
 

www.asb.unsw.edu.au 

 
Last updated: 18/11/13    CRICOS Code: 00098G 

 

 
 

 

 

 
Australian School of Business Research Paper No. 2013 ECON 31 
 
 
 
Constructive Representation of Trust: Single Rule Paradigm 

 
Arthur Ramer 
Robert E. Marks 
 
 
 
 
 
 
 
 
 
 
 
 
 
This paper can be downloaded without charge from 
The Social Science Research Network Electronic Paper Collection: 
http://ssrn.com/abstract=2356013 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Australian School of Business 

Working Paper 
 

http://ssrn.com/abstract=2356013


Constructive Representation of Trust:
Single Rule Paradigm

Arthur Ramer
School of Computer Science & Engineering

University of New South Wales
Sydney 2052, Australia

Email: ramer@cse.unsw.edu.au

Robert E Marks
Australian School of Business

University of New South Wales
Sydney 2052, Australia

Email: r.marks@agsm.edu.au

Abstract—A constructive computational framework for trust
and reputation assessments is presented. It is proven free
from any inconsistent or contradictory assessments under any
scenarios of its application. A prototype implementation has
been developed.

The framework focuses on a single information-theoretical
rule as inference mechanism, thus avoiding any biases or
spurious constraints in the solutions.

The users of our model will find its results intuitively
plausible, free from clustering or drift to the extrema. The
entire framework is suited for a direct use in economic,
financial and intelligence analyses.
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I. MOTIVATION

Almost all the economic activities, save for the purely ad-
versarial scenarios, involve some significant element of trust
among the participants. Open markets, the main framework
of modern economies worldwide, are particularly dependent
on the ability of assessing the reliability and trustworthiness
of counterparties.

Trust is pervasive, often taken for granted as a market
“lubricant”, until it disappears [22]. Lack of trust between
banks led to interbank credit markets freezing last October,
when the TED spread exceeded 450 points. Trust is hard
won, but easily lost, as governments have found as they
struggle to kick-start interbank lending, and hence the world
financial system. All the major players in this crisis tended to
assume nearly perfect trustworthiness of their counterparts
when estimating risk and utility of transactions. They live to
regret it and would like, in the future, to be able to quantify,
in a systematic and consistent fashion, trust due to a wide
range of financial partners [5], [17].

The concept of trust has been discussed in religion,
philosophy, and psychology since antiquity, but invariably
in a qualitative fashion. Social and economic interactions
used to be circumscribed, with counterparties being ‘known
quantities’. The advent of electronic exchanges and the
globalisation of finance call for establishing a quantitative
framework that can function over large, anonymous gath-

erings over extended periods, whether measured in time or
number of transactions.

Trust should express reliability and truthfulness of coun-
terparties, in particular their willingness to act to our best
advantage if need be. Thus it is materially different from the
simple probability of successful transaction - the other party
may work in a very adverse environment. It is also different
from its game-theoretic namesake. There trust is a strategic
element that can be enforced through correct mechanism
design.

As life- and business-critical decisions may be based on
trust assessments, these assessments should be computed in
the most consistent manner. It is especially important that the
relative rank and ordering are preserved whenever feasible
because a majority of decisions centre on simple choices
in favour of the most trustworthy, most secure option. The
actual magnitude of the defining rank is often less germane.

II. WORK TO DATE

Other proposals either use numbers in a purely ordinal
way—say three-valued (+,−, 0) to mean trust, trust not,
neutral), or as near-probabilities—they allow arithmetic, but
either avoid stating its precise rules or do not assure the rules
are indeed from any standard framework (say, stochastic or
fuzzy).

An important sub-stream are purely axiomatic approaches.
Some of them aim firstly at social choice such as an impossi-
bility’ lemma—a sufficiently strong collection of otherwise
plausible postulates that lead to contradiction or triviality.
Others posit fairly strong analytical rules (say, linearity or
convexity) and thence derive the numerical results. Unfor-
tunately, these numbers are usually obtained either through
approximating procedures [13] or through complex, compu-
tationally demanding algorithms [3]. Tractable closed-form
formulae are conspicuous through their absence.

Earlier publications have suggested a range of ad-hoc
methods for linking probability values to trust. They are
usually driven by a convenient link to some specific form
of probability revisions; they often suffered from lack of
completeness and absence of provably verified consistency.



A significant step forward was to ask whether some general
postulates for assessing and revising trust values would lead
to a consistent, preferably unique model. Such approaches
have been discussed by several authors - Bhattacharya,
Devinney and Pillutla [4], Debenham and Sierra [8], Neilson
[25], Foo and Renz [9], Kwok, Foo and Nayak [21], Sandbu
[32], Jøsang [18], and A Ignjatovic, N Foo, CT Lee [13].
The latter derived a unique numerical scheme under the
assumption of linearity; however, it i quite strong and may
introduce bias into solutions.

All the earlier proposals only consider adding new reports
from which to compute trust. However, in all real life ap-
plications one often needs to withdraw incorrect or falsified
reports. Any proper, consistent approach must permit both
increases and decreases in the pool of valid source data.

There is one other significant lacuna in these models.
While the results they compute may be perfect for machines,
they often are not suitably plausible for humans. Decisions
may be perceived quite differently if based on inequalities
such as 0.5001 > 0.5 rather than 0.6 > 0.5. Likewise,
probabilistic values, if not carefully controlled, may exhibit
0–1 drift (values clustering near the extrema of the range).
We have not noted any consideration given to intuitive
plausibility anywhere in the literature.

III. BASIC DESIGN

We focus our introduction by giving a very basic scenario.
We start with a simple situation where an agent receives a
number of reports about the degree of trust he can place
on a specific entity; that entity can be pictured, perhaps, as
another agent acting in a constrained field of endeavour. We
could picture an e-trading community who want to estimates
their trading partners. They ask what the degree of trust can
be placed on their business ethics and acumen, not just on
their actual performance. For a change of pace, we could
imagine that a security agency acquires a highly placed
agent in the hostile organisation. The agent is not directly
accessible; his trustworthiness and veracity need be assessed
by the ordinary field sources.

All such and many similar scenarios require only that we
abstract the notion of trust to just a handful of its properties
that are computationally relevant.

We shall extrapolate from the suggestion of Jonker, Treur
and Marx [15] to view trust as some numerical summary
computed from (i) an initial trust value, (ii) a string of
reported experiences, and (iii) the temporal frame of the
reports. They had also presented a lengthy list of updating
postulates. We replace all those with a simple probabilistic
assumption: trust values are subjective probabilities and their
values are revised through conditioning, whether direct or
inverse. We term the reported values experiences and do not
dwell on their nature. They simply fall in between 0 and
1, with a higher value meaning ‘more trust’. We wish to
combine the reported experiences into an overall evaluating

of trust. We usually start from some initial default value of
trust, with experiences serving to update it.

We report each experience Ek as a probabilistic pair
(ek, fk), fk = 1− ek, with ek termed trust and fk distrust.
Then all the reports, put together, should permit us to
compute the composite trust and distrust. As the simple
sums e1 + . . . + ek and f1 + . . . + fk would not from a
probabilistic pair (in fact, their sum would be k � 1), we
need a suitable scaling of ei and fi. This is the most critical
step of our methods - we want it to conform to the principle
of minimum change and not rely on such simple-minded
calculation like proportional scaling.

To derive the correct procedure let us first consider
the obverse problem - that of removing a report. Thus,
let us consider an already probabilistic family P =
{e1, . . . , ek, f1, . . . , fk} and remove the pair ek, fk. The
minimal change solution P ′ = {e′1, . . . , e′k−1, f

′
1, . . . , f

′
k−1}

is the distribution closest in entropy to P , and this is well-
know to be the conditional distribution of P . This points
to the correct way of inserting a new report - we need to
perform inverse conditioning.

IV. AGM PROBABILITY REVISIONS

Formalisations of belief change have been discussed, in
various contexts, since 1970’s. Notable specific applications
are ‘truth maintenance systems’ [7] and ‘database priori-
ties’ [10]. General, abstract protocols were introduced by
philosophers Levi [23], [24], Harper [14], and then a series
of works by Alchourron, Gardenfors and Makinson [1], [2],
[12]. The last one gave the name to the system of postulates
for belief revision as the AGM framework. Its basic design is
founded on a revision scheme addressing needs of the finite
propositional knowledge bases. In parallel with the purely
logical framework there has been proposed a scheme for
modifying beliefs about probability [12]. Here we consider
a finite collection of possible worlds X and a probability
distribution thereupon. Any proposition A may be held in
some subcollection XA of these worlds, with its probability
defined as the sum of probabilities of the worlds where it
is held P (A) := P (XA). A proposition is accepted if its
probability is 1; it is important to remember that it does
not signify a universal acceptance, as there (usually) will
be worlds, of probability 0, where the proposition may not
hold.

Expansion of the state of beliefs wrt A will mean adjusting
the probability distribution to a such P+

A that A is accepted
P +A (A) = 1. In keeping with the overall philosophy of
such change, it is postulated that the passage from P to P+

A

should be effected with a minimal change. On a combination
of philosophical and logical grounds it is strongly argued
that such an expansion should be the conditioning wrt A,
understood as

P+
A (B) := P (A ∧B)/P (A), P (A) > 0



and with a pseudo-distribution for the case of P (A) = 0. As
a probabilistic operation it should be viewed as conditioning
wrt the subset AX ; this subset may include some worlds of
probability 0, but where A is held. A group of four postulates
is given to axiomatise it [12]

P +1 For disjoint A and B (` ¬(A∧B)), the distribution
P+
A∨B is a suitable convex combination of P+

A and
P+
B ; taking α = P (A)/P (A∧B), β = 1−α =
P (B)/P (A ∧ B), one requires P+

A∨B = αP+
A +

βP+
B .

P +2 P+
A (A) = 1

P +3 If ` A then P+
A = P

P +4 If P (A) = 0 then P+
A = P⊥ - the ‘absurd’ pseudo-

distribution1

The generalisation proposed by Jeffrey [16] was to com-
bine conditioning wrt A and its logical complement ¬A
as method of revision of probability functions. A revised
function P+J should compute probability of an arbitrary as-
sertion B by conditioning wrt the property that P+J(A) = a
for some 0 < a < 1. He was led to the formula

P+J(A) = aP (B|A) + (1− a)P (B|¬A).

It is convenient to express it in the language of expansions—
Jeffrey conditionalisation becomes a linear combination of
expansions wrt proposition A and its complement ¬A. For
the specified 0 < a < 1

P+J
A = aP+

A + (1− a)P+
¬a.

V. TRUST AS PROBABILISTIC BELIEF

Subjective probabilities are degrees of belief and their
changes represent belief revision. The standard framework
for modeling such changes is known as AGM, after the
initials of its proposers [1], [12]. It is a system of postulates
(revision scheme) for modifying probabilities under the
control of propositional assertions. Objects of interest form
a space X of ‘possible worlds’, endowed with probability
distribution P . An assertion A defines a subset of operational
worlds - admitting A restricts the set of possible worlds to
that XA ⊂ X where A holds. This should lead to probability
distribution P+

A , supported on XA, that obtains through
some ‘minimal’ modification from P .

AGM state that P+
A should be P conditioned onto XA,

and refer to the use of entropy for motivation. Namely,
the conditional distribution Q∗ = P|A can be found as the
unique solution to minimising the entropy distance between
the given P and some Q on XA [33]. Retraction of A
implies expanding the domain XA; from Q on XA we
need to pass to Q−A on the entire X . Direct use of entropy
distance is unsatisfactory, insofar as it gives trivial results.
The matter was left open by AGM, and later solved by
us [28] - the correct method is to find P ∗ of maximum

1It is defined as assigning probability 1 to all subsets.

entropy and such that it conditions back onto Q, that is
(P ∗)+A = Q. Such expansions and retractions are generalised
by specifying constraints on the distributions on both XA

and its complement X̄A = X \XA. Let k be the cardinality
of X̄A. Then the simple retraction of A leads to P ∗ described
by

P ∗(XA) =
2H(Q)

2H(Q) + k
, P ∗(y) =

1
2H(Q) + k

for y ∈ X̄A

If we specify both conditional distributions - one on XA,
the other on X̄X , we get the formulae from the previous
section.

Suppose a probabilistic P = {e1, . . . , ek, f1, . . . , fk} and
try adding a new pair p = {ek+1, fk+1}. An ensuing
distribution P ′′ should satisfy
• conditioned to the first k pairs it becomes P
• conditioned to the last pair it becomes ek+1, fk+1

• it has maximum possible entropy
A unique solution [29] obtains by ‘compressing’ the P -

part and the p-part to set their total probabilities to

2H(P )

2H(P ) + 2H(p)
and

2H(p)

2H(P ) + 2H(p)

More complex trust revision scenarios all use variants of this
basic formula. While there is nothing difficult about those
formulae, they cannot be just ‘guessed’ - their design and
their properties need be meticulously proven.

VI. ENTROPY AND MAX-ENT

Method of choice for revising probability assignments
is MaxEnt - maximum entropy principle. It is usually in-
troduced descriptively, based on very attractive properties
of entropy function itself [11], the properties ranging from
physics to coding theory. However, its use can also be
justified axiomatically.

We seek a function f(P,Q) of two probability distribu-
tions that can serve as an objective function for the passage
from P to Q. Given P we want to find Q that satisfies
certain algebraic constraints and is closest to P as measured
by f

Q = arg min
R

f(P,R)

Imposing just two consistency axioms on employing f
leads to ‘inevitability’ of entropy [26] - the only admissible
function f is either the entropy distance (aka cross-entropy,
I-divergence, Kulback-Lieber metric)

f(P,Q) = D(P,Q) =
∑

pi log
pi
qi

or its monotonic transform.
The implications of this fact are quite profound - they

signify that conditioning, thus also inverse conditioning,
are in a sense universal operations in the realm of belief
revision. Furthermore, various schemes of bayesian revision



of probabilities can be justified and derived as applications
of MaxEnt principle.

Another option is to look for an alternative numerical
framework that is rich enough to admit an entropy-like
functions. If such a framework be preferred for quantification
of beliefs, then that framework can serve to express trust, at
least in its numerical aspects. Our earlier research developed
such entropy structures in possibility theory, based on fuzzy
sets [20]. It means that one can discuss quantitatively fuzzy
trust value scheme.

VII. CONDITIONING, INVERSE CONDITIONING AND
ENTROPY

The simplest expansion problem can be posed as a ques-
tion about finding Q̂ on X where Q̂(AX) = 1 for AX ⊂ X
- the subset where A holds. This Q̂ should be as close as
possible to the given P on X . A natural solution [27], [33]
would be

arg min
Q:Q(AX)=1

D(Q‖P ).

The solution is the familiar conditional distribution P (|̇A) :
xi 7→ pi/P (AX) if A(xi), and xi 7→ 0 if ¬A(xi). The
same result obtains if D(P‖Q) is used in its place (hence
also for the symmetric distance D(Q‖P )+D(P‖Q)). More
significantly, use of Renyi entropy [19] (or many others)
does not affect the result.

Jeffrey formula [16] intends an expansion where
P+
A (A) = a for some 0 < a < 1, leaving P+

A (¬A) = 1−a,
and is defined through

P+J
A (xi) = pi/a if A(xi),
P+J
A (xi) = pi/(1− a) otherwise.

It is immediate that

arg min
Q:Q(AX)=a

D(Q‖P )

gives this conditionalisation. An easy extension is to specify
a partition X = A(1) ∪ . . . ∪A(k), a probability assignment
on its elements A(i) 7→ ai,

∑
ai = 1 and require that

P+(A(i)) = ai. Such a generalised Jeffrey rule results
from a like minimisation of information divergence. Again,
change of entropy function turns out to be immaterial.

We should also note that we need to use D(Q‖P ) and
cannot obtain a reasonable answer directly from H(Q).
The proximate cause seems to be that we must ‘retain’ the
knowledge of P and then add the fact that P+(A) = 1.
Using H(P ) would appear to recognise only the latter fact.

An attempt to replicate the previous method of direct
minimisation of a distance between the distributions is bound
to fail. The nearest P−A which conditionalises back to P is
the very same P . If we insist that P− must be different,
an ε-change to P−(A) = 1 − ε would ensue. However,
we observe that in case of conditionalisation the entropy
H(P+) < H(P ), therefore the minimum of D(Q‖P ) is

somewhat related to minimising the distance from Q to
the most uninformed ie. uniform distribution. While this
cannot be used for deciding on P+ (as we would loose the
knowledge of P ), it suggests a useful approach to the P−

problem.
To make the question specific, we assume that P is

supported on AX ⊂ X and that there are m elements outside
AX . We shall seek distribution Q̂, with maximum entropy,
that conditionalises back to P . We need to compute

arg max
Q:Q+

A
(A)=P

H(Q).

The answer has a very attractive form

P−A (x) =
1

m+ 2H(P )
, x /∈ AX

P−A (A) =
2H(P )

m+ 2H(P )

Noting that m = 2logm, which is the entropy of the uniform
distribution on m elements, permits to anticipate the effect
of inverting Jeffrey conditioning. We first compute H(P+

A )
and H(P+

¬A). Denoting P−J for the inverse Jeffrey rule

P−J(A) =
2H(P+

A
)

2H(P+
A

) + 2H(P+
¬A

)

P−J(¬A) =
2H(P+

¬A
)

2H(P+
A

) + 2H(P+
¬A

)

The extension to an arbitrary partition is straightforward.
Moreover, while simple inverse conditioning assigns to all
the elements outside AX the same probability, one can
adopt the inverse Jeffrey rule to recognise some specified
proportions. The simplest, albeit somewhat informal method
is to view P (¬A) as having an ‘infinitesimal’ value, which
becomes 0 in actual computations, but permits retaining
some meaningful proportions.

VIII. QUANTITATIVE TRUST VALUES

We assume here the basic structure where we are given
some initial trust value T0 and a series of inputs - expe-
riences e1, . . . , ek that make us revise our initial opinion.
In the electronic age the reports are likely to come closely
spaced in real time, with their order being just a random
occurrence depending on vagaries of the communication
network. We consider it very important to have a model
which permits updates u(T0; e1, . . . , ek) = Tk which would
be invariant wrt reordering of (ei)

u(T0; e1, . . . , ek) = u(T0; eσ(1), . . . , eσ(k))

for any permutation σ of the indices.
We model trust as belief emanating from a family of

reported experiences ei. These experiences are trust values
specific to such single acts as trades, intelligence submis-
sions and like; if fully satisfied we put ei = 1, while if



completely dissatisfied ei = 0. The beliefs will apply to the
domain comprising all the act instances ai, and, if desired,
also of some initial, ie. prior to a1 instances.

In the simplest approach - too simple as it will be seen
- we would just form a domain of instances ai , and
give each the weight ei. This will not form probability for
the most obvious reason - they do not sum to 1. Rather
more importantly, given that we already have a (normalised)
probability distribution (e′1, . . . , e

′
k−1), new experience ek

can only be a part of some other distribution, and it is not at
all clear how should ek serve to update the already present
(e′i). Lastly, if we have several experiences, each should
contribute only a little to our overall computation of trust.
It would be reasonable to look at their sum as the total
experience value, but that would be always one.

These problems are remedied if one models more care-
fully even a single reported experience. We present it as a
two-point distribution (ei, di), with di = 1− e1 and termed
distrust. Similarly, we form the space of the pairs {〈ai, bi〉},
where each ai will carry a trust contribution and each bi the
corresponding distrust. We arrive at the space

{a1, b1, a2, b2, . . . , ak, bk}

representing the set of inputs available at epoch k, with
probability distribution qk.

As the probabilities q(ai) and q(bi) arose from the
reported pair of values (ei, di), ei + di = 1, we postulate
that

q(ai)÷ q(bi) = ei ÷ di.

Now the trust, at epoch k, becomes

Tk =
k∑
i=1

q(ai)

and distrust

Dk =
k∑
i=1

q(bi).

We may write q(ai) for short, although we often need a
full notation qk(ai), as these probabilities evolve with the
number of epochs considered.

To decide how to perform an update with a new report
(ek+1, dk+1) arriving, let us first consider the case of
report removal. Let us suppose that the report (ek, dk) is
deemed no longer valid. We would be left with a subspace
{a1, b1, . . . , ak−1, bk−1}. The obvious step would be to
condition qk onto a smaller space and get

T ′k−1 =

k−1∑
i=1

qk(ai)∑k−1
i=1 qk(ai) +

∑k−1
i=1 qk(bi)

.

It is most reasonable, though never so far considered in the
literature, to require that

T ′k−1 = Tk−1.

In other words, trust Tk−1 ensuing from experiences
e1, . . . , ek−1 and trust T ′k−1 obtaining from first considering
e1, . . . , ek and then eliminating ek, should be identical.

If experience removal effects probability conditioning on
the act space, then experience inclusion should be an inverse
conditioning on the same space. Now we can apply the basic
formulae from the previous sections. We shall treat including
the pair (ek+1, dk+1) as inverse Jeffrey conditioning.

Using Shannon entropy, let H(Tk) =
H(q(a1),q(b1), . . . ,q(bk)) and H(Ek+1) =
H(ek+1, dk+1). We require that

qk+1({a1, . . . , bk}) =
2H(Tk)

2H(Tk) + 2H(Ek+1)

and

qk+1({ak+1, bk+1}) =
2H(Ek+1)

2H(Tk) + 2H(Ek+1)

with probabilities of individual elements assigned propor-
tionally. This defines qk+1 uniquely, thus determines Tk+1

and Dk+1 unambiguously.
It can be verified that any combination of inverse condi-

tioning steps and conditioning steps is consistent. This leads
to consistent updates of trust values for any conceivable
scenarios of experience reports. Numerical computations are
quite easy. It is known that entropy and graph entropy
computations are tractable. For the basic trust computa-
tions they are simply linear. Perhaps because the proofs
of compositionality of trust updated might be difficult, this
property was never required by other researchers. Other
basic properties are all easily proven to hold for our model.

IX. EXAMPLES OF TRUST UPDATING

We recall two very simple examples from [29]. First, let
us consider first an almost trivial situation

T0 = t0 = T ′ = t′−1 + t′0, D0 = d0 = D′0 = d′−1 + d′0

where

t0 = d0 =
1
2
, t′−1 = t′0 = d′−1 = d′0 =

1
4

Let the new experience be E1 = (1, 0), ie. a totally positive
trust report arrives. Following the rules of inverse condition-
ing wrt Jeffrey rule [16], we get for (T1, D1) (evolved form
(T0, D0))

t0, t1 :
1
3
,

1
3
, d0, d1 :

1
3
, 0

and T1 = 2
3 = 67%, D1 = 1

3 = 33%. Starting from
(T ′0, D

′
0), we get at epoch 1

t−1, t0, t1 :
1
5
,

1
5
,

1
5
, d−1, d0, d1 :

1
5
,

1
5
, 0

thus T ′1 = 60%, D′1 = 40%.



Let us redo the same pair of examples, using E1 = ( 2
3 ,

1
3 ).

Applying the entropy-based inverse conditioning gives, for
t0 = d0 = 1

2

t
(1)
0 + d

(1)
0 =

2H( 1
2 ,

1
2 )

2H( 1
2 ,

1
2 ) + 2H( 2

3 ,
1
3 )

=
2

2 + 3/22/3

=
2

2 + 1.5 3
√

2

t
(1)
1 + d

(1)
1 =

2H( 2
3 ,

1
3 )

2H( 1
2 ,

1
2 ) + 2H( 2

3 ,
1
3 )

=
1.5 3
√

2
2 + 1.5 3

√
2

Remembering that t(1)0 = d
(1)
0 and t(1)1 /d

(1)
1 = 2, we find

T1 = t
(1)
0 + t

(1)
1 =

1 + 3
√

2
2 + 1.5 3

√
2
≈ 18

31

D1 = d
(1)
0 + d

(1)
1 =

1 + 0.5 3
√

2
2 + 1.5 3

√
2
≈ 13

31

If we start from t
(0)
−1 = t

(0)
0 = d

(0)
−1 = d

(0)
0 = 1

4 , we need
use H( 1

4 ,
1
4 ,

1
4 ,

1
4 ) = log 4 = 2 instead of H( 1

2 ,
1
2 ) = 1. We

get

t
(1)
−1 + d

(1)
−1 + t

(1)
0 + d

(1)
0 =

4
4 + 1.5 3

√
2

t
(1)
1 + d(1) =

1.5 3
√

2
4 + 1.5 3

√
2

As t(1)−1 = t
(0)
0 = d

(1)
−1 = d

(0)
0 , while t(1)1 /d

(1)
1 = 2

T ′1 = t
(1)
−1 + t

(1)
0 + t

(1)
1 =

2 + 3
√

2
4 + 1.5 3

√
2
≈ 26

47

D′1 = d
(1)
−1 + d

(1)
0 + d

(1)
1 =

2 + 0.5 3
√

2
4 + 1.5 3

√
2
≈ 21

47

Finally T ′0 = T0 < T ′1 < T1, in agreement with two facts
• new experience E1 is more positive (towards the trust)

than the available trust value T0 = T ′0 = 1
2 ;

• earlier history for T ′0 is more entrenched (two periods,
at k = −1, 0) than that for T0 (one period, at k = 0).

These examples emphasise a recurring theme - computations
are not difficult conceptually, but even for the toy examples
use of a computer becomes essential - we computed all the
numbers above entirely ‘by hand’, but would not attempt it
for a longer sequence of updates.

X. TIMED EXPERIENCES

We can observe that as the new trust data becomes more
entrenched the effect of the initial experience reports should
become slighter. The implication is that the experience
which are more entrenched should have a stronger impact.
A simple experience report at epoch k is simply a pair
of numbers (ek, fk); to reinforce its impact, it would be
most natural to repeat it, perhaps several times. (It would
be akin to making one’s point in a conversation by reiter-
ating it several times.) However, to repeat a report would

require bringing it up at the next several time instances.
There is a better method - instead of reporting the pair
Ek = (ek, fk), ek + fk = 1, we present a pair of n-
sequences Enk =

(
ek

n , . . . ,
ek

n ; fk

n , . . . ,
fk

n

)
. This will, of

course, increase the entropy of the experience, thus its
influence in the computation of the updated trust. This
even though the totals of the e-values and f -values remain
the same. To make it concrete, let the initial (default)
trust be t0 = 0.5 (e = f = 0.5) and the report be
tr = 2

3 (e = 2
3 , f = 1

3 ). Entrenchment over n periods gives,
after simplification, tn = 1+ 3√2n

2+1.5 3√2n
≈ 1+1.26n

2+1.89n . It depends
on n as it should: with n → ∞ it approaches 2

3 - only the
reported experience counts in the limit; while if n = 0 it
is 1

2 - with no experience reported it remains at the initial
value. The effect of such replication has the desired effect
of making the experience more credible. In fact, the formula
matches the standard credibility formula as used in property-
liability insurance [6] - not an unexpected link to actuarial
science.

Just as new reports may carry higher relative weight, the
older reported experiences may be accorded lower weight.
We first generalise the entropy formulae to permit fractional
multiplicities of the entries. We effect the time discounting
by assigning decaying multiplicities to earlier trust and dis-
trusts. A very reasonable method is to give the report that is
n epochs old the multiplicity 1

n ; assigning zero multiplicity
would eliminate such an earlier report altogether.

XI. CONCLUSION

Our entire approach is based on just two universal prin-
ciples
• use of probability to express subjective judgements
• use of Occam’s razor - the minimal change principle

to derive the full computational scheme. Proceeding from
these principles only, and introducing no additional assump-
tions gives our scheme a high degree of logical consistency.
It guarantees no unexpected reversals of comparative trust
values, thus avoiding potential paradoxes in trust-based
decision making.

Our design is very modular - we could, at various stages,
have replaced use of probability for computations with
another numerical framework. Equally, we could replace
use of entropy [19] with another ‘objective function’ whose
optimisation would determine the computed trust values.
There are other paradigms of reasoning about beliefs besides
probability; one better known relies on fuzzy sets and
numbers. Without debating their relative merits, we simply
point out that our entire design can be directly ported to
such an alternative scheme.
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