The costs are set to 0 for all types in the ecology with

four types.

The belief types are updated over time depending on the relative utility from

following a rule of a specific type compared to other types. The utility is based on

the observed performance measure, Uht , and an unobserved idiosyncratic random

component, εht , that is

Ũht = Uht +
1

β
εht , (7)

where β is the intensity of choice parameter, which controls the level of the random

component. The sources of randomness in the satisfaction are unobserved variations

in preferences of agents and in the attributes of alternatives, and agents’ errors of

perception and behavioral biases (Hirshleifer, 2001). In the case when the (noisy)

performances of all types are observed by all agents, the probability that an agent

selects type h at period t is given by P ht = P
(
Ũht > Ũ `t , for all ` 6= h

)
.

For a sufficiently large number of the agents, the fraction of agents of type h, nht ,

converges to probability P ht . Moreover, if we assume that the idiosyncratic random

component, εht , in (7) follows the standard Gumbel (extreme value) distribution, nht

2This is a standard assumption of the two-type BH model. Brock and Hommes (1998) suggest
attributing these costs to ’training’ costs required to understand the fundamental theory.
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can be described by a discrete choice logit model (Manski and McFadden, 1990):3

nht =
exp(βUht )∑H
ξ=1 exp(βU ξt )

. (8)

The dynamics of the model is described through the co-evolution of the fractions

of the types, and the market equilibrium price.

4.2 Local interactions

In our setup, the agents are located on the nodes of a network and can observe

the performance measure of the predictor types employed only by those agents who

reside on the nodes directly connected with them. Hence, they cannot observe

the performance of the types adopted by agents located two or more links away.

Therefore, contrary to the BH model, we do not assume that the performance of

every type is available to all the agents. Instead, we allow only for local information

exchange in the market.

In particular, if an agent is directly connected only to the agents of the same

type, they are not able to switch as there is no information about the performance

of the alternative type(s). If an agent has at least one neighbor of a different type4,

they are able to compare the utility from their own type with the utility from the

alternative observed type(s) and make a choice. Note that under local information

exchange, the fractions of the belief types, nht , do not follow the discrete choice

fractions specified in Eq. 8 because some agents are not able to switch.

As a motivation for our model, imagine a world populated by many individuals

who invest their money following the recommendations of financial advisors. The

3If we assume normal distribution for the idiosyncratic random component, a probit model will
arise instead. The dynamics implied by both models are similar, but the logit model is more
analytically tractable.

4If there is more than one neighbor of the different type, only one of them is consulted to compare
utilities. A more general setting is discussed in model extensions.
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advisors use the mean-variance framework to recommend an optimal portfolio allo-

cation between the risk-free and the risky assets (see Eq. 3). The advice is given at

regular time periods. The advisors are classified into a small number of types based

on the predictors they use to derive the optimal portfolio allocation. In the two-type

model, there are two types of the financial advisors: fundamentalists and chartists.

PORTFOLIO UPDATED, 
DIVIDENDS PAID

MARKET CLEARS

DEMAND COMPUTED

EXPECTATIONS FORMED

NETWORK STRUCTURE CREATED

INITIALIZATION

PERFORMANCE COMPARED WITH 
NEIGHBOR’S

different type 
neighbors

same type 
neighbors

STRATEGY SWITCH IF 
Ũ(own) < Ũ(other)

OWN PERFORMANCE COMPUTED

Figure 3: Temporal flow.

Moreover, in the two-type model, the fundamen-

talist advisors charge the higher fees. The indi-

viduals are not professional investors and do not

know or understand the methods used by their

advisors. The individuals are free to choose and

change their advisors. Every period, say, every

quarter, the individuals receive reports on the

performance of their financial portfolios. The in-

dividuals interact with their friends and if their

friends follow financial advisors of a different

type, they are able to compare the relative per-

formance of their investments and choose their

advisors accordingly5.

The model progresses in the following way

(see Figure 3). After the expectations (predic-

tors) of the different types of advisors are formed

and the demands are ascertained, trades occur

and the market clears. Next, the performances are released. Then, when possible,

agents (individual investors) compare their utility with their neighbors utility and

switch to another type of advisors or remain with their current advisor. Finally, the

5The investors do not need to know the types of their advisors and may potentially switch
between the advisors within the same type. This within-type switches will not cause any change in
the allocation and, therefore, may be ignored in the model.
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expectations are formed again and the cycle repeats.

For simplicity, next we consider the model with two types (of advisors), funda-

mentalists and chartists as introduced before. Denote the probability that agent i

chooses the chartist type at period t by Pi,t. Then, the probability of choosing the

fundamentalist type is simply (1− Pi,t). The evolution of Pi,t can be described by

Pi,t = Ii,t−1
∏
j∈Gi

Ij,t−1 +
[
Ii,t−1

(
1−

∏
j∈Gi

Ij,t−1
)

+
(
1− Ii,t−1

)(
1−

∏
j∈Gi

(
1− Ij,t−1

))]
∆t,

(9)

where Ii,t is an indicator variable taking value of 1 if agent i chose the chartist

type in period t and 0 otherwise, P (Ii,t = 1) = Pi,t; Gi denotes the neighbor-

hood of agent i, i.e., the set of agents directly connected to i excluding i, and

∆t = (1 + exp[β(U fund
t − U chart

t )])−1 is the discrete choice logistic probability of choos-

ing the chartist type over the fundamentalist type when both type performances are

observed. Pi,t may take values of 0, 1 or ∆t. It equals to 1 when the first component

of Eq. 9 is 1, that is, the first component indicates that agent i chose the chartist

type in period (t − 1) and is unable to switch because she is surrounded by the

neighbors who chose the same type. The second component consists of two parts

(multiplied by ∆t). The first part indicates whether agent i chose the chartist type,

is neighbored by at least one agent who chose the fundamentalist type and, hence, is

able to compare these two types and switch if necessary. The second part indicates

whether agent i chose the fundamentalist type, is neighbored by at least one agent

who chose the chartist type and, hence, also is able to compare these two types and

switch if necessary.

In general, we have to keep track of every agent in the system. There are two

cases, however, where it is possible to reduce the dimensionality of the system. we

are able to do so. The first case is the fully connected network, in which all agents are

in one large neighborhood. Ignoring the degenerate situations when all agents are of
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the same type, in this network topology all agents have access to the performances of

all types and hence, Pi,t = ∆t. Furthermore, when (N →∞) we can apply the law

of large numbers and recover the original BH model with the fraction of chartists

nt = ∆t. The second case is the random graph. In this network topology the

links between the agents are random and the neighborhoods are not clustered which

makes the network-induced dependence between any two nodes fairly small. Under

these conditions, by the argument of symmetry, for N →∞ we can drop individual

agent indices, replace the realizations by probabilities or fractions in Eq. 9 and

approximate the evolution of the fractions of the chartists6 by

nt = nt−1n
k
t−1 +

[
nt−1(1− nkt−1) + (1− nt−1)(1− (1− nt−1)k)

]
∆t =

= nk+1
t−1 +

[
1− nk+1

t−1 − (1− nt−1)k+1
]
∆t, (10)

where k is the average degree of the random graph; k = K in the Watts and Strogatz

model. In the limit, k →∞, we recover the original BH model with nt = ∆t.

Note that Eq. 10 resembles the BH model with asynchronous updating (Hommes

et al., 2005; Anufriev and Hommes, 2012a,b), in which a fraction of one type is

determined by nt = α1nt−1 + α2∆t, in which α1, α2 ≥ 0, α1 + α2 = 1. Weights

α1 and α2 determine the fractions of agents who retain their previous type ignoring

any performance information and choose between the two types according to ∆t,

respectively. The difference is that in our case the weights, α1 and α2, are state-

dependent endogenously determined by the model and do not typically add up to 1.

In the context of the BH model with two types, values of β for which bifurcations

are observed do not typically change when asynchronous updating is introduced

(see, e.g., Anufriev and Hommes, 2012a). As we show below in our model local

information exchange leads to significant quantitative and qualitative implications

6For brevity, hereafter, we will simply use fundamentalists or chartists to refer to the investors
who chose the fundamentalist or the chartist type at period t, respectively.
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including changing critical values of β for which bifurcations are observed.

4.3 Steady states, stability and bifurcations for two-type model with

random graph

Eqs. 3–6 and 10 jointly determine a system of difference equations governing the

dynamics of the system. The analysis of the system is easier when the price is

written in terms of deviations from the fundamental price, xt = pt−p∗. Specifically,

for the two-type ecology with fundamentalists and chartists and nt denoting the

fraction of chartists the system becomes:

xt =
g

R
nt−1xt−1 (11)

nt = nk+1
t−1 +

[
1− nk+1

t−1 − (1− nt−1)k+1
]/[

1 + exp(β(−Dgxt−2(xt −Rxt−1)− c))
]
,

(12)

where D = 1/aσ2, c is the extra costs of fundamentalists (the costs of chartists are

normalized to 0), g is the extrapolation parameter of chartists. Eqs. 11–12 define

a three-dimensional dynamical system of difference equations for which we produce

some analytical results summarized in Proposition 1. We call the steady states, in

which the price is at the fundamental level, that is xt = 0, fundamental steady states

and all other steady states non-fundamental steady states.

Proposition 1 (Existence and stability7 of steady states for dynamical system

11–12). Let n�, n� ∈ [1/2, 1), be the interior solution of n = nk+1 + 1−nk+1−(1−n)k+1

1+exp(−βc) ,

7By stability we mean asymptotic local stability.
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n∗ = R/g, c ≥ 0, β ≥ 0 and

x∗ =

√(
ln
[(

1/n∗ − 1
)(

1−
(
1− n∗

)k)/(
1−

(
n∗
)k)]/

β + c
)/(

Dg(R− 1)
)
,

β1 = ln(k)/c,

β∗ = − ln
[(

1/n∗ − 1
)(

1−
(
1− n∗

)k)/(
1−

(
n∗
)k)]/

c,

β∗∗ = β∗ +
1− 2R−A(R− 1) +

√
(1 +A)2 − 2 (4 +A+A2)R+ (8 +A2)R2

2BRc
,

where A =
(k+1)((1−n∗)kn∗+(1−n∗)(n∗)k−((1−n∗)n∗)k)

1−(1−n∗)k+n∗((1−n∗)k−(n∗)k)
, B =

(1−n∗)(1−(1−n∗)k)(1−(n∗)k)
1−(1−n∗)k+n∗((1−n∗)k−(n∗)k)

.

Denote all possible steady states (x̄, n̄) of the system as follows: fundamen-

tal steady states E� = (0, n�), E0 = (0, 0), E1 = (0, 1) and non-fundamental steady

states E+ = (x∗, n∗), E− = (−x∗, n∗). Depending on the parameters of the model

we may observe the following outcomes:

1. 0 < g < R. For β < β1 there exist three fundamental steady states, E� is stable

and E0 and E1 are unstable. At β = β1 a transcritical bifurcation occurs when

E� collides into E1. For β > β1, E� ceases to exist and E1 becomes stable, E0

remains unstable.

2. R ≤ g < 2R. For β < β∗ there exist three fundamental steady states, E� is

stable and E0 and E1 are unstable. At β = β∗ a (primary) pitchfork bifurcation

occurs and E� looses stability and two non-fundamental steady states E+ and

E− emerge for β > β∗. For β∗ < β < β∗∗ steady states E+ and E− are stable.

At β = β∗∗ a (secondary) Neimark-Sacker bifurcation takes place and E+ and

E− loose stability for β > β∗∗. E0 and E1 remain unstable for any β.

3. g ≥ 2R. There exist three fundamental steady states E�, E0 and E1 and two

non-fundamental steady states E+ and E−. All three fundamental steady states

are unstable. The two non-fundamental steady states are stable for β < β∗∗.

Proof. See Appendix.
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For a relatively small parameter of extrapolation, g < R, we observe only the

fundamental steady states in the system. An important difference from the BH

model is that in our model in addition to the “interior” fundamental steady state,

E�, we observe two “corner” fundamental states which are E0 with all agents being

fundamentalists and E1 with all agents being chartists. The steady states, in terms

of n̄, are shown in Figure 4. The figure plots the map, f(n), derived from Eq. 12

for various values of k and ∆, where ∆ denotes the steady state fraction of chartists

in the original BH model; in the fundamental steady states, ∆ = 1/(1 + exp(−βc)).

The steady states are the fixed points of the map, that is, the points where the map

crosses the diagonal line. The “corner” steady states arise due to the possibility of

a lock-in effect, that is, the situation when all agents adopt one specific type in one

of the periods and, because the performance of the other type is not observed, no

agent is able to switch to the other type in any subsequent period. Note that E0

is always unstable and E1 is unstable for small β when E� exists. When the costs,

c, or the intensity of choice, β are equal to zero, the stable steady state fractions

of chartists, n�, and fundamentalists, (1 − n�), are both equal 1/2. Moreover, n�

is increasing in c and β. This is consistent with economic intuition, i.e., in the

fundamental steady state, when the prices fully reflect the fundamental value, the

performance of the fundamental type is inferior due to the positive costs. The

fraction of fundamentalists is non-zero, only due to the idiosyncratic component in

the utility (in combination with the network effect). As β reaches β1 the fractions of

chartists reaches one and a transcritical bifurcation takes place, that is, E� collides

into E1 and ceases to exist. Figure 4 shows that only two fundamental steady states

exist when ∆ = 0.9, which in terms of β for given k is equivalent to β > β1.

For intermediate values of the extrapolation parameter, R ≤ g < 2R, as in

the BH model, when β < β∗ only the fundamental steady states exist and when

β > β∗ both the fundamental steady states and the non-fundamental steady states
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Figure 4: Dependence of map f(n) = nk+1 + (1−nk+1− (1−n)k+1)∆, on k and ∆.

exists. At β = β∗ the (interior) fundamental steady state fraction of chartists,

n�, reaches critical level n∗ = R/g, and a (primary) pitchfork bifurcation occurs.

The fundamental steady state E� looses stability and stable non-fundamental steady

states E+ and E− arise. The bifurcation value, β∗, is lower in our model with the

random graph than in the original BH model that follows from n� ≥ ∆ (for the latter

relation see the proof of Proposition 1). At β = β∗∗ the (secondary) Neimark-Sacker

bifurcation takes place and the non-fundamental steady states loose stability. The

bifurcation values of β are increasing in k as shown in Figure 5. In the limit k →∞,

the bifurcation values converge to the BH bifurcation values.8

For strong values of the extrapolation parameter, g ≥ 2R, the fundamental

steady state is always unstable and the non-fundamental steady state is stable in a

relatively small region 0 < β < β∗∗.

We focus on the case with the intermediate values of the extrapolation param-

eter, R ≤ g < 2R. To investigate the behavior of the system after the secondary

8The bifurcation values for the two-type BH model are β∗ = − ln(g/R− 1)/c and

β∗∗ = β∗ +
1−2R+

√
1−8R+8R2

2Rc(1−R/g)
.
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bifurcation, we carry out the numerical analysis in the E&F Chaos9 for the typical

BH parameter values, g = 1.2, R = 1.1, c = 1, D = 1. After the Neimark-Sacker

bifurcation the system exhibits two coexisting quasi-periodic attractors (above and

below the fundamental). The largest Lyapunov exponent computed numerically be-

comes positive for β just above the Neimark-Sacker bifurcation critical value, β∗∗,

which suggests weakly chaotic dynamics.

5 Agent-based simulations

The low dimensional approximation analyzed in the previous section cannot be eas-

ily derived for networks with clustered neighborhoods or regularly structured links

such as the regular lattice or the small world networks. Intuitively, having directly

connected neighbors, whose types are correlated, decreases the informational con-

tent of the neighborhood. In the context of the random graph network, this may be

viewed as a reduction in the “effective” neighborhood size or the average degree of

the network, k. Hence, by fixing the “nominal” value of k, we may expect earlier (for

9The E&F chaos is a software package for nonlinear economic dynamics (Diks et al., 2008). Code
for this model and the generated plots are available on request.
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smaller β) bifurcations for more clustered networks than for the random networks.

We proceed with agent-based simulations to investigate this hypothesis and, more

generally, to compare the effects of various network topologies.

We conduct the agent-based simulations10 for four different network topologies

of local interactions, i.e., for a fully connected graph, a regular lattice, a small world

graph and a random graph (see Figure 1). In the baseline regular lattice network

each node has K = 4 links. We further consider extensions to K = 6 and K = 8. All

the graphs are connected, that is, there are no nodes that do not have any links. The

fully connected graph is used as a benchmark corresponding to the finite number of

agents implementation of the original BH model. Note that in the fully connected

graph each node has N − 1 links which is a much larger number relatively to other

considered network topologies. As a baseline model we consider the model with

two types of agents, fundamentalists and chartists. The simulations are further

extended to the model with four types (Section 5.3). We analyze the asset price

dynamics for N = 1000 agents and, hence, the rewiring probability to obtain the

small world network is set to π = 0.01. We found that N = 1000 is sufficient for

convergence of the discrete choice probabilities (in Eq. 8) to the observed fractions

in the case of the fully connected graph.11 Given that the number of agents in our

simulations is finite the system may get locked in the state with only one type. To

avoid this, we introduce two “die-hard” agents who never change their type. They

are located on the opposite sides of the network. For comparison we choose the basic

parameter values of the model similar to those used for the two-type BH model, that

is, r = 0.1, ȳ = 10, D = 1, c = 1, g = 1.2.

10The C++ code for our simulations is partially adapted from the code of Bottazzi et al. (2005)
and is available on request.

11We also analyzed networks with N = 100. Qualitatively the results were similar. However, the
level of noise due to the finite sample implementation was much higher.
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Figure 6: Bifurcation diagrams for various network topologies.

5.1 Evolution of prices and beliefs

The asset price dynamics for a range of values of β are shown by means of bifurcation

diagrams in Figure 6. These bifurcation diagrams depict the dependence of the

price distribution on the intensity of choice parameter, β. Each bifurcation diagram

combines two parts: one is initialized at positive deviations from the fundamental

price, and the other for the negative deviations of the same magnitude. The price

distribution for each level of β is represented by a gray-shade histogram. Darker

shades correspond to areas of higher density. The histograms are computed using

price levels from 10000 periods after 2000 transient periods with β ranging from 0.5

to 5 and a linear step of 0.05.

The primary and secondary bifurcations occurring in the fully connected net-

work are similar to the pitchfork and Neimark-Sacker bifurcations occurring in the

original BH model for β∗ = 2.40 and β∗∗ = 3.33 respectively. During the pitchfork

bifurcation, the steady state loses its stability and two additional stable steady states

are created. The Neimark-Sacker bifurcation leads to the emergence of periodic or
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quasi-periodic cycles. The economic intuition behind these bifurcations is as follows.

Fundamentalists bring the price to the fundamental level, while chartists destabilize

the fundamental price by extrapolating the trend. The difference in the fractions

of these two types determines the price behavior. When the price is close to the

fundamental level the excess returns of fundamentalists and chartists are equal, but

the former incur the costs. When β < β∗ this relative difference in past performance

is not important for the choice of the type. Thus, the difference in the fractions is

not large enough and the price remains at the fundamental level. However, when

β∗ < β < β∗∗, the relative past performance becomes more important and a larger

fraction of agents chooses the less costly chartist type. This results in the deviation

of the equilibrium price from the fundamental level. When β > β∗∗, that is, when

the agents become highly reactive to the difference in excess returns, we observe

cyclical behavior. When the price is near the fundamental level, the fraction of

chartists rapidly increases, amplifying any small deviations from the fundamental

level and creating a bubble. The bubble ends since the extrapolative behavior of

chartists is not strong enough to sustain the trend and at some point fundamental-

ists start dominating the market bringing the price back to the fundamental level

and this sequence recurs.

For the random graph model the bifurcation values of β are close to the values

in the low dimensional approximation derived in the previous section, namely, β∗ =

1.07 and β∗∗ = 1.35. The other networks show dynamics consistent with our previous

predictions. In particular, in terms of the occurrence of the primary bifurcation

with respect to the critical value of β the networks can be arranged as follows (in

decreasing order): the fully connected network, the random graph, the small world

network, and the regular lattice. These results along with orderings in terms of

other characteristics are collected in Table 1 in the end of the paper. The reverse

order holds with respect to the price amplitude for fixed β = 4. These results can be
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explained by typical characteristics of the network, namely, the average size of the

neighborhood, or the average degree, k, adjusted by its informational content, that is,

by the level of independence (disconnectedness) of the neighbors between themselves.

The latter is inversely related to the clustering coefficient, C. The information about

the performance of the alternative type reaches all the nodes in the fully connected

network within one time period. As we remove some links, the average neighborhood

size, k decreases, the characteristic path length, L, increases and the information

transmission between the agents who are not directly connected slows down. In

addition to the decreased k and increased L, in the regular lattice we observe high

clustering, C, which means that, as we discussed earlier, the informational content

of the neighborhood is impaired by the direct connections between the neighbors.

In particular, in the neighborhood of size four there are two directly connected

neighbors. This makes the overall speed of the information transmission the slowest

for the regular lattice. Slower information transmission results in higher persistence

of a prevalent type over time, or, in other words, it delays the switching. Thus,

in the regular lattice the fraction of chartists becomes relatively large for smaller

values of β in comparison to the fully connected network. This translates into earlier

bifurcations. The post-bifurcation region of price instability becomes larger and the

amplitude of price fluctuations becomes higher. As we start rewiring some of the

nodes with probability π, both the clustering, C, and the characteristic path length,

L, of the network reduce. A reduction in C increases informative content of the

neighborhood and a reduction in L decreases the minimum distance between any

two nodes. Both C and L are decreasing in π (recall Figure 2) and, therefore, the

information transmission in the network is increasing in π.

Importantly, k, L and C can be measured from empirical data for any network,

while π and K are the parameters of the Watts and Strogatz model. Therefore, a

natural question is whether a single measurable characteristic k, L or C on its own is
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(a) Fixed L = 17 (b) Fixed C = 0.48

Figure 7: Bifurcation diagrams for varying K, π, L and C.

able to characterize the information transmission and predict price bifurcation values

and amplitudes in our model. Note that both C and L are functions of π and K; and

k = K in the Watts and Strogatz model (see Newman, 2003, for more details on these

relations). Therefore, fixing any two of the three measurable characteristics is not

possible without predefining the third. Figure 6 already presented the case in which

we fixed k, i.e. k = K, except for the fully connected network, and gradually reduced

π. Because bifurcation diagrams keep changing for fixed k, we may conclude that k

on its own is not able to characterize the information transmission. Figure 7 shows

the bifurcation diagrams for the networks in which we vary k = K as K ∈ 4, 6, 8

and (a) fix L (C becomes predetermined) and (b) fix C (L becomes predetermined).

All these networks exhibit small world properties (relatively high C and small L).

The bifurcation diagrams keep changing for fixed L and C. Hence, we conclude that

neither L nor C by itself is a sufficient measure to represent the speed of information

transmission in our model. As we previously discussed a “clustering-adjusted” degree

could be a promising measure for our set-up. However, the development of this

measure is left for future work.

Figure 8 depicts the time series of the price for two values of the intensity of
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Figure 8: Time series of price.

the switching parameter, β = 1 (left panel) and β = 3.5 (right panel), and the four

networks: the fully connected graph (FC), the regular lattice (RL), the small world

network (SW) and the random graph (RG). We use this abbreviation in subsequent

figures as well. For β = 1, the price dynamics corresponding to the fully connected

graph and the random network converges to a steady state; the regular lattice and

the small world network lead to irregular asset price fluctuations. For β = 3.5,

somewhat regular fluctuations emerge for all the network topologies, however, the

regularity and the amplitudes of fluctuations vary considerably among them. The

price dynamics of the random network are close to those of the fully connected net-

work. The price dynamics produced by the regular lattice are the most distinct from

the fully connected network. The small world network produces price dynamics sim-

27



 0

 500

 1000

 0  500  1000

A
ge

nt
’s

 ID

Time

(a) Fully connected

 0

 500

 1000

 0  500  1000

Time

(b) Regular lattice

 0

 500

 1000

 0  500  1000

Time

(c) Small world

 0

 500

 1000

 0  500  1000

Time

(d) Random graph

Figure 9: Evolution of agent population.

ilar to the regular lattice with some shift towards the random graph. The observed

price behavior is consistent with the previously inferred bifurcation values of β for

different network topologies.

To provide insights into the effects of different network topologies on market

behavior we track how individual agents change their forecasting beliefs over time.

Figure 9 shows a typical set of patterns that emerge during simulations. This set is

for β = 3.5. The figure shows the evolution of the forecasting type for all 1000 agents

at every time step from 0 to 1000. Each point on a vertical line represents an agents’

type: a black point indicates the fundamentalist type, while a blank point indicates

the chartist type. Agent’s ID indicates a spacial location of the agent on the initial

regular lattice (Figure 1). The agents are numbered sequentially clockwise. The

circular lattice is broken between agent 0 and agent 1000 to be represented as a line.

The inner-circle connections are not explicitly shown on the line, but the network

configuration can be deduced from the time-evolution of agents’ types. Agent 0 is a

“die-hard” chartist and agent 500 is a “die-hard” fundamentalist. These two agents

never change their type.

The periods of the highest concentration of fundamentalists correspond to the

time when the price falls to the fundamental level, while the lowest concentration

of fundamentalists corresponds to the highest deviation from the fundamental value
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Figure 10: Measures of market information inefficiency.

of the price. Since the bifurcation values of β depend on the network topology, the

four models may be at different stages of development for fixed β = 3.5. Hence, the

direct comparison of the models is not formally possible. For each network topology,

however, the observed patterns are somewhat representative of the behavior subse-

quent to the secondary bifurcation. They can be used to better understand price

dynamics on the right side in Figure 8. Overall, the fraction of fundamentalists is

relatively high in the fully connected network. This is consistent with smaller devi-

ations from the fundamental price and frequent price oscillations. Fundamentalists

are relatively uniformly distributed across the network. Large spikes in the fractions

of fundamentalists correspond to price falls. In the case of the regular lattice we

observe high clustering of fundamentalists around the fundamental “core”. This is

consistent with the high clustering coefficient of this network. In the small world

network we also observe clusters, but they are smaller and more disperse in space.

Again this is consistent with sparsity and a high clustering coefficient typical for this

network. In the case of the random graph we do not observe any clusters of funda-

mentalists. This is due to a very small clustering coefficient for this network and a

relatively small number of fundamentalists in the market in most of the periods.

The informational efficiency is closely related to the speed of information trans-
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mission and can be measured by comparing the volatility of the observed price with

the volatility of the fundamental dividend process as suggested by Shiller (1981). In

order to abstract from the effect of the time-varying dividend in our model, we keep

the dividend process constant. Under this assumption, the Efficient Market Hypoth-

esis would predict constant price over time and zero trading volume. In Figure 10

we analyze the standard deviation of the price (panel a) and the average traded

volume (panel b) for values of β ranging from 0.5 to 5 for the four topologies. We

ignore the first 2000 transitory iterations and compute the standard deviation of the

price and the average traded volume for the following 2000 periods. To eliminate the

dependence of our results on a particular realization of the random seed, we report

averages for 100 simulation runs, each run having its own random seed. The same

simulation setup is used for all the other statistics reported below. We observe that

the random graph and the fully connected network exhibit the most informational

efficient outcomes for any values of β which is consistent with the highest speed

of information transmission in these two networks. The regular lattice exhibits the

least informationally efficient outcome.

5.2 Statistical properties of the returns

Below we analyze the properties of the returns generated by the four considered

networks and relate them to the stylized facts of financial time series.

Figure 11 depicts the skewness of the returns and the kurtosis of the returns.

The former statistic (Figure 11a) measures the asymmetry of the distribution. It is

close to zero for all the networks for all post-bifurcation values of β. The returns

generated by the model with the small world network are slightly negatively skewed.

The kurtosis plot (Figure 11b) reveals that all the four networks generate re-

turn distributions with different kurtosis values. The small world network return

distribution exhibits the kurtosis value around 8, which is relatively close to the one
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Figure 11: Skewness and kurtosis of returns.

observed for the returns on the financial markets.

By computing the autocorrelation of the returns for the four network structures,

we analyze their linear (un)predictability. Figure 12a depicts the autocorrelation of

returns for the first five lags as a function of the intensity of choice. Usually empirical

stock return series exhibit small or no autocorrelation. The regular lattice and the

small world network produce high autocorrelations at all lags. This, again, can be

attributed to a less efficient information transmission in these networks. Although

the random graph and the fully connected network display large autocorrelations

at the first two lags, they converge to zero autocorrelation values at lags three to

five. The significant positive autocorrelations are resulting predominantly from the

persistence of the chartist type. It is possible to reduce the autocorrelations by

adding a sufficient amount of dynamic noise into the price as in Hommes (2002).

However, we do not aim to reproduce stylized facts in this paper and therefore do

not pursue this route.

Figure 12b shows the correlations between the squared returns and the volume

of trades. In real financial markets, high trade volumes are associated with high

volatility. Many standard asset pricing models, however, fail to reproduce this re-

lation. Our model produces positive volume-volatility correlations for all networks.
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Figure 12: Properties of returns and volume.

The highest values in the post-bifurcation region are observed under the random

graph network, followed by the small world network.

A universal property of the empirical return series is the volatility clustering, i.e.,

the presence of slow decaying autocorrelations in the squared returns. Figure 13a

shows the autocorrelations of the squared returns at the first five lags as a function

of β, while Figure 13b shows the autocorrelation function of the squared returns

for 20 lags with β = 3.5. The autocorrelations of the squared returns under the

fully connected network and random graph vanish after the first few lags, which is

not consistent with stylized facts. In turn the autocorrelations under the regular

lattice and the small world network remain positive and large at many lags for the

regular lattice and the small world network, indicating the volatility clustering of

the returns.

The above analysis reveals that different local interaction arrangements in the

market affect the dynamics and the time series properties. The effect of the change

in the behavior parameter β also depends on a particular network configuration.
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Figure 13: Autocorrelation of squared returns.

5.3 Extension to four belief types

In this section we extend the baseline BH model with fundamentalists and chartists

to the model with four belief types by introducing two additional types, i.e., pos-

itively biased extrapolators and negatively biased extrapolators (see section 4.3 in

Brock and Hommes, 1998). This model is chosen because for some parametrization

it exhibits almost no autocorrelations in the chaotic return series (Hommes, 2006).

The general form of all belief types is given in Eq. 5. The parameters used for fun-

damentalists and chartists are set to bf = 0, gf = 0 and bc = 0, gc = 1.21 and the

parameters for the two new types, the positively and negatively biased extrapola-

tors, are set to bp = 0.2, gp = 1.1 and bn = −0.2, gn = 0.9; cost c were set to 0 for all

types, r = 0.1, ȳ = 10.12 The number of agents is set to N = 1000 and similarly to

the two-type case, the network is populated by four equidistant “die-hard” agents

who never change their types.13

Conceptually it is possible to extend a low dimensional approximation of the

two-type model with the random network (Eq. 10 in Section 4.2) to the four-type

12This is a standard specification used in Brock and Hommes (1998). We also have tried an
alternative specification in Hommes (2006), but the results did not change qualitatively.

13Given that we have 4 types now, there are several possibilities on how to locate ”die-hard”
agents relative to each other. We have tried various permutations, but they did not influence the
results.
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Figure 14: Bifurcations in four-type models.

model. However, the extension is tedious in a sense that we would have to keep track

of all possible situations when an agent has information about the performance of

various subsets of all possible types and consider multiple ∆-s depending on these

subsets. Hence, we resort directly to simulations.

Figure 14 shows (a) the bifurcation diagrams and (b) the standard deviation

of the price as a function of β for the model with four belief types. For the fully

connected graph, the bifurcation appears to occur around the value of β∗ = 50. This

is the theoretically derived critical value for which the Neimark-Sacker bifurcation

occurs in the BH model with four belief types. For large values of β > 85 chaotic

behavior can be inferred in the BH model. This coincides with the region for β, in

which we observe the highest price fluctuations in the case of the fully connected

network. In the case of the random network the bifurcation seems to be occurring for

the values of β just before 50 and the observed price fluctuations are higher relative

to the fully connected network. From the standard deviations of the price we deduce

that for small world and regular lattice bifurcations may be occurring for β around

35. This ordering in terms of the bifurcation values is somewhat similar to what we

34



 99.96

 99.98

 100

 100.02

 100.04

 0  100  200  300  400  500

 99.96

 99.98

 100

 100.02

 100.04
P

ri
c
e

Time

RL SM

(a) β = 30

 99.94
 99.96
 99.98

 100
 100.02
 100.04
 100.06

 0  100  200  300  400  500

 99.94

 99.96

 99.98

 100

 100.02

 100.04

 100.06

P
ri

c
e

Time

RL SM

(b) β = 85

 99.98

 99.99

 100

 100.01

 100.02

 0  100  200  300  400  500

 99.96

 99.98

 100

 100.02

 100.04

P
ri

c
e

Time

FC RG

(c) β = 30

 99.8

 100

 100.2

 0  100  200  300  400  500

 100

 100.5

 101

 101.5

 102

 102.5

 103

P
ri

c
e

Time

FC RG

(d) β = 85

Figure 15: Time series of price for four-type models.

have observed in the two-type model. Contrary to the case of the two-type model,

we do not observe large price fluctuations for the regular lattice and the small world

networks. Figure 15 shows typical time series for the four-type models for different

values of β. For small β = 30 we observe small amplitude noise fluctuations, closely

resembling random walk series for the regular lattice and the small world networks.

For larger β = 85, the price deviations for the regular lattice and small world exhibit

more regularity and some volatility clustering, but their amplitude remains small.

The fully connected graph shows symmetric fluctuations of some regularity, while

the random graph shows asymmetric fluctuation with large positive price spikes.

Given that bifurcations occur at different values for different networks, care needs

to be taken in comparing these results. To understand differences in the amplitude
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of the price, we look at the distribution of the fractions of the four types. For

small β = 30 all fractions are approximately equal to 0.25 for all network topologies.

For large β = 85, the distribution of the fraction differs substantially. In the fully

connected network and the random graph, the fraction of chartists is close to zero,

while the fractions of all the other types vary between zero and one, which causes

the observed price fluctuations. Moreover the fractions of the active types change

rapidly, a fraction may grow from 0 to 1 within 5 time periods. In the regular

lattice and the small world, all the fractions fluctuate in a relatively small range,

fundamentalists seem to dominate most of the time and their average fraction is

close to 0.35, chartists are some-times overtaking fundamentalists and their average

fraction is around 0.25, the fractions of the positively and negatively biased trades are

both around 0.20. As β increases, in the regular lattice and the small world network

the range of price and fraction fluctuations does not change much, but the fractions

of fundamentalists and chartists increase, while the fractions of the positively and

negatively biased agents decrease. One possible explanation of these differences

in the distributions of the fractions is that in the networks with a relatively slow

information transmission some types (positively and negatively biased chartists)

become unsustainable because their fractions cannot grow fast enough.

We considered other network topologies with K = 6 and K = 8 but the results

were qualitatively similar. In particular, as the average degree, k = K, increases

holding the clustering coefficient, C, fixed, the dynamics for the small world case

becomes closer to the dynamics observed for the random graph. We further qual-

itatively compare various characteristics of the two-type and four-type models for

the considered networks with K = 4 (see second column in Table 1). Depending on

the computed values of the characteristics in the left column, the network topologies

are reported in increasing order from left to right. First, we note that the order-

ing is rather different for the two-type and four-type models. We also note that in
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Two-type model Four-type model

Latency in information transmission FC RG SW RL FC RG SW RL

1/β of the primary bifurcation FC RG SW RL FC RG SW≈RL
Length of instability interval FC RG SW RL FC RG SW≈RL
Amplitude of price fluctuation FC RG SW RL RL SW FC RG

Std. deviation of price FC RG SW RL RL SW FC RG
Average trading volume FC RG SW RL RL SW FC RG

Skewness of returns SW RL FC RG RL SW FC RG
Kurtosis of returns RL SW RG FC SW RL FC RG
Autocorrelations of returns FC RG SW RL inconclusive
Volume/volatility correlations FC RL SW RG FC (neg) SM RL RG
Autocorrelations of squared returns FC RG SW RL FC RG RL SW

Table 1: Characteristics depending on the network in increasing order left to right.
The characteristics depending on values of β are compared at fixed β: β = 4 for the
two-type model and β = 85 for the four-type model. Notes: A ≈ B indicates that
there is no clear ranking between A and B, neg stands for negative values.

the two-type model the ordering in terms of the timing of the primary bifurcation,

amplitude, length of the instability interval, statistical properties of prices and re-

turns, except for skewness and volume/volatility correlations, is consistent with the

ordering of the latency in the information transmission. This ordering is different

for the four-type model which is more complicated. For this model we observe large

qualitative difference in the dynamics between the networks with low latency (FC

and RG) and high latency (RL and SW) which may be the cause for the non-linear

ordering.

6 Conclusions and extensions

In this paper we expanded the model of Brock and Hommes (1998) by introducing

local information exchange via communication networks. We studied how different

network structures affect asset price dynamics. We derived a low dimensional system

to represent dynamics in the two-type model with a random graph and proved
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some stability results for this case. Other network structures were investigated by

simulations. We observed that the stability regions with respect to the intensity of

choice parameter β depend on the parameters of the communication network. In the

two-type model, the latency in the information transmission, which is the highest

for the regular lattice and the small world networks, creates greater information

inefficiencies and induces greater instabilities and higher deviations in the price

dynamics. In the four-type network model, the latency in information transmission

causes qualitatively different results.

The work in this paper may be extended in a number of directions. (1) The

basic principles used to derive the low-dimensional analytically tractable model for

the random network may be used to derive similar models for small world networks.

Moreover, it would be interesting to extend this work to the scale free networks and

other topologies popular in the literature. Other agent ecologies may also be ex-

tended to incorporate various network structures. (2) Another interesting direction

is to make the strength of the noise, 1/β, dependent on the number of neighbors of

own and alternative types. This to some degree would endogenize parameter β. (3)

In addition to this, it would be important to consider agents with longer memory

who would consider the investment rules they used more than one period ago or

perform some counterfactual analysis if the performance of an alternative type is

not observed. (4) In many real-life networks there is a feedback between network

performance and network formation. The performance of agents may gradually in-

fluence the network topology they are active in. Extending the model to include

endogenous network formation would also be of great interest.
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Appendix

Proof of Proposition 1. By imposing steady state (x̄, n̄) on Eqs. 11–12 we obtain

x̄ =
g

R
n̄x̄ (13)

n̄ = n̄k+1 +
[
1− n̄k+1 − (1− n̄)k+1

]/[
1 + exp(β(Dgx̄2(R− 1)− c))

]
, (14)

Existence. From Eq. 13 we find that a necessary condition for a steady state is

either x̄ = 0 or n̄ = n∗, where n∗ = R
g . The former condition leads to fundamental

steady states, while the latter to non-fundamental steady states. Additionally a

steady state needs to satisfy the conditions implied by Eq. 14. For the fundamental

steady states, x̄ = 0, and n̄ is a fixed point of map f , defined as

f(n) = nk+1 + (1− nk+1 − (1− n)k+1)∆, (15)
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where ∆ = 1/(1 + exp(−βc)) and k > 1. See Figure 4 for plots of the map.

The map, f : [0, 1]→ [0, 1], is continuously differentiable and increasing,

f ′(n) = (k + 1)
(
nk(1−∆) + (1− n)k∆

)
> 0. There are two corner fixed points n̄ =

f(0) = 0 and n̄ = f(1) = 1 which correspond to fundamental steady states E0(0, 0)

and E1(0, 1). We now prove that for β < β1 = ln(k)/c there exists the unique interior

fixed point and for β > β1 = ln(k)/c no fixed point exists. Let n� be an interior

fixed point such that n� ∈ (0, 1). By setting f ′′(n) = 0, we find the unique interior

inflection point n∼ = 1/[(1/∆− 1)1/(k−1) + 1] such that f ′′(n) < 0 for n < n∼ and

f ′′(n) > 0 for n > n∼. Hence, we conclude that there may exist at most one interior

fixed point.14 Next we derive the condition for which the interior fixed point exists.

We find f ′(0) = (k + 1)∆ > 1 and f ′(1) = (k + 1)(1−∆). There may be two cases:

(1) f ′(1) > 1 which is equivalent to β < β1 and for which the (unique) interior point

exists15 and E�(0, n
�) is the fundamental steady of the system; and (2) f ′(1) ≤ 1

which is equivalent to β > β1 and for which no interior fixed point exists.16 At

β = β1, E� collides into E1. Note that 1/2 ≤ ∆ < 1 because βc ≥ 0. Using this we

find that n� ≥ ∆ and 1/2 ≤ n� < 1.17

Next, we derive the non-fundamental steady states for which n̄ = n∗ = R
g .

Because 0 ≤ n ≤ 1, the non-fundamental steady states may exist only for g ≥ R.

By substituting n̄ = n∗ in Eq. 14, we find x̄ = ±x∗, where

x∗ =
√(

ln
[( g
R − 1

)(
1−

(
1− R

g

)k)/(
1−

(
R
g

)k)]/
β + c

)/(
Dg(R− 1)

)
.

It is easy to see that a real value of x∗ exists if and only if β ≥ β∗, where

14Consider continuously differentiable map g(n) = f(n) − n defined on interval [0,1]. By the
mean value theorem between any two real roots of g(n) there should be at least one turning point
g′ = 0 or f ′ = 1. By the same argument between any two turning points there should be at least
one inflection point of f .

15Apply the intermediate value theorem to map g(n) = f(n)− n: for infinitesimally small ε > 0,
g(0 + ε) > 0, g(1− ε) < 0 and hence ∃n0 ∈ [ε, 1− ε] such that g(n0) = 0.

16Any such fixed point would require the existence of at least two inflection points.
17To show this, impose f(n) = n to obtain n

∆
= 1−nk+1−(1−n)k+1

1−nk . Note that n
∆
≥ 1 when n ≥ 1/2

and also that n = 1/2 when ∆ = 1/2. To complete the argument, use the implicit function theorem
and show that n is increasing in ∆ on interval (0, 1).
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β∗ = − ln
[( g
R − 1

)(
1−

(
1− R

g

)k)/(
1−

(
R
g

)k)]/
c.

Importantly, β∗ = 0 when g/R = 2 and β∗ becomes negative and hence nonbinding

for existence of x∗ when g > 2R. Note that x∗ reaches its minimum value x∗ = 0

at β = β∗. Therefore, n� = n∗ at β = β∗. This way, we establish the existence of

the non-fundamental steady states, E+ = (x∗, n∗), E− = (−x∗, n∗), for β > β∗ when

R ≤ g ≤ 2R and for any values of β when g > 2R.

Stability. To verify the stability of the steady states we compute the eigenvalues

of the corresponding Jacobian matrix at steady states. A steady state is stable when

all the eigenvalues lie inside of the unit circle. For the fundamental steady states at

x = 0 the eigenvalues are
(

0, gRn,
(k+1)(exp(βc)(1−n)k+nk)

1+exp(βc)

)
. Steady state E0 = (0, 0)

is always unstable. Steady state E1 = (0, 1) is unstable for g ≥ R, while for g < R

it is stable only when β > β1. At β = β1, the transcritical bifurcation takes place

at which E� ceases to exist by colliding into E1 and E1 gains stability.

To derive the stability conditions for steady state E� = (0, n�), we consider the

third eigenvalue equal to f ′(n�). We have previously established that f ′(n�) > 0,

f ′(0) > 1 and that f ′(1) > 1 whenever the unique interior fixed point, n�, exists.

Because, the map is continuously differentiable and there is a unique interior inflec-

tion point, it holds that 0 < f ′(n�) < 1.18 From the second eigenvalue we establish

that E� is unstable for g ≥ 2R, it is always stable for g < R and it is stable for

g < 2R when n� < R/g. Because n� is an increasing function of β and n� = n∗ at

β = β∗, we can express this stability condition for E� in terms of β, that is, β < β∗.

Also, note that β∗ < β1. At β = β∗ one of the three real eigenvalues becomes equal

to one and the pitchfork bifurcation takes place. For β > β∗ the fundamental steady

state, E�, looses stability and the two non-fundamental steady states, E+ = (x∗, n∗)

and E− = (−x∗, n∗), emerge and gain stability as we show below.

18In other words under these conditions, the only way g(n) = f(n) − n may cross n = 0 line is
from above which can be proved using the mean value and the intermediate value theorems.
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The characteristic polynomial for the stability of the non-fundamental steady

states E+ = (x∗, n∗) and E− = (−x∗, n∗) is

P(λ) = λ(λ− 1)(λ−A) + (β − β∗)B
(
λ2 −R(1 + λ) + 1

)
/ (c(R− 1)) ,

where A =
(k+1)((1−n∗)kn∗+(1−n∗)(n∗)k−((1−n∗)n∗)k)

1−(1−n∗)k+n∗((1−n∗)k−(n∗)k)
, B =

(1−n∗)(1−(1−n∗)k)(1−(n∗)k)
1−(1−n∗)k+n∗((1−n∗)k−(n∗)k)

and n∗ = R/g. Note that 0 < A ≤ 1, 0 ≤ B ≤ 1.

When β = β∗, x∗ = 0 and all the three eigenvalues are real and equal to

0, 1 and A. In order to find regions of β for which all the eigenvalues lie in-

side the unit circle we apply the Schur-Cohn criterion.19 We find critical value

β∗∗ = β∗ +
(

1− 2R−A(R− 1) +
√

(1 +A)2 − 2 (4 +A+A2)R+ (8 +A2)R2
)
/ (2BRc),

such that for β∗ < β < β∗∗ the non-fundamental steady states are stable.

The discriminant of the characteristic polynomial at β = β∗∗ is negative which

signals one real and two complex (conjugate) eigenvalues. This, in turn, indicates

the occurrence of Neimark-Sacker bifurcation.
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