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Abstract

A sender chooses ex ante how her information will be disclosed to a privately in-

formed receiver who then takes one of two actions. The sender wishes to maximize

the probability that the receiver takes the desired action. The sender faces an ex

ante quantity-quality tradeo¤: sending positive messages more often (in terms of the

sender�s information) makes it less likely that the receiver will take the desired action

(in terms of the receiver�s information). Interestingly, the sender�s and receiver�s wel-

fare is not monotonic in the precision of the receiver�s private information: the sender

may �nd it easier to in�uence a more informed receiver, and the receiver may su¤er

from having more precise private information. Necessary and su¢ cient conditions are

derived for full and no information revelation to be optimal.

Key words: information disclosure, persuasion, informed decision maker, two-way

communication

JEL Codes: C72, D81, D82, D83

1 Introduction

Decision makers often rely on information obtained from interested parties. Most of the liter-

ature on communication assumes that decision makers do not have private information. But
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generically, everyone has private information. The main goal of this paper is to understand

economic aspects of optimal information disclosure from a sender to a privately informed

receiver.

In my model, the receiver decides whether to act or not to act. The sender�s utility

depends only on the action taken by the receiver, and she prefers the receiver to act. The

receiver�s utility depends both on his action and on information. The receiver takes an action

that maximizes his expected utility, given his private information and information disclosed

by the sender. Before obtaining her private information, the sender can commit to how

her private information will be disclosed to the receiver. Formally, the sender can choose

any (stochastic) mapping from her information to messages, which I call a mechanism. The

sender chooses the mechanism that maximizes the ex ante probability that the receiver will

act. I impose a single-crossing assumption requiring that receiver�s types can be ordered

according to their willingness to act.

For example, consider a school that chooses a disclosure policy for a student in order to

persuade a potential employer to hire him. The school has a lot of freedom in choosing which

part of available information about the student will appear on his transcript. Moreover, the

school commits to its disclosure policy before it learns anything about the student. The

employer observes the student�s transcript but also obtains private information, for example,

from conducting an employment interview with the student and competing candidates. In

addition, the school uses the same disclosure policy for all students, who apply to di¤erent

employers. This also contributes to the receiver�s private information in terms of my model.

Since the receiver has private information, he acts or does not act depending not only

on a message received from the sender but also on his private information. Thus, from the

sender�s perspective, each message generates a probability distribution over receiver�s actions.

Therefore, when the sender chooses a mechanism, she faces an important quantity-quality

tradeo¤of messages that she will later send: sending positive messages more often (in terms of

the sender�s private information) makes it less likely that the receiver will act upon receiving

them (in terms of the receiver�s private information). The optimal mechanism balances these

two con�icting objectives. For example, when the school chooses lower standards for getting

good grades, more students get good-looking transcripts, but employers rationally account

for this and each student with a good-looking transcript will �nd it harder to get a job.

This ex ante tradeo¤ does not appear in cheap talk and veri�able message games where the

sender chooses a report at the interim stage when she already has her private information.

Interestingly, under the optimal mechanism, the sender�s and receiver�s expected utilities

2



are not monotonic in the precision of the receiver�s private information. First, as the receiver

becomes more informed, his expected utility may decrease despite the fact that he is the only

player who takes an action that directly a¤ects his utility. This happens because the optimal

mechanism depends on the structure of the receiver�s private information, and the sender

may prefer to disclose signi�cantly less information if the receiver�s information is more

precise.1 Second, it may be easier for the sender to in�uence a more informed receiver. This

happens because the sender may optimally choose to target only the receiver with favorable

private information. In this case, it becomes easier for the sender to persuade the receiver

with more precise favorable information, so the sender may be able to persuade the receiver

with a higher total probability.

The sender�s problem of �nding an optimal mechanism reduces to a linear program.

Using duality theory, I show how to obtain primitive necessary and su¢ cient conditions for

a candidate mechanism to be optimal. This is the main technical contribution of the paper,

which can be applied to other models of information disclosure because the sender�s expected

utility is always linear in probabilities that constitute a mechanism. In reality, schools choose

various disclosure policies and duality theory allows us to �nd primitive conditions on the

environment that justify each choice. At the one extreme, schools report all grades and class

rank on transcripts. The full revelation mechanism is optimal if and only if the sender prefers

to reveal any two of her types than to pool them. At the other extreme, schools release no

transcripts. The no revelation mechanism is optimal if and only if the sender prefers to pool

any three of her types than to pool two of them and reveal the third one. Under further

assumptions, I show that the amount of information that is optimally disclosed is determined

by the convexity properties of the distribution of the receiver�s type and by the expectation

of the sender�s type.

In the benchmark model, the receiver is not allowed to communicate with the sender. This

assumption �ts many real-life examples. In particular, the school gives the same transcripts

to students regardless of where they apply for a job and before they get interviewed by

employers. However, this assumption is not without loss of generality because the sender

can potentially increase the probability that the receiver acts by conditioning a mechanism

on receiver�s reports. I provide su¢ cient conditions under which two-way communication

does not help the sender and give an example in which it does.

1Continuing the school-employer application, Arvey and Campion (1982) summarize research on employ-

ment interviews and report low reliability for interview-based assessments, which may actually be bene�cial

for employers because it motivates schools to design more informative disclosure policies as shown in my

model.
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The most related literature is the one in which the sender can commit to an information

disclosure mechanism. Kamenica and Gentzkow (2011) study a much more general model

but focus on the case of an uninformed receiver. They also show that some results generalize

to the case of a privately informed receiver. In my companion paper Kolotilin (2013), I

derive monotone comparative statics results with respect to the probability distribution of

information for the case of an uninformed receiver. In contrast, in this paper I focus on the

case in which the receiver does have private information, where both the results and analytical

techniques are very di¤erent. Similar to this paper, Rayo and Segal (2010) assume that the

receiver has a binary action choice, but they allow the sender�s utility to depend not only

on the action but also on information. To make the analysis tractable, they assume that the

receiver�s type is uniformly distributed. This assumption would make my model trivial in

that the sender�s expected utility would be the same under any mechanism, as follows from

part 1 of Theorem 1 below. Ostrovsky and Schwarz (2010) study information disclosure in

matching markets with private information. The main conceptual di¤erence is that they

study equilibrium rather than optimal information disclosure.

A few papers study cheap talk with a privately informed receiver. In the cheap talk ver-

sion of my model, the unique equilibrium outcome involves no information revelation because

the sender�s utility depends only on the receiver�s action and the information structure satis-

�es the single-crossing assumption. If either of these two assumptions fails, a fully revealing

equilibrium may exist (Seidmann (1990) and Watson (1996)). Chen (2009), de Barreda

(2012), and Lai (2013) study cheap talk with an informed receiver under the standard Craw-

ford and Sobel (1982) assumptions. They all show that the receiver�s expected utility may

be not monotonic in the precision of his private information. The mechanics of these results,

however, is di¤erent from that of my non-monotone comparative statics results. In stark con-

trast to optimal information disclosure games (Kolotilin (2013)), in cheap talk games with

an uninformed receiver, the sender�s and receiver�s expected utilities are non-monotonic in

the precision of the sender�s information (Green and Stokey (2007) and Ivanov (2010)) and

in the precision of public information (Chen (2012)).

The rest of the paper is organized as follows. Section 2 develops a general model. Sec-

tion 3 presents two examples that illustrate the quantity-quality tradeo¤ of the sender and

non-monotone comparative statics. Section 4 analyzes the model under a fairly general infor-

mation structure of the sender and receiver. This section partially characterizes the optimal

mechanism and derives primitive necessary and su¢ cient conditions for optimality of the

full revelation and no revelation mechanisms. Section 5 extends the model to allow two-way
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information disclosure between the sender and receiver. Section 6 concludes. The appendix

contains formal proofs.

2 Model

Consider a communication game between a female sender and a male receiver. The receiver

takes a binary action: to act (a = 0) or not to act (a = 0). The sender�s utility depends

only on a, but the receiver�s utility depends both on a and on (r; s) where components r

and s denote the receiver�s and sender�s types, respectively. That is, the sender�s utility

is a, and the receiver�s utility is au (r; s) where u is a continuously di¤erentiable function.

Before s is realized, the sender can commit to a mechanism that sends a message m to

the receiver as a (stochastic) function of her type s; speci�cally, the sender chooses the

conditional distribution � (mjs) of m given s. With a slight abuse of notation, the joint

distribution of (m; s) is denoted by � (m; s).

Assume that the set of messages is the continuum, the set R of receiver�s types is [r; r],

and the set S of sender�s types is [s; s]. The information (r; s) has some joint distribution.

Unless stated otherwise, assume that for this distribution, the marginal distribution F (s) of

s and the conditional distribution G (rjs) of r given s admit strictly positive continuously
di¤erentiable densities f (s) and g (rjs).
The timing of the communication game is as follows:

1. The sender publicly chooses a mechanism � (mjs).

2. A triple (m; r; s) is drawn according to �, F , and G.

3. The receiver observes (m; r) and takes an action a.

4. Utilities of the sender and receiver are realized.

The solution concept used is Perfect Bayesian Equilibrium (PBE). I view PBEs as iden-

tical if they have the same equilibrium mapping from information (s; r) to the receiver�s

action a. At the third stage, the receiver forms a belief about s and acts if and only if the

conditional expectation E� [u (r; s) jm; r] of u given (m; r) is at least 0. At the �rst stage, the
sender chooses an optimal mechanism that maximizes her expected utility, the probability

that the receiver acts. The main assumption, formally imposed later, is the single-crossing

assumption: each message m induces types r � r� (m) to act, for some function r�.
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Hereafter, use the following de�nitions and conventions. All notions are in the weak sense,

unless stated otherwise. For example, increasing means non-decreasing and higher means

not lower. Two mechanisms are equivalent if they result in the same probability that the

receiver acts. One mechanism dominates another mechanism if the former results in a higher

probability that the receiver acts than the latter. The full revelation mechanism (denoted by

�full) is a mechanism that sends a di¤erent message for each s. The no revelation mechanism

(denoted by �no) is a mechanism that sends the same message regardless of s. The survival

function H of a random variable with distribution H is de�ned as H � 1�H.

3 Examples

In this section, I discuss two complimentary examples. In the �rst example, the sender�s and

receiver�s types are binary and the receiver�s type is a noisy signal about the state, known by

the sender. In the second example, the sender�s and receiver�s types are continuous and the

receiver�s type is independent of the sender�s type. For these examples, I derive the optimal

mechanism and illustrate the sender�s quantity-quality tradeo¤. Further, I show that the

sender�s and receiver�s expected utilities are non-monotonic in information. Finally, I discuss

what determines how much of information is optimally disclosed.

3.1 Binary Example

In this example, the sender is perfectly informed, but the receiver is partially informed.

That is, the sender knows the receiver�s utility from acting, but the receiver only gets a

signal about his utility. Speci�cally, the receiver�s utility from acting is equal to the sender�s

type s that takes two values: s = 1 with probability 1=5 and s = �1 with probability 4=5.
The receiver�s type (equivalently signal) r also takes two values r = 1 and r = �1 according
to the following conditional probabilities:

Pr (r = 1js = 1) = Pr (r = �1js = �1) = p:

The parameter p captures the precision of the receiver�s private signal. In the school-

employer application, p may correspond to the quality of an employment interview. Without

loss of generality, assume that p 2 [1=2; 1]. For a given mechanism, the receiver r = 1 assigns
a higher probability that s is 1, than the receiver r = �1. Moreover, the di¤erence in their
assessments of the probability that s is 1 increases with p. Thus, p can be alternatively viewed
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as the measure of polarization between the optimistic receiver (r = 1) and the pessimistic

receiver (r = �1).
A message m under a mechanism � generates a posterior probability Pr� (sjm) of s

given m for each value s. The probability Pr� (s = 1jm; r) that s is 1 given m and r can be

calculated using Bayes�rule. The receiver acts if Pr� (s = 1jm; r) � 1=2. It is straightforward
to calculate that upon receiving m, the optimistic receiver acts if Pr� (s = 1jm) � 1 � p,

and the pessimistic receiver acts if Pr� (s = 1jm) � p. Clearly, if m induces the pessimistic

receiver to act, it also induces the optimistic receiver to act. Thus, by the revelation principle,

we can restrict attention to mechanisms with three messages: (i)m0 that induces the receiver

not to act regardless of his signal (Pr� (s = 1jm0) 2 [0; 1� p)), (ii) m1 that induces only the

optimistic receiver to act (Pr� (s = 1jm1) 2 [1� p; p)), and (iii) m2 that induces the receiver

to act regardless of his signal (Pr� (s = 1jm2) 2 [p; 1]). Because the sender�s expected utility
is equal to the probability that the receiver acts, she would strictly prefer to send m2 over

m1 and m1 over m0 if there were no constraints on how often she can send various messages.

The prior distribution of s, however, imposes a constraint on how often the sender can

send various messages:

2X
i=0

Pr � (s = 1jmi) Pr � (mi) = Pr (s = 1) =
1

5
; (1)

where Pr � (mi) denotes the probability that mi is sent under a mechanism �. Constraint (1)

implies that to maximize the probability of the messagesm2 andm1, the sender should choose

a mechanism that satis�es: Pr� (s = 1jm0) = 0, Pr� (s = 1jm1) = 1�p, and Pr � (s = 1jm2) =

p.2 That is, m0 gives the most possible evidence against acting; m1 gives the minimal possi-

ble evidence to make the optimistic receiver act; and m2 gives the minimal possible evidence

to make the pessimistic receiver act. These observations imply that the sender�s expected

utility simpli�es to:3

2p (1� p) Pr (m1) + Pr (m2) ; (2)

and constraint (1) simpli�es to:

(1� p) Pr (m1) + pPr (m2) =
1

5
: (3)

2Formally, the optimal mechanism is derived in the supplemental appendix for a setting that nests this

example.
3Equation (2) is obtained using the fact thatm2 induces the receiver to act with probability 1, m1 induces

the receiver to act with probability pPr� (s = 1jm1) + (1� p) Pr� (s = �1jm1), and m0 induces the receiver

to act with probability 0.
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Figure 1: The sender�s and receiver�s expected utilities as a function of the precision of the

receiver�s private information.

The sender�s problem of �nding the optimal mechanism can be viewed as a problem of

maximizing the linear utility function (2) over probabilities Pr (m0), Pr (m1), and Pr (m2)

subject to the budget constraint (3). That is, the marginal utilities of the messages m0, m1,

and m2 are 0, 2p (1� p), and 1; and the prices of these messages are 0, 1� p, and p. Thus,

the sender faces a quantity-quality tradeo¤: to sendm1 with a high probability and persuade

only the optimistic receiver or to send m2 with a small probability and persuade both the

pessimistic and optimistic receivers. This tradeo¤ is resolved by a choice of a mechanism that

sends messages with the highest marginal utility-price ratio. Before discussing the optimal

mechanism in a greater detail, I highlight non-monotone comparative statics.

Figure 1 shows the sender�s and receiver�s expected utilities under the optimal mechanism.

Naive intuition may suggest that (i) the sender�s expected utility should decrease with p

because it is harder to in�uence a better informed receiver and (ii) the receiver�s expected

utility should increase with p because a better informed receiver takes a more appropriate

action. This naive intuition, however, does not take into account that the optimal mechanism

changes with p, and the sender may choose to disclose signi�cantly less information if the

receiver is more informed. This e¤ect may overturn the results. In fact, the sender�s expected

utility strictly increases with p for p 2
�
1=
p
2; 4=5

�
, and the receiver�s expected utility jumps

down to zero as p exceeds 1=
p
2.4 Thus, a more informative employment interview may help

4Consistent with the naive intuition, the sender�s expected utility decreases and the receiver�s expected

utility increases with the precision of the receiver�s information if this precision is either low or high. Indeed,

the sender is best o¤ and the receiver is worst o¤ when the receiver is uniformed. Moreover, the sender is
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the school in in�uencing the employer�s decision and may hurt the employer in making him

hire worse students on average.

I stress that these non-monotone comparative statics results with respect to the precision

of information arise only when the receiver is privately informed. If the receiver�s signal

was public, then the sender�s and receiver�s expected utilities would be monotonic both in

the precision of the sender�s private information and in the precision of public information

(Kolotilin (2013)).

Figure 1 also sheds light on the extent to which information disclosure can a¤ect the

receiver�s action and on the informativeness of the optimal mechanism. As the left panel

shows, for a wide range of p, the probability that the receiver acts is considerably higher

under the optimal mechanism than under the two benchmark mechanisms: the full revelation

and no revelation mechanisms. As the right panel shows, from the receiver�s perspective,

the optimal mechanism is maximally uninformative if p = 1
2
or p 2

�
1=
p
2; 1
�
; and its

informativeness gradually increases with p for p 2
�
1=2; 1=

p
2
�
. I now explain the three

forms that the optimal mechanism can take as p increases from 1=2 to 1.

First, if the receiver�s signal is imprecise in that p is close to 1=2, then it is almost as cheap

to persuade the pessimistic receiver to act as it is to persuade the optimistic receiver to act,

because the prices p and 1 � p are close. Thus, the sender prefers to target the pessimistic

receiver, so the optimal mechanism sends the messages m2 and m0. As p increases, it

becomes harder to persuade the pessimistic receiver to act and, thus, sending m2 becomes

more expensive. As a result, the sender�s expected utility decreases with p. Since the optimal

mechanism gives no rent to the pessimistic receiver, the optimistic receiver gets a strictly

positive rent, which increases with p.

Second, as p exceeds 1=
p
2 (but falls behind 4=5), the polarization between the optimistic

and pessimistic receivers becomes so high that it becomes much more expensive to persuade

the pessimistic receiver to act than to persuade the optimistic receiver to act. Thus, the

sender prefers to target the optimistic receiver, so the optimal mechanism sends the messages

m1 andm0. In other words, the sender switches from the more expensive and more persuasive

message m2 to the less expensive and less persuasive message m1. As p increases, the price

1�p of sendingm1 decreases and it becomes easier to persuade the optimistic receiver to act.

As a result, the sender�s expected utility increases with p. The receiver�s expected utility

jumps down to 0 as p exceeds 1=
p
2, and it stays at 0 because the optimal mechanism makes

the receiver indi¤erent to act whenever he acts.

worst o¤ and the receiver is best o¤ when the receiver is perfectly informed.
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Third, as p exceeds 4=5, the receiver�s signal becomes so precise that the sender can per-

suade the optimistic receiver to act by disclosing no information. Thus, the sender prefers

to target the optimistic receiver with certainty and the pessimistic receiver with some prob-

ability, so the optimal mechanism sends m1 and m2. As p increases further, the sender can

persuade the pessimistic receiver to act more often, so the optimal mechanism sends m2 with

a higher probability. But the probability of the receiver being optimistic decreases, so m1

induces the receiver to act with a lower probability. In this example, the latter e¤ect domi-

nates the former, so the sender�s expected utility decreases with p. The receiver�s expected

utility increases with p because the optimal mechanism gives no rent to the receiver, so a

better informed receiver takes a more appropriate action.

The sender�s quantity-quality tradeo¤illustrated here carries on to a general version of the

model. If the sender�s signal is binary, this tradeo¤ is resolved by the choice of messages with

the highest marginal utility-price ratio (Section 4 and the supplemental appendix), otherwise

the tradeo¤becomes more intricate because the budget constraint becomes multidimensional

(Sections 3.2 and 4).

3.2 Continuous Example

In this example, the receiver�s utility is additive in sender�s and receiver�s types that are

independent of each other. More formally, u(r; s) = s � r where s and r are independently

distributed with distributions F and G. The supports are such that the receiver r always

acts (r < s) and the receiver r never acts (r > s). For example, s may correspond to the

student�s ability privately known by the school, and r to the opportunity cost from hiring

privately known by the employer. For simplicity, each message m is identi�ed with the

receiver�s type who is indi¤erent to act, so that m induces the receiver to act if and only if

r � m.5

Proposition 1 simpli�es the sender�s problem of �nding an optimal mechanism to a prob-

lem of �nding an optimal distribution of messages.

Proposition 1 Let H denote the marginal distribution of m under the optimal mechanism.

5This example is more general than it may seem. In particular, it includes the case where u (r; s) =

b (r) c (s) + d (r) for some functions b, c, and d where b is positive and all functions satisfy certain regularity

conditions. Indeed, the receiver acts whenever �d (r) =b (r) � E� [c (s) jm], so rede�ning the receiver�s type
as �d (r) =b (r) and the sender�s type as c (s) gives the required result.
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Then H
maximizes

R r
r
G (m) dH (m)

subject to F is a mean-preserving spread of H:
(4)

The objective function in (4) is simply the probability that the receiver acts under a

mechanism �. If F is a mean-preserving spread of H, then F is more informative about

the underlying (hypothetical) state than H (Blackwell (1953)). Since the sender has full

commitment, she can garble her information to achieve any less informative distribution

H than her prior F . If she then fully reveals this garbled information to the receiver,

then the distribution of m will be H. Conversely, because the sender cannot make her

information more precise in any sense, F must be a mean-preserving spread of H for any

feasible mechanism.

Proposition 1 suggests that the sender faces a similar tradeo¤ to that of the binary

example. The sender�s marginal utility from sending m is G (m). But besides requiring the

expectation of m and s to be equal, the budget constraint now also requires the distribution

of m to be less variable than the prior distribution. Proposition 2 shows that the shape of

the optimal mechanism is determined by the curvature of G and the expectation of s.

Proposition 2 In this example:

1. All mechanisms are equivalent if and only if G is linear on S.

2. �full is optimal if and only if G is convex on S.

3. �no is optimal if and only if the concave closureG of G on S is equal to G at rno � EF [s]
in that

G(rno) �
r2 � rno
r2 � r1

G(r1) +
rno � r1
r2 � r1

G(r2)

for all r1; r2 2 S such that r1 < rno < r2.6

4. If G is convex on [s; si], concave on [si; s], and G (rno) < G(rno), then the optimal

mechanism reveals s for s < sc and sends the same message rc � E [sjs � sc] for

s � sc where sc < si is uniquely determined by

g (rc) =
G (rc)�G (sc)

rc � sc
:

6Intuitively, a concave closure of a function (de�ned on a convex set) is the smallest concave function

that is everywhere greater than the original function.
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Figure 2: The distribution G and its concave closure G for r 2 S.

The �rst three parts of Proposition 2 are straightforward because the optimal mechanism

is the solution to problem (4). First, if G is linear, then the sender is risk neutral, so all

mechanisms are equivalent. Second, if G is convex, then the sender is risk loving, so the full

revelation mechanism is optimal. Third, if G is concave, then the sender is risk averse, so

the no revelation mechanism is optimal.7

The last part of Proposition 2 derives the optimal mechanism under a natural assumption

that the distribution G has an �S�shape as shown in Figure 2.8 Assume that EF [s] < st

(equivalently G (rno) < G(rno)), otherwise �no is optimal by part 3. If F were to put strictly

positive probabilities only on s and s, then the optimal mechanism would send two messages

s and st and the receiver would act with probability G (rno). This mechanism, however, is

7The mathematical structure of this example is similar to Ostrovsky and Schwarz (2010) who analyze

information disclosure in matching markets. In particular, we can reinterpret this continuous example as if

a student with ability s receives a transcript m according to a distribution � (mjs) and then he is matched
to an employer of quality G (m). The main technical di¤erence is that in Ostrovsky and Schwarz (2010)

the function G is endogenously determined by information disclosure mechanisms of schools. The �rst three

parts of Proposition 2 can alternatively be derived using tools developed in Kamenica and Gentzkow (2011).

Moreover, these three parts are similar to the results obtained in Section VIII B of Rayo and Segal (2010).

Proposition 1 and Part 4 of Proposition 2, however, are new to the literature to the best of my knowledge.
8It is straightforward (though notationally heavy) to characterize the optimal mechanism if G has more

than one in�ection point at which the curvature changes sign.
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not feasible when F admits a density because s is equal to s with probability 0. Thus, the

optimal mechanism reveals s for s < sc and sends the same message for all s � sc where

the cuto¤ sc is such that the sender is indi¤erent between revealing sc or pooling it with

s � sc. In the school-employer application, if the average student ability is high, then the

school should reveal no information about its students, otherwise it should fully separate

bad students but should pool good and very good students.

Note that the optimal mechanism may be very sensitive to primitives of the model. For

example, if G is almost uniform but strictly convex, then �full is uniquely optimal. However,

if G is almost uniform but concave, then �no is uniquely optimal. This observation gives

an explanation for why many similar-looking schools may choose very di¤erent disclosure

policies regarding what information (if any) to report on transcripts (grading scale, class

rank, distinctions).

I conclude by discussing comparative statics in this example. By Proposition 1, as F be-

comes more informative in the mean-preserving spread sense, the set of feasible mechanisms

expands, so the sender�s expected utility increases.9 That is, an additional information about

a student can only help a school if it can commit to a disclosure policy in advance. More-

over, Proposition 1 implies that as the sender�s and receiver�s priors become more favorable

for acting (F increases and G decreases in the �rst-order stochastic dominance sense), the

sender�s expected utility increases. These monotone comparative statics results are similar

in spirit to the results in Kolotilin (2013).

However, similarly to the binary example, the sender�s and receiver�s expected utilities

are not monotonic in the precision of the receiver�s private information. In particular, the

sender�s expected utility may decrease as the receiver�s private information G becomes more

precise in the mean-preserving spread sense. To see this, consider F that puts probability one

on some s and note that the sender�s expected utility G (s) changes ambiguously. Moreover,

the receiver�s expected utility may decrease with the precision of his private information. To

see this, suppose that G1 is almost uniform but convex, and G2 is concave and slightly more

informative than G1. By Proposition 2, �full is optimal under G1 and �no is optimal under

G2. Thus, from the receiver�s perspective a small gain from having more precise private

information under G2 is outweighed by a large loss from getting less precise information

from the sender.
9In the two extreme cases, if F were to put probability one on some s, then the only feasible H would

put probability one on m = s, but if F were to put strictly positive probabilities only on s and s, then any

H supported on S with EH [s] = EF [s] would be feasible.

13



4 General Case

This section generalizes the examples of Section 3. The key assumption that is maintained

throughout this section is that the receiver with a higher type is always more willing to act.10

Section 4.1 develops the necessary machinery for characterization of an optimal mechanism.

Section 4.2 characterizes necessary and su¢ cient conditions for optimality of the two most

important mechanisms: the full revelation and no revelation mechanisms.

4.1 Characterization of Optimal Mechanism

If the sender�s type is binary, then, similarly to the binary example, an optimal mechanism

maximizes a linear utility function subject to a linear budget constraint. However, if the

sender�s type is not binary, then the budget constraint becomes multidimensional and it

becomes hard to solve for an optimal mechanism. Nevertheless, an optimal mechanism

always solves a linear program; so duality theory applies. Duality theory gives a relatively

simple solution to the reverse problem of �nding necessary and su¢ cient conditions on the

primitives of the model that ensure that a candidate mechanism is optimal. For example,

we can derive conditions of an environment under which an actual disclosure policy chosen

by a school is optimal.11

Section 4 maintains the following single-crossing assumption: vH (r) �
R
S
eu (r; s) dH (s)

crosses the horizontal axis once and from below for all distributions H on S where eu (r; s) �
u (r; s) g (rjs); moreover, r� (s) is strictly decreasing in s where r� (s) is the unique r that
solves u (r; s) = 0. The single-crossing assumption allows us to restrict attention to mecha-

nisms � in which a message m induces the receiver to act if and only if r � m.

The essence of the single-crossing assumption is that vH (r) crosses the horizontal axis

at most once and in the same direction, the remaining requirements are just technical con-

ditions.12 The continuous example satis�es the single-crossing assumption, and the binary

10In the binary example, the optimistic receiver is more willing to act. In the continuous example, the

receiver with a lower opportunity cost (a higher type �r) is more willing to act.
11Since all mechanisms are equivalent in the continuous example from Section 3.2 if G is linear, we know

that any disclosure policy is optimal under some conditions.
12Indeed, extending u (r; s) to eR � R for all s and making g (rjs) in�nitesimally small for all s and r =2 R

yields that vH (r) crosses the horizontal axis exactly once on eR, not just at most once. Reordering R yields
that vH (r) crosses the horizontal axis from below, not just in the same direction. Considering H that puts

probability one on s yields that u (r; s) crosses the horizontal axis once for all s, so r� (s) is well de�ned.

Finally, reordering S yields that r� (s) is decreasing.
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example satis�es this weak version of the single-crossing assumption.13 To illustrate broad

applicability of this assumption, Proposition 3 provides an alternate representation and

primitive su¢ cient conditions for the weak version of the single-crossing assumption.

Proposition 3 Let all assumptions imposed in Section 2 hold.

1. The function vH (r) crosses the horizontal axis at most once and from below for all

distributions H if and only if for any r2 � r1 there exists a constant b � 0 such thateu (r2; s) � beu (r1; s) for all s.
2. If u (r; s) is increasing in both r and s, and the density g (rjs) has the monotone likeli-
hood ratio property in that g (r2js2) g (r1js1)� g (r2js1) g (r1js2) � 0 for all s2 � s1 and

r2 � r1, then vH (r) crosses the horizontal axis at most once and from below for all

distributions H.

Before turning to the general problem where both the sender�s and receiver�s types are

continuous, it is instructive to consider the case where the receiver�s type is continuous but

the sender�s type is binary in that G (rjs) admits a density g (rjs) but F is supported on

s and s. For all r 2 R� � [r� (s) ; r� (s)], denote p (r) as the probability of s at which the

receiver r is indi¤erent to act. In the optimal mechanism, the distribution H of messages

maximizes
Z
R�
Pr (r � mjm) dH (m)

subject to
Z
R�
p (m) dH (m) = Pr (s) :14

The objective function is the probability that the receiver acts and the constraint is the

feasibility constraint that requires that posterior probabilities Pr (sjm) average out to the
prior probability Pr (s). Again, the objective function can be interpreted as a linear utility

function and the constraint as a Bayesian budget constraint. As a result, the sender faces

the same quantity-quality tradeo¤ as in the binary example of Section 3.1: sending a lower

message m is more expensive (the price p (m) is higher), but it has a greater impact on

the receiver (the marginal utility Pr (r � mjm) is higher). To resolve this tradeo¤, the

13The reader interested in an example that does not satisfy even the weak version of the single-crossing

assumption is referred to the supplemental appendix.
14Explicitly, p (r) = eu (r; s) = (eu (r; s)� eu (r; s)) and Pr (r � mjm) = p (m)G (mjs) + (1� p (m))G (mjs).
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optimal mechanism sends at most two messages with the highest marginal utility-price ratio

Pr (r � mjm) =p (m).15

In general (if both the sender�s and receiver�s types are continuous), the optimal mecha-

nism is a distribution � that

maximizes
Z
R�S

G (rjs) d� (r; s) (5)

subject to
Z
R�eS d� (r; s) =

Z
eS f (s) ds for any measurable set eS � S, (6)Z

eR�S eu (r; s) d� (r; s) = 0 for any measurable set eR � R. (7)

The objective function is the probability that the receiver acts under a mechanism �. The

�rst constraint (6) is the requirement that the marginal distribution of s for � is F . Intu-

itively, (6) is a multidimensional Bayesian budget constraint. The second constraint (7) is

the requirement that a message r makes the receiver r indi¤erent to act. Intuitively, (7)

determines multidimensional prices of various messages.

The problem (5) is called the primal problem. This primal problem is an in�nite dimen-

sional linear program, because the objective function and both constraints are linear in a

probability distribution �.16 The dual problem is to �nd bounded functions � and � that

minimize
Z
S

� (s) f (s) ds (8)

subject to � (s) + eu (r; s) � (r) � G (rjs) for all (r; s) 2 R� S. (9)

Intuitively, the variables � (s) and � (r) are multipliers for constraints (6) and (7).

Say that � is feasible for (5) if it is a distribution that satis�es (6) and (7). Similarly,

say that � and � are feasible for (8) if they are bounded functions that satisfy (9). Feasible

� and (�; �) that solve their respective problems (5) and (8) are called optimal solutions.

The reader should not be concerned about how the dual problem is derived; what is

important is the linkage between the primal and dual problems stated in Lemmas 1 and 2.

15The optimal mechanism is a solution to a linear program, so it is an extreme point of the constraint set.

If s is binary, then the constraint is one dimensional, so the optimal mechanism sends at most two messages.
16The primal problem would be a �nite dimensional linear program if the sets R and S were �nite. I impose

enough smoothness on functions u, G, and F to guarnatee that standard results for �nite dimensional linear

programs extend to an in�nite dimensional case. If R and S are �nite, neither full revelation mechanism

nor no revelation mechanism is generically optimal, because G and F are step functions. For this reason, I

assume that the sets S and R are intervals in which case both full revelation and no revelation mechanisms

can be generically optimal.
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Weak duality gives an easy way to check that candidate feasible solutions � and (�; �) are

optimal:

Lemma 1 If � is feasible for (5), and (�; �) is feasible for (8), thenZ
S

� (s) f (s) ds �
Z
R�S

G (rjs) d� (r; s) . (10)

Moreover, if inequality (10) holds with equality, then � and (�; �) are optimal solutions, andZ
R�S

�
� (s) + eu (r; s) � (r)�G (rjs)

�
d� (r; s) = 0: (11)

Strong duality establishes the existence of optimal solutions:

Lemma 2 There exists an optimal mechanism �, an optimal solution to the primal problem

(5). There exists an optimal solution to the dual problem (8). Moreover, inequality (10)

holds with equality for these optimal � and (�; �).

In the next section, using duality theory, I derive necessary and su¢ cient conditions for

the full revelation mechanism �full to be optimal and for the no revelation mechanism �no to

be optimal. There are at least two reasons that make mechanisms �no and �full prominent,

besides their widespread use. First, if the sender did not have commitment power, then �no
would be the unique equilibrium outcome under unveri�able information of the sender in

the sense of Crawford and Sobel (1982), and �full would be the unique equilibrium outcome

under veri�able information of the sender in the sense of Milgrom (1981).17 The second

reason is that these two mechanisms are extremal:

Proposition 4 Let the single-crossing assumption hold.

1. The receiver�s expected utility under �no is strictly lower than under any other mecha-

nism.

2. The receiver�s expected utility under �full is strictly higher than under any other mech-

anism.
17Under unveri�able communication, if the sender sent two di¤erent messages r1 and r2 in equilibrium,

then she would strongly prefer to send min fr1; r2g regardless of s, which leads to a contradiction. Under
veri�able communication, if the sender sent the same message r for two or more di¤erent s in equilibrium,

then there would exist es such that the sender es sent r but u (r; es) > 0, which leads to a contradiction because
the sender es would strongly prefer to reveal es instead.
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A more informed receiver is better at maximizing his expected utility by taking a more

appropriate action, so a weak version of Proposition 4 is immediate. The single-crossing

assumption together with the smoothness assumption guarantees that the strict version of

Proposition 4 holds. Note that the strict version does not hold in the binary example: the

optimal mechanism is di¤erent from �no, yet the receiver�s expected utility under the optimal

mechanism is the same as under �no for p � 1=
p
2.

4.2 Optimality of Speci�c Mechanisms

By de�nition, a mechanism � is optimal if and only if it dominates all feasible mechanisms.

This observation gives trivial necessary and su¢ cient conditions for optimality of �. However,

to check these conditions, one needs to compare � with all feasible mechanisms, which

requires a lot of comparisons. It turns out that for the optimality of �, it is necessary and

su¢ cient to check that only certain deviations from � do not increase the probability that

the receiver acts.

I now de�ne the deviations that we need to check for optimality of �full and �no. Note

that �full sends the message r
� (s) for each s 2 S, and �no sends the same message rno for

each s 2 S, where rno is the unique r that solves
R
S
eu (r; s) f (s) ds = 0.

For any s1, s2, and r such that r 2 (r� (s2) ; r� (s1)), consider the prior distribution of s
that puts probabilities eu (r; s2) = (eu (r; s2)� eu (r; s1)) on s1 and eu (r; s1) = (eu (r; s1)� eu (r; s2))
on s2. The sender prefers to reveal s1 and s2 than to pool them at r if for this prior

distribution, the full revelation mechanism, which sends r� (s1) and r� (s2) for s1 and s2,

dominates the no revelation mechanism, which sends the same message r for s1 and s2.

Mathematically, this requirement is given by:

G (r� (s2) js2)�G (rjs2)eu (r; s2) � G (r� (s1) js1)�G (rjs1)eu (r; s1) : (12)

Similarly, the sender prefers to pool s1 and s2 at r than to reveal them if inequality (12) is

reversed to ���. Finally, the sender is indi¤erent to reveal s1 and s2 or to pool them at r if

(12) holds with equality.

Say that s1, s2, s3, r are feasible if there exists the prior distribution that puts positive

probabilities p1, p2, p3 only on s1, s2, s3 such that
P3

i=1 pieu (rno; si) = 0; andP2
i=1 pieu (r; si) =

0. The sender prefers to pool s1, s2, s3 at rno than to pool s1, s2 at r and to reveal s3 if

for the above prior distribution, the no revelation mechanism, which sends rno for s1; s2; s3,

dominates the mechanism that sends r for s1; s2 and r� (s3) for s3. Mathematically, this
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requirement is given by:

1eu(r;s2)
�
G (rnojs2)�G (rjs2) + eu(rno;s2)eu(rno;s3)

�
G (r� (s3) js3)�G (rnojs3)

��
� 1eu(r;s1)

�
G (rnojs1)�G (rjs1) + eu(rno;s1)eu(rno;s3)

�
G (r� (s3) js3)�G (rnojs3)

��
:

(13)

I now present the main result of this section, which states that it is necessary and su¢ cient

to consider only the pairwise and triplewise deviations de�ned above for optimality of �full
and �no, respectively.

Theorem 1 Let the single-crossing assumption hold. Then:

1. All mechanisms are equivalent if and only if the sender is indi¤erent to reveal s1 and

s2 than to pool them at r for all s1; s2 2 S and r 2 R such that r 2 (r� (s2) ; r� (s1)),
so that there exists a strictly positive function b (r) such that

eu (r; s) = b (r)
�
G (r� (s) js)�G (rjs)

�
for all r 2 (r� (s) ; r� (s)) : (14)

2. �full is optimal if and only if the sender prefers to reveal s1 and s2 than to pool them

at r for all s1; s2 2 S and r 2 R such that r 2 (r� (s2) ; r� (s1)), so that (12) holds.

3. �no is optimal if and only if the sender prefers to pool s1, s2, s3 at rno than to pool s1,

s2 at r and to reveal s3 for all feasible s1, s2, s3, r, so that (13) holds.18

The �only if�parts of Theorem 1 are straightforward because, for optimality of a can-

didate mechanism, we need to check all deviations from a candidate optimal mechanism,

including those described in the theorem.

The �if�parts are derived using weak duality (Lemma 1). For a given candidate opti-

mal mechanism �, the complementarity condition (11) implies that (9) holds with equality

(� (s) = G (rjs) � eu (r; s) � (r)) at each (r; s) in the support of � for a candidate optimal
solution (�; �) to the dual problem (8). Then we can �nd primitive conditions on u, G, and

F such that the constraint (9) of the dual problem (8) is satis�ed for all (r; s) 2 R� S and

some � (r) (this step is known as Fourier-Motzkin elimination of � (r)). Weak duality implies

that these conditions are su¢ cient for � to be optimal. For candidates �full and �no, these

algebraic conditions correspond to the pairwise deviations (12) and the triplewise deviations

(13), respectively.

18As apparent from the proof, this part can be restated with the triplewise deviations only for s3 ! sno

where sno is the unique s that solves u (rno; s) = 0.
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The intuition for �if�parts of Theorem 1 relies on Lemma 3. Consider a message r of a

mechanism �. This message r generates a lottery � (sjr) that makes the receiver r indi¤erent
to act. Lemma 3 shows that this lottery can be decomposed into simpler lotteries indexed

by e in such a way that (i) the support of each lottery e contains at most two elements, and

(ii) each lottery e makes the receiver r indi¤erent to act.19

Lemma 3 Let the single-crossing assumption hold. For each mechanism � (r; s), there exists

a mechanism ' (m; s) with two dimensional messagesm = (r; e) 2 R�[0; 1] such that for each
m, the support of ' (:jm) contains at most two elements of S and

R
S
eu (r; s) d' (sjm) = 0.

We now discuss each �if�part of Theorem 1 in turn. Suppose that the sender is indi¤erent

to reveal s1 and s2 or to pool them at r for all feasible s1, s2, and r. By Lemma 3 we can

focus on mechanisms in which each message is sent only by some two types s1 and s2.

Consider such a mechanism. Since the sender is indi¤erent to reveal s1 and s2 or to pool

them, this mechanism is equivalent to the mechanism that di¤ers only in that it reveals s1
and s2. Sequentially modifying the mechanism for each message, we get that any mechanism

is equivalent to �full; so part 1 follows. Note that all mechanisms are equivalent in the

knife-edge case when eu (r; s) has representation (14).
Similar to this paper, Rayo and Segal (2010) assume that actions are binary and the

sender has full commitment. In contrast to this paper, they allow the sender�s utility to

depend on both the action and the state. However, to get tractable results, they assume

that the utility of the receiver from acting is u (r; s) = r+s, where r is uniformly distributed

on [�1; 0], and the support of s is contained in the interval [0; 1]. Under this assumption, all
mechanisms are equivalent in my model, as part 1 of Theorem 1 shows.20

We now turn to part 2 of Theorem 1. Again we can focus on mechanisms in which each

message is sent only by two types s1 and s2. Consider such a mechanism. Since the sender

prefers to reveal s1 and s2 than to pool them, this mechanism is dominated by the mechanism

that di¤ers only in that it reveals s1 and s2. Sequentially modifying the mechanism for each

message, we get that �full dominates all mechanisms; so part 2 follows.

Finally, I provide the intuition for a weaker version of part 3 of Theorem 1 with quadraple-

wise rather than triplewise deviations. Namely, if the sender prefers to pool s1, s01, s2, s
0
2 at

rno than to pool s1, s01 at r1 and to pool s2, s
0
2 at r2 for all feasible s1, s

0
1, s2, s

0
2, r1, r2, then

19In a recent paper, Golosov et al. (2013) use a similar result to construct a fully revealing equilibrium in

a dynamic cheap talk game.
20Note that the continuous example of Section 3 has the same functional form of the receiver�s utility

(after rede�ning r as �r), but it does not assume that r is uniformly distributed.
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�no is optimal. Again we can focus on mechanisms such that any message r1 � rno is sent

only by two types s1 and s01 and any message r2 � rno is sent only by two types s2 and s02.

Any such mechanism is dominated by the mechanism that di¤ers only in that it sends the

message rno instead of r1 and r2. Sequentially applying this argument for pairs of messages,

we get that �no dominates all mechanisms; so the weaker version of part 3 follows.

5 Extension: Two-Way Communication

This section explores robustness of the benchmark model of Section 2 to introduction of

communication from the receiver to sender. If the sender has full commitment, the revelation

principle applies (Myerson (1982)).21 Thus, it is without loss of generality to consider the

following timing: 1. The sender publicly chooses a mechanism, a conditional distribution


 (mjn; s) of a message m given the sender�s type s and the receiver�s report n. 2. The

receiver�s type r is drawn according to G. 3. The receiver privately observes r and makes

a report n 2 N . 4. A pair (m; s) is drawn according to 
 and F . 5. The receiver gets a

message m and takes an action a. 6. Utilities of the sender and receiver are realized.

Further, it is without loss of generality to focus on incentive compatible direct mechanisms

in which: (i) the set of receiver�s reports N coincides with the set R; (ii) a mechanism sends

m1 with probability 
 (m1jn; s) and m0 with probability 1 � 
 (m1jn; s); (iii) the receiver r
prefers to report n = r; and (iv) the receiver prefers to act if he receives m1 and not to act

if he receives m0 for all r and n = r.

If the single crossing assumption holds and the sender�s type is binary, as in the motivating

example22, then it is without loss of generality to focus on benchmark mechanisms where

the receiver is not allowed to make reports:

Proposition 5 Let the sender�s type be binary in that F is supported on s and s, and let the

single-crossing assumption hold. Then the set of mappings from (s; r) to the receiver�s action

a that can be supported by a mechanism is the same under � (mjs) and under 
 (mjn; s).

However, if the single crossing assumption does not hold, the benchmark mechanisms

can be improved upon as the following example shows:
21To nest my model into Myerson (1982), assume that the principal is the sender who designs a mechanism

for two agents. The �rst agent has type s, has no action to take, and always gets zero utility. The second

agent has type r, privately chooses a = 0; 1, and his utility is au (r; s).
22To be precise, the proof of Proposition 5 assumes that the receiver�s type is continuous. However, it is

straightforward to generalize the proof of Proposition 5 if the receiver�s type is discrete. This generalization

nests the motivating binary example.
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Example 1 Let s = (s1; s2) 2 f0; 1g � f0; 1g and r 2 fr1; r2; r3g. Moreover, let all com-
binations of (s; r) be equally likely. Finally, let u (s; r1) = s1 � 1, u (s; r2) = s2 � 1, and
u (s; r3) = 3=4� s1s2.

Consider the following mechanism of the two-way communication game:


� (m1js; n) =
(
1 if n = r1 and s1 = 1, or if n = r2 and s2 = 1, or if n = r3,

0 otherwise.

Intuitively, this mechanism allows the receiver to learn at most one component of s. Clearly,

under this mechanism, it is incentive compatible for the receiver to truthfully report r and

act whenever he receives m1. Thus, the probability that the receiver acts under 
� is:

Pr 
� (a = 1) = Pr (r = r1) Pr (s1 = 1) + Pr (r = r2) Pr (s2 = 1) + Pr (r = r3) =
2

3
.

However, the sender cannot induce the receiver to act with probability 2=3 in the bench-

mark model. To see this, note �rst that the receiver r1 acts only if he is certain that s1 = 1,

and the receiver r2 acts only if he is certain that s2 = 1. Thus, under any mechanism �, the

probability that the receiver acts cannot exceed 2=3. The only possibility of how the sender

could achieve this probability would be to reveal both s1 and s2, but in that case the receiver

r3 would not act when (s1; s2) = (1; 1).

6 Conclusions

In this paper, I have studied optimal information disclosure mechanisms with two-side asym-

metric information. The receiver bases his action not only on the information disclosed by

the sender but also on his private information. Thus, from the sender�s perspective, each

message results in a stochastic action by the receiver. The analysis reveals an important

quantity-quality tradeo¤ of messages. The optimal mechanism �nds a balance between

these two con�icting objectives. This balance is easiest to explain when the sender�s infor-

mation has a binary structure. In this case, the prior distribution of the sender�s information

imposes a budget constraint on the frequencies of various messages, whereas the distribution

of the receiver�s information determines the sender�s expected utility, which is linear in the

frequencies of various messages. The optimal mechanism sends messages with the highest

marginal utility-price ratio.

I also derive interesting non-monotone comparative statics results with respect to the

receiver�s private information for the binary example in which the sender is perfectly informed
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but the receiver is partially informed. If the receiver�s private information is either very

precise or very imprecise, then the sender�s expected utility decreases and the receiver�s

expected utility increases with the precision of the receiver�s information. However, if the

precision of the receiver�s information is intermediate, then these results can be overturned.

Surprisingly, the receiver may become worse o¤ as his private information becomes more

precise. Thus, if there is an earlier stage when the receiver can publicly choose how informed

he will be, he may not want to be as informed as possible.

The paper also makes several technical contributions, which can be applied to other

models of information disclosure. First, it identi�es and characterizes the single-crossing

assumption that is crucial for tractable results and for the quantity-quality tradeo¤. Second,

it provides a simple guess and verify method based on duality theory that allows to check

that a candidate mechanism is optimal. Third, it makes a �rst step towards understand-

ing when mechanisms with two-way communication outperform mechanisms with one-way

communication.

Appendix: Proofs

Proof of Proposition 1. For any mechanism �, r = E� [sjr], which implies that F is

a mean-preserving spread of H. Conversely, if F is a mean-preserving spread of H, then

s has the same distribution as r + z for some z such that E [zjr] = 0. De�ne � (er; es) =
Pr (r � er; r + z � es) for all (er; es) 2 R�S. For this �, the marginal distribution of s is F and
E� [s� rjr] = E [zjr] = 0. Therefore, � is a feasible mechanism. Finally,

R1
�1G (m) dH (m)

is simply the probability that the receiver acts.

Proof of Proposition 2. The proof relies on results from Section 4 and, therefore,

should be read after Section 4. Clearly, this example satis�es the single-crossing assumption

of Section 4 after the following change in variables: er = �r. Thus, all results of Section
4 apply. With this change of variables, r� (s) = �s, and Ger (x) � Pr (er > x) is equal to

G (�x). I prove each part in turn.
1. By part 1 of Theorem 1, all mechanisms are equivalent if and only if

s� r = b (r) (G (s)�G (r))

for some positive b and all s 2 S, r 2 S, which is equivalent to G being linear on R.

2. By part 2 of Theorem 1, �full is optimal if and only if the sender prefers to reveal s1
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and s2 than to pool them at er where er 2 (�s2;�s1), which is equivalent to
G(r) � s2 � r

s2 � s1
G(s1) +

r � s1
s2 � s1

G(s2):

Clearly, this inequality holds if and only if G is convex on S.

3. By part 3 of Theorem 1, �no is optimal if and only if the sender prefers to pool s1,

s2, s3 at erno than to pool s1, s2 at er and to reveal s3 for all possible s1, s2, s3, er, which is
equivalent to

G (rno) �
(s3 � rno)

(s3 � r)
G (r) +

(rno � r)

(s3 � r)
G (s3)

for all r 2 S and s3 2 S such that (r � rno) (s3 � rno) < 0. The change of variables r2 = s3

and r1 = r completes the proof.

4. Lemma 1 implies that the described mechanism is optimal if there exists feasible (�; �)

for (8):

� (s) + (s� r) � (r) � G (r) for all (r; s) 2 R� S (15)

such that weak duality condition (10) holds with equality. I now construct (�; �) that satis�es

(15). Note that condition (15) bounds � only from one side for r =2 S. In particular,

� (r) � (G (r)� � (s)) = (s� r) if r < s and � (r) � (� (s)�G (r)) = (r � s) if r > s. Thus,

we can set � (r) = 0 if r < s and v (r) = �K if r > s where K is su¢ ciently large. (To

see that 0 � (G (r)� � (s)) = (s� r) if r < s, note that � (s) � G (s) for all s 2 S as follows
from (15) if s = r.) For (r; s) 2 S � S, we can set:

�(s) =

(
G (s) if s 2 [s; sc] ;
G (rc) + g (rc) (s� rc) if s 2 (sc; s] ;

�(r) =

(
�g (r) if r 2 [s; sc] ;
�g (rc) if r 2 (sc; s] :

It is straightforward to verify that � is convex and greater than G and �� is a subderivative
of �. Thus, (15) holds. Further, (15) holds with equality if (r; s) lies in the support of the

described mechanism. Thus, weak duality condition (10) holds.

Proof of Proposition 3. Mathematically, the statement that vH (r) crosses the horizontal

axis at most once and from below means that vH (r1) � 0 and r2 � r1 imply vH (r2) � 0.

Denote eui (s) as the function eu (ri; s) of s. If eu2 (s) � beu1 (s) for all s and some constant b � 0,
then vH (r) crosses the horizontal axis at most once and from below for all distributions H

because
R
S
eu1 (s) dH (s) � 0 and r2 � r1 imply:Z

S

eu2 (s) dH (s) � b

Z
S

eu1 (s) dH (s) � 0.
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Conversely, suppose that vH (r1) � 0 and r2 � r1 imply vH (r2) � 0 and let us show

that there exists b � 0 such that eu2 (s) � beu1 (s) for all s. This result is obvious if eu1 (s) <
0 for all s. Consider now the case in which eu1 (s) � 0 for some s. Suppose to get a

contradiction that there does not exist the required b � 0. Then the function eu2 (s) does not
belong to the closed convex cone C de�ned as the set of functions which can be represented

as deu1 (s) + v (s) for some constant d � 0 and some continuous positive function v (s).

By the Separating Hyperplane Theorem (Corollary 5.84 of Aliprantis and Border (2006)),

there exists a continuous linear functional  satisfying  (eu2) < 0 and  (c) � 0 for all

c 2 C. By the Riesz Representation Theorem (Theorem 6 in Section 36 of Kolmogorov

and Fomin (1975)),  can be represented in the form  (c) =
R
S
c (s) d	(s), where 	 is

a function of bounded variation on S. De�ne the function H as H (s) = 	 (s) =V (	),

where V (	) > 0 denotes the total variation of 	 on S. Recall that the set C contains all

positive continuous functions and
R
S
c (s) d	(s) � 0 for all c 2 C. Applying the Dominated

Convergence Theorem (Theorem 11.21 of Aliprantis and Border (2006)) to an appropriate

sequence of positive continuous functions converging to the indicator function 1[s1;s2] yields

that 	(s2) � 	(s1) � 0 for all s2 > s1, which in turn implies that H is a distribution

function on S. Recalling that V (	) > 0, eu1 2 C,  (eu2) < 0 and  (c) � 0 for all c 2 C

yields vH (r1) � 0 and vH (r2) < 0, which is a contradiction.
Suppose that vH (r1) � 0, r2 � r1, and the functions u and g satisfy the suppositions of

the second part. The second part follows from:

vH (r2) =

Z
S

u (r2; s) g (r2js) dH (s)

�
Z
S

u (r1; s) g (r2js) dH (s)

�
R
S
g (r2js) dH (s)R

S
g (r1js) dH (s)

Z
S

u (r1; s) g (r1js) dH (s)

=

R
S
g (r2js) dH (s)R

S
g (r1js) dH (s)

vH (r1)

� 0:

The �rst inequality holds because u is increasing in r. Since g has the monotone likelihood

ratio, the distribution of s given r2 �rst-order stochastically dominates the distribution of s

given r1 in that: R es
s
g (r2js) dH (s)R

S
g (r2js) dH (s)

�
R es
s
g (r1js) dH (s)R

S
g (r1js) dH (s)

for all es 2 S,
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as Milgrom (1981) shows. Thus, the second inequality holds because the function u (r1; s) is

increasing in s.

Proof of Lemma 1. The proof of similar results can be found in Anderson and Nash

(1987). However, to make the paper self-contained, I prove this lemma.

Multiplying (6) by � and integrating over S givesZ
S

� (s) f (s) ds =

Z
R�S

� (s) d� (r; s) :

Multiplying (7) by � and integrating over R givesZ
R�S

eu (r; s) � (r) d� (r; s) = 0:
Summing up these two equalities givesZ

S

� (s) f (s) ds =

Z
R�S

(� (s) + eu (r; s) � (r)) d� (r; s) : (16)

Integrating (9) over R� S givesZ
R�S

G (rjs) d� (r; s) �
Z
R�S

(� (s) + eu (r; s) � (r)) d� (r; s) : (17)

Conditions (16) and (17) yield (10).

Suppose that inequality (10) holds with equality for some feasible (�; �) and �:Z
S

� (s) f (s) ds =

Z
R�S

G (rjs) d� (r; s) : (18)

Consider any other feasible e�. Inequality (10) impliesZ
R�S

G (rjs) de� (r; s) � Z
S

� (s) f (s) ds:

Combining this inequality with (18) givesZ
R�S

G (rjs) de� (r; s) � Z
R�S

G (rjs) d� (r; s) ;

showing that � is an optimal solution to the primal problem (5). An analogous argument

proves that (�; �) is optimal solutions to (8). Finally, combining (16) and (18) for optimal �

and (�; �) gives (11).

Proof of Lemma 2. I omit the proof of this lemma because it is not used in the subsequent

analysis and its proof essentially repeats that of Theorem 5.2 in Anderson and Nash (1987).
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Proof of Proposition 4. I start by proving the �rst part. The receiver�s expected utilities

under any mechanism � and the no revelation mechanism �no are:

E� [u] =
Z
R�S

�Z r

r

eu (er; s) der� d� (r; s) ;
E�no [u] =

Z
S

�Z r

rno

eu (er; s) der� f (s) ds
=

Z
R�S

�Z r

rno

eu (er; s) der� d� (r; s) :
The �rst two lines hold because a message m induces the receiver r to act if and only if

r � m and �no sends the message rno regardless of s. The third line holds because the

marginal distribution of s for any mechanism � coincides with the prior distribution of s.

For a mechanism �, denote the conditional distribution of s given a message r by � (sjr)
and the marginal distribution of a message r by � (r). Fubini�s Theorem (Theorem 11.27 of

Aliprantis and Border (2006)) gives

E� [u]� E�no [u] =
R rno
r

�R rno
r

�R
S
eu (er; s) d� (sjr)� der� d� (r)

�
R r
rno

hR r
rno

�R
S
eu (er; s) d� (sjr)� deri d� (r) : (19)

By the single-crossing assumption, we have
R
S
eu (er; s) d� (sjr) > 0 for er > r. Therefore,R rno

r

�R
S
eu (er; s) d� (sjr)� der > 0 for r < rno. Since � (r) of any mechanism � that di¤ers

from �no puts strictly positive probability on messages in [r; rno), the �rst integral in (19) is

strictly positive. The analogous argument shows that the second integral in (19) is strictly

negative; so E� [u]� E�no [u] > 0 for any � that di¤ers from �no.

I now prove the second part. The receiver�s expected utility under �full is

E�full [u] =
Z
S

�Z r

r�(s)

eu (er; s) der� f (s) ds
=

Z
R�S

�Z r

r�(s)

eu (er; s) der� d� (r; s) :
Fubini�s Theorem together with the condition eu (r� (s) ; s) = 0 gives

E�full [u]� E� [u] =
R
S

R
r>r�(s)

�R r
r�(s) eu (er; s) der� d� (r; s)

�
R
S

R
r<r�(s)

�R r�(s)
r

eu (er; s) der� d� (r; s) : (20)

By the single-crossing assumption, we have eu (er; s) > 0 for er > r� (s); so
R r
r�(s) eu (er; s) der > 0

for r > r� (s). Any � that di¤ers from �full puts strictly positive probability on the event r >

r� (s), otherwise
R
R�S eu (r; s) d� (r; s) would be strictly negative rather than zero. Therefore,
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the �rst integral in (20) is strictly positive. The analogous argument shows that the second

integral in (20) is strictly negative; so E�full [u]�E� [u] > 0 for any � that di¤ers from �full.

Proof of Theorem 1. I prove each part in turn.

The �only if� part of 1. Suppose to get a contradiction that there exist s1, s2, and r

such that the sender is not indi¤erent to reveal s1 and s2 or to pool them at r. Consider

two mechanisms that di¤er only in that one sends di¤erent messages for s 2 [s1; s1 + "1] and

s 2 [s2 � "2; s2], and the other sends the same message for s 2 [s1; s1 + "1] [ [s2 � "2; s2]

where "1 and "2 are su¢ ciently small and satisfyZ s1+"1

s1

eu (r; s) f (s) ds+ Z s2

s2�"2
eu (r; s) f (s) ds = 0:

Clearly, these two mechanisms are not equivalent. Therefore, if all mechanisms are equiv-

alent, then the sender is indi¤erent to reveal s1 and s2 or to pool them at r for all r 2
(r� (s) ; r� (s)) and all s1, s2 such that r 2 (r� (s2) ; r� (s1)):

G (r� (s1) js1)�G (rjs1)eu (r; s1) =
G (r� (s2) js2)�G (rjs2)eu (r; s2) :

Therefore, we can de�ne the required b as eu (r; s) = �G (r� (s) js)�G (rjs)
�
, which is strictly

positive and does not depend on s.

The �if�part of 1. Consider any mechanism �. Substituting (14) into (7) givesZ
R�S

G (rjs) d� (r; s) =
Z
R�S

G (r� (s) js) d� (r; s) :

Taking into account (6) givesZ
R�S

G (rjs) d� (r; s) =
Z
S

G (r� (s) js) f (s) ds;

which implies that the probability that the receiver acts is the same for all mechanisms.

The �only if�part of 2. Suppose to get a contradiction that there exist s1, s2, and r such

that it is strictly better to pool s1 and s2 at r than to reveal them. Consider the mechanism

that di¤ers from �full only in that it sends the same message for s 2 [s1; s1 + "1][ [s2 � "2; s2]

where "1 and "2 are su¢ ciently small and satisfyZ s1+"1

s1

eu (r; s) f (s) ds+ Z s2

s2�"2
eu (r; s) f (s) ds = 0:

Clearly, this mechanism strictly dominates �full.
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The �if�part of 2. The complementarity condition (11) suggests that

� (s) + eu (r� (s) ; s) � (r) = G (r� (s) js) for all s 2 S:

Taking into account that eu (r� (s) ; s) = 0 gives � (s) = G (r� (s) js) for all s 2 S. Note that
weak duality condition (10) is satis�ed with equality for � (s) = G (r� (s) js). Therefore, by
Lemma 1, �full is optimal if there exists � such that

G (r� (s) js) + eu (r; s) � (r) � G (rjs) for all (r; s) 2 R� S; (21)

which is equivalent to

G (rjs2)�G (r� (s2) js2)eu (r; s2) � � (r) � G (r� (s1) js1)�G (rjs1)
�eu (r; s1)

for all r 2 (r� (s) ; r� (s)) and s1, s2 such that r 2 (r� (s2) ; r� (s1)). (For r =2 (r� (s) ; r� (s)),
the existence of � is obvious because (21) bounds � only from one side.) To summarize, (12)

su¢ ces for optimality of �full.

The �only if� part of 3. Suppose to get a contradiction that there exist s1, s2, s3, r

such that it is strictly better to pool s1, s2 at r and to reveal s3 than to pool s1, s2, s3
at rno. Consider the mechanism that di¤ers from �no only in that it sends one message if

s 2 [s1; s1 + "1][ [s2; s2 + "2] and another message if s 2 [s3 � "3; s3] where "1, "2, and "3 are

su¢ ciently small and satisfyZ s1+"1

s1

eu (r; s) f (s) ds+ Z s2+"2

s2

eu (r; s) f (s) ds = 0;

X
i=1;2

Z si+"i

si

eu (rno; s) f (s) ds+ Z s3

s3�"3
eu (rno; s) f (s) ds = 0:

Clearly, this mechanism strictly dominates �no.

The �if�part of 3. The complementarity condition (11) suggests that

� (s) + eu (rno; s) � (rno) = G (rnojs) for all s 2 S: (22)

Note that weak duality condition (10) is satis�ed with equality for � (s) = G (rnojs) �eu (rno; s) � (rno). Therefore, by Lemma 1, �no is optimal if there exists � such that
G (rnojs)� eu (rno; s) � (rno) + eu (r; s) � (r) � G (rjs) for all (r; s) 2 R� S: (23)

Since eu (r; s) is continuous and � (r) is bounded, inequality (23) holds if it holds for

(r; s) 2 R� S such that r 6= r� (s):

G (rjs2)�
�
G (rnojs2)� eu (rno; s) � (rno)�eu (r; s2) � � (r) �

�
G (rnojs1) + eu (rno; s) � (rno)��G (rjs1)

�eu (r; s1)
(24)
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for all r 2 (r� (s) ; r� (s)), and s1; s2 2 S such that r 2 (r� (s2) ; r� (s1)). (For r =2 (r� (s) ; r� (s)),
the existence of � is obvious because (23) bounds � only from one side.)

At r = rno, both sides of (24) become � (rno). Thus, for (24) to be satis�ed everywhere,

the derivatives of both sides of (24) with respect to r evaluated at r = rno must coincide,

which gives

� (rno) =
g (rnojs2) eu (rno; s1)� g (rnojs1) eu (rno; s2)
@eu(rno;s1)

@r
eu (rno; s2)� @eu(rno;s2)

@r
eu (rno; s1) : (25)

Taking the limit s2 # sno in (25), where sno is the unique s that solves u (rno; s) = 0, gives

� (rno) = �
g (rnojsno)

@eu (rno; sno) =@r : (26)

Substituting � (rno) from (26) into (24) implies that �no is optimal if

G (rjs2)�
�
G (rnojs2) + eu(rno;s2)g(rnojsno)

@eu(rno;sno)=@r
�

eu (r; s2) �

�
G (rnojs1) + eu(rno;s1)g(rnojsno)

@eu(rno;sno)=@r
�
�G (rjs1)

�eu (r; s1) (27)

for all r 2 (r� (s) ; r� (s)), and s1; s2 2 S such that r 2 (r� (s2) ; r� (s1)). Inequality (13)
becomes (27) after taking the limit s3 ! sno. Since (13) holds for all s3 by the supposition,

(27) also holds because all functions are smooth; so �no is optimal.

Proof of Lemma 3. Consider any er in the support of �. For a moment assume that � (sjer)
admits a density. Because E� [u (er; s) jr = er] = 0, we can construct a decreasing function

v1 (e) and an increasing function v2 (e) de�ned on [0; 1] such that Pr� (s 2 [v1 (e) ; v2 (e)] jr = er) =
e and E� [u (er; s) jr = er; s 2 [v1 (e) ; v2 (e)]] = 0. If � (sjer) does not admit a density, then a
similar result holds but with possible randomization at the boundaries v1 (e) and v2 (e). For-

mally, there exists a quadruple function (v1; v2; q1; q2) from R� [0; 1] to [mins2S eu (r; s) ; 0]�
[0;maxs2S eu (r; s)]� [0; 1]� [0; 1] such thatR

v1(er;e)<eu(er;s)<v2(er;e) eu (er; s) d� (sjer)
+
P

i=1;2 vi (er; e) qi (er; e) Pr � (eu (er; s) = vi (er; e) jr = er) = 0;
Pr � (v1 (er; e) < eu (er; s) < v2 (er; e) jr = er)
+
P

i=1;2 qi (er; e) Pr � (eu (er; s) = vi (er; e) jr = er) = e

for all (er; e) 2 R�[0; 1]. De�ne distribution ' of (er; e; s) as follows. The marginal distribution
of er for ' coincides with the marginal distribution of er for �. The conditional distribution of
e given er is uniform on the unit interval [0; 1]. The conditional distribution of s given er and e
puts probabilities p1 and 1� p1 on s1 and s2, where s1 and s2 satisfy eu (er; s1) = v1 (er; e) andeu (er; s2) = v2 (er; e), and p1 solves p1v1 (er; e) + (1� p1) v2 (er; e) = 0. Clearly, this ' satis�es
the required properties of Lemma 3.
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Proof of Proposition 5. Take any mechanism 
 and de�ne � (rjs) � 
 (m1jr; s). To
prove this proposition, it is su¢ cient to show that � is a distribution function that satis�es

constraints (6), (7), and the sender�s expected utility coincides with (5). Since � (rjs) = 1
for r � r� (s) and � (rjs) = 0 for r < r� (s), constraint (6) is satis�ed. The receiver r prefers

to report n = r rather than r0 only if:X
s=s;s

eu (r; s) (� (rjs)� � (r0js)) Pr (s) � 0: (28)

Writing (28) for (r; r0) = (r2; r1) and (r; r0) = (r1; r2) with r1; r2 2 (r� (s) ; r� (s)) yields:

�eu (r2; s)eu (r2; s)� (r2; r1; s) � �(r2; r1; s) � �eu (r1; s)eu (r1; s)� (r2; r1; s) (29)

where �(r2; r1; s) � (� (r2js)� � (r1js)) Pr (s). If r2 � r1, then eu (r2; s) � beu (r1; s) for some
b � 0 (see Part 1 of Proposition 3); so

0 < �eu (r2; s)eu (r2; s) � �eu (r1; s)eu (r1; s) : (30)

Combining (29) and (30) gives � (r2js) � � (r1js) for s = s; s, r1; r2 2 (r� (s) ; r� (s)), and
r2 � r1. Thus, � is a distribution function. Since � (rjs) is increasing in r, it is di¤erentiable
in r almost everywhere. Thus, taking the limits r0 " r and r0 # r in (28) and then integrating
over eR gives (7). Finally, the sender�s expected utility coincides with (5) by integration by

parts:X
s=s;s

Pr (s)

Z
R

� (rjs) g (rjs) dr =
X
s=s;s

Pr (s)

�
� � (rjs)G (rjs)

��r
r
+

Z
R

G (rjs) d� (rjs)
�

=
X
s=s;s

Pr (s)

Z
R

G (rjs) d� (rjs) :
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Supplemental Appendix: Binary Case

When the receiver has private information, in general, the problem of �nding the optimal

mechanism becomes complicated, as Section 4 suggests. This appendix fully characterizes

the optimal mechanism when s and r are binary. More formally, assume that F puts strictly

positive probabilities only on s1 and s2 and that G (:js1) and G (:js2) put strictly positive
probabilities only on r1 and r2.

The binary case splits into two subcases. In the �rst subcase, one sender�s signal is more

favorable for acting than the other, regardless of r. The analysis of this subcase is two-fold.

First, it provides formal proofs for the motivating example of Section 3.1. Second, it shows

that the quantity-quality tradeo¤ of the motivating example carries on to a more general

setting. In the second subcase, di¤erent sender�s signals are favorable for acting depending

on r. In this subcase, the single-crossing assumption does not hold, so the analysis and

results are very di¤erent from those in the paper.

Using the revelation principle, for any mechanism, we can �nd an equivalent mechanism

that sends at most four messages: (i) m; that induces the receiver not to act for all r, (ii)

m1 that induces the receiver to act only if r = r1, (iii) m2 that induces the receiver to act

only if r = r2, and (iv) m1;2 that induces the receiver to act for all r.

For notational simplicity, this appendix uses di¤erent notation. In particular, denote

pj � Pr (sj), pijj � Pr (rijsj), uij � u (ri; sj), euij � uijpijj, ki = eui1= (eui1 � eui2), and �jK �
Pr� (m = mK ; s = sj) for i; j = 1; 2 and K = f;g ; f1g ; f2g ; f1; 2g. Indexes i and j are

reserved for r and s, respectively. Note that ki is the cuto¤ posterior belief Pr (s2) at which
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the receiver ri is indi¤erent to act because

E [ujri] =
eui1 (1� Pr (s2)) + eui2 Pr (s2)

Pr (ri)
= 0.

Aligned Preferences

If one sender�s signal is more favorable for acting than the other for all r, then the analysis

is analogous to that of the binary example in Section 3.1. In particular, the sender faces the

quantity-quality tradeo¤ of messages, which is resolved by the choice of a mechanism that

sends messages with the highest marginal utility-price ratio.

To make the analysis non-redundant, assume that ui1 < 0 < ui2 for i = 1; 2, k2 < k1, and

p2 < k1. Strict inequalities rule out non-generic cases. Inequalities ui2 > ui1 and k2 < k1 can

be obtained by relabelling elements of S and R, respectively. If ui1 and ui2 had the same

sign for some i, then the receiver ri would take the same action regardless of the mechanism

and the analysis would be as if the receiver was uninformed (Kolotilin (2013)). Finally, if

p2 � k1, the no revelation mechanism would induce the receiver to act for all r, and, thus, it

would be optimal.

Under these assumptions, the optimal mechanism can take the three forms that were

identi�ed in Section 3, as follows from:

Proposition 6 If ui1 < 0 < ui2, k2 < k1, and p2 < k1, then the optimal mechanism sends

two messages.

1. If p1j2 + p2j1eu22=eu21 � eu12=eu11, it sends m1;2 and m;: m1;2 with certainty if s = s2 and

with a non-trivial probability if s = s1.

2. If p1j2 + p2j1eu22=eu21 < eu12=eu11 and p2 < k2, it sends m2 and m;: m2 with certainty if

s = s2 and with a non-trivial probability if s = s1.

3. If p1j2+p2j1eu22=eu21 < eu12=eu11 and p2 � k2, it sends m2 and m1;2: m2 with a non-trivial

probability both if s = s2 and if s = s1.

In all cases, m; reveals s1 in that Pr� (s2jm;) = 0; m2 makes the receiver r2 indi¤erent

to act in that Pr� (s2jm2) = k2; and m1;2 makes the receiver r1 indi¤erent to act in that

Pr� (s2jm1;2) = k1. The receiver�s expected utility under the optimal mechanism is strictly

greater than that under the no revelation mechanism only in case 1.23

23If s and r are independent, then pij2 = pij1 = Pr (ri), so euij can be replaced with uij for all i; j = 1; 2 in
all expressions.
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The intuition for Proposition 6 is analogous to that of the binary example in Section 3.1.

The receiver ri acts upon receiving a message m under a mechanism � if Pr� (s2jm) � ki.

If the message m persuades the receiver r1 to act, it also persuades the receiver r2 to act

because k2 < k1 by assumption. Thus, we can restrict attention to mechanisms with the

three messages m;, m2, and m1;2. To maximize the probability that the receiver acts, each

message of the optimal mechanism either makes the receiver exactly indi¤erent to act for

some r (Pr� (s2jm1;2) = k1 and Pr� (s2jm2) = k2) or makes the receiver certain that s = s1

so that it is optimal not to act (Pr� (s2jm;) = 0).

Thus, the sender�s problem is to maximize the probability that the receiver acts:�
k2p2j2 + (1� k2) p2j1

�
q2 + q1;2

over probabilities q;, q2, and q1;2 of the messages m;, m2, and m1;2 subject to the constraint

imposed by the prior distribution of s:

k2q2 + k1q1;2 = p2:

Similar to Section 3, we can interpret k2 and k1 as unit prices of sending m2 and m1;2, and

the probabilities
�
k2p2j2 + (1� k2) p2j1

�
and 1 as the marginal utilities of sending m2 and

m1;2. If p1j2 + p2j1eu22=eu21 � eu12=eu11, then the marginal utility-price ratio is highest for m1;2,

and the sender prefers to send m1;2 than m2, so the optimal mechanism sends m1;2 and m;.

If p1j2 + p2j1eu22=eu21 < eu12=eu11, then the ratio is highest for m2, and the sender prefers to

send m2 than m1;2. The optimal mechanism then depends on whether the no revelation

mechanism induces the receiver r2 to act or not. If so (p2 � k2), then it sends the messages

m2 and m1;2, otherwise it sends the messages m2 and m;.

Proof of Proposition 6. The optimal mechanism � maximizes

Pr � (a = 1) = p2j1�
1
2 + p2j2�

2
2 + �11;2 + �21;2

subject to
�jK � 0 for j = 1; 2 and K = f;g ; f2g ; f1; 2g ;
�j; + �j2 + �j1;2 = pj for j = 1; 2;eu21�12 + eu22�22 � 0;eu11�11;2 + eu12�21;2 � 0;eu21�1; + eu22�2; < 0 or �1; = �2; = 0;eu11�12 + eu12�22 < 0 or �12 = �22 = 0:

(31)

Consider the relaxed problem that omits the last two constraints with strict inequalities.

The solution to the relaxed problem satis�es �2; = 0, eu21�12+eu22�22 = 0, and eu11�11;2+eu12�21;2 =
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0, otherwise we can increase Pr� (a = 1) by the following changes to the mechanism. If

�2; 6= 0, change e�21;2 = �21;2+�
2
; and e�2; = 0; if eu11�11;2+eu12�21;2 > 0, change e�11;2 = �11;2+" and

either e�12 = �12� " or e�1; = �1;� "; if eu21�12+ eu22�22 > 0, change e�21;2 = �21;2+ " and e�22 = �22� "
where " is a small positive number. These observations together with k2 < k1 imply that

the solution to the relaxed problem satis�es the last two constraints and, therefore, it also

solves the original problem. The original problem simpli�es to the maximization of

Pr � (a = 1) =

�
1� eu12eu11

�
p2 �

�
p1j2 +

eu22eu21p2j1 � eu12eu11
�
�22

over �22 subject to � eu12eu11 � eu22eu21
�
�22 � p1 +

eu12eu11p2:
0 � �22 � p2:

The solution to this problem is:

�22 =

8>><>>:
0 if p1j2 + eu22eu21p2j1 � eu12eu11 ;
p2 if p1j2 + eu22eu21p2j1 < eu12eu11 and eu21p1 + eu22p2 < 0;eu21 eu11p1+eu12p2eu12eu21�eu11eu22 if p1j2 + eu22eu21p2j1 < eu12eu11 and eu21p1 + eu22p2 � 0.

Finally, �21;2 = p2 � �22, �
1
2 = ��22eu22=eu21, �11;2 = ��21;2eu12=eu11, �2; = 0, �1; = p1 � �12 � �11;2.

Under �no, the receiver�s expected utility is

E
h
max
a
E�no [au (r; s) jr]

i
= max f0; eu21p1 + eu22p2g :

Under �, the receiver�s expected utility is

E
h
max
a
E� [au (r; s) jr;m]

i
=

�eu11�11;2 + eu12�21;2�+ �eu21�11;2 + eu22�21;2�+ �eu21�12 + eu22�22�
= eu21�11;2 + eu22�21;2
=

8>><>>:
� eu11eu22�eu12eu21eu11

�
p2 if p1j2 + eu22eu21p2j1 � eu12eu11 ;

0 if p1j2 + eu22eu21p2j1 < eu12eu11 and eu21p1 + eu22p2 < 0;eu21p1 + eu22p2 if p1j2 + eu22eu21p2j1 < eu12eu11 and eu21p1 + eu22p2 � 0.
The second equality holds because eu11�11;2+eu12�21;2 = eu21�12+eu22�22 = 0. The �rst case holds
because �21;2 = p2 and �

1
1;2 = �p2eu12=eu11. The second case holds because �11;2 = �21;2 = 0. The

third case holds because �11;2 = p1��12, �21;2 = p2��22, and eu21�12+eu22�22 = 0. Therefore, the
receiver�s expected utilities under � and �no di¤er if and only if p1j2+ p2j1eu22=eu21 � eu12=eu11.
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Misaligned Preferences

The main goal of this section is to illustrate the variety of possible optimal mechanisms

in the case where di¤erent sender�s signals are more favorable for acting depending on the

receiver�s type. For example, a school may know whether a student is good at natural

sciences or liberal arts, but it may be unsure which of these two qualities are valued by the

employer. Note that this case violates the single-crossing assumption of Section 4.

All forms that the optimal mechanism can take are characterized by Proposition 7. Sim-

ilar to the previous subcase, to make the analysis non-redundant, I impose certain assump-

tions.

Proposition 7 If u12 < 0 < u11, u21 < 0 < u22, and p2 > k1, then the optimal mechanism

sends at most two messages.

1. If k2 � k1, it sends m2 and m1;2. The message m2 reveals s2 in that Pr� (s2jm2) = 1

and the message m1;2 makes the receiver r1 indi¤erent to act in that Pr� (s2jm1;2) = k1.

2. If k2 > k1, then depending on parameters, it sends either only m2 or both m2 and

m1. If it sends both m2 and m1, there are four cases in which each message mi either

reveals si in that Pr� (sijmi) = 1, or makes the receiver ri indi¤erent to act in that

Pr� (s2jmi) = ki.

I only sketch the intuition for this proposition because it is tedious and involves many

cases. Note that a message m that assigns a higher probability to s2 is more persuasive

for the receiver r2, and less persuasive for the receiver r1. The messages m1 and m2 are

always feasible because revealing s1 induces the receiver r1 to act, and revealing s2 induces

the receiver r2 to act. However, if k2 � k1 (part 1 of Proposition 7), then the message m1;2

is feasible, but the message m; is not. In this case, the sender wants to send m1;2 as often as

possible. As a result, the optimal mechanism sends two types of messages: those that give

minimal possible evidence to make the receiver act regardless of his signal, and those that

reveal s. In contrast, if k1 < k2 (part 2 of Proposition 7), then the message m; is feasible,

but the message m1;2 is not. In this case, the optimal mechanism can take �ve di¤erent

forms, which, in particular, include the full revelation and no revelation mechanisms.

Proof of Proposition 7. The optimal mechanism � maximizes

Pr � (a = 1) = p1j1�
1
1 + p1j2�

2
1 + p2j1�

1
2 + p2j2�

2
2 + �11;2 + �21;2
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subject to
�jK � 0 for j = 1; 2 and K = f;g ; f1g ; f2g ; f1; 2g ;
�j; + �j1 + �j2 + �j1;2 = pj for j = 1; 2;eui1�1i + eui2�2i � 0 for i = 1; 2;eui1�11;2 + eui2�21;2 � 0 for i = 1; 2;eui1�13�i + eui2�23�i < 0 or �13�i = �23�i = 0 for i = 1; 2;eui1�1; + eui2�2; < 0 or �1; = �2; = 0 for i = 1; 2:

Note that eu11 Pr� (s1jm) + eu12 Pr� (s2jm) � 0 is equivalent to Pr� (s2jm) � k1, andeu21 Pr� (s1jm) + eu22 Pr� (s2jm) � 0 is equivalent to Pr� (s2jm) � k2. Therefore, the receiver

r1 acts if Pr� (s2jm) � k1, and the receiver r2 acts if Pr� (s2jm) � k2. If k2 � k1, then no

mechanism can send the message m; because Pr� (s2jm) < k2 and Pr� (s2jm) > k1 cannot

both hold. On the contrary, if k2 > k1, then no mechanism can send the message m1;2

because Pr� (s2jm) � k2 and Pr� (s2jm) � k1 cannot both hold. Consider these two cases in

turn.

Let k2 � k1 and, thus, �
1
; = �2; = 0. Consider the relaxed problem with the constraints

�jK � 0, �
j
1 + �j2 + �j1;2 = pj, eu11�11 + eu12�21 � 0, and eu11�11;2 + eu12�21;2 � 0 for all K and j.

Note that the last two constraints imply eu11 ��11 + �11;2
�
+ eu12 ��21 + �21;2

�
� 0, so the solution

to the relaxed problem satis�es �11 = �21 = 0, otherwise we can increase Pr� (a = 1) by the

following changes to the mechanism: e�j1;2 = �j1;2 + �j1 and e�j1 = 0 for j = 1; 2. Substituting
�j1;2 = pj � �j2, the relaxed problem simpli�es to: �12 and �

2
2 maximize

Pr � (a = 1) = 1� p1j1�
1
2 � p1j2�

2
2

subject to
�j2 2 [0; pj] for j = 1; 2;eu11�12 + eu12�22 � eu11p1 + eu12p2:

The solution to this problem is
�
�12; �

2
2

�
= (0; (eu11p1 + eu12p2) =eu12). It is also the solution to

the original problem because it satis�es all constraints of the original problem.

Let k2 > k1 and, thus, �
1
1;2 = �21;2 = 0. In the optimal mechanism, �

1
; = �2; = 0, otherwise

we can increase Pr� (a = 1) by the following changes to the mechanism: e�ii = �ii + �i; ande�i; = 0 for i = 1; 2. Consider the relaxed problemwith the constraints �j1; �j2 � 0, �j1+�j2 = pj,eu11�11 + eu12�21 � 0, and eu21�12 + eu22�22 � 0 for all j = 1; 2. Substituting �j1 = pj � �j2, the

relaxed problem simpli�es to: �12 and �
2
2 maximize

Pr � (a = 1) = p1j1p1 + p1j2p2 +
�
1� 2p1j1

�
�12 +

�
1� 2p1j2

�
�22
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subject to
�j2 2 [0; pj] for j = 1; 2;eu11�12 + eu12�22 � eu11p1 + eu12p2;eu21�12 + eu22�22 � 0:

The coe¢ cients 1 � 2p1j1 and 1 � 2p1j2 in the objective function can have any sign and,
therefore, any extreme point of the constraints can be a solution to this problem. If p2 � k2,

the extreme points of
�
�12; �

2
2

�
are (0; p2), (0; (eu11p1 + eu12p2) =eu12), and (p1; p2). If p2 < k2, the

extreme points of
�
�12; �

2
2

�
are (0; p2), (0; (eu11p1 + eu12p2) =eu12), (�p2eu22=eu21; p2), (eu22;�eu21) �

(eu11p1 + eu12p2) = (eu11eu22 � eu12eu21). All these extreme points can be a solution to the original
problem because they satisfy all constraints of the original problem.
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