Australian School of Business Research Paper No. 2013 ECON 23

Majority Runoff Elections: Strategic Voting and Duverger's Hypothesis

Laurent Bouton
Gabriele Gratton

[^0]
Majority Runoff Elections: Strategic Voting and Duverger's Hypothesis*

Laurent Bouton ${ }^{\dagger}$ and Gabriele Gratton ${ }^{\ddagger}$

September 2013

Abstract

The majority runoff system is widely used around the world. Yet, our understanding of its properties and of voters' behavior is limited. In this paper, we fully characterize the set of strictly perfect voting equilibria in large three-candidate majority runoff elections. Considering all possible distributions of preference orderings and intensities, we prove that only two types of equilibria can exist. First, there are always equilibria in which only two candidates receive votes. Second, there may exist an equilibrium in which three candidates receive votes. Its characteristics challenge common beliefs: (i) neither sincere voting by all voters, nor push over tactics (i.e. supporters of the front-runner voting for a less-preferred candidate in order to influence who will face the front-runner in the second round) are supported in equilibrium, and (ii) the winner does not necessarily have democratic legitimacy since the Condorcet winner may not even participate in the second round.

JEL Classification: D72
Keywords: Strategic Voting; Runoff Elections; Poisson Games

[^1]
1 Introduction

In a majority runoff election, a candidate wins outright in the first round if she obtains an absolute majority of the votes. If no candidate wins in the first round, then a second round is held between the two candidates with the most first-round votes. The winner of that round wins the election.

Over the past decades, most newly-minted democracies have adopted the majority runoff system to elect their presidents as well as other important government officials. ${ }^{1}$ The majority runoff system is also widely used in long-standing democracies (see e.g. Blais et al. 1997, and Golder 2005). ${ }^{2}$ Moreover, debates about whether it should be implemented even more widely are recurrent (see e.g. Italy's La Repubblica of June 20th 2012). These debates and the widespread inclination in favor of the majority runoff system rely both on formal and informal arguments. On the one hand, the majority runoff system is commonly believed (i) to be more conducive to preference and information revelation than plurality, and (ii) to ensure a large mandate to the winner, thereby providing her with more democratic legitimacy. On the other hand, the majority runoff system is commonly believed to (i) suffer from a non-monotonicity problem that may induce a harmful strategic behavior in the first round called push over, ${ }^{3}$ and (ii) increase the risk that moderate candidates "squeeze" the median candidate and exclude her from the second round. ${ }^{4}$

The scant empirical literature on majority runoff elections is not widely supportive of these arguments. First, as reviewed in Bouton (2012), the evidence that the runoff systems are more conducive to preference and information revelation than plurality is mixed. Second, there are many examples of majority runoff elections in which the winner is not the candidate preferred by the majority and thus lacks democratic legitimacy. For instance, in Peru's presidential election in 2006, Lourdes Flores Nano (Unidad National) did not make it to the second round, despite opinion polls indicating that she was the majority candidate.

[^2]Indeed, polls showed that she would have won a second round against the two other serious candidates: Ollanta Humala Tasso (Union for Peru) and Alan García Pérez (Aprista Party). ${ }^{5}$ Finally, as far as we know, evidence of push over behavior in runoff elections has never been documented (see Blais 2004a, b and Dolez and Laurent 2010 for evidence against push over). ${ }^{6}$

Such discrepancies beg an explanation. Arguably, part of the problem is that beliefs about the majority runoff system have either not been formally proven or have not been proven robust. Despite recent advances (Martinelli 2002, Morton and Rietz 2006, and Bouton 2012), one major caveat in the theoretical literature on majority runoff elections is that it does not provide a complete characterization of the set of voting equilibria in a setup allowing for all possible preference orderings and intensities. In this paper, we attempt to fill this gap. ${ }^{7}$ For reasons detailed below, we focus on the set of strictly perfect equilibria (Okada 1981).

There are at least two reasons why a general characterization is crucial. First, as argued by Myerson (2002 and 2013), it is necessary to properly establish the properties of the majority runoff system and to compare these properties with those of other electoral systems (see also Cox 1997). A model which does not consider some voter types might erroneously predict the existence or non-existence of some equilibria, thereby implying inaccurate properties. As we show, this is exactly what happened with push over and sincere voting equilibria. Second, by allowing for all possible preference orderings and intensities we can consider any situation of interest as a particular case. For instance, combinations of policy platforms such that the median candidate is "squeezed" between two moderate candidates (see e.g. Solow 2013, and Van Der Straeten et al. 2012), or the majority is divided (see e.g. Myerson and Weber 1993, Piketty 2000, and Myatt 2007) are easy to represent in our framework. Therefore, our results show how voters behave in these situations of particular interest in the literature, as well as any other that can come to mind. Finally, our results can also be used to determine whether a particular equilibrium of a strategic-candidate game (e.g. Bordignon et al. 2013, and Solow 2013) is robust to the presence of strategic voters.

We demonstrate that in majority runoff elections the set of strictly perfect equilibria features three main properties. First, a strictly perfect equilibrium always exists. Our proof is constructive: we show the existence of three Duverger's Law equilibria, in which only two candidates receive a positive fraction of the votes. In these equilibria, an outright victory in

[^3]the first round always occurs. Second, a Duverger's Hypothesis equilibrium, in which three candidates receive a positive fraction of the votes, sometime exists. Third, we show that there are no other strictly perfect equilibria in majority runoff elections. The characteristics of the unique Duverger's Hypothesis equilibrium are as follows: (i) it never supports push over, (ii) it never supports sincere voting by all voters, i.e. all voters voting for their mostpreferred candidate, and (iii) it can lead to the exclusion of the Condorcet Winner from the second round.

These results strongly qualify some of the aforementioned common beliefs about majority runoff elections. First, majority runoff elections are perceived to ensure a large mandate to the winner, thereby providing her with more democratic legitimacy. In contrast, we show that, even when there are more than two serious candidates in the first round, the Condorcet winner is not guaranteed to participate in the second round. Therefore, the fact that the eventual winner of the election obtains more than 50% of the votes in the second round cannot be considered a strong proof of legitimacy. This only ensures that a potential Condorcet loser never wins. ${ }^{8}$ We argue that this result is closely related to the belief that the median candidate may be "squeezed" by two moderate candidates, and hence excluded from the second round. We thus show that, perhaps surprisingly, such a squeezing can indeed happen when voters are strategic.

Second, majority runoff elections are commonly perceived to be more conducive to preference and information revelation than plurality elections. The argument is the following: since voters can use the second round to coordinate against a minority candidate, in the first round they feel free to vote "sincerely" for their most-preferred candidate (Duverger 1954, Riker 1982, Cox 1997, Piketty 2000, Martinelli 2002). Our results reinforce Bouton (2012)'s argument that this perceived benefit of the majority runoff system is quite overrated. Indeed, we prove that (i) Duverger's Law equilibria exist even if voters have heterogeneous preference intensities, and (ii) the sincere voting equilibrium is not robust to such heterogeneity. ${ }^{9}$

Third, the non-monotonicity of the runoff system is deemed problematic when it induces harmful push over tactics (see e.g. Cox 1997 and Saari 2003). We show that push over does not happen in any (strictly perfect) equilibrium. It thus appears that, in line with empirical evidence, push over is not a robust phenomenon in majority runoff elections: it requires voters to have excessively precise information about the expected outcome of the elections. Therefore, the main concern with the non-monotonicity of the runoff system is that it might prevent sincere voting in equilibrium, not that it can induce a harmful voting behavior.

Our model of three-candidate runoff elections essentially generalizes Bouton (2012).

[^4]There are two main differences. ${ }^{10}$ First, we introduce heterogeneous intensities of preferences among supporters of any given candidate by assuming a continuum of voter types (see discussion above). Second, we consider any possible risk of upset victory in the second round which is positive and constant, as well as risk converging to 0 when the electorate grows large whereas Bouton (2012) focuses on a specific version of the latter. ${ }^{11}$

Importantly, none of our results depends on the fact that our model includes all possible preference orderings and intensities over the set of candidates. Yet, our ability to prove that any given equilibrium "always exists"or "does not exist in general" depends on this features. In this sense, the inclusion of all possible types of voters in the model should be viewed as relaxing an assumption instead of making up a new one.

Typically, there are many equilibria in multicandidate elections. In an environment as rich as the one considered in this paper, the multiplicity is even greater than usual. This is not undesirable per se. Indeed, equilibrium multiplicity captures the risk of coordination failure that exists in multicandidate elections (see e.g. Myerson and Weber 1993, Bouton and Castanheira 2012). Yet, it has been argued that some equilibria of voting games are neither robust nor reasonable (see e.g. Fey 1997 for a discussion of equilibrium multiplicity in plurality elections). It is thus proper to refine the set of equilibria when studying multicandidate elections. In this paper, we focus on the set of strictly perfect equilibria (Okada 1981). As we show in the Technical Appendix 1, in our framework, the idea behind strict perfection boils down to equilibria being stable against arbitrary slight perturbations of the model (and not only strategic uncertainty).

There are several reasons for using strict perfection as an equilibrium concept in Poisson voting games (see Technical Appendix 1 for proofs and more details). First, less stringent concepts such as perfection and properness have very little bite in Poisson voting games (De Sinopoli and Pimienta 2009). For instance, they do not eliminate equilibria in plurality elections that have been deemed unstable and undesirable in terms of voters' information and expectational stability (Fey 1997). ${ }^{12}$ Fey's argument is that some voting equilibria are unreasonable because they require (i) excessive coordination among voters, and (ii) very precise information about the expected outcome of the election that public opinion polls are

[^5]unlikely to provide. By contrast, strict perfection does rule out exactly those equilibria. ${ }^{13}$ Second, multiple strictly perfect equilibria always exist in our model, and in general in most voting games. This suggests that, though stringent, strict perfection is not too stringent a concept in voting games. Finally, we prove for a general class of Poisson games that strict perfection can be defined in a way that is simple and easy to use. Using strict perfection actually makes the complete characterization of the set of equilibria significantly simpler.

2 The Model

The majority runoff system works as follows. There are three candidates, $i \in \mathcal{C} \equiv\{A, B, C\}$, who all participate in a first round of the election. If, in the first round, a candidate receives more than half of the votes, then she is elected. Otherwise, the two candidates with the largest shares of votes will face each other in a second ballot. To lighten notation, we assume that ties for the second place are resolved by alphabetical order: A wins over both B and C, B wins over $C .{ }^{14}$

We conduct the analysis under the assumption that the size of the electorate ν is distributed according to a Poisson distribution of mean $n: \nu \sim \mathcal{P}(n)$ (Appendix A summarizes some properties of Poisson games and applies them to runoff elections). Each voter has preferences over the candidates defined by her type $t \in \mathcal{T} .{ }^{15}$ Types are assigned by iid draws from a distribution F that admits a density and has full support over $\mathcal{T} .{ }^{16}$ We label the set of such distributions as \mathcal{F}. The utility of a voter of type t when candidate i is elected is given by $U(i \mid t)$. Voters of type t with $U(i \mid t)>U(j \mid t), \forall j \in \mathcal{C}, j \neq i$ prefer candidate i over any other candidate and we shall call them i 's supporters. We denote by $\gamma_{i j}$ the (expected) fraction of voters with preferences $i \succ j \succ k$.

From Bouton (2012), we know that what happens in the second round influences dramatically the behavior of voters in the first round. In particular, a crucial element is the risk of upset victory in that round. The way we model the second round is thus a sensitive matter. One obvious modelling choice would be to endogenize the second round as in Bouton (2012). Assuming that there is uncertainty about the realized distribution of preferences in the electorate after the first round, we would have that the risk of an upset victory converges to zero when the expected number of voters grows large. The speed of convergence to zero would depend on the particular assumptions on the distribution of preferences made to ob-

[^6]tain such uncertainty. In Technical Appendix 2, we show that all our results hold (at least qualitatively) for any speed of convergence to zero of the risk of upset victory.

While this modelling choice is appealing, it also makes the proofs and the exposition of the results much more cumbersome. For the sake of expositional clarity, in the core of the paper we work under the assumption that, at the time of the first round, the probabilities of victory are given and constant. We denote by $\operatorname{Pr}(i \mid i j), i, j \in \mathcal{C}$, the probability that candidate i defeats candidate j in the second round opposing these two candidates. Hence, $\operatorname{Pr}(j \mid i j)=1-\operatorname{Pr}(i \mid i j)$. We assume that all these second round probabilities are strictly positive, i.e. $\operatorname{Pr}(i \mid i j) \in(0,1)$, and constant. This includes (but is not limited to) any "realistic" restriction (e.g. the front-runner or the candidate with the largest (expected) number of supporters being more likely to win in the second round). Hence, at the time of the first round, the result of any eventual second round ballot is not certain. ${ }^{17}$ Given the probabilities of victory in the second round, we can determine the expected utility of a second round opposing i to j for a type t :

$$
U(i, j \mid t)=\operatorname{Pr}(i \mid i j) U(i \mid t)+\operatorname{Pr}(j \mid i j) U(j \mid t)
$$

The action set for each voter is $\{A, B, C\}=\mathcal{C}$. A voting strategy is $\sigma: \mathcal{T} \rightarrow \Delta(\mathcal{C})$, where σ_{t} denotes the strategy of a voter of type $t .{ }^{18}$ Call $\sigma \equiv\left(\left(\sigma_{t}(i)\right)_{i \in \mathcal{C}}\right)_{t \in \mathcal{T}} \in \Delta(\mathcal{C})^{\mathcal{T}}$ a profile of voting strategies. Define $\tau: \Delta(\mathcal{C})^{\mathcal{T}} \times \mathcal{F} \rightarrow \Delta(\mathcal{C})$:

$$
\tau(\sigma, F) \equiv\left(\int_{\mathcal{T}} \sigma_{t}(i) d F(t)\right)_{i \in \mathcal{C}}
$$

where an element of $\tau(\sigma, F), \tau_{i}(\sigma, F) \geq 0$ is the measure of voters' types voting for candidate i in the first round. This is also the expected share of votes received by candidate i in the first round. For any distribution of preferences F, a profile of voting strategies σ identifies a unique profile of expected vote shares.

The number of players who choose action i (the day of the election) is denoted by x_{i},

[^7]where $i \in \mathcal{C}$. This number is random (voters do not observe it before going to the polls) and its distribution depends on the strategy through $\tau_{i}(\sigma, F)$. For the sake of readability, we will often henceforth omit (σ, F) from the notation.

In any equilibrium there is a candidate who is expected to receive a share of votes larger than or equal to that of any other candidate. This candidate is the front-runner. Also, one of the two remaining candidates has higher chances than the other to win a second round ballot against the front-runner. Without loss of generality, in what follows the set of candidates \mathcal{C} is defined by a front-runner, R, a strong opponent, S, and a weak opponent, W, with $\operatorname{Pr}(R \mid R W)>\operatorname{Pr}(R \mid R S)$. For example, suppose that in equilibrium candidate A is expected to receive 40% of the votes, B is expected to receive 35% and C is expected to receive 25%. In what follows, we refer to candidate A as R. Between B and C, we refer to the candidate who is more likely to defeat A in the second round as S and the other is W. The action set for each voter thus becomes $\{R, S, W\}$.

3 Pivot Probabilities, Payoffs, and Equilibrium Concept

Since voters are instrumental, their behavior depends on the probability that a ballot affects the final outcome of the elections, i.e. its probability of being pivotal. This section identifies all the pivotal events. Then, we compute voters' expected payoffs of the different actions and define the best response correspondence. ${ }^{19}$

As explained in Appendix A (which summarizes the properties of Poisson games and applies them to runoff elections), the probability that a pivotal event E occurs is exponentially decreasing in n. The (absolute value of the) magnitude of event E, denoted $\mu(E) \leq 0$ and formally defined in Appendix A, represents the "speed" at which the probability decreases towards zero: the more negative the magnitude, the faster the probability goes to zero. Unless two events have the same magnitude, their likelihood ratio converges either to zero or infinity when the electorate grows large (see Lemma 2 in Appendix A). Proofs in this paper rely extensively on this property, and thus, on the comparison of magnitudes of pivotal events. Lemma 3 (in Appendix A) computes the magnitudes of the different pivotal events. It shows that the magnitude of a pivotal event piv is larger when the expected outcome of that round is close to the conditions necessary for event piv to occur. Generally, the smaller the deviation with respect to the expected outcome required for the pivotal event to occur, the larger the magnitude.

[^8]Table 1: First-round pivotal events.

Event	Notation	Condition
Threshold pivotal $i / i j$	piv $_{i / i j}$	$x_{i}+\frac{1}{2}>\frac{1}{2}\left(x_{i}+x_{j}+x_{k}\right) \geq x_{i} \geq x_{j} \geq x_{k}$
Threshold pivotal $i j / i$	$p i v_{i j / i}$	$\frac{1}{2}\left(x_{i}+x_{j}+x_{k}+1\right) \geq x_{i}>\frac{1}{2}\left(x_{i}+x_{j}+x_{k}\right)>x_{j}$
$x_{i} \geq x_{j} \geq x_{k}$		

3.1 Pivotal Events

The first round influences the final result either directly (if one candidate wins outright) or indirectly (through the identity of the candidates participating in the second round).

Due to the alphabetical order tie-breaking rule, the precise conditions for the pivotal events actually depend on the alphabetical order of the candidates. Yet, we define the different pivotal events for any candidates $i, j, k \in\{R, S, W\}$ and $i \neq j \neq k$, abstracting from the candidates' alphabetical order. These conditions are thus necessarily loose. ${ }^{20}$

A ballot is threshold pivotal $i / i j$, denoted $p i v_{i / i j}$, if candidate i lacks one vote (or less) to obtain a majority of the votes in the first round. Thus, without an additional vote in favor of i, a second round opposing i to j is held. The complementary event is the threshold pivotability $i j / i$, denoted $p i v_{i j / i}$, that refers to an event in which any ballot against candidate i, i.e. in favor of either j or k, prevents an outright victory of i in the first round and ensures that a second round opposing i to j is held.

A ballot may also affect the final outcome if it changes the identity of the two candidates participating in the second round. This happens when a ballot changes the identity of the candidates who rank second and third in the first round. A ballot is second-rank pivotal $k i / k j$, denoted $p i v_{k i / k j}$, when candidate k ranks first (but does not obtain an absolute majority of the votes), and candidates i and j tie for second place. An additional vote in favor of candidate i allows her, instead of j, to participate in the second round with k.

Table 1 summarizes the different first-round pivotal events that influence the first-round voting behavior.

[^9]
3.2 Payoffs and Best Responses

Let $G_{t}(i, n \tau)$ denote the expected gain of playing action $i \in \mathcal{C}$ for a voters of type t, when the expected share of votes is τ. As usual in the literature, this expected gain is defined as the difference between the expected utility for a voter of type t if she votes for i and if she abstains. This gain depends on the voter's type and on the strategy function for all voters, σ. Strategies determine the expected number of votes received by each candidate in the first round, and thus the pivot probabilities. It easy to show that, for a type t, the expected gain of playing action i in the first round is:

$$
\begin{align*}
G_{t}(i, n \tau)= & \operatorname{Pr}\left(p i v_{k i / k j}\right)[U(k, i \mid t)-U(k, j \mid t)]+\operatorname{Pr}\left(\text { piv }_{j i / j k}\right)[U(j, i \mid t)-U(j, k \mid t)]+ \\
& \operatorname{Pr}\left(\text { piv }_{i / i k}\right)[U(i \mid t)-U(i, k \mid t)]+\operatorname{Pr}\left(\text { piv }_{i / i j}\right)[U(i \mid t)-U(i, j \mid t)]+ \\
& \operatorname{Pr}\left(p i v_{k i / k}\right)[U(k, i \mid t)-U(k \mid t)]+\operatorname{Pr}\left(\text { piv }_{j i / j}\right)[U(j, i \mid t)-U(j \mid t)]+ \\
& \operatorname{Pr}\left(p i v_{k j / k}\right)[U(k, j \mid t)-U(k \mid t)]+\operatorname{Pr}\left(p i v_{j k / j}\right)[U(j, k \mid t)-U(j \mid t)], \tag{1}
\end{align*}
$$

where $i, j, k \in \mathcal{C}$ and $i \neq j \neq k$. The first line in (1) reads as follows: if a ballot in favor of i is second-rank pivotal $k i / k j$, then the second round opposes k to i instead of k to j; if a ballot in favor of i is second-rank pivotal $j i / j k$, then the second round opposes j to i instead of j to k. The three last lines refer to the gains when the ballot is threshold pivotal.

By theorem 8 in Myerson (1998), when players behave according to a strategy profile σ, the number of voters voting for candidate i follows a Poisson distribution with mean $n \tau_{i}(\sigma, F)$. Thus, for any finite n, a strategy profile σ and a distribution F uniquely identify the probability of any event, including the probability that a single vote is pivotal between two electoral outcomes. That is, the vector of all pivot probabilities is a function of $\tau(\sigma, F)$. Hence, we can define the best response correspondence $\mathcal{B}: \mathcal{T} \times \Delta(\mathcal{C}) \rightrightarrows \Delta(\mathcal{C})$. For a voter of type t, a strategy profile σ, and a distribution of types is F :

$$
\mathcal{B}_{t}(\tau) \equiv \arg \max _{\sigma_{t} \in \Delta(\mathcal{C})} \sum_{i \in \mathcal{C}} \sigma_{t}(i) G_{t}(i, n \tau) .
$$

3.3 Equilibrium Concept

In voting games, the object of the analysis is often the limit of the set of equilibria as $n \rightarrow \infty$. We refer to an element of this set as an aymptotic equilibrium:

Definition 1. Let $\hat{\Gamma} \equiv\left\{\Gamma_{n}\right\}_{n \rightarrow \infty}$ be a sequence of games $\Gamma_{n} \equiv(n, \mathcal{T}, F, \mathcal{C}, u)$. A strategy profile σ_{t}^{*}, for all $t \in \mathcal{T}$ is an asymptotic equilibrium of $\hat{\Gamma}$ if there exists a sequence of Nash equilibria $\left\{\sigma_{n}^{*}\right\}_{n \rightarrow \infty}$ of Γ_{n} such that $\sigma_{n, t}^{*} \rightarrow \sigma_{t}^{*}$ for almost all $t \in \mathcal{T}$.

Let us clarify the meaning of this definition by means of an example. Take a Duverger's Law equilibrium in a plurality voting game. In such an equilibrium, only two serious candidates receive a positive expected vote share. For any finite n, there exists a positive measure of voters who vote for a third candidate - those that are almost indifferent between the two serious candidates, but like this third candidate very much. What we mean when we say that there is a Duverger's Law equilibrium as $n \rightarrow \infty$ is that, as n grows large, the measure of voters voting for a third candidate goes to zero.

In what follows, we fully characterize the set of strictly perfect equilibria (Okada 1981) as the size of the electorate n goes to infinity. ${ }^{21}$ The original idea behind strict perfection is that a sensible equilibrium should be stable against arbitrary slight perturbations of the strategy set. In our setup, strict perfection encompasses more than "strategic uncertainty". As we show in Technical Appendix 1, strict perfection is equivalent to requiring robustness to some perturbations of "the model", i.e. the expected distribution of preferences in the electorate. In terms of the model's predictive power, this implies that strictly perfect equilibria are not an artifact of the precise distribution of preferences the modeler assumes.

In the context of voting games, election polls are a natural device that permits voters to approximately predict the outcome of the election. We think of strictly perfect equilibria as equilibria robust to small errors in a hypothetical election poll. ${ }^{22}$ In Technical Appendix 1, we show that for all Poisson games with infinite types set, a strictly perfect equilibrium can be defined as follows.

Definition 2 (Strictly Perfect Equilibrium). A strategy profile σ^{*} is a strictly perfect equilibrium if and only if there exists $\epsilon>0$ such that if $\tau \in \Delta(\mathcal{C}):\left|\tau-\tau\left(\sigma^{*}, F\right)\right|<\epsilon$, then $\sigma_{t}^{*} \in \mathcal{B}_{t}(\tau)$ for all $t \in \mathcal{T}$.

Given our setup, we have to intepret strict perfection as a limit condition. Indeed, for any finite n, there exists a positive measure of voters' types for which $\sigma_{t}^{*} \notin \mathcal{B}\left(\tau_{n}\right)$ where $\left|\tau_{n}-\tau\left(\sigma_{n}^{*}, F\right)\right|<\epsilon$. Therefore, we say that a series of equilibria is strictly perfect if this measure goes to zero as n grows large. On the contrary, we say that an equilibrium is not strictly perfect if this measure remains bounded away from zero even as n grows large (see Technical Appendix 1).

Definition 3. An asymptotic equilibrium σ^{*} is asymptotically strictly perfect if there exists a sequence of Nash equilibria $\left\{\sigma_{n}^{*}\right\} \rightarrow \sigma^{*}$ for almost all $t \in \mathcal{T}$ such that, for any $\delta>0$, there

[^10]exist $N \in \mathbb{N}$ and $\epsilon>0$ such that, for any $n>N$, if $\tau_{n} \in \Delta(\mathcal{C}):\left|\tau_{n}-\tau\left(\sigma_{n}^{*}, F\right)\right|<\epsilon$, then $\operatorname{Pr}\left[t \in \mathcal{T}: \sigma_{t}^{*} \notin \mathcal{B}_{t}\left(\tau_{n}\right)\right]<\delta$.

Proposition 4 in Technical Appendix 1 greatly simplifies the equilibrium analysis since it dramatically reduces the number of sequences of strictly perfect equilibria to consider as $n \rightarrow \infty$. This proposition shows that if a strategy profile is a best response to itself only if two pivotal events have identical magnitudes, then it is not an asymptotically strictly perfect equilibrium. Importantly, this does not imply that a strategy profile which does not generate a unique largest magnitude (as n goes to infinity) cannot be an asymptotically strictly perfect equilibrium. For ease of exposition, we reproduce Proposition 4 in Technical Appendix 1 here as Lemma 1.

Lemma 1. Let σ^{*} be an asymptotic equilibrium if and only if two pivotal events have equal magnitudes under $\tau\left(\sigma^{*}, F\right)$. Then σ^{*} is not asymptotically strictly perfect.

Proof. Proposition 4 in Technical Appendix 1.
In the rest of the paper, we focus on asymptotic and asymptotically strictly perfect equilibria. For the sake of readability, we will from now on refer to asymptotic equilibria as "equilibria," and to asymptotically strictly perfect equilibria as "strictly perfect equilibria."

4 Equilibrium analysis

This section analyzes the set of strictly perfect equilibria in majority runoff elections. We prove three main results. First, a strictly perfect equilibrium always exists. Our proof is constructive: we show that three Duverger's Law equilibria exist for any distribution of preferences.

Definition 4 (Duverger's Law Equilibrium). A Duverger's law equilibrium is an equilibrium in which only 2 candidates obtain a non-zero expected vote share.

Second, we prove that a Duverger's Hypothesis equilibrium may exist and be strictly perfect.

Definition 5 (Duverger's Hypothesis Equilibrium). A Duverger's Hypothesis equilibrium is an equilibrium in which all 3 candidates obtain a non-zero expected vote share.

Third, we show that there is only one type of Duverger's Hypothesis equilibrium which is strictly perfect. Interestingly, neither the sincere voting equilibrium nor push over equilibria exist.

Definition 6 (Sincere Equilibrium). An equilibrium is sincere if and only if all voters vote for their most preferred candidate.

Definition 7 (Push Over Equilibrium). A push over equilibrium is an equilibrium where some supporters of the front-runner R vote for the weak opponent W with non-zero probability.

4.1 Existence: Duverger's Law

In this section we prove that a strictly perfect equilibrium always exists. Our proof is constructive:

Proposition 1. There always exist three strictly perfect Duverger's Law equilibria.
Proof. See Appendix B.
The intuition behind this result is straightforward. If a voter expects only two candidates to receive a positive share of votes, as the expected number of votes grows large, his vote can only be decisive in determining which of these two candidates will be elected outright in the first round. That is because if only two candidates receive any vote, then one of them will receive a majority of the votes in all cases except when both candidates receive exactly a 50% share. There are three different Duverger's Law equilibria because there are three different combinations of two candidates receiving all votes. It is easy to show that if there are N candidates, then there are $\frac{N!}{(N-2)!2!}$ strictly perfect Duverger's Law equilibria.

Proposition 1 can be illustrated through a numerical example. Suppose that (i) 10% of the voters are W supporters, and (ii) if all voters who prefer R to S vote for R and all voters who prefer S to R vote for S then $\tau_{R}=60 \%>\tau_{S}=40 \%>\tau_{W}=0 \%$. In this case, all magnitudes are equal to -1 except for $\mu\left(p i v_{R / R S}\right)$ and $\mu\left(p i v_{S / S R}\right)$ which are equal to -0.0202 . This means that, conditional on being pivotal, voters choose between an outright victory of either R or S in the first round, and a second round opposing R to S. Since both candidates have a positive chance of winning a second round, voters who prefer R to S vote for R in order to avoid the risk of S 's victory in the second round. Similarly, voters who prefer S to R vote for S in order to avoid the risk of R 's victory in the second round.

Importantly, these best responses would not change if $\mu\left(p i v_{R / R S}\right)$ and $\mu\left(p i v_{S / S R}\right)$ were different (but still the two largest magnitudes). Consider the case in which $\mu\left(\operatorname{piv}_{R / R S}\right)>$ $\mu\left(\right.$ piv $\left._{S / S R}\right)$. All voters who prefer R to S will vote for R. Indeed, by ensuring an outright victory of R in the first round, they avoid the risk of a victory of S in the second round. For voters who prefer S to R, the choice is slightly more complex. If their decision is based only on this most likely scenario, then they would vote against R but be indifferent between

Table 2: Magnitudes

$$
\begin{array}{cc}
\text { Threshold magnitudes } & \text { Second-rank magnitudes } \\
\mu\left(\mathbf{p i}_{\mathbf{R} / \mathbf{R S}}\right)=-\mathbf{0 . 0 0 5} & \mu\left(\text { piv }_{R S / R W}\right)=-0.0927 \\
\mu\left(p i v_{R / R W}\right)=-0.0927 & \mu\left(p i v_{S R / S W}\right)=-0.181 \\
\mu\left(\mathbf{p i v}_{\mathbf{S} / \mathbf{S R}}\right)=-\mathbf{0 . 0 4 6 1} & \mu\left(p i v_{W R / W S}\right)=-0.196 \\
\mu\left(p i v_{S / S W}\right)=-0.1897 & \\
\mu\left(p i v_{W / W R}\right)=-0.4 & \\
\mu\left(p i v_{W / W S}\right)=-0.40755 &
\end{array}
$$

voting for S or W. Indeed, any of these two actions would have the same result: decreasing the probability of an outright victory of R and increasing the probability of a victory of S (through a second round). Thus, their choice between S and W depends on the second most likely pivotal event, i.e. $p i v_{S / S R}$ in the case under consideration. Thus, to avoid the risk of an upset victory of R in the second round, voters who prefer S to R vote for S.

The strict perfection of Duverger's Law equilibria ensue from the continuity of the magnitudes in the probability distribution over actions. Since small perturbations to the strategies generate small changes to the magnitudes, there is always a small enough deviation from σ^{*} such that the two largest magnitudes are $\mu\left(\right.$ piv $\left._{R / R S}\right)$ and $\mu\left(p i v_{S / S R}\right)$.

The following example illustrates the robustness of the force underlying Duverger's Law equilibria. Consider the distribution of voters of the previous example. Now let all W supporters (who represent 10% of the electorate) vote for W whereas the other voters adopt the same strategy as above. Then, we for instance have: $\tau_{R}=55 \%>\tau_{S}=35 \%>\tau_{W}=10 \%$. As shown in Table 2, for this expected vote shares, the largest magnitude is $\mu\left(p i v_{R / R S}\right)$, and the second largest is $\mu\left(\operatorname{piv}_{S / S R}\right)$. This is thus not an equilibrium: W supporters prefer to vote for either R or S.

Contrasting Proposition 1 with Theorem 1 in Bouton (2012) highlights one specificity of the model in which the risk of upset victory in the second round is positive and constant. For the case of majority runoff, Bouton (2012) shows that Duverger's Law equilibria exist if the expected vote share of the candidate expected to rank second is large enough. This condition arises because, in Bouton (2012), the risk of victory of the minority candidate in the second round converges to zero when n grows large. The rate of convergence depends on the expected vote share of the minority candidate. If the expected vote share is too small, this risk converges to zero too fast and then voters disregard it. In the model under consideration, when all candidates have a positive and constant probability of victory in the second round, the threat of the minority candidate in the second round is always large enough to trigger a coordination in the first round. In Technical Appendix 2 we show that,
whenever the risk of upset victory in the second round converges to zero as n grows large, there always exist at least two Duverger's Law equilibria. We also find that the Duverger's Law equilibrium in which W is the runner-up might not exist if the support for W against the front runner is small enough. This is another illustration of what can be missed by not including all preference orderings and intensities in the model.

4.2 Duverger's Hypothesis

The Duverger's Hypothesis suggests that, in runoff elections, voters have incentives to disperse their votes on more than two candidates. In this section, we show that these incentives exist and that they can lead to the existence of a Duverger's Hypothesis equilibrium.

In a Duverger's Hypothesis equilibrium, all three candidates receive a positive expected vote share. In general, there is a front-runner (the candidate with the largest expected vote share), a runner-up (the candidate with the second largest expected vote share), and a third candidate expected to receive less votes than any other candidate. Notice that the distinction between the runner-up and the third candidate is determined in equilibrium by the first-round expected voting shares of the two opponents. This is different from the distinction between a strong and a weak opponent, which is determined by the relative likelihood of defeating the front-runner in a second-round ballot.

As we show in Section 4.3 (Proposition 3), the only strictly perfect Duverger's Hypothesis equilibria are those identified in the following proposition:

Proposition 2. For some distribution of preferences, there exist strictly perfect equilibria in which three candidates receive a positive share of the votes. In these equilibria, all voters who prefer the front-runner to the runner-up vote for the front-runner. Some, but not all, of the supporters of the weak opponent vote for the strong opponent, regardless of which opponent is expected to receive more votes.

Proof. See Appendix B
To understand the intuition of this result, we must first understand voters' reaction when they must choose between an outright victory of R and a second round opposing R to the runner-up (i.e. either $p i v_{R / R S}$ or $p i v_{R / R W}$ has the largest magnitude). All voters who prefer R to the runner-up will vote for R. Indeed, by ensuring an outright victory of R in the first round, they avoid the risk of a victory of the runner-up in the second round. For voters who prefer the runner-up to R, the choice is slightly more complex. If their decision is based only on this most likely scenario, then they would vote against R but remain indifferent between S or W. Indeed, either of these two actions would have the same result: decreasing
the probability of an outright victory of R and increasing the probability of a victory of the runner-up (through a second round). Thus, their choice between S and W depends on the second most likely pivotal event. There are two cases to consider: $p i v_{S / S R}$ (or $p i v_{W / W R}$) and $\operatorname{piv}_{R S / R W}$.

If the threshold pivotability $S / S R$ (or $W / W R$) dominates (which happens when both R and the runner-up have a large advantage with respect to the third candidate), the incentives are the same as in a Duverger's Law equilibrium: all voters who prefer the runner-up to R vote for the runner-up. Therefore, we cannot have a Duverger's Hypothesis equilibrium. Suppose, on the contrary, that the second-rank pivotability $R S / R W$ dominates (which happens when S and W are sufficiently close to each other). In this situation, voters voting against R realize that they determine whether S or W faces R in the second round. Consider the choice of a supporter of S who prefers the runner-up to the front-runner. He casts his ballot considering what to do if R does not pass the threshold (by voting against R he actually maximizes this probability). He would surely prefer to vote for S, and for two good reasons. First, because he prefers S to W. Second, S has more chances than W to win against R in the second round. Consider the choice of a W supporter who prefers the runner-up to the front-runner. He prefers W to S, but he also knows that S has better chances of winning against R. Since he prefers S to R, he faces a trade off between the likelihood of a second round victory against R and how much he prefers W to S. If he is sufficiently close to indifference between S and W, then he votes for the former. Otherwise, he votes for W.

In an equilibrium such as those described in Proposition 2 the Condorcet winner might be the candidate with the smallest expected vote share (she would thus be very unlikely to reach the second round if held). This happens when the Condorcet winner is the second best choice of a large fraction of the voters, but the first choice of only a minority. Hence, in the first round, a large fraction of the support she would receive in a pairwise ballot is lost in favor of a third candidate. ${ }^{23}$

We can illustrate this result through a numerical example. Consider the following situation: supporters of S represent 35% of the voters $\left(\gamma_{S W}=15 \%\right.$ and $\left.\gamma_{S R}=20 \%\right)$, while the share of R 's and W 's supporters is equal to $25 \%\left(\gamma_{R S}=16 \%\right.$ and $\left.\gamma_{R W}=9 \%\right)$ and 40% $\left(\gamma_{W R}=10 \%\right.$ and $\left.\gamma_{W S}=30 \%\right)$, respectively. It is easy to verify that (i) S is the Condorcet winner, (ii) R is the Condorcet loser, and (iii) S is a stronger opponent of R than W. In this case, there exists an equilibrium in which (i) the Condorcet winner, S, is expected not to reach the second round, and (ii) the weak opponent, W, is expected to defeat the front-

[^11]Table 3: Magnitudes
Threshold magnitudes Second-rank magnitudes

$$
\begin{array}{cc}
\mu\left(p i v_{R / R S}\right)=-0.02968 & \mu\left(\mathbf{p i v}_{\mathbf{R S} / \mathbf{R W}}\right)=-\mathbf{0 . 0 2 6 9 3} \\
\mu\left(\mathbf{p i v}_{\mathbf{R} / \mathbf{R W}}\right)=-\mathbf{0 . 0 0 5} & \mu\left(p i v_{S R / S W}\right)=-0.05982 \\
\mu\left(p i v_{S / S R}\right)=-0.2178 & \mu\left(p i v_{W R / W S}\right)=-0.05519 \\
\mu\left(p i v_{S / S W}\right)=-0.2178 & \\
\mu\left(p i v_{W / W R}\right)=-0.04 & \\
\mu\left(p i v_{W / W S}\right)=-0.08233 &
\end{array}
$$

runner in the second round. In particular, the expected vote shares in that equilibrium are $\tau_{R}=45 \%, \tau_{W}=36 \%$, and $\tau_{S}=19 \%$. For those expected vote shares, the magnitudes are given in Table 3. Since the largest magnitude is $\mu\left(p i v_{R / R W}\right)=-0.005$, we have that all voters who prefer R to W vote for $R\left(\gamma_{R S}+\gamma_{R W}+\gamma_{S R}=45 \%\right)$, and that all voters who prefer W to $R\left(\gamma_{W R}+\gamma_{W S}+\gamma_{S W}=55 \%\right)$ vote against R, either for W or for S. Since the second largest magnitude is $\mu\left(p i v_{R W / R S}\right)=-0.0263$, the choice between S and W is determined by the utility difference between a second round opposing R to S, and a second round opposing R and W. As detailed in the proof of Proposition 2, this difference depends on (i) the intensity of the relative preference between W and S, and (ii) the probabilities of victory in the second round. Since $\operatorname{Pr}(R \mid R S)<\operatorname{Pr}(R \mid R W)$, some voters who prefer (only slightly) W to S vote for S because she is more likely than W to defeat R in the second round. There are many different combinations of distribution of preferences $F, \operatorname{Pr}(R \mid R S)$, and $\operatorname{Pr}(R \mid R W)$ such that 4% of the voters, all of whom prefer W to both R and S, vote for S.

As mentioned in the Introduction, a common critique of the majority runoff system is that the median candidate may be "squeezed" by two moderate candidates, and hence excluded from the second round (see e.g. Van Der Straeten et al. 2012, and Solow 2012). Arguably, such a squeezing happened during the 2007 Presidential election in France (Spoon 2008). Indeed, even if most polls indicated that Francois Bayrou (UDF, centrist) would have defeated any other candidate in the second round (i.e. he was the Condorcet winner), he did not make it to that round. This was because, in the first round, he was squeezed between Nicolas Sarkozy (UMP, rightist) and Ségolène Royal (PS, leftist). Our result that the Condorcet winner may not qualify for the second round is closely related to that issue. Indeed, the Condorcet winner must be a median candidate. Therefore, we show that such a squeezing of the median candidate is possible in runoff elections when voters are strategic. ${ }^{24}$

[^12]
4.3 No Other Equilibria

In the previous sections we have identified two types of strictly perfect equilibria: Duverger's Law equilibria, and the Duverger's Hypothesis equilibria as described in Proposition 2. The following proposition establishes that these are the only two types of strictly perfect equilibria.

Proposition 3. There is no strictly perfect equilibrium other than those characterized in Propositions 1 and 2.

Proof. See Appendix B
Proposition 3 shows that runoff elections produce only two types of equilibria: Duverger's Law equilibria and only one type of Duverger's Hypothesis equilibrium, the one described in Proposition 2. The proof follows these lines. First, we show (Lemma 4 in Appendix A) that the most likely pivotal event is either a threshold pivotability between the front-runner and the runner-up, or it is the second rank pivotability $R S / R W$. In the first case, we have either a Duverger's Law equilibrium or Duverger's Hypothesis equilibrium as in Proposition 2. The second case cannot happen in equilibrium. To see this, notice that all voters prefer to vote for one of the two opponents. Indeed, conditional on being pivotal, voters choose whom of S and W will oppose R in the second round. A vote for R is irrelevant to that choice and thus useless. It follows that nobody votes for R, and thus that R cannot be the front runner, contradicting the hypothesis that $R S / R W$ is the most likely pivotal event.

Arguably, the most interesting implication of Proposition 3 is that sincere voting and push-over tactics, two types of voting behavior that are commonly believed to arise in (threecandidate) runoff elections (Duverger 1957, Cox 1997, Martinelli 2002), are not supported in equilibrium. There are two main differences between our analysis and previous studies that explain why such behaviors do not arise in our model: the richness of the preference structure and the focus on strictly perfect equilibria. Our results thus show implicitly that both sincere voting and push-over tactics are not robust phenomena in runoff elections and are therefore unlikely to be observed empirically.

To see why sincere voting is not an equilibrium, notice that in all equilibria the most likely pivotal event is the threshold pivotability $R / R i$, where i is the runner-up. Thus, conditional on being pivotal, voters choose between an outright victory of R and a second round opposing R to the runner-up. But then all voters who prefer R to the runner-up

[^13]prefer to vote for R. This includes all the voters whose most preferred candidate is the third candidate $(j \succeq R \succ i, j \neq R, i)$ whose vote is therefore not sincere.

Perhaps surprisingly, we do not need strict perfection to exclude the existence of the sincere voting equilibrium. ${ }^{25}$ The crucial ingredient for this result is that the set of types includes all orders of preferences.

Push over is the incentive to vote for an unpopular candidate in the first round with the sole purpose of helping the front-runner to win in the second round. ${ }^{26}$ It works as follows. Suppose that a voter ranks candidate R higher than both S and W. He expects R to gain enough votes to reach the second round, but not enough to win outright in the first round. In his expectations, S and W will receive a much lower share than R, but the difference between the expected shares of S and W is small. For which candidate should our voter vote? A vote for his most preferred candidate, R is of no use: it is very unlikely that such a vote will push R above the threshold of 50% (nor it is likely that a vote will be needed to ensure R 's participation in the second round). On the other hand, a vote for either S or W is likely to change the composition of the second round. Since R has higher chances of winning a second round against the weak opponent, W, our R supporter prefers to vote for W to ensure a higher chance of his most preferred candidate to win the election.

For a supporter of R to push over and vote for W in equilibrium, one cannot have that a unique pivotal event is more likely than all others. Indeed, all R 's supporter vote for R when a threshold pivotability $(R / R S$ or $R / R W)$ dominates, and vote for either S or W (making impossible that R is the front-runner) if a second-rank pivotability $(R S / R W)$ dominates. We thus need two pivotal events to dominate: an impossibility in any strictly perfect equilibrium (Lemma 1). Thus, push over is not a robust phenomenon in runoff elections.

Importantly, we do not show that push over equilibria that are not strictly perfect never exist. Actually, there are situations in which such equilibria might exist: when voters expect a tie between the top two contenders in the first round. We show that no such equilibrium is strictly perfect. In a sense, this means that push over is not robust to voters being uncertain about the expected outcome of the first round. Arguably, such a precise information is possible in small committees but unlikely in large elections.

Though not supported in (any strictly perfect) equilibrium, push over incentives do affect the voting behavior of voters. For instance, as explained above, there are situations in which the desire to qualify a weak opponent to the second round induces R supporters to behave

[^14]non-sincerely.
Together, Propositions 1, 2, and 3 allow us to draw a general conclusion about the nature of the support in the two rounds. The front-runner always receives the support of all the voters who prefer her to the runner-up. An implication is that the vote share of the frontrunner should not increase between the first and the second round if the distribution of voters remains unchanged between the two rounds. Thus, unless the front-runner wins outright in the first round, he is expected to lose in the second round. This is not an appealing feature of our model. Indeed, such a scenario seems to happen very frequently in real life elections. For instance, Bullock and Johnson (1992) report empirical evidence on U.S. data according to which the election winner corresponds to the first-round winner approximately 70% of the times. However, it appears that this feature of our model is an artifact of two assumptions: (i) the probabilities of victory in the second round are exogenous, positive, and constant (i.e. independent of the size of the electorate), and (ii) all voters are strategic. In Technical Appendix 2, we show that when the first assumption is relaxed the model accommodates easily for changes in the vote share of the front-runner between the two rounds. In the next section, we show that a model including non-strategic voters also does.

5 Non-Strategic Voters

The empirical literature on strategic voting (see e.g. Kawai and Watanabe 2012, Spenkuch 2012 and references therein) shows that the electorate is composed of both strategic and non-strategic voters. Non-strategic voters vote for their most preferred candidate no matter what other voters do, whereas strategic voters maximize their expected utility, taking the behavior of the other voters into account. Models including only one type of voters are thus at odds with empirical findings. In this section, we discuss the robustness of our results to the presence of non-strategic voters.

There is no reason to believe that voters of some types, i.e. with some given preferences, are more likely to be strategic than others. Therefore, we adopt a neutral position: we assume that each voter, no matter his type, is strategic with probability λ and non-strategic with probability $(1-\lambda)$. This implies that among the supporters of, say, R, a fraction $(1-\lambda)$ vote for R no matter what they expect others to do.

The best response of strategic voters is not affected by the presence of non-strategic voters. Yet, the presence of non-strategic voters may affect the equilibrium properties of majority runoff elections. We illustrate this influence through numerical examples. First, with non-strategic voters, the vote share of the front-runner can increase in the second
round. ${ }^{27}$ This is in stark contrast with the predictions of the model without non-strategic voters. Given the empirical evidence on U.S. data according to which the election winner corresponds to the first-round winner approximately 70% of the times, this example suggests that a model including both strategic and non-strategic voters outperforms a model including only strategic voters. Second, in the presence of non-strategic voters, push over can be supported in equilibrium. Yet, we identify a necessary condition for the existence of a push over equilibrium: it requires an unreasonably large fraction of non-strategic voters in the electorate.

5.1 Increase of the Frontrunner's Vote Share in the Second Round

In the presence of non-strategic voters in the electorate, we can prove the existence of a strictly perfect Duverger's Hypothesis equilibrium in which the vote share of the front-runner increases in the second round. To compute the vote shares in the second round, we assume that voters are sequentially rational. Therefore, all voters vote for their most-preferred participating candidate.

Suppose that $\lambda=30 \%$, i.e. 70% of the voters are expected to be non-strategic. Suppose also the following expected distribution of preferences in the electorate:

$$
\begin{array}{lc}
\text { Preferences } & \text { Expected Share } \\
R \succ S \succ W & 0.21 \\
R \succ W \succ S & 0.2 \\
S \succ R \succ W & 0.11 \\
S \succ W \succ R & 0.05 \\
W \succ S \succ R & 0.33 \\
W \succ R \succ S & 0.1
\end{array}
$$

Therefore, R is the Condorcet winner, and S is the Condorcet loser. However, S is a stronger opponent of R than W (49% of the votes in the second round for S and 48% for W when opposed to R). In this case, we can prove the existence of a Duverger's Hypothesis equilibrium as the one identified in Proposition 2. When strategic voters who prefer R to W vote for R and those who prefer W to R vote for their most preferred candidate, the expected vote shares are: $\tau_{R}=0.21+0.2+0.3^{*} 0.11=0.443, \tau_{W}=0.33+0.1=0.43$, and $\tau_{S}=0.7^{*} 0.11+0.05=0.127$. For these expected vote shares, the largest magnitude is $\mu\left(\operatorname{piv}_{R / R W}\right)=-0.00652$, and the second largest is $\mu\left(p i v_{R W / R S}\right)=-0.08962$. Hence, the

[^15]postulated strategy is indeed a best response for all strategic voters (see Section 4.2). ${ }^{28}$ The (expected) vote share of R in the second round is 52% if opposed to W and 51% if opposed to S. This is substantially higher than the 44.3% of the votes that R is expected to receive in the first round.

5.2 Push Over

We prove two results in this subsection. First, we show that a strictly perfect push over equilibrium may exist. Second, we prove that the fraction of strategic voters must be sufficiently small for a push over equilibrium to exist.

Suppose that $\lambda=0.11 \%$, i.e. 89% of the voters are expected to be non-strategic. Suppose also the following expected distribution of preferences in the electorate:

$$
\begin{array}{lc}
\text { Preferences } & \text { Expected Share } \\
R \succ S \succ W & 0.13 \\
R \succ W \succ S & 0.28 \\
S \succ R \succ W & 0.145 \\
S \succ W \succ R & 0.155 \\
W \succ S \succ R & 0.23 \\
W \succ R \succ S & 0.06
\end{array}
$$

In this example, sincere voting would lead (in expectation) to a second round opposing R to S and then to an expected victory of S in the second round. Yet, there is a push over equilibrium in which S is expected to rank third. In that equilibrium, all strategic voters (even those who rank R first) vote for W if they prefer W to S and vote for S if they prefer S to W. Non-strategic voters vote for their most preferred candidate. We therefore have: $\tau_{R}=0.89 *(0.13+0.28)=0.3649, \tau_{W}=0.23+0.06+0.11^{*} 0.28=0.3208$, and $\tau_{S}=0.145+0.155+0.11^{*} 0.13=0.3143$. For these expected vote shares, the largest magnitude is $\mu\left(\operatorname{piv}_{R W / R S}\right)=-3.32633 \times 10^{-5}$. Hence, the postulated strategy is indeed a best response for all strategic voters. ${ }^{29}$ This example highlights how, by pushing over, strategic R supporters can influence the outcome of the election to their advantage.

[^16]We now identify a necessary condition on the fraction of non-strategic voters for the pushover equilibrium to exist. To be the frontrunner, a candidate must receive strictly more than $1 / 3$ of the votes. In a push-over equilibrium, we know that all strategic R supporters vote for W. Therefore, the fraction of non-strategic R supporters must be strictly larger than $1 / 3$:

$$
\begin{aligned}
(1-\lambda)\left(\gamma_{R S}+\gamma_{R W}\right) & >1 / 3 \\
& \Leftrightarrow \\
1-\lambda & >\frac{1}{3\left(\gamma_{R S}+\gamma_{R W}\right)}
\end{aligned}
$$

If the fraction of R 's supporters is $50 \%, \gamma_{R S}+\gamma_{R W}=50 \%$, we have that $1-\lambda>2 / 3$, i.e. the fraction of non-strategic voters in the electorate must be strictly larger than $2 / 3$. For $\gamma_{R S}+\gamma_{R W}<50 \%$, this minimal fraction increases. It decreases for $\gamma_{R S}+\gamma_{R W}>50 \%$.

For push over to arise in equilibrium, the electorate must be composed of a large fraction of non-strategic voters. Ultimately, the existence of a push over equilibrium is thus an empirical question. Considering the fraction of strategic voters found by Kawai and Watanabe (2012), i.e. between 63.4% and 84.9% of the electorate, our model predicts that a necessary (but far from sufficient) condition for a push over equilibrium to exist is that at least 91.1% of the electorate prefer R to both S and W. Arguably, this is quite unlikely. Dolez and Laurent (2010) tests directly for push over behavior. They find that "the number of the 'ingenious' voters is zero, that is no respondent intended to desert temporarily his/her preferred party on the first round to favor it at the second" (p.10). This supports our result that push over is unlikely to arise in real-life majority runoff elections.

6 Conclusions

In this paper, we characterized the set of strictly perfect equilibria in three candidate runoff elections. In all equilibria, the front-runner receives the votes of all the voters who prefer her to the runner-up. An equilibrium where all the remaining voters coordinate on the runnerup candidate always exists, that is, similarly to the case of plurality elections, there always exists a Duverger's Law equilibrium in which only two candidates receive a positive vote share. We also showed that there is at most one Duverger's Hypothesis equilibrium in which three candidates receive a positive fraction of the votes. The characteristics of that unique Duverger's Hypothesis equilibrium challenge common beliefs about runoff elections: (i) some voters do not vote for their most preferred candidate (i.e. the sincere voting equilibrium does not exist), (ii) supporters of the front-runner do not vote for a less-preferred candidate in order to "choose" who will face the front-runner in the second round (i.e. there is no push
over equilibrium), and (iii) it can lead to the exclusion of the Condorcet Winner from the second round.

A Large Poisson Games in Runoff Elections

A Poisson game $\Gamma \equiv(n, \mathcal{T}, F, \mathcal{C}, u)$ is defined by the expected number of voters $n \in \mathbb{N}$, the set of types \mathcal{T}, a probability measure F defined over \mathcal{T}, a set of actions \mathcal{C} and a vector of payoffs $u_{t}: \mathcal{C} \times Z(\mathcal{C}) \rightarrow \mathbb{R}$, each $t \in \mathcal{T}$, where $Z(\mathcal{C})$ is the set of all action profiles for the players. The probability of the action profile x depends on τ, which itself depends on σ and F. In particular, this probability is:

$$
\operatorname{Pr}(x \mid \tau)=\prod_{i \in C}\left(\frac{\exp \left(-n \tau_{i}\right)\left(n \tau_{i}\right)^{x_{i}}}{x_{i}!}\right)
$$

To lighten notation, we will omit the τ from the notation of the probability of any action profile or set of action profiles.

An event E is a set of action profiles that satisfy given constraints, i.e. a subset of $Z(\mathcal{C})$. As shown in Myerson (2000, theorem 1), for a large population of size n, the probability of an event E is such that

$$
\mu(E) \equiv \lim _{n \rightarrow \infty} \frac{\log [\operatorname{Pr}(E)]}{n}=\max _{x \in E} \sum_{i} \frac{x_{i}}{n}\left(1-\log \left(\frac{x_{i}}{n \tau_{i}}\right)\right)-1
$$

That is, the probability that event E occurs is exponentially decreasing in $n ; \mu(E) \in[-1,0]$ is called the magnitude of event E. Its absolute value represents the "speed" at which the probability decreases towards 0 : the more negative is the magnitude, the faster the probability goes to 0 .

Furthermore, Myerson (2000, Corollary 1) shows that:
Lemma 2. Compare two events E and E^{\prime} with different magnitudes: $\mu(E)<\mu\left(E^{\prime}\right)$. Then, the probability ratio of the former over the later event goes to zero as n increases:

$$
\mu(E)<\mu\left(E^{\prime}\right) \Rightarrow \frac{\operatorname{Pr}(E)}{\operatorname{Pr}\left(E^{\prime}\right)} \underset{n \rightarrow \infty}{\rightarrow} 0
$$

The intuition is that the probabilities of different events do not converge towards zero at the same speed. Hence, unless two events have the same magnitude, their likelihood ratio converges either to zero or to infinity when the electorate grows large. Myerson calls this result the magnitude theorem. Proofs in this paper rely extensively on this property of large

Poisson games.
We make use of the magnitude theorem to identify the properties of the set of strictly perfect equilibria as $n \rightarrow \infty$. As explained in Section 3, there are two types of pivotal events in a majority runoff election: the threshold pivotabilities and the second-rank pivotabilities. As proven in Bouton (2012), the magnitude of a pivotal event piv is larger when the expected outcome of the first round, τ, is close to the conditions necessary for event piv to occur. For instance, the pivotal event $\operatorname{piv}_{i / i j}$ is more likely to occur when $1 / 2=\tau_{i}>\tau_{j}>\tau_{k}$ than when $1 / 2>\tau_{k}>\tau_{j}>\tau_{i}$. Indeed, the occurrence of the pivotal event in the latter case requires a "larger deviation with respect to the expected outcome".

Lemma 3. The magnitudes of the pivot probabilities are:
(a) Threshold pivot probability i / ij and ij / i :

$$
\mu\left(p i v_{i / i j}\right)=\mu\left(p i v_{i j / i}\right)= \begin{cases}2 \sqrt{\left(\tau_{j}+\tau_{k}\right) \tau_{i}}-1 & \text { if } \frac{\tau_{j}}{\tau_{j}+\tau_{k}} \geq \frac{1}{2} \tag{2}\\ 2 \sqrt{2 \tau_{i} \sqrt{\tau_{j} \tau_{k}}}-1 & \text { otherwise }\end{cases}
$$

(b) Second-rank pivot probability $\mathrm{ki} / \mathrm{kj}$ and $\mathrm{kj} / \mathrm{ki}$:

$$
\begin{align*}
\mu\left(\text { piv }_{k i / k j}\right) & =\mu\left(\text { piv }_{k j / k i}\right)= \\
& = \begin{cases}-\left(\sqrt{\tau_{i}}-\sqrt{\tau_{j}}\right)^{2} & \text { if } 2 \sqrt{\tau_{i} \tau_{j}}>\tau_{k}>\sqrt{\tau_{i} \tau_{j}} \\
2 \sqrt{2 \tau_{k} \sqrt{\tau_{i} \tau_{j}}}-1 & \text { if } \tau_{k}>2 \sqrt{\tau_{i} \tau_{j}} ; \\
3\left(\tau_{i} \tau_{j} \tau_{k}\right)^{\frac{1}{3}}-1 & \text { if } \sqrt{\tau_{i} \tau_{j}}>\tau_{k} .\end{cases} \tag{3}
\end{align*}
$$

We are now in position of establishing some preliminary results on the equilibrium behavior of the magnitudes of different pivot probabilities. In particular, Lemma 4 says that the magnitude of $p i v_{R / R i}$, the event that a single vote being decisive between the front-runner winning outright and a second round between the front-runner and the runner-up, is never less than the magnitude of any other first round pivot probability. Also, the magnitude of $\operatorname{piv}_{R S / R W}$, the event that a vote is pivotal in determining which candidate will face the front-runner in a second round, is never less than the magnitude of any other second round pivot probability and is strictly larger unless the front-runner and the runner-up have the same expected share of votes.

Lemma 4. Let $i, j \neq R$ be two candidates such that $\tau_{i} \geq \tau_{j}$. There are three possible rankings of the two largest magnitudes:
(i) $\mu\left(\right.$ piv $\left._{R / R i}\right) \geq \mu\left(\right.$ piv $\left._{i / R i}\right) \geq$ any other magnitude; or
(ii) $\mu\left(p i v_{R / R i}\right) \geq \mu\left(p i v_{R S / R W}\right) \geq$ any other magnitude; or
(iii) $\mu\left(\operatorname{piv}_{R S / R W}\right)>\mu\left(\right.$ piv $\left._{R / R i}\right) \geq$ any other magnitude.

Proof. We first compare $\mu\left(\operatorname{piv}_{R / R i}\right)$ with other threshold magnitudes and show that this is the largest threshold magnitude:

$$
\mu\left(\operatorname{piv}_{R / R i}\right)=2 \sqrt{\left(\tau_{j}+\tau_{i}\right) \tau_{R}}-1 \geq 2 \sqrt{\left(\tau_{j}+\tau_{R}\right) \tau_{i}}-1=\mu\left(\text { piv }_{i / R i}\right)
$$

and the expression holds with equality only if $\tau_{j}=0$ or $\tau_{i}=\tau_{R}$. Also, trivially

$$
\mu\left(p i v_{R / R i}\right)=2 \sqrt{\left(\tau_{j}+\tau_{i}\right) \tau_{R}}-1>2 \sqrt{\left(\tau_{i}+\tau_{R}\right) \tau_{j}}-1=\mu\left(p i v_{j / R j}\right)
$$

unless $\tau_{R}=\tau_{i}$ and

$$
\mu\left(\operatorname{piv}_{i / R i}\right)=2 \sqrt{\left(\tau_{j}+\tau_{R}\right) \tau_{i}}-1>2 \sqrt{\left(\tau_{i}+\tau_{R}\right) \tau_{j}}-1=\mu\left(p i v_{j / R j}\right)
$$

unless $\tau_{j}=\tau_{i}$. We can also show that

$$
\mu\left(\operatorname{piv}_{R / R i}\right)=2 \sqrt{\left(\tau_{j}+\tau_{i}\right) \tau_{R}}-1>2 \sqrt{2 \tau_{R} \sqrt{\tau_{i} \tau_{j}}}-1=\mu\left(\operatorname{piv}_{R / R j}\right)
$$

unless $\tau_{i}=\tau_{j}$. Indeed, $2 \sqrt{\left(\tau_{j}+\tau_{i}\right) \tau_{R}}-1>2 \sqrt{2 \tau_{R} \sqrt{\tau_{i} \tau_{j}}}-1 \Longleftrightarrow \tau_{R}\left(\tau_{i}+\tau_{j}\right)-2 \tau_{R} \sqrt{\tau_{i} \tau_{j}}>$ 0 . The LHS of the last inequality can be rewritten as $\tau_{R}\left[\tau_{j}+\tau_{i}-2 \sqrt{\tau_{i} \tau_{j}}\right]$ and

$$
\tau_{R}\left[\tau_{j}+\tau_{i}-2 \sqrt{\tau_{i} \tau_{j}}\right]=\tau_{R}\left(\sqrt{\tau_{i}}-\sqrt{\tau_{j}}\right)^{2}>0
$$

if $\tau_{i}>\tau_{j}$.
It remains to show that $\mu\left(p i v_{R / R i}\right)$ is larger than $\mu\left(p i v_{i / i j}\right)$ and $\mu\left(p i v_{j / i j}\right)$. The first condition is satisfied if $\tau_{R}>\tau_{i}$ or $\tau_{i}>\tau_{j}$ since

$$
\begin{aligned}
\mu\left(\text { piv }_{R / R i}\right) & >\mu\left(\text { piv }_{i / i j}\right) \\
2 \sqrt{\left(\tau_{j}+\tau_{i}\right) \tau_{R}}-1 & >2 \sqrt{2 \tau_{i} \sqrt{\tau_{j} \tau_{R}}}-1 \\
\frac{\left(\tau_{j}+\tau_{i}\right)}{2} \tau_{R} & >\sqrt{\tau_{j} \tau_{i}} \sqrt{\tau_{i} \tau_{R}} .
\end{aligned}
$$

Notice that the first element of the $L H S$ is greater or equal (only if $\tau_{R}=\tau_{i}=\tau_{j}=1 / 3$) than the first element of the $R H S$ since a geometric mean of x, y, \ldots is always less than or equal to the arithmetic mean of x, y, \ldots, with the equality holding only if $x=y=\ldots$. Also, since $\tau_{R} \geq \tau_{i}$, the second element is also greater than or equal to the second element of the
$R H S$. The last case, i.e. $\mu\left(p i v_{R / R i}\right)>\mu\left(p i v_{j / i j}\right)$ follows a very similar argument.
Furthermore,

$$
\mu\left(\text { piv }_{i / R i}\right)=2 \sqrt{\left(\tau_{j}+\tau_{R}\right) \tau_{i}}-1>2 \sqrt{2 \tau_{i} \sqrt{\tau_{j} \tau_{R}}}-1=\mu\left(\text { piv }_{i / i j}\right)
$$

unless $\tau_{j}=\tau_{R}$, and similarly $\mu\left(p i v_{i / R i}\right)>\mu\left(p i v_{j / i j}\right)$.
We now compare $\mu\left(\operatorname{piv}_{R S / R W}\right)$ with other second-rank magnitudes and we show that this is the largest second-rank magnitude. First, notice that for $\tau_{R} \geq \tau_{i} \geq \tau_{j}, \tau_{R} \geq \sqrt{\tau_{i} \tau_{j}}, \tau_{j} \leq$ $\sqrt{\tau_{R} \tau_{i}}$, and $\tau_{i}>2 \sqrt{\tau_{R} \tau_{j}} \Rightarrow \tau_{R}>2 \sqrt{\tau_{i} \tau_{j}}$. Hence, to prove that $\mu\left(\right.$ piv $\left._{R S / R W}\right)>\mu\left(\right.$ piv $\left._{j R / j i}\right)$ it is sufficient to show two conditions:
(i) if $\tau_{R}<2 \sqrt{\tau_{i} \tau_{j}}$, then it is sufficient to show that $-\left(\sqrt{\tau_{i}}-\sqrt{\tau_{j}}\right)^{2}>3\left(\tau_{i} \tau_{j} \tau_{R}\right)^{\frac{1}{3}}-1$. The inequality can be rewritten as (using $\tau_{R}+\tau_{i}+\tau_{j}=1$)

$$
\tau_{i}+\tau_{j}-2 \sqrt{\tau_{i} \tau_{j}}<\tau_{i}+\tau_{j}+\tau_{R}-3\left(\tau_{i} \tau_{j} \tau_{R}\right)^{\frac{1}{3}}
$$

and therefore as

$$
\frac{\tau_{R}+2 \sqrt{\tau_{i} \tau_{j}}}{3}>\left({\sqrt{\tau_{i} \tau_{j}}}^{2} \tau_{R}\right)^{\frac{1}{3}} .
$$

The $R H S$ and the LHS are, respectively, the weighted geometric and arithmetic means of $\sqrt{\tau_{i} \tau_{j}}$ and τ_{R} with weights 2 and 1 . It follows that they are equal if and only if $\tau_{R}=\tau_{i}=\tau_{j}=\frac{1}{3}$, otherwise, the inequality holds.
(ii) if $\tau_{R} \geq 2 \sqrt{\tau_{i} \tau_{j}}$, then it is sufficient to show that $2 \sqrt{2 \tau_{R} \sqrt{\tau_{i} \tau_{j}}}-1 \geq 3\left(\tau_{R} \tau_{i} \tau_{j}\right)^{\frac{1}{3}}-1$. Taking logs and simplifying, we get

$$
\begin{aligned}
\frac{3}{2} \ln 2-\ln 3 & \geq \frac{\ln \tau_{i} \tau_{j}-2 \ln \tau_{R}}{12} \\
\ln \left[\left(\frac{\sqrt{2}^{3}}{3}\right)^{12}\right] & \geq \ln \left(\frac{\tau_{i} \tau_{j}}{\tau_{R}^{2}}\right)
\end{aligned}
$$

which simplifies to $\tau_{R} \geq\left(\frac{\sqrt{2}^{3}}{3}\right)^{6} \sqrt{\tau_{i} \tau_{j}}$. Notice that $\left(\frac{\sqrt{2}^{3}}{3}\right)^{6} \approx .7023<2$. Hence, since $\tau_{R}>2 \sqrt{\tau_{i} \tau_{j}}$, we have shown that $\mu\left(\right.$ piv $\left._{R S / R W}\right)>\mu\left(p i v_{j R / j i}\right)$.

To show that $\mu\left(p i v_{R S / R W}\right) \geq \mu\left(p i v_{i R / i j}\right)$, we divide the analysis into three cases.
Case 1: if $\tau_{i}<\sqrt{\tau_{R} \tau_{j}}$, then $\mu\left(p i v_{i R / i j}\right)=\mu\left(p i v_{j R / j i}\right)$ and we have just shown that $\mu\left(\operatorname{piv}_{R S / R W}\right) \geq \mu\left(p i v_{j R / j i}\right)$ with equality holding only if $\tau_{R}=\tau_{i}=\tau_{j}=\frac{1}{3}$.

Case2: if $\tau_{i}>2 \sqrt{\tau_{R} \tau_{j}}$, then $\mu\left(\operatorname{piv}_{R S / R W}\right) \geq \mu\left(p i v_{i R / i j}\right)$ if and only if

$$
\begin{aligned}
2 \sqrt{2 \tau_{R} \sqrt{\tau_{i} \tau_{j}}}-1 & \geq 2 \sqrt{2 \tau_{i} \sqrt{\tau_{R} \tau_{j}}}-1 \\
\tau_{R} \sqrt{\tau_{i} \tau_{j}} & \geq \tau_{i} \sqrt{\tau_{R} \tau_{j}} \\
\sqrt{\tau_{R}} & \geq \sqrt{\tau_{i}}
\end{aligned}
$$

which is trivially true for all $\tau_{R} \geq \tau_{i}$, with equality only if $\tau_{R}=\tau_{i}$.
Case 3: if $\sqrt{\tau_{R} \tau_{j}}<\tau_{i}<2 \sqrt{\tau_{R} \tau_{j}}$ and $\tau_{R}<2 \sqrt{\tau_{i} \tau_{j}}$, then $\mu\left(\right.$ piv $\left._{R S / R W}\right) \geq \mu\left(p_{\left.i v_{i R / i j}\right)}\right)$ if and only if

$$
\begin{aligned}
-\left(\sqrt{\tau_{i}}-\sqrt{\tau_{j}}\right)^{2} & \geq-\left(\sqrt{\tau_{R}}-\sqrt{\tau_{j}}\right)^{2} \\
\sqrt{\tau_{i}} & \leq \sqrt{\tau_{R}}
\end{aligned}
$$

which is trivially true for all $\tau_{R} \geq \tau_{i}$, with equality only if $\tau_{R}=\tau_{i}$.
Last, we compare $\mu\left(p i v_{R / R i}\right)$ and $\mu\left(\right.$ piv $\left._{i / R i}\right)$ with $\mu\left(p i v_{R S / R W}\right)$. Notice that if $\tau_{R} \geq 2 \sqrt{\tau_{i} \tau_{j}}$, then $\mu\left(p i v_{R S / R W}\right)=\mu\left(p i v_{R / R j}\right) \leq \mu\left(p i v_{R / R i}\right)$ with the last inequality holding with strict sign unless $\tau_{i}=\tau_{j}$. Otherwise, if $\tau_{R} \leq 2 \sqrt{\tau_{i} \tau_{j}}$, then there exist two regions of $\Delta(\mathcal{C})$ such that $\mu\left(\right.$ piv $\left._{R / R i}\right)>\mu\left(\right.$ piv $\left._{R S / R W}\right)$ and $\mu\left(\right.$ piv $\left._{R / R i}\right)<\mu\left(\right.$ piv $\left._{R S / R W}\right)$, respectively. Furthermore, if $\tau_{R} \geq 2 \sqrt{\tau_{i} \tau_{j}}, \mu\left(\right.$ piv $\left._{i / R i}\right) \geq \mu\left(\right.$ piv $\left._{R S / R W}\right) \Rightarrow$

$$
\begin{aligned}
2 \sqrt{\left(\tau_{j}+\tau_{R}\right) \tau_{i}}-1 & \geq 2 \sqrt{2 \tau_{R} \sqrt{\tau_{i} \tau_{j}}}-1 \\
\left(\tau_{j}+\tau_{R}\right) \tau_{i} & \geq 2 \tau_{R} \sqrt{\tau_{i} \tau_{j}}
\end{aligned}
$$

Using $\tau_{j}+\tau_{R}=1-\tau_{i}$ and $\tau_{R}=1-\tau_{i}-\tau_{j}$, we rewrite the last inequality as

$$
\left(1-\tau_{i}\right) \tau_{i} \geq 2\left(1-\tau_{i}-\tau_{j}\right) \sqrt{\tau_{i} \tau_{j}}
$$

and we can easily notice that as $\tau_{j} \rightarrow 0$, the inequality holds with strict sign, while as $\tau_{j} \rightarrow \tau_{i}$, the opposite is true. Hence, there exists two regions of $\Delta(\mathcal{C})$ such that $\mu\left(\right.$ piv $\left._{i / R i}\right)>$ $\mu\left(\operatorname{piv}_{R S / R W}\right)$ and $\mu\left(\right.$ piv $\left._{i / R i}\right)>\mu\left(\right.$ piv $\left._{R S / R W}\right)$, respectively. Similarly, if $\tau_{R}<2 \sqrt{\tau_{i} \tau_{j}}$, there exist two regions of $\Delta(\mathcal{C})$ such that $\mu\left(p i v_{i / R i}\right)>\mu\left(p i v_{R S / R W}\right)$ and $\mu\left(p i v_{i / R i}\right)>$ $\mu\left(\right.$ piv $\left._{R S / R W}\right)$, respectively.

B Proofs of Section 4

Proof of Proposition 1. We want to show that for any $j \in\{W, S\}$, as n grow large there exists an equilibrium where j receives a share zero of votes. Let i be the candidate who is neither R or j. In equilibrium, all voters who strictly prefer R to i vote for R and all those who strictly prefer i to R vote for i. Note that the measure of voters who are indifferent between R and i is zero by assumption.

Note that under these voting strategies $\mu\left(\operatorname{piv}_{R / R i}\right)=\mu\left(p i v_{i / R i}\right)>$ any other magnitude. Thus,

$$
\begin{align*}
\lim _{n \rightarrow \infty} \frac{G_{t}(j, n \tau)}{\operatorname{Pr}\left(p i v_{R / R i}\right)} & =U(R, i \mid t)-U(R \mid t)+\phi[U(R, i \mid t)-U(i \mid t)] \\
& =(1+\phi) U(R, i \mid t)-U(R \mid t)-\phi U(i \mid t) \\
\lim _{n \rightarrow \infty} \frac{G_{t}(i, n \tau)}{\operatorname{Pr}\left(p i v_{R / R i}\right)} & =U(R, i \mid t)-U(R \mid t)+\phi[U(i \mid t)-U(R, i \mid t)] \tag{4}\\
& =(1-\phi) U(R, i \mid t)-U(R \mid t)+\phi U(i \mid t)
\end{align*}
$$

where

$$
\phi \equiv \lim \frac{\operatorname{Pr}\left(p i v_{S / R i}\right)}{\operatorname{Pr}\left(p i v_{R / R i}\right)}>0 .
$$

Recall that $U(R, i \mid t)$ is a strictly convex combination of $U(R \mid t)$ and $U(i \mid t)$. This implies that (i) $\lim _{n \rightarrow \infty} G_{t}(R, n \tau)>\lim _{n \rightarrow \infty} G_{t}(j, n \tau)$ if $U(R \mid t)>U(i \mid t)$, and (ii) $\lim _{n \rightarrow \infty} G_{t}(i, n \tau)>\lim _{n \rightarrow \infty} G_{t}(j, n \tau)$ if $U(i \mid t)>U(R \mid t)$. Thus, as n grows large, only voters who are indifferent between R and i prefer to vote for j. By inspection of (4) and (5), all voters who prefer R to i strictly prefer to vote for R and those who prefer i to R strictly prefer to vote for i.

To show that this equilibrium is strictly perfect, consider a small deviation from the share of votes expected in equilibrium. Then candidate j is expected to receive a share $\epsilon>0$. Notice that all magnitude formulae are continuous. Indeed, for ϵ sufficiently small,
the order of the magnitudes is $\mu\left(p i v_{R / R i}\right)>\mu\left(p i v_{i / R i}\right)>$ any other magnitude. Thus,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{G_{t}(j, n \tau)}{\operatorname{Pr}\left(\text { piv }_{R / R i}\right)}=U(R, i \mid t)-U(R \mid t) \\
& \lim _{n \rightarrow \infty} \frac{G_{t}(i, n \tau)}{\operatorname{Pr}\left(\text { piv}_{R / R i}\right)}=U(R, i \mid t)-U(R \mid t) \\
& \lim _{n \rightarrow \infty} \frac{G_{t}(R, n \tau)}{\operatorname{Pr}\left(p i v_{R / R i}\right)}=U(R \mid t)-U(R, i \mid t)
\end{aligned}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{G_{t}(i, n \tau)-G_{t}(j, n \tau)}{\operatorname{Pr}\left(p i v_{i / R i}\right)}=U(i \mid t)-U(R, i \mid t) .
$$

It follows that as n grows large, all voters who prefer R to i vote for R and all those who prefer i to R vote for i.

Proof of Proposition 2. The starting point of the proof is to consider a tuple $\left(\sigma^{*}, F\right)$ such that $\mu\left(\operatorname{piv}_{R / R i}\right)>\mu\left(\right.$ piv $\left._{R S / R W}\right) \geq \mu\left(\right.$ piv $\left._{R / R j}\right)$ and $\mu\left(\right.$ piv $\left._{R S / R W}\right)>$ any other magnitude (that is, i is the runner up candidate). We then divide the rest of the proof is into three parts. First, we show that all voters with $U(R \mid t)>U(i \mid t)$ vote for candidate R. Second, we analyze the behavior of voters with $U(R \mid t)<U(i \mid t)$. We show that those with $U(R, S \mid t)>$ $U(R, W \mid t)$ vote for S, whereas the others vote for W. Finally, we prove that the equilibrium is strictly perfect.

Given the order of magnitudes above,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{G_{t}(j, n \tau)}{\operatorname{Pr}\left(\operatorname{piv}_{R / R i}\right)}=U(R, i \mid t)-U(R \mid t) \\
& \lim _{n \rightarrow \infty} \frac{G_{t}(i, n \tau)}{\operatorname{Pr}\left(\operatorname{piv}_{R / R i}\right)}=U(R, i \mid t)-U(R \mid t) \\
& \lim _{n \rightarrow \infty} \frac{G_{t}(R, n \tau)}{\operatorname{Pr}\left(p i v_{R / R i}\right)}=U(R \mid t)-U(R, i \mid t) .
\end{aligned}
$$

Thus, all voters with $U(R \mid t)>U(i \mid t)$ vote for candidate R.
We divide the analysis of the behavior of voters with $U(R \mid t)<U(i \mid t)$ in two cases.

Case 1: $\mu\left(p i v_{R S / R W}\right)>\mu\left(p i v_{R / R j}\right)$. Divide the expected gains by $\operatorname{Pr}\left(p i v_{R S / R W}\right)$:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{G_{t}(S, n \tau)-G_{t}(W, n \tau)}{\operatorname{Pr}\left(p i v_{R S / R W}\right)} & =U(R, S \mid t)-U(R, W \mid t)-U(R, W \mid t)+U(S, W \mid t) \\
& =2[U(R, S \mid t)-U(R, W \mid t)] .
\end{aligned}
$$

Thus, a voter of type t (with $U(R \mid t)<U(i \mid t)$) votes for S only if

$$
\begin{gather*}
U(R, S \mid t) \quad>U(R, W \mid t) \\
\Longleftrightarrow \\
\operatorname{Pr}(R \mid R S) U(R \mid t)+(1-\operatorname{Pr}(R \mid R S)) U(S \mid t)> \\
>\operatorname{Pr}(R \mid R W) U(R \mid t)+(1-\operatorname{Pr}(R \mid R W)) U(W \mid t) \tag{6}
\end{gather*}
$$

Otherwise she votes for W. Notice that the condition in 6 is independent of which candidate, S or W, is expected to receive more votes. Furthermore, since $\operatorname{Pr}(R \mid$ $R S)<\operatorname{Pr}(R \mid R W)$, a type t indifferent between S and W must be a W supporter.

Case 2: $\mu\left(p i v_{R S / R W}\right)=\mu\left(p i v_{R / R j}\right)$. Divide the expected gains by $\operatorname{Pr}\left(p i v_{R S / R W}\right)$:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{G_{t}(S, n \tau)-G_{t}(W, n \tau)}{\operatorname{Pr}\left(p i v_{R S / R W}\right)}= & U(R, S \mid t)-U(R, W \mid t)-U(R, W \mid t)+U(S, W \mid t)+ \\
& +\phi^{\prime}[U(R, j \mid t)-U(R \mid t)-U(R, j \mid t)+U(R \mid t)] \\
= & 2[U(R, S \mid t)-U(R, W \mid t)]
\end{aligned}
$$

with

$$
\phi^{\prime}=\frac{\operatorname{Pr}\left(p i v_{R / R j}\right)}{\operatorname{Pr}\left(p i v_{R S / R W}\right)}>0 .
$$

Hence, the condition for voting for S or W is not changed (see Case 1).
To show that this equilibrium is strictly perfect, consider any $\tau \in \Delta(\mathcal{C}):\left|\tau-\tau\left(\sigma^{*}, F\right)\right|<\epsilon$ for some $\epsilon>0$ and $\tau_{j}\left(\sigma^{*}, F\right): \mu\left(p i v_{R / R i}\right)>\mu\left(p i v_{R S / R W}\right)>\mu\left(p i v_{R / R j}\right)$. Notice that all magnitude formulae are continuous in $\Delta(\mathcal{C})$. For ϵ sufficiently small, the order of the magnitudes is unchanged. In which case, σ^{*} is a best response.

Proof of Proposition [3. Propositions 1 1 and 2 characterize the set of equilibria when the order of magnitudes is as in points 1 and 2 in Lemma 4 Together, Lemmata 1 and 4 imply that no other strictly perfect equilibrium σ^{*} can exist unless $\tau\left(\sigma^{*}, F\right)$ implies point 3 in lemma 4 i.e.
when $\mu\left(\operatorname{piv}_{R S / R W}\right)$ is the (strictly) largest magnitude. Notice that this implies $\tau_{R}\left(\sigma^{*}, F\right)>0$ (by definition, R is the front-runner).

When $\mu\left(\operatorname{piv}_{R S / R W}\right)$ is the (strictly) largest magnitude,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{G_{t}(S, n \tau)}{\operatorname{Pr}\left(p i v_{R S / R W}\right)}=U(R, S \mid t)-U(R, W \mid t) \\
\lim _{n \rightarrow \infty} \frac{G_{t}(W, n \tau)}{\operatorname{Pr}\left(p i v_{R S / R W}\right)}=U(R, W \mid t)-U(R, S \mid t) \\
\lim _{n \rightarrow \infty} \frac{G_{t}(R, n \tau)}{\operatorname{Pr}\left(p i v_{R S / R W}\right)}=0
\end{gathered}
$$

Hence, as $n \rightarrow \infty$, voting for R is a best response for a measure zero of voter types, those with $U(R, S \mid t)=U(R, W \mid t)$. Hence, $\tau_{R}\left(\sigma^{*}, F\right)=0$, contradicting the assumption that $\mu\left(\operatorname{piv}_{R S / R W}\right)$ is the largest magnitude.

References

[1] Blais, André, Massicotte, Louis, and Dobrzynska, Agnieszka (1997). Direct Presidential Elections: A World Summary. Electoral Studies, 16 (4), pp. 441-455.
[2] Blais, André (2004a). Strategic Voting in the 2002 French Presidential Election. In Michael S. Lewis- Beck (ed.), The French Voter: Before and After the 2002 Election, Basingstoke: Palgrave Macmillan, pp. 93-109.
[3] Blais, André (2004b). Y a-t-il un vote stratégique en France? In Bruno Cautrès and Nonna Mayer (eds.), Le nouveau désordre électoral: les leçons du 21 avril 2002, Paris: Presses de Sciences Po, pp. 279-301.
[4] Bordignon, Massimo, Nannicini, Tommaso, and Guido Tabellini (2013). Moderating Political Extremism: Single Round vs. Runoff Elections under Plurality Rule, IZA Discussion Paper Series, 7561.
[5] Bouton, Laurent (2012). A Theory of Strategic Voting in Runoff Elections, American Economic Review, forthcoming.
[6] Bouton, Laurent and Castanheira, Micael (2012). One Person, Many Votes: Divided Majority and Information Aggregation. Econometrica, 80, pp. 43-87.
[7] Bullock III, Charles and Johnson, Loch (1992). Runoff Elections in the United States. Chapel Hill: University of North Carolina Press.
[8] Callander, Steven (2005). Duverger's Hypothesis, the Run-Off Rule, and Electoral Competition. Political Analysis, 13, pp. 209-232.
[9] Cox, Gary (1997). Making Votes Count. Cambridge, UK: Cambridge University Press.
[10] De Sinopoli, Francesco and Pimienta, Carlos (2009). Undominated (and) Perfect Equilibria in Poisson Games, Games and Economic Behavior, 66(2), pp. 775-784.
[11] Dolez, Bernard and Laurent, Annie (2010). Strategic Voting in a Semi-Presidential System with a Two-Ballot Electoral System. The 2007 French Legislative Election, French Politics, 8 (1), pp. 120.
[12] Duverger, Maurice (1954). Political Parties. New York: John Wiley \& Sons.
[13] Engstrom, Richard L. and Engstrom, Richard N. (2008). The Majority Vote Rule and Runoff Primaries in the United States, Electoral Studies, 27 (3), pp. 407-416.
[14] Fey, Mark (1997). Stability and Coordination in Duverger's Law: A Formal Model of Pre-Election Polls and Strategic Voting, American Political Science Review, 91, pp. 135-147.
[15] Golder, Matt (2005). Democratic Electoral Systems Around the World, 1946-2000, Electoral Studies, 24, pp.103-121.
[16] Golder, Matt and Wantchekon, Leonard (2004). "Africa: Dictatorial and Democratic Electoral Systems since 1946." In Josep Colomer. ed. Handbook of Electoral System Choice. London: Palgrave.
[17] Kawai, Kei and Watanabe, Yasutora (2012). Inferring Strategic Voting, American Economic Review, forthcoming.
[18] Martinelli, Cesar (2002). Simple Plurality Versus Plurality Runoff with Privately Informed Voters, Social Choice and Welfare, 19, pp. 901-919.
[19] Messner, Matthias and Polborn, Mattias K (2007). Strong and coalition-proof political equilibria under plurality and runoff rule, International Journal of Game Theory, 35, pp. 287-314.
[20] Milgrom, Paul R. and Robert J. Weber (1985). Distributional Strategies for Games with Incomplete Information, Mathematics of Operations Research, 10 (4), pp. 619-632.
[21] Morton, Rebecca and Rietz, Thomas (2006). Majority Requirements and Voter Coordination. New York University Annual Survey of American Law, 63(4), pp. 691-726.
[22] Myatt, David (2007). On the Theory of Strategic Voting, Review of Economic Studies, 74, pp. 255-281.
[23] Myerson, Roger (1998). Population Uncertainty and Poisson Games, International Journal of Game Theory, 27, pp. 375-392.
[24] Myerson, Roger (2000). Large Poisson Games, Journal of Economic Theory, 94, pp. 7-45.
[25] Myerson, Roger (2002). Comparison of Scoring Rules in Poisson Voting Games, Journal of Economic Theory, 103, pp. 219-251.
[26] Myerson, Roger (2013). Fundamentals of Social Choice Theory, Quarterly Journal of Political Science, 8, pp. 305-337.
[27] Okada, Akira (1981). On stability of perfect equilibrium points, International Journal of Game Theory, 10, pp. 67-73.
[28] Osborne, Martin and Slivinski, Al (1996). A Model of Political Competition with Citizen-Candidates. Quarterly Journal of Economics, 111, pp. 65-96.
[29] Palfrey, Thomas and Rosenthal, Howard (1991). Testing Game-Theoretic Models of Free Riding: New Evidence on Probability Bias and Learning, In Laboratory Research in Political Economy, ed. Thomas Palfrey, Ann Arbor: University of Michigan Press. pp. 239-268.
[30] Piketty, Thomas (2000). Voting as Communicating. Review of Economic Studies, 67, pp. 169-191
[31] Riker, William (1982). The Two-Party System and Duverger's Law: An Essay on the History of Political Science. American Political Science Review, 84, pp. 1077-1101.
[32] Saari, Donald (2003). Unsettling Aspects of Voting Theory, Economic Theory, 22, pp. 529-555.
[33] Smith, J.H., (1973). Aggregation of preferences with variable electorates, Econometrica, 41, pp. 1027-1041.
[34] Schmidt, Gregory (2007). Back to the Future? The 2006 Peruvian General Election, Electoral Studies, 26, pp. 797-837.
[35] Solow, Ben (2013). Aggregate Uncertainty in Runoff Elections, mimeo, Boston University.
[36] Spenkuch, Jorg (2012). On the Extent of Strategic Voting, mimeo, University of Chicago.
[37] Spoon, Jae-Jae (2008). Presidential and Legislative Elections in France, April-June 2007, Electoral Studies, 27, pp. 151-190.
[38] Van Der Straeten, Karine, Sauger, Nicolas, Laslier, Jean-Francois, and André Blais (2012). Sorting Out Mechanical and Psychological Effects in Candidate Elections : An Appraisal with Experimental Data, IDEI Working Paper, 711

[^0]: This paper can be downloaded without charge from The Social Science Research Network Electronic Paper Collection:
 http://ssrn.com/abstract=2326258

[^1]: *We thank Micael Castanheira, Sambuddha Ghosh, Bart Lipman, Aniol Llorente-Saguer, Salvatore Nunnari, and Carlos Pimienta for insightful comments. We also benefited from the comments of the audiences at Boston University, Columbia University, Queensland University of Technology, University of New South Wales, University of Queensland, University of Rome Tor Vergata, and University of Technology Sydney. All remaining errors are our own.
 ${ }^{\dagger}$ Department of Economics, Georgetown University, 37th and O Streets, NW, Washington, DC 20057, USA (email: boutonllj@gmail.com).
 ${ }^{\ddagger}$ School of Economics, Australian School of Business, University of New South Wales, Sydney 2052, Australia (email: g.gratton@unsw.edu.au).

[^2]: ${ }^{1}$ Most new democracies in Eastern Europe and in Africa have adopted this system to elect their presidents (Golder 2005, Golder and Wantchekon 2004). This is also true for the new democracies in Latin America, although to a lesser extent.
 ${ }^{2}$ For instance, in the U.S., runoff primaries are a trademark in southern states, and most large cities have a runoff provision (Bullock and Johnson 1992, Engstrom and Engstrom 2008). In Italy, the majority runoff system is used for the elections of mayors in all major cities and provincial presidents.
 ${ }^{3}$ In runoff elections, an additional vote in favor of a candidate can reduce her likelihood of victory (see Smith 1973). Hence, there are situations in which supporters of the front-runner prefer to vote for a lesspreferred candidate in order to influence who will face the front-runner in the second round. This is called push over. It is deemed harmful because it may allow a minority group to influence the outcome of the elections to its advantage (see Cox 1997 and Saari 2003).
 ${ }^{4}$ It has also been argued that runoff elections may make it easier for voters to communicate their policy preferences to candidates (see e.g. Piketty 2000, Castanheira 2003, Blais 2004a,b). Such a behavior is out of the scope of this paper.

[^3]: ${ }^{5}$ See Schmidt 2007 for more details. The 2007 French presidential election is another striking example (Spoon 2008).
 ${ }^{6}$ Based on anectodal evidence, it has been argued that push over occured in the 2002 French presidential election. Two studies explicitly search for strategic behavior in that election using survey data. Blais (2004a and 2004b) find evidence of strategic voting in the 2002 French Presidential election but no evidence of push over.
 ${ }^{7}$ We abstract from the behavior of candidates (see e.g. Osborne and Slivinski 1996, Callander 2005, and Solow 2013)

[^4]: ${ }^{8}$ The Condorcet loser is a candidate that would lose a one to one contest against any other candidate.
 ${ }^{9}$ We also show the robustness of this result to many different ways of modeling the second round.

[^5]: ${ }^{10}$ There are also two other less important differences. First, we exclude the possibility of a positive measure of voters being indifferent between two (or more) candidates. Such indifferences might seem nongeneric. Yet, indifference is a convenient way to capture the existence of partisan/non-strategic voters in large elections. This is one reason why we discuss the robustness of our results to the presence of such voters in Section 5. Second, we focus on majority runoff elections (the most used of the runoff systems) whereas Bouton (2012) considers all possible threshold for first-round victory strictly below 100%.
 ${ }^{11}$ The former structure might be rationalized if a change in the distribution of voters' preferences between the two rounds is possible. See Section 3.3.
 ${ }^{12}$ In our setup, any equilibrium in which all three candidates get a positive fraction of the votes is perfect and proper.

[^6]: ${ }^{13}$ See Technical Appendix 1 for a proof of the equivalence of expectational stability and strict perfection in our setup.
 ${ }^{14}$ This particular tie-breaking rule will prove irrelevant for the proofs of our results.
 ${ }^{15}$ Without loss of generality, we restrict attention to $\mathcal{T}=\mathbb{R}^{2}$.
 ${ }^{16}$ This ensures that the measure of voters who are indifferent between any pair of candidates is zero.

[^7]: ${ }^{17} \mathrm{We}$ want to argue that the assumption that the chances of victory in the second round are interior, $\operatorname{Pr}(i \mid i j) \in(0,1)$, is not only for the sake of simplicity. We regard that assumption as capturing small shocks to preferences between the two rounds. In the period between the two rounds, electoral campaigns go on and new information regarding the candidates can arise. This can affect the voters' preference orderings, and thus the expected outcome of the second round. There are plenty of anecdotal evidence of such a phenomenon. We could formally model this argument by allowing the distribution of voters' preferences in the second round to be a random variable with a sufficiently large support. Our results can thus be interpreted as follows: we identify equilibria which are robust to such an uncertainty about the events that may occur between the two rounds.
 ${ }^{18}$ More precisely, the strategy $\sigma_{t}(i)$ is the marginal distribution of Milgrom-Weber distributional strategies (Milgrom and Weber, 1985).

[^8]: ${ }^{19}$ This paragraph and Section 3.1 are based on similar sections of Bouton (2012).

[^9]: ${ }^{20}$ In the third column of Table 1, depending on the candidates alphabetical order: (i) the conditions might feature weak inequality signs instead of strict ones or conversely, and (ii) the minus 1 might not be there. As proved in Myerson (2000, Theorem 2), such small approximations in the definition of the pivotal events do not matter for the computation of magnitudes.

[^10]: ${ }^{21}$ Okada (1981) defines strictly perfect equilibria for finite games. In Technical Appendix 1 we provide a straightforward extension to Poisson games.
 ${ }^{22}$ This is also the intuition behind expectationally stable equilibria, a common concept in the voting literature (Fey 1997).

[^11]: ${ }^{23}$ Thus, strict perfection does not exclude coordination failures among the voters who prefer the Condorcet winner to the ultimate winner of the election. This is in stark contrast with Messner and Polborn (2007) who consider coalition-proof equilibria and find that when a Condorcet winner exists, then it is the unique coalition-proof equilibrium outcome.

[^12]: ${ }^{24} \mathrm{We}$ can formally represent such a case in our framework. To do so, we need to consider candidates located along a one-dimensional policy space over which voters have single-peaked preferences. This directly implies that the electorate is composed of "only" four groups of voters: (i) those who prefer Royal to Bayrou to Sarkozy, (ii) those who prefer Bayrou to Royal to Sarkozy, (iii) those who prefer Bayrou to Sarkozy to

[^13]: Royal, and (iv) those who prefer Sarkozy to Bayrou to Royal. It is then easy to find an equilibrium in which Bayrou (the Condorcet Winner) is squeezed between Royal and Sarkozy, and hence excluded from the second round.

[^14]: ${ }^{25}$ Let $R S / R W$ and $R / R i$, i being the runner-up, have equal magnitude. This condition requires an expected tie between the top two contenders. Thus, for generic distributions of preferences, the condition is met only if some voters vote sincerely with probability strictly less than 1.
 ${ }^{26}$ Push over is intrinsically related to the "non-monotonicity" of runoff systems, i.e. the fact that increasing the vote share of a candidate may decrease her probability of victory (Schmidt 1973).

[^15]: ${ }^{27} \mathrm{We}$ assume that all voters are sequentially rational. Therefore, in the second round, they all vote for their most-preferred participating candidate. See Bouton (2012) for a formal analysis of voting behavior in the second round of a runoff election.

[^16]: ${ }^{28}$ Here we implicitly assume that all W 's supporters have sufficiently strong preferences in favor of W that they prefer a second round opposing R to W instead of S even if S is a stronger opponent of R.
 ${ }^{29}$ Here we implicitly assume that all W supporters have sufficiently strong preferences in favor of W that they prefer a second round opposing R to W instead of S, even if W is expected to be defeated by R in the second round. This is not necessary for the existence of a push over equilibrium. We also assume that all strategic R supporters prefer a second round of R vs. W rather than vs. S. This is satisfied if, for instance, all R supporters have sufficiently intense preferences in favor of R and against S and/or W. Note that we could relax this assumption.

