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Abstract

I propose a nonparametric iid bootstrap procedure for the empirical likeli-

hood, the exponential tilting, and the exponentially tilted empirical likelihood

estimators that achieves sharp asymptotic refinements for t tests and confidence

intervals based on such estimators. Furthermore, the proposed bootstrap is ro-

bust to model misspecification, i.e., it achieves asymptotic refinements regard-

less of whether the assumed moment condition model is correctly specified or

not. This result is new, because asymptotic refinements of the bootstrap based

on these estimators have not been established in the literature even under cor-

rect model specification. Monte Carlo experiments are conducted in dynamic

panel data setting to support the theoretical finding. As an application, boot-

strap confidence intervals for the returns to schooling of Hellerstein and Imbens

(1999) are calculated. The returns to schooling may be higher.
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1 Introduction

This paper establishes asymptotic refinements of the nonparametric iid bootstrap for

t tests and confidence intervals (CI’s) based on the empirical likelihood (EL), the

exponential tilting (ET), and the exponentially tilted empirical likelihood (ETEL)

estimators. This is done without recentering the moment function in implementing

the bootstrap, which has been considered as a critical procedure for overidentified

moment condition models. Moreover, the proposed bootstrap is robust to misspecifi-

cation, i.e., the resulting bootstrap CI’s achieve asymptotic refinements for the true

parameter when the model is correctly specified, and the same rate of refinements

is achieved for the pseudo-true parameter when misspecified. This is a new result

because in the existing literature, there is no formal proof for asymptotic refinements

of the bootstrap for EL, ET, or ETEL estimators even under correct specification.

In fact, any bootstrap procedure with recentering for these estimators would be in-

consistent if the model is misspecified because recentering imposes the correct model

specification in the sample. This paper is motivated by three questions: (i) Why

these estimators? (ii) Why bootstrap? (iii) Why care about misspecification?

First of all, EL, ET, and ETEL estimators are used to estimate a finite dimensional

parameter characterized by a moment condition model. Traditionally, the generalized

method of moments (GMM) estimators of Hansen (1982) have been used to estimate

such models. However, it is well known that the two-step GMM may suffer from finite

sample bias and inaccurate first-order asymptotic approximation to the finite sample

distribution of the estimator when there are many moments, the model is non-linear,

or instruments are weak. See Altonji and Segal (1996) and Hansen, Heaton, and

Yaron (1996) among others on this matter.

Generalized empirical likelihood (GEL) estimators of Newey and Smith (2004)

are alternatives to GMM as they have smaller asymptotic bias. GEL circumvents the

estimation of the optimal weight matrix, which has been considered as a significant

source of poor finite sample performance of the two-step efficient GMM. GEL includes

the EL estimator of Owen (1988, 1990), Qin and Lawless (1994), and Imbens (1997),

the ET estimator of Kitamura and Stutzer (1997) and Imbens, Spady, and Johnson

(1998), the continuously updating (CU) estimator of Hansen, Heaton, and Yaron

(1996), and the minimum Hellinger distance estimator (MHDE) of Kitamura, Otsu,

and Evdokimov (2013). Newey and Smith (2004) show that EL has the most favor-
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able higher-order asymptotic properties than other GEL estimators. Although EL is

preferable to other GEL estimators as well as GMM estimators, its nice properties

no longer holds under misspecification. In contrast, ET is often considered as robust

to misspecification. Schennach (2007) proposes the ETEL estimator that shares the

same higher-order property with EL under correct specification while possessing ro-

bustness of ET under misspecification. Hence, this paper considers the most widely

used, EL, the most robust, ET, and a hybrid of the two, ETEL.1 An extension of the

result to other GEL estimators is possible, but not attempted to make the argument

succinct.

Secondly, many efforts have been made to accurately approximate the finite sam-

ple distribution of GMM. These include analytic correction of the GMM standard

errors by Windmeijer (2005) and the bootstrap by Hahn (1996), Hall and Horowitz

(1996), Andrews (2002), Brown and Newey (2002), Inoue and Shintani (2006), Allen,

Gregory, and Shimotsu (2011), Lee (2014), among others. The bootstrap tests and

CI’s based on the GMM estimators achieve asymptotic refinements over the first-order

asymptotic tests and CI’s, which means their actual test rejection probability and CI

coverage probability have smaller errors than the asymptotic tests and CI’s. In par-

ticular, Lee (2014) applies a similar idea of non-recentering to GMM estimators by

using Hall and Inoue (2003)’s misspecification-robust variance estimators to achieve

the same sharp rate of refinements with Andrews (2002).

Although GEL estimators are favorable alternatives to GMM, there is little evi-

dence that the finite sample distribution of GEL test statistics is well approximated

by the first-order asymptotics. Guggenberger and Hahn (2005) and Guggenberger

(2008) find by simulation studies that the first-order asymptotic approximation to

the finite sample distribution of EL estimators may be poor. Thus, it is natural

to consider bootstrap t tests and CI’s based on GEL estimators to improve upon

the first-order asymptotic approximation. However, few published papers deal with

bootstrapping for GEL. Brown and Newey (2002) and Allen, Gregory, and Shimotsu

(2011) employ the EL implied probability in resampling for GMM estimators, but

not for GEL estimators. Canay (2010) shows the validity of a bootstrap procedure

for the EL ratio statistic in the moment inequality setting. Kundhi and Rilstone

1Precisely speaking, ETEL is not a GEL estimator. However, the analysis is quite similar because
it is a combination of the two GEL estimators. Therefore, this paper uses the term “GEL” to include
ETEL as well as EL and ET to save space and to prevent any confusion.
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(2012) argue that analytical corrections by Edgeworth expansion of the distribution

of GEL estimators work well compared to the bootstrap, but they assume correct

model specification.

Lastly, the validity of inferences and CI’s critically depends on the correctly spec-

ified model assumption. Although model misspecification can be asymptotically de-

tected by an overidentifying restrictions test, there is always a possibility that one

does not reject a misspecified model or reject a correctly specified model in finite sam-

ple. Moreover, there is a view that all models are misspecified and will be rejected

asymptotically. The consequences of model misspecification are twofold: a poten-

tially biased probability limit of the estimator and a different asymptotic variance.

The former is called the pseudo-true value, and it is impossible to correct the bias

in general. Nevertheless, there are cases such that the pseudo-true values are still

the object of interest: see Hansen and Jagannathan (1997), Hellerstein and Imbens

(1999), Bravo (2010), and Almeida and Garcia (2012). GEL pseudo-true values are

less arbitrary than GMM ones because the latter depend on a weight matrix, which is

an arbitrary choice by a researcher. In contrast, each of the GEL pseudo-true values

can be interpreted as a unique minimizer of a well-defined discrepancy measure, e.g.

Schennach (2007).

The asymptotic variance of the estimator, however, can be consistently estimated

even under misspecification. If a researcher wants to minimize the consequence of

model misspecification, a misspecification-robust variance estimator should be used

for t tests or confidence intervals. The proposed bootstrap uses the misspecification-

robust variance estimator for EL, ET, and ETEL in constructing the t statistic. This

makes the proposed bootstrap robust to misspecification without recentering, and en-

ables researchers to make valid inferences and CI’s against unknown misspecification.

The remainder of the paper is organized as follows. Section 2 explains the idea

of non-recentering by using a misspecification-robust variance estimator for the t

statistic. Section 3 defines the estimators and the t statistic. Section 4 describes

the nonparametric iid misspecification-robust bootstrap procedure. Section 5 states

the assumptions and establishes asymptotic refinements of the misspecification-robust

bootstrap. Section 6 presents Monte Carlo experiments. An application to estimate

the returns to schooling of Hellerstein and Imbens (1999) is presented in Section 7.

Section 8 concludes the paper. Lemmas and proofs are collected in Appendix A.
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2 Outline of the Results

This section explains why the proposed procedure achieves asymptotic refinements

without recentering. The key idea is to construct an asymptotically pivotal statistic

regardless of misspecification. Bootstrapping an asymptotically pivotal statistic is

critical to get asymptotic refinements of the bootstrap (e.g. see Beran, 1988; Hall,

1992; Hall and Horowitz, 1996; Horowitz, 2001; Andrews, 2002; and Brown and

Newey, 2002). That is, the asymptotic distribution of the test statistic should not

depend on unknown population quantities or data generating process (DGP), under

the null hypothesis. Thus, we need to construct the t statistic that converges in

distribution to the standard normal, both in the sample and in the bootstrap sample.

Usually, there is no need to treat the bootstrap sample or statistic specially. For

overidentified moment condition models, however, it is important to understand the

impact of overidentification when constructing the t statistic in the bootstrap sample.

Suppose that χn = {Xi : i ≤ n} is an independent and identically distributed (iid)

sample. Let F be the corresponding cumulative distribution function (cdf). Let θ be

a parameter of interest and g(Xi, θ) be a moment function. The moment condition

model is correctly specified if

HC : Eg(Xi, θ0) = 0 (2.1)

for a unique θ0. The hypothesis is denoted by HC . The hypothesis of interest is

H0 : θ = θ0. (2.2)

The usual t statistic TC is asymptotically standard normal under H0 and HC .

Now define the bootstrap sample. Let χ∗nb = {X∗i : i ≤ nb} be a random draw with

replacement from χn according to the empirical distribution function (edf) Fn. In this

section, I distinguish the number of sample n and the number of bootstrap sample

nb, which helps understand the concept of the conditional asymptotic distribution.2

2nb should be distinguished from the number of bootstrap repetition, often denoted by B. For
more discussions, see Bickel and Freedman (1981).
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The bootstrap versions of HC and H0 are

H∗C : E∗g(X∗i , θ̂) = 0, (2.3)

H∗0 : θ = θ̂, (2.4)

where E∗ is the expectation taken over the bootstrap sample and θ̂ is a GEL estimator.

Note that θ̂ is considered as the true value in the bootstrap world. The bootstrap

version of the usual t statistic T ∗C , however, is not asymptotically pivotal conditional

on the sample because H∗C is not satisfied in the sample if the model is overidentified:

E∗g(X∗i , θ̂) = n−1

n∑
i

g(Xi, θ̂) 6= 0. (2.5)

Thus, Hall and Horowitz (1996), Andrews (2002), and Brown and Newey (2002)

recenter the bootstrap version of the moment function to satisfy H∗C . The resulting t

statistic based on the recentered moment function, T ∗C,R, tends to the standard normal

distribution as nb grows conditional on the sample almost surely, and asymptotic

refinements of the bootstrap are achieved.

This paper takes a different approach. Instead of jointly testing HC and H0, I

solely focus on H0, leaving that HC may not hold. If the model is misspecified, then

there is no such θ that satisfies HC :

Eg(Xi, θ) 6= 0,∀θ ∈ Θ, (2.6)

where Θ is a compact parameter space. This may happen only if the model is overi-

dentified. Since there is no true value, the pseudo-true value θ0 should be defined.

Instead of HC , θ0 is defined as a unique minimizer of the population version of the em-

pirical discrepancy used in the estimation. For EL, this discrepancy is the Kullback-

Leibler Information Criterion (KLIC). For ET, it maximizes a quantity named en-

tropy. This definition is more flexible since it includes correct specification as a special

case when HC holds at θ0. Without assuming HC , we can find regularity conditions for
√
n−consistency and asymptotic normality of θ̂ for the pseudo-true value θ0. Assume

such regularity conditions hold. Then, we have

√
n(θ̂ − θ0)→d N(0,ΣMR), (2.7)
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as the sample size grows where the asymptotic variance matrix ΣMR is different from

the standard one. ΣMR can be consistently estimated using the formula given in the

next section. Let Σ̂MR be a consistent estimator for ΣMR. The misspecification-robust

t statistic is given by3

TMR =
θ̂ − θ0√
Σ̂MR/n

, (2.8)

and TMR is asymptotically standard normal under H0, without assuming HC .

Similarly, the bootstrap version of the t statistic is

T ∗MR =
θ̂∗ − θ̂√
Σ̂∗MR/nb

, (2.9)

where θ̂∗ and Σ̂∗MR are calculated using the same formula with θ̂ and Σ̂MR. Condi-

tional on the sample almost surely, T ∗MR tends to the standard normal distribution as

nb grows under H∗0 . Since the conditional asymptotic distribution does not depend

on H∗C , we need not recenter the bootstrap moment function to satisfy H∗C . In other

words, the misspecification-robust t statistic TMR is asymptotically pivotal under H0,

while the usual t statistic TC is asymptotically pivotal under H0 and HC . This paper

develops a theory for bootstrapping TMR, instead of TC . Note that both can be used

to test the null hypothesis H0 : θ = θ0 under correct specification. Under misspecifi-

cation, however, only TMR can be used to test H0 because TC is not asymptotically

pivotal. This is useful when the pseudo-true value is an interesting object even if the

model is misspecified.

To find the formula for ΣMR, I use a just-identified system of the first-order con-

ditions (FOC’s) of EL, ET, and ETEL estimators. This idea is not new, though.

Schennach (2007) uses the same idea to find the asymptotic variance matrix of the

ETEL estimator robust to misspecification. For GMM estimators, the idea of rewrit-

ing the overidentified GMM as a just-identified system appears in Imbens (1997,2002)

and Chamberlain and Imbens (2003). Hall and Inoue (2003) find the formula for ΣMR

of GMM estimators by expanding the FOC. They show that the formula is different

from the one under correct specification, but it coincides with the standard GMM

variance matrix if the model is correctly specified.

A natural question is whether we can use GEL implied probabilities to construct

3For notational brevity, let θ and ΣMR be scalars in this section.
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the cdf estimator F̂ and use it instead of the edf Fn in resampling. This is possible

only when the population moment condition is correctly specified. By construction, F̂

satisfies E∗g(X∗i , θ̂) = 0, so that the bootstrap moment condition is always correctly

specified. For instance, Brown and Newey (2002) argue that using the EL-estimated

cdf F̂EL(z) ≡
∑

i 1(Xi ≤ z)pi, where pi is the EL implied probability, in place of

the edf Fn in resampling would improve efficiency of bootstrapping for GMM. Their

argument relies on the fact that F̂EL is an efficient estimator of the true cdf F . If

the population moment condition is misspecified, however, then the cdf estimator

based on the implied probability is inconsistent for F because E∗g(X∗i , θ̂) = 0 holds

even in large sample, while Eg(Xi, θ0) 6= 0. In contrast, the edf Fn is uniformly

consistent for F regardless of whether the population moment condition holds or not

by Glivenko-Cantelli Theorem. For this reason, I mainly focus on resampling from

Fn rather than F̂ in this paper. However, a shrinkage-type cdf estimator combining

Fn and F̂ , similar to Antoine, Bonnal, and Renault (2007), can be used to improve

both robustness and efficiency. For example, a shrinkage that has the form

πi = εn · pi + (1− εn) · n−1, εn → 0 as n grows, (2.10)

where pi is a GEL implied probability, would work with the proposed misspecification-

robust bootstrap because

E∗πg(Xi, θ̂) = (1− εn)n−1

n∑
i

g(Xi, θ̂) 6= 0, (2.11)

where the expectation is taken with respect to F̂π(z) ≡
∑

i 1(Xi ≤ z)πi. A promising

simulation result using this shrinkage estimator in resampling is provided in Section

6.

Note that the definition of misspecification considered in this paper is different

from that of White (1982). In his quasi-maximum likelihood (QML) framework, the

underlying cdf is misspecified. Since the QML theory deals with just-identified models

where the number of parameters is equal to the number of moment restrictions, (2.1)

holds even if the underlying cdf is misspecified. Hence, the model is not misspecified

in this paper’s framework. For bootstrapping QML estimators, see Gonçalves and

White (2004).
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3 Estimators and Test Statistics

Let g(Xi, θ) be an Lg × 1 moment function where θ ∈ Θ ⊂ RLθ is a parameter of

interest, where Lg ≥ Lθ. Let G(j)(Xi, θ) denote the vectors of partial derivatives

with respect to θ of order j of g(Xi, θ). In particular, G(1)(Xi, θ) ≡ G(Xi, θ) ≡
(∂/∂θ′)g(Xi, θ) is an Lg × Lθ matrix and G(2)(Xi, θ) ≡ (∂/∂θ′)vec{G(Xi, θ)} is an

LgLθ×Lθ matrix, where vec{·} is the vectorization of a matrix. To simplify notation,

write gi(θ) = g(Xi, θ), G
(j)
i (θ) = G(j)(Xi, θ), ĝi = g(Xi, θ̂), and Ĝ

(j)
i = G(j)(Xi, θ̂) for

j = 1, ..., d + 1, where θ̂ is EL, ET or ETEL estimator. In addition, let gi0 = gi(θ0)

and Gi0 = Gi(θ0), where θ0 is the (pseudo-)true value.

3.1 Empirical Likelihood and Exponential Tilting Estimators

To define EL and ET estimators, I follow the notation of Newey and Smith (2004)

and Anatolyev (2005). Let ρ(ν) be a concave function in a scalar ν on the domain

that contains zero. For EL, ρ(ν) = log(1− ν) for ν ∈ (−∞, 1). For ET, ρ(ν) = 1− eν

for ν ∈ R. In addition, let ρj(ν) = ∂jρ(ν)/∂νj for j = 0, 1, 2, · · · .
The EL or the ET estimator, θ̂, and the corresponding Lagrange multiplier, λ̂,

solve a saddle point problem

min
θ∈Θ

max
λ

n−1

n∑
i=1

ρ(λ′gi(θ)). (3.1)

The FOC’s for (θ̂, λ̂) are

0
Lθ×1

= n−1

n∑
i=1

ρ1(λ̂′ĝi)Ĝ
′
iλ̂, 0

Lg×1
= n−1

n∑
i=1

ρ1(λ̂′ĝi)ĝi. (3.2)

A useful by-product of the estimation is the implied probabilities. The EL and the

ET implied probabilities for the observations are, for i = 1, ..., n,

EL: pi =
1

n(1− λ̂′ĝi)
, (3.3)

ET: pi =
eλ̂
′ĝi∑n

j=1 e
λ̂′ĝj

. (3.4)

These probabilities may be used in resampling to increase efficiency under correct
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specification.

The FOC’s hold regardless of model misspecification and form a just-identified

moment condition. Let ψ(Xi, β) be a (Lθ + Lg)× 1 vector such that

ψ(Xi, β) ≡

[
ψ1(Xi, β)

ψ2(Xi, β)

]
=

[
ρ1(λ′gi(θ))Gi(θ)

′λ

ρ1(λ′gi(θ))gi(θ)

]
. (3.5)

Then, the EL or the ET estimator and the corresponding Lagrange multiplier denoted

by an augmented vector, β̂ = (θ̂′, λ̂′)′, are given by the solution to n−1
∑n

i ψ(Xi, β̂) =

0. In the limit, the pseudo-true value β0 = (θ′0, λ
′
0)′ solves the population version of

the FOC’s:

0
Lθ×1

= Eρ1(λ′0gi0)G′i0λ0, 0
Lg×1

= Eρ1(λ′0gi0)gi0. (3.6)

In this setting, consistency and asymptotic normality of β̂ = (θ̂′, λ̂′)′ for β0 = (θ′0, λ
′
0)′

can be shown by using standard asymptotic theory of just-identified GMM, e.g.

Newey and McFadden (1994).

For EL, Chen, Hong, and Shum (2007) provide regularity conditions for
√
n-

consistency and asymptotic normality under misspecification. In particular, they

assume that the moment function is uniformly bounded:

UBC: sup
θ∈Θ,x∈χ

‖g(x, θ)‖ <∞ and inf
θ∈Θ,λ∈Λ(θ),x∈χ

(1− λ′g(x, θ)) > 0, (3.7)

where Θ and Λ(θ) are compact sets and χ is the support of X1. This is a strong

condition on the support of the data, e.g., Schennach (2007). Nevertheless, if the

data is truncated or the moment function is constructed to satisfy UBC, then the EL

estimator would be
√
n-consistent for the pseudo-true value and the bootstrap can

be implemented. For ET, UBC is not required. The ET estimator is
√
n-consistent

and asymptotically normal under a slightly weaker condition than Assumption 3 of

Schennach (2007).4

Assuming regularity conditions, we have the following proposition:

Proposition 1. Suppose regularity conditions hold. In particular, assume that UBC

holds for EL. Let β̂ = (θ̂′, λ̂′)′ be either the EL or the ET estimator and its Lagrange

4We need to replace Schennach(2007)’s Assumption 3(2) with the ET saddle-point problem. In
addition, we only require k2 = 0, 1, 2 instead of k2 = 0, 1, 2, 3, 4 in Assumption 3(6).
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multiplier, and β0 = (θ′0, λ
′
0)′ be the corresponding pseudo-true value. Then,

√
n(β̂ − β0)→d N(0,Γ−1Ψ(Γ′)−1),

where Γ = E(∂/∂β′)ψ(Xi, β0) and Ψ = Eψ(Xi, β0)ψ(Xi, β0)′.

The Jacobian matrix for EL or ET is given by

∂ψ(Xi, β)

∂β′
=

[
(∂/∂θ′)ψ1(Xi, β) (∂/∂λ′)ψ1(Xi, β)

(∂/∂θ′)ψ2(Xi, β) (∂/∂λ′)ψ2(Xi, β)

]
, (3.8)

where

∂ψ1(Xi, β)

∂θ′
= ρ1(λ′gi(θ))(λ

′ ⊗ ILθ)G
(2)
i (θ) + ρ2(λ′gi(θ))Gi(θ)

′λλ′Gi(θ), (3.9)

∂ψ1(Xi, β)

∂λ′
=

∂ψ2(Xi, β)

∂θ
= ρ1(λ′gi(θ))Gi(θ)

′ + ρ2(λ′gi(θ))Gi(θ)
′λgi(θ)

′,

∂ψ2(Xi, β)

∂λ′
= ρ2(λ′gi(θ))gi(θ)gi(θ)

′.

Γ and Ψ can be estimated by

Γ̂ = n−1

n∑
i

∂ψ(Xi, β̂)

∂β′
and Ψ̂ = n−1

n∑
i

ψ(Xi, β̂)ψ(Xi, β̂)′, (3.10)

respectively. The upper left Lθ×Lθ submatrix of Γ−1Ψ(Γ′)−1, denoted by ΣMR, is the

asymptotic variance matrix of
√
n(θ̂ − θ0). This coincides with the usual asymptotic

variance matrix ΣC = (EG′i0(Egi0g
′
i0)−1EGi0)−1 under correct specification, but they

differ in general under misspecification. Let Σ̂MR be the corresponding submatrix of

the variance estimator Γ̂−1Ψ̂(Γ̂′)−1. Even under correct specification, Σ̂MR is different

from Σ̂C , the conventional variance estimator consistent for ΣC , because Σ̂MR contains

additional terms which are assumed to be zero in Σ̂C .

3.2 Exponentially Tilted Empirical Likelihood Estimator

Schennach (2007) proposes the ETEL estimator which is designed to be robust to

misspecification without UBC, while it maintains the same nice higher-order prop-

erties with EL under correct specification. The ETEL estimator and the Lagrange
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multiplier (θ̂, λ̂) solve

arg min
θ∈Θ

−n−1

n∑
i=1

log nŵi(θ), ŵi(θ) =
eλ̂(θ)′gi(θ)∑n
j=1 e

λ̂(θ)′gj(θ)
, (3.11)

where λ̂ ≡ λ̂(θ̂) and

λ̂(θ) = arg max
λ

−n−1

n∑
i=1

eλ
′gi(θ). (3.12)

This estimator is a hybrid of the EL estimator and the ET implied probability. Equiv-

alently, the ETEL estimator θ̂ minimizes the objective function

l̂n(θ) = log

(
n−1

n∑
i=1

eλ̂(θ)′(gi(θ)−gn(θ))

)
, (3.13)

where gn(θ) = n−1
∑n

i=1 gi(θ). In order to describe the asymptotic distribution of the

ETEL estimator, Schennach introduces auxiliary parameters to formulate the problem

into a just-identified GMM. Let β = (θ′, λ′, κ′, τ)′, where κ ∈ RLg and τ ∈ R. By

Lemma 9 of Schennach (2007), the ETEL estimator θ̂ is given by the subvector of

β̂ = (θ̂′, λ̂′, κ̂′, τ̂)′, the solution to

n−1

n∑
i

ψ(Xi, β̂) = 0, (3.14)

where

ψ(Xi, β) ≡


ψ1(Xi, β)

ψ2(Xi, β)

ψ3(Xi, β)

ψ4(Xi, β)

 =


eλ
′gi(θ)Gi(θ)

′ (κ+ λgi(θ)
′κ− λ) + τGi(θ)

′λ

(τ − eλ′gi(θ)) · gi(θ) + eλ
′gi(θ) · gi(θ)gi(θ)′κ

eλ
′gi(θ) · gi(θ)
eλ
′gi(θ) − τ

 .
(3.15)

Note that the estimators of the auxiliary parameters, κ̂ and τ̂ are given by

τ̂ = n−1

n∑
i=1

eλ̂
′ĝi and κ̂ = −

(
n−1

n∑
i=1

eλ̂
′ĝi

τ̂
ĝiĝ
′
i

)−1

ĝn, (3.16)
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where ĝn = n−1
∑

i ĝi. The probability limit of β̂ is the pseudo-true value β0 =

(θ′0, λ
′
0, κ
′
0, τ0)′ that solves Eψ(Xi, β0) = 0. In particular, a function λ0(θ) is the

solution to Eeλ
′gi(θ)gi(θ) = 0, where λ0 ≡ λ0(θ0) and θ0 is a unique minimizer of the

population objective function:

l0(θ) = log
(
Eeλ0(θ)′(gi(θ)−Egi(θ))

)
. (3.17)

By Theorem 10 of Schennach,

√
n(β̂ − β0)→d N(0,Γ−1Ψ(Γ′)−1), (3.18)

where Γ = E(∂/∂β′)ψ(Xi, β0) and Ψ = Eψ(Xi, β0)ψ(Xi, β0)′.

Γ and Ψ are estimated by the same formula with (3.10). In order to estimate Γ,

we need an exact formula of (∂/∂β′)ψ(Xi, β). The partial derivative of ψ1(Xi, β) is

given by

∂ψ1(Xi, β)

∂β′
=

(
∂ψ1(Xi,β)

∂θ′
Lθ×Lθ

∂ψ1(Xi,β)
∂λ′

Lθ×Lg

∂ψ1(Xi,β)
∂κ′

Lθ×Lg

∂ψ1(Xi,β)
∂τ

Lθ×1

)
, (3.19)

where

∂ψ1(Xi, β)

∂θ′
= eλ

′gi(θ) {Gi(θ)
′(κλ′ + λκ′ + λgi(θ)

′κλ′ − λλ′)Gi(θ) (3.20)

+((κ′ + κ′gi(θ)λ
′ − λ′)⊗ ILθ)G

(2)(θ)
i

}
+ τ(λ′ ⊗ ILθ)G

(2)
i (θ),

∂ψ1(Xi, β)

∂λ′
= eλ

′gi(θ)Gi(θ)
′ {(λgi(θ)

′κ+ κ− λ)gi(θ)
′ + (gi(θ)

′κ− 1)ILg
}

(3.21)

+τGi(θ)
′,

∂ψ1(Xi, β)

∂κ′
= eλ

′gi(θ)Gi(θ)
′(ILg + λgi(θ)

′), (3.22)

∂ψ1(Xi, β)

∂τ
= Gi(θ)

′λ. (3.23)

The partial derivative of ψ2(Xi, β) is given by

∂ψ2(Xi, β)

∂β′
=

(
∂ψ2(Xi,β)

∂θ′
Lg×Lθ

∂ψ2(Xi,β)
∂λ′

Lg×Lg
eλ
′gi(θ)gi(θ)gi(θ)

′

Lg×Lg
gi(θ)
Lg×1

)
, (3.24)
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where

∂ψ2(Xi, β)

∂θ′
=

∂ψ1(Xi, β)

∂λ
, (3.25)

∂ψ2(Xi, β)

∂λ′
= eλ

′gi(θ)gi(θ)gi(θ)
′(κgi(θ)

′ − ILg). (3.26)

The partial derivative of ψ3(Xi, β) is given by

∂ψ3(Xi, β)

∂β′
=

(
∂ψ1(Xi,β)

∂κ
Lg×Lθ

eλ
′gi(θ)gi(θ)gi(θ)

′

Lg×Lg
0

Lg×Lg
0

Lg×1

)
, (3.27)

and the partial derivative of ψ4(Xi, β) is given by

∂ψ4(Xi, β)

∂β′
=

(
eλ
′gi(θ)λ′Gi(θ)

1×Lθ
eλ
′gi(θ)gi(θ)

′

1×Lg
0

1×Lg
−1
1×1

)
. (3.28)

The upper left Lθ ×Lθ submatrix of Γ−1Ψ(Γ′)−1, denoted by ΣMR, is the asymptotic

variance matrix of
√
n(θ̂ − θ0). Let Σ̂MR be the corresponding submatrix of the

variance estimator Γ̂−1Ψ̂(Γ̂′)−1. Again, ΣMR is different from ΣC in general under

misspecification, but they become identical under correct specification.5

3.3 Test statistic

Let θ̂ be either the EL, the ET, or the ETEL estimator and let Σ̂MR be the corre-

sponding variance matrix estimator. Let θr, θ0,r, and θ̂r denote the rth elements of

θ, θ0, and θ̂ respectively. Let Σ̂MR,r denote the rth diagonal element of Σ̂MR. The t

statistic for testing the null hypothesis H0 : θr = θ0,r is

TMR =
θ̂r − θ0,r√
Σ̂MR,r/n

. (3.29)

Since the t statistic TMR is studentized with the misspecification-robust variance

estimator Σ̂MR,r, TMR has an asymptotic N(0, 1) distribution under H0, without as-

suming the correct model, HC . This is the source of achieving asymptotic refinements

without recentering regardless of misspecification. In contrast, the usual t statistic

5Under correct specification, the asymptotic variance matrix ΣC is the same for EL, ET, and
ETEL, which is the asymptotic variance matrix of the two-step efficient GMM.
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TC is studentized with Σ̂C , a non-robust variance estimator. Hence, it is not asymp-

totically pivotal if the model is misspecified. Note that the only difference between

TMR and TC is the variance estimator.

Both one-sided and two-sided t tests and CI’s are considered. The asymptotic one-

sided t test with asymptotic significance level α of H0 : θr ≤ θ0,r against H1 : θr > θ0,r

rejects H0 if TMR > zα, where zα is the 1 − α quantile of the standard normal dis-

tribution. The upper one-sided CI with asymptotic confidence level 100(1 − α)%

is (−∞, θ̂r + zα

√
Σ̂MR,r/n]. Note that this asymptotic CI is robust to misspecifi-

cation because Σ̂MR is used. The asymptotic two-sided t test with asymptotic sig-

nificance level α of H0 : θr = θ0,r against H1 : θr 6= θ0,r rejects H0 if |TMR| > zα/2.

The misspecification-robust two-sided asymptotic CI with asymptotic confidence level

100(1− α)% is [θ̂r ± zα/2
√

Σ̂MR,r/n].

4 The Misspecification-Robust Bootstrap Procedure

The nonparametric iid bootstrap is implemented by resampling X∗1 , · · · , X∗n randomly

with replacement from the sample X1, · · · , Xn. Although GEL implied probabilities

are useful by-products of the estimation procedure, those probabilities cannot be

naively used in resampling, because the cdf estimators based on such implied prob-

abilities would be inconsistent for the true cdf if the model is misspecified. Alter-

natively, the bootstrap sample can be drawn from a simple shrinkage cdf estimator

that combines a GEL implied probability and the empirical probability in the form

of (2.10).

The bootstrap estimator θ̂∗ is given by the subvector of β̂∗ = (θ̂∗
′
, λ̂∗

′
)′ for EL or

ET, or β̂∗ = (θ̂∗
′
, λ̂∗

′
, κ̂∗

′
, τ̂ ∗)′ for ETEL, the solution to

n−1

n∑
i

ψ(X∗i , β̂
∗) = 0, (4.1)

where ψ(Xi, β) is given by (3.5) for EL or ET, and (3.15) for ETEL. The bootstrap

version of the variance matrix estimator is Γ̂∗−1Ψ̂∗(Γ̂∗
′
)−1, which can be calculated

using the same formula with (3.10) using the bootstrap sample instead of the original

sample. Let Σ̂∗MR be the upper left Lθ × Lθ submatrix of the bootstrap covariance

estimator Γ̂∗−1Ψ̂∗(Γ̂∗
′
)−1. It should be emphasized that the only difference between

the bootstrap and the sample versions of the estimators is that the former are calcu-
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lated from the bootstrap sample, χ∗n, in place of the original sample, χn, because we

need no additional correction such as recentering as in Hall and Horowitz (1996) and

Andrews (2002).

The misspecification-robust bootstrap t statistic is

T ∗MR =
θ̂∗r − θ̂r√
Σ̂∗MR,r/n

. (4.2)

Let z∗T,α and z∗|T |,α denote the 1−α quantile of T ∗MR and |T ∗MR|, respectively. Following

Andrews (2002), we define z∗|T |,α to be a value that minimizes |P ∗(|T ∗MR| ≤ z)−(1−α)|
over z ∈ R, because the distribution of |T ∗MR| is discrete. The definition of z∗T,α is

analogous. Each of the following bootstrap tests are of asymptotic significance level

α. The one-sided bootstrap t test of H0 : θr ≤ θ0,r against H1 : θr > θ0,r rejects H0

if TMR > z∗T,α. The symmetric two-sided bootstrap t test of H0 : θr = θ0,r versus

H1 : θr 6= θ0,r rejects if |TMR| > z∗|T |,α. The equal-tailed two-sided bootstrap t test

of the same hypotheses rejects if TMR < z∗T,1−α/2 or TMR > z∗T,α/2. Similarly, each of

the following bootstrap CI’s for θ0,r are of asymptotic confidence level 100(1− α)%.

The upper one-sided bootstrap CI is (−∞, θ̂r + z∗T,α

√
Σ̂MR,r/n]. The symmetric

and the equal-tailed bootstrap percentile-t intervals are [θ̂r ± z∗|T |,α

√
Σ̂MR,r/n] and

[θ̂r − z∗T,α/2
√

Σ̂MR,r/n, θ̂r − z∗T,1−α/2
√

Σ̂MR,r/n], respectively.

In sum, the misspecification-robust bootstrap procedure is as follows:

1. Draw n random observations χ∗n with replacement from the original sample, χn.

2. From the bootstrap sample χ∗n, calculate θ̂∗ and Σ̂∗MR using the same formula

with their sample counterpart.

3. Construct and save T ∗MR.

4. Repeat steps 1-3 B times and get the distribution of T ∗MR, which is discrete.

5. Find z∗|T |,α and z∗T,α from the distribution of |T ∗MR| and T ∗MR, respectively.

5 Main Result

Let f(Xi, β) be a vector containing the unique components of ψ(Xi, β) and its deriva-

tives with respect to the components of β through order d, and ψ(Xi, β)ψ(Xi, β)′ and
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its derivatives with respect to the components of β through order d− 1.

Assumption 1. Xi, i = 1, 2, ...n are iid.

Assumption 2.

(a) Θ is compact and θ0 is an interior point of Θ; Λ(θ) is a compact set containing

a zero vector such that λ0(θ) is an interior point of Λ(θ).

(b) (θ̂, λ̂) solves (3.1) for EL or ET, or (3.11) for ETEL; (θ0, λ0) is the pseudo-

true value that uniquely solves the population version of (3.1) for EL or ET, or

(3.11) for ETEL.

(c) For some function Cg(x), ‖g(x, θ1) − g(x, θ2)‖ < Cg(x)‖θ1 − θ2‖ for all x in

the support of X1 and all θ1, θ2 ∈ Θ; EC
qg
g (X1) <∞ and E‖g(X1, θ)‖qg <∞ for

all θ ∈ Θ for all 0 < qg <∞.

(d) For some function Cρ(x), |ρ(λ′1g(x, θ1)) − ρ(λ′2g(x, θ2))| < Cρ(x)‖(θ′1, λ′1) −
(θ′2, λ

′
2)‖ for all x in the support of X1 and all (θ′1, λ

′
1), (θ′2, λ

′
2) ∈ Θ × Λ(θ);

ECq1
ρ (X1) <∞ for some q1 > 4. In addition, UBC (3.7) holds for EL.

Assumption 3.

(a) Γ is nonsingular and Ψ is positive definite.

(b) g(x, θ) is d + 1 times differentiable with respect to θ on N(θ0), some neigh-

borhood of θ0, for all x in the support of X1, where d ≥ 4.

(c) There is a function CG(x) such that ‖G(j)(x, θ)−G(j)(x, θ0)‖ ≤ CG(x)‖θ−θ0‖
for all x in the support of X1 and all θ ∈ N(θ0) for j = 0, 1, ..., d+1; ECqG

G (X1) <

∞ and E‖G(j)(X1, θ0)‖qG <∞ for j = 0, 1, ..., d+ 1 for all 0 < qG <∞.

(d) There is a function C∂ρ(x) such that

|ρj(λ′g(x, θ))− ρj(λ′0g(x, θ0))| ≤ C∂ρ(x)‖(θ′, λ′)− (θ′0, λ
′
0)‖

for all x in the support of X1 and all (θ′, λ′) ∈ N(θ0) × Λ(θ) for j = 1, ..., d + 1;

ECq2
∂ρ(X1) <∞ for some q2 > 16.
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(e) f(X1, β0) is once differentiable with respect to X1 with uniformly continuous

first derivative.

Assumption 4. For t ∈ Rdim(f), lim sup‖t‖→∞
∣∣Eeit′f(X1,β0)

∣∣ < 1, where i =
√
−1.

Assumption 1 is that the sample is iid, which is also assumed in Schennach (2007)

and Newey and Smith (2004). Assumption 2(a)-(c) are similar to Assumption 2(a)-(b)

of Andrews (2002). Assumption 2(d) is similar to but slightly stronger than Assump-

tion 3(4) of Schennach (2007) for ET or ETEL, and it includes Assumption 3(1) of

Chen, Hong, and Shum (2007) for EL to avoid a negative implied probability under

misspecification. Assumption 2(c)-(d) are required to have the uniform convergence

of the objective function. Assumption 3(a) is a standard regularity condition for a

well-defined asymptotic covariance matrix. Assumption 3 except for (d) is similar to

Assumption 3 of Andrews (2002). The assumptions on qg and qG are slightly stronger

than necessary, but yield a simpler result. This is also assumed in Andrews (2002) for

the same reason. Assumption 3(d) is similar to but stronger than Assumption 3(6)

of Schennach (2007). It ensures that the components of higher-order Taylor expan-

sion of the FOC have well-defined probability limits. Assumption 4 is the standard

Cramér condition for Edgeworth expansion.

Throughout the proof, I pay a particular attention to the values of q1 and q2 that

may restrict DGP’s under misspecification for ET and ETEL. For example, since

a zero vector is in Λ(θ), Assumption 3(d) implies Eeq2λ
′
0g(X1,θ0) < ∞, where λ0 6= 0

under misspecification. Lee (2014b) provides a simple example that the model cannot

be misspecified too much to have Eeq2λ
′
0g(X1,θ0) < ∞ for some q2 for ET and ETEL,

and the set of possible misspecification shrinks to zero as q2 gets larger.

Theorem 1 formally establishes asymptotic refinements of the bootstrap t tests and

CI’s based on EL, ET, and ETEL estimators. This result is new, because asymptotic

refinements of the bootstrap for this class of estimators have not been established in

the existing literature even under correct model specifications.

Theorem 1. (a) Suppose Assumptions 1-4 hold with q1 > 4, q2 > 16, and d = 4.

Under H0 : θr = θ0,r, for all ξ ∈ [0, 1/2),

P (TMR > z∗T,α) = α + o(n−(1/2+ξ)) and

P (TMR < z∗T,α/2 or TMR > z∗T,1−α/2) = α + o(n−(1/2+ξ)).
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(b) Suppose Assumptions 1-4 hold with q1 > 6, q2 > 30, and d = 5. Under H0 : θr =

θ0,r, for all ξ ∈ [0, 1/2),

P (|TMR| > z∗|T |,α) = α + o(n−(1+ξ)).

(c) Suppose Assumptions 1-4 hold with q1 > 8, q2 > 48, and d = 6. Under H0 : θr =

θ0,r,

P (|TMR| > z∗|T |,α) = α +O(n−2).

By the duality of t tests and CI’s, asymptotic refinements of the same rate for the

bootstrap CI’s follow from Theorem 1. The equal-tailed percentile-t CI corresponds

to Theorem 1(a). The symmetric percentile-t CI corresponds to Theorem 1(b)-(c).

Recall that the corresponding asymptotic t test and CI based on TMR are correct up

to O(n−1/2), O(n−1), and O(n−1) for (a), (b), and (c), respectively. The reason that

the two-sided t tests and the symmetric CI achieve a higher rate of refinements is due

to a symmetry property of Hall (1992).

The proof of Theorem 1 is similar to that of Andrews (2002) that establishes

asymptotic refinements of the bootstrap for GMM estimators under correct specifica-

tion. Since I consider GEL estimators rather than GMM, and allow misspecification

rather than assuming correct specification, the detailed proof is slightly different from

that of Andrews but the fundamental idea is the same. I use the fact that the FOC of

GEL estimators can be written as a just-identified system of moment function regard-

less of misspecification. Writing an overidentified model as a just-identified system

by augmenting additional parameters also appears in Imbens (1997, 2002), Chamber-

lain and Imbens (2003), and Schennach (2007). Then, consistency and asymptotic

normality of the estimator follow by standard arguments using Newey and McFad-

den (1994). I show that the misspecification-robust t statistic is well approximated

by a smooth function of sample averages of the data by taking Taylor expansion of

the FOC, and prove asymptotic refinements by using Hall (1988,1992)’s argument on

Edgeworth expansion of a smooth function of sample averages.

6 Monte Carlo Results

This section compares the finite sample coverage probabilities of CI’s for a scalar

parameter of interest, under correct specification and misspecification. To reduce
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computational burden of calculating GEL estimators B times for each Monte Carlo

repetition,6 the warp-speed Monte Carlo method of Giacomini, Politis, and White

(2013) is used. The method also appears in White (2000) and Davidson and MacKin-

non (2002, 2007), but the validity of the method is formally established in Giacomini,

Politis, and White (2013). The key difference between the warp-speed method and

a usual Monte Carlo experiment is that the bootstrap sample is drawn only once

for each Monte Carlo repetition rather than B times, and thus computation time is

significantly reduced.

I consider the AR(1) dynamic panel model of Blundell and Bond (1998). For

i = 1, ..., n and t = 1, ...T ,

yit = ρ0yi,t−1 + ηi + νit, (6.1)

where ηi is an unobserved individual-specific effect and νit is an error term. To

estimate ρ0, we use two sets of moment conditions:

Eyi(t−s)(∆yit − ρ0∆yi(t−1)) = 0, t = 3, ...T, and s ≥ 2, (6.2)

E∆yi(t−1)(yit − ρ0yi(t−1)) = 0, t = 3, ...T. (6.3)

The first set (6.2) is derived from taking differences of (6.1), and uses the lagged values

of yit as instruments. The second set (6.3) is derived from the initial conditions on

DGP and mitigates weak instruments problem from using only the lagged values.

Blundell and Bond (1998) suggest to use the system-GMM estimator based on the

two sets of moment conditions. The number of moment conditions is (T+1)(T−2)/2.

Four DGP’s are considered: two correctly specified models and two misspecified

models. For each of the DGP’s, T = 4, 6 and n = 100, 200 are considered. To mini-

mize the effect of the initial condition, I generate 100+T time periods and use the last

T periods for estimation. In Tables 1-4, “Boot” and “Asymp” mean the bootstrap CI

and the asymptotic CI, respectively. The third column shows which estimator the CI

is based on. GMM denotes the two-step GMM based on the system moment condi-

tions. The fourth column shows which standard error (or variance estimator) is used:

“C” denotes the usual standard error and “MR” denotes the misspecification-robust

one. The fifth column shows how the bootstrap is implemented for the bootstrap

6For example, if B = 1, 000 and the number of Monte Carlo repetition is r = 1, 000, then one
simulation round involves 1, 000, 000 nonlinear optimizations.
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CI’s: “L” denotes the misspecification-robust bootstrap proposed in this paper and

in Lee (2014), “HH” denotes the recentering method of Hall and Horowitz (1996),

and “BNS” denotes the efficient bootstrapping of Brown and Newey (2002) with a

shrinkage estimator. The shrinkage is given by (2.10) with εn = n−1/4. The columns

under “CI” show the coverage probabilities. The column under “J test” shows the re-

jection probability of the overidentification test: the Hall-Horowitz bootstrap J test,

the asymptotic J test, the EL likelihood-ratio (LR) test, the ET LR test, and the

ETEL LR test results are presented.

In sum, eight bootstrap CI’s and eight asymptotic CI’s are compared. GMM-C-

HH serves as a benchmark, as its properties have been relatively well investigated.

GMM-MR-L is suggested by Lee (2014). Both EL-MR-L and EL-MR-BNS are sug-

gested in this paper, while they differ in resampling methods. CI’s based on ET and

ETEL are defined similarly. Note that CI’s using the usual standard error (C) are

not robust to misspecification.

The DGP for a correctly specified model is the same as that of Bond and Wind-

meijer (2005). For i = 1, ..., n and t = 1, ...T ,

DGP C-1: yit = ρ0yi,t−1 + ηi + νit,

ηi ∼ N(0, 1); νit ∼
χ2

1 − 1√
2

,

yi1 =
ηi

1− ρ0

+ ui1;ui1 ∼ N

(
0,

1

1− ρ2
0

)
.

Since the bootstrap does not solve weak instruments (Hall and Horowitz, 1996), I let

ρ0 = 0.4 so that the performance of the bootstrap is not affected by the problem. The

simulation result is given in Table 1. First of all, the bootstrap CI’s show significant

improvement over the asymptotic CI’s across all the cases considered. Second, similar

to the result of Bond and Windmeijer (2005), the bootstrap CI’s coverage probabilities

tend to be too high for T = 6. This over-coverage problem becomes less severe as the

sample size increases to n = 200, especially for those based on EL, ET, and ETEL.

Interestingly, resampling from the shrinkage estimator (BNS) seems to mitigate this

problem. Third, the asymptotic CI’s using the robust standard error (MR) work

better than the ones using the usual standard error (C). This result is surprising

given that the model is correctly specified. One reason is that both standard errors

underestimate the standard deviation of the estimator while the robust standard error

21



is relatively large in this case. For example, when T = 6 and n = 100, the difference in

the coverage probabilities between Asymp-ET-C and Asymp-ET-MR is quite large.

The unreported standard deviation of the ET estimator is 0.0819, while the mean

of robust and usual standard errors are 0.0592 and 0.0472, respectively. Finally, the

overidentification tests based on GEL estimators or the HH bootstrap show significant

size distortion, especially when T = 6.

Next a heteroskedastic error term across individuals is considered. The DGP is

DGP C-2: yit = ρ0yi,t−1 + ηi + νit,

ηi ∼ N(0, 1); νit ∼ N(0, σ2
i );σ

2
i ∼ U [0.2.1.8],

yi1 =
ηi

1− ρ0

+ ui1;ui1 ∼ N

(
0,

σ2
i

1− ρ2
0

)
.

The result is given in Table 2. The findings are similar to that of Table 1, except that

the over-coverage problem of the bootstrap CI’s based on GEL estimators improves

quickly as the sample size grows.

To allow misspecification, consider the case that the DGP follows an AR(2) process

while the model is still based on the AR(1) specification, (6.1). For i = 1, ..., n and

t = 1, ...T ,

DGP M-1: yit = ρ1yi,t−1 + ρ2yi,t−2 + ηi + νit,

ηi ∼ N(0, 1); νit ∼
χ2

1 − 1√
2

,

yi1 =
ηi

1− ρ1 − ρ2

+ ui1;ui1 ∼ N

(
0,

1− ρ2

(1 + ρ2)[(1− ρ2)2 − ρ2
1]

)
.

Since the EL estimator is not
√
n−consistent under misspecification unless the UBC

(3.7) is satisfied, I also consider DGP M-2 which is identical to DGP M-1 except that

ηi, u
0
i1, and νit are generated from a truncated standard normal distributed between

-3 and 3, where ui1 =
√

1−ρ2
(1+ρ2)[(1−ρ2)2−ρ21]

u0
i1.

If the model is misspecified, then there is no true parameter that satisfies the

moment conditions simultaneously. It is important to understand what is identified

and estimated under misspecification. The moment conditions (6.2) and (6.3) impose

Eyi1∆yit
Eyi1∆yi(t−1)

= · · · =
Eyi(t−3)∆yit

Eyi(t−3)∆yi(t−1)

=
Eyi(t−2)∆yit

Eyi(t−2)∆yi(t−1)

=
E∆yi(t−1)yit

E∆yi(t−1)yi(t−1)

, (6.4)
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for t = 3, ..., T . Under correct specification, the restriction (6.4) holds and a unique

parameter is identified. However, each of the ratios identifies different parameters

under misspecification, and the probability limits of GMM and GEL estimators are

weighted averages of the parameters. For example, when T = 4, we have five moment

conditions. Four of them identify ρaT4 ≡ ρ1−ρ2 and the other identify ρbT4 ≡ ρ1+ ρ2
ρ1−ρ2 .

When T = 6, we have fourteen moment conditions. Eight of them identify ρaT4, three

identify ρbT4, two identify

ρaT6 ≡
(ρ2

1 + ρ2)(ρ1 − ρ2) + ρ1ρ2

ρ1(ρ1 − ρ2) + ρ2

, (6.5)

and the other identifies

ρbT6 ≡
(ρ3

1 + 2ρ1ρ2)(ρ1 − ρ2) + ρ2(ρ2
1 + ρ2)

(ρ2
1 + ρ2)(ρ1 − ρ2) + ρ1ρ2

. (6.6)

Thus, the pseudo-true value ρ0 is defined as

T = 4 : ρ0 = w1ρ
a
T4 + (1− w1)ρbT4, (6.7)

T = 6 : ρ0 = c1ρ
a
T4 + c2ρ

b
T4 + c3ρ

a
T6 + (1− c1 − c2 − c3)ρbT6, (6.8)

where w1 and c1, c2, c3 are some weights between 0 and 1. The pseudo-true values

are different for T = 4 and T = 6. Moreover, GMM and GEL pseudo-true values

would be different because their weights are different. Observe that if ρ2 = 0, then

the pseudo-true values coincide with ρ1, the AR(1) coefficient. Thus, the pseudo-true

values capture the deviation from the AR(1) model. If |ρ2| is relatively small, then the

pseudo-true value would not be much different from ρ1, while there is an advantage

of using a parsimonious model. If one accepts the possibility of misspecification and

decides to proceed with the pseudo-true value, then GEL pseudo-true values have

better interpretation than GMM ones because GEL weights are implicitly calculated

according to a well-defined distance measure while GMM weights depend on the

choice of a weight matrix by a researcher.

Tables 3-4 show the coverage probabilities of CI’s under DGP M-1 and M-2, re-

spectively. I set ρ1 = 0.6 and ρ2 = 0.2. The pseudo-true values are calculated using

the sample size of n = 30, 000 for T = 4 and n = 20, 000 for T = 6.7 It is clearly seen

7The two-step GMM and GEL pseudo-values are not that different. They are around 0.4 when
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that the bootstrap CI’s outperform the asymptotic CI’s. In particular, the perfor-

mances of Boot-EL-MR-L, Boot-ET-MR-L, and Boot-ETEL-MR-L CI’s are excellent

for T = 4. When T = 6, these CI’s exhibit over-coverage but the problem is less

severe than Boot-GMM-MR-L. In addition, the bootstrap CI’s using the shrinkage

in resampling are found to improve on the over-coverage problem. Although DGP

M-1 does not satisfy the UBC (3.7), the performance of the CI based on EL does not

seem to be affected. One may wonder why the HH bootstrap CI works quite well

under misspecification even though the CI is not robust to misspecification. This is

spurious and cannot be generalized. In this case, the usual standard error

√
Σ̂C/n is

considerably smaller than the robust standard error

√
Σ̂MR/n, while the HH boot-

strap critical value is much larger than the asymptotic one, which offsets the smaller

standard error. Lee (2014) reports that the performance of the HH bootstrap CI un-

der misspecification is much worse than that of the MR bootstrap CI. In addition, the

HH bootstrap J test shows very low power relative to the asymptotic tests. Among

the asymptotic CI’s, those based on GEL estimators and the robust standard errors

show better performances.

Finally, Table 5 compares the width of the bootstrap CI’s under different DGP’s.

Since this paper establishes asymptotic refinements in the size and coverage errors

of the MR bootstrap t tests and CI’s based on GEL estimators, the width of CI’s is

not directly related to the main result. Nevertheless, the table clearly demonstrates a

reason to consider GEL as an alternative to GMM, especially when misspecification

is suspected. Under correct specification (C-1 and C-2), all the bootstrap CI’s have

similar width. This conclusion changes dramatically under misspecification (M-1 and

M-2). The CI’s based on GMM are much wider than those based on GEL. For

example, when T = 6 and n = 200 in DGP M-2, the width of the Boot-GMM-MR-L

95% CI is 1.004, while that of Boot-EL-MR-BNS 95% CI is 0.277, almost a fourth.

The main reason for this is that the GEL standard errors are smaller than the GMM

ones under misspecification. In addition, the bootstrap CI’s using the shrinkage in

resampling are generally narrower than the nonparametric iid bootstrap CI’s.

The findings of Monte Carlo experiments can be summarized as follows. First, the

misspecification-robust bootstrap CI’s based on GEL estimators are generally more

accurate than other bootstrap and asymptotic CI’s regardless of misspecification. Not

T = 4 and around 0.5 when T = 6.
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surprisingly, the coverage of non-robust CI’s are very poor under misspecification.

Second, the GEL-based bootstrap CI’s improve on the severe over-coverage of the

GMM-based bootstrap CI’s, which is also a concern of Bond and Windmeijer (2005).

In addition, the GEL-based bootstrap CI’s using the shrinkage in resampling (BNS)

can mitigate over-coverage of the bootstrap CI’s when T is relatively large.8 Lastly, it

is recommended to use the misspecification-robust variance estimator in constructing

t statistics and CI’s regardless of whether the model is correctly specified or not,

because the coverage of the misspecification-robust CI’s tends to be more accurate

even under correct specification.

7 Application: Returns to Schooling

Hellerstein and Imbens (1999) estimate the Mincer equation by weighted least squares,

where the weights are calculated using EL. The equation of interest is

log(wagei) = β0 + β1 · educationi + β2 · experiencei + β3 · experience2
i

+β4 · IQi + β5 ·KWWi + εi, (7.1)

where KWW denotes Knowledge of the World of Work, an ability test score. Since the

National Longitudinal Survey Young Men’s Cohort (NLS) dataset reports both ability

test scores and schooling, the equation (7.1) can be estimated by OLS. However, the

NLS sample size is relatively small, and it may not correctly represent the whole

population. In contrast, the Census data is a very large dataset which is considered

as the whole population, but we cannot directly estimate the equation (7.1) using

the Census because it does not contain ability measures. Hellerstein and Imbens

calculate weights by matching the Census and the NLS moments and use the weights

to estimate the equation (7.1) by the least squares. This method can be used to

reduce the standard errors or change the estimand toward more representative of the

Census.

Let yi ≡ log(wagei) and xi be the regressors on the right-hand-side of (7.1). The

Hellerstein-Imbens weighted least squares can be viewed as a special case of the EL

8The choice of n−1/4 rate in the shrinkage estimator is arbitrary, but no guidance of how to
choose the rate is provided. Nevertheless, the shrinkage estimator improves on the over-coverage of
the bootstrap CI’s and make the CI’s narrower. This topic deserves more research.
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estimator using the following moment condition:

Esgi(β0) = 0, (7.2)

where Es[·] is the expectation over a probability density function fs(yi,xi), which is

labeled the sampled population. The moment function gi(β) is

gi(β) =

(
xi(yi − x′iβ)

m(yi,xi)− Etm(yi,xi)

)
, (7.3)

where β is a parameter vector, m(yi,xi) is a 13 × 1 vector, and Et[·] is the expecta-

tion over a probability density function ft(yi,xi), labeled the target population. The

first set of the moment condition is the FOC of OLS and the second set matches the

sample (NLS) moments with the known population (Census) moments. In particular,

the thirteen moments consisting of first, second, and cross moments of log(wage), ed-

ucation, experience, and experience squared are matched. If the sampled population

is identical to the target population, i.e., the NLS sample is randomly drawn from

the Census distribution, the moment condition model is correctly specified and (7.2)

holds. Otherwise, the model is misspecified and there is no such β that satisfies (7.2).

In this case, the probability limit of the EL estimator solves the FOC of OLS with

respect to an artificial population that minimizes a distance between the sampled and

the target populations. This pseudo-true value is an interesting estimand because we

are ultimately interested in the parameters of the target population, rather than the

sampled population.

Table 6 shows the estimation result of OLS, two-step GMM, EL, ET, and ETEL

estimators. Without the Census moments, the equation (7.1) is estimated by OLS and

the estimate of the returns to schooling is 0.054 with the standard error of 0.010. By

using the Census moments, the coefficients estimates and the standard errors change.

The two-step GMM estimator is calculated using the OLS estimator as a preliminary

estimator, and it serves as a benchmark. EL, ET, and ETEL produce higher point

estimates and smaller standard errors than those of OLS. Since the J-test rejects

the null hypothesis of correct specification for all of the estimators using the Census

moments, it is likely that the target population differs from the sampled population.

If this is the case, then the conventional standard errors are no longer valid, and

the misspecification-robust standard errors should be used. The misspecification-
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Figure 1: Bootstrap distribution of the t statistics based on 2-step GMM estimator
(solid), EL estimator (solid with circle), ET estimator (solid with triangle), and ETEL
estimator (solid with rectangle).

robust standard errors, s.e.MR, of EL, ET, and ETEL are slightly larger than the

usual standard errors assuming correct specification, s.e.C , but still smaller than the

standard errors of OLS. In contrast, s.e.MR of GMM is much larger than s.e.C , which

is consistent with the simulation result given in Section 6.

Table 7 shows the lower and upper bounds of CI’s based on various estimators

and their respective width. The width of the GMM based CI’s are relatively wide

compared to those based on GEL estimators. Among the GEL estimators, the ET

estimator has the widest CI, while the EL estimator has the narrowest. Although the

bootstrap CI’s are generally wider than the asymptotic CI’s, using the shrinkage in

resampling reduces the width significantly. The upper bounds of the bootstrap CI’s

range from 8.3% to 11%, which are higher than those of the asymptotic CI’s. I also

present a nonparametric kernel estimate of the bootstrap distribution of the t statistics

based on GMM, EL, ET, and ETEL estimators in Figure 1. The distributions are

skewed to the left, which implies the presence of a downward bias. Overall, the

estimation of (7.1) using GEL estimators and the resulting bootstrap CI’s suggest that
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the returns to schooling is likely to be higher than originally estimated by Hellerstein

and Imbens.

8 Conclusion

GEL estimators are favorable alternatives to GMM. Although asymptotic refinements

of the bootstrap for GMM have been established, the same for GEL have not been

done yet. In addition, the current literature on bootstrapping does not consider model

misspecification that adversely affects the refinement and validity of the bootstrap.

This paper formally established asymptotic refinements of the bootstrap for t tests

and CI’s based on GEL estimators. Moreover, the proposed bootstrap is robust to

misspecification, which means the asymptotic refinements of the bootstrap is not

affected by unknown model misspecification. Simulation results did support this

finding. As an application, the returns to education was estimated by extending the

method of Hellerstein and Imbens (1999). The exercise found that the estimates of

Hellerstein and Imbens were robust across different GEL estimators, and the returns

to education could be even higher.
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A Appendix: Lemmas and Proofs

A.1 Proof of Proposition 1

proof. The proof is similar to that of Theorem 10 of Schennach (2007), and thus omitted.

A.2 Lemmas

The lemmas and the proofs are analogous to those of Hall and Horowitz (1996) and Andrews

(2002) that show asymptotic refinements of the bootstrap for GMM estimators under correct

specification. I also use some proof techniques of Schennach (2007) for GEL estimators.

For brevity, Hall and Horowitz (1996) is abbreviated to HH, Andrews (2002) to A2002,

and Schennach (2007) to S2007. In the lemmas, a constant a that determines the rate of

convergence in probability appears. To show the theorem, we only need a = 1, 1.5 and 2,

but I assume that a ≥ 0 throughout the lemmas for generality.

Lemma 1 modifies Lemmas 1, 2, 6, and 7 of A2002 for a nonparametric iid bootstrap

under possible misspecification. The modified Lemmas 1, 2, 6, and 7 are denoted by AL1,

AL2, AL6, and AL7, respectively. In addition, Lemma 5 of A2002 is denoted by AL5

without modification.

Lemma 1.

(a) Lemma 1 of A2002 holds by replacing X̃i and N with Xi and n, respectively, under

our Assumption 1.

(b) Lemma 2 of A2002 for j = 1 holds under our Assumptions 1-3.

(c) Lemma 6 of A2002 holds by replacing X̃i and N with Xi and n, respectively, and

by letting l = 1 and γ = 0, under our Assumption 1.

(d) Lemma 7 of A2002 for j = 1 holds by replacing X̃i and N with Xi and n, respec-

tively, and by letting l = 1 and γ = 0, under our Assumptions 1-3.

Proof. The proof is given in Lee (2014). Q.E.D.

Lemma 2 shows the uniform convergence of the so-called inner loop and the objective

function in θ. Since ET and ETEL solve the same inner loop optimization problem, we let

ρ(ν) = 1− eν for ETEL for the next lemma. Define λ̂(θ) = arg maxλ∈RLg n−1
∑

i ρ(λ′gi(θ))

and λ0(θ) = arg maxλ∈RLg Eρ(λ′gi(θ)). Such solutions exist and are continuously differen-

tiable around a neighborhood of θ̂ and θ0, respectively, by the implicit function theorem

(Newey and Smith, 2004, proof of Theorem 2.1).
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Lemma 2. Suppose Assumptions 1-3 hold with q1 ≥ 2 and q1 > 2a for some a ≥ 0. Then,

for all a ≥ 0 and all ε > 0,

(a) lim
n→∞

naP

(
sup
θ∈Θ

∥∥∥λ̂(θ)− λ0(θ)
∥∥∥ > ε

)
= 0,

(b) lim
n→∞

naP

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
ρ(λ̂(θ)′gi(θ))− Eρ(λ0(θ)′gi(θ))

)∣∣∣∣∣ > ε

)
= 0.

Proof. Since the proof is similar to those of Lemma 2 of HH and Theorem 10 of S2007, I

provide a sketch of the proof. First, we need to show

lim
n→∞

naP

(
sup

(θ′,λ′)′∈Θ×Λ(θ)

∣∣∣∣∣n−1
n∑
i=1

(
ρ(λ′gi(θ))− Eρ(λ′gi(θ))

)∣∣∣∣∣ > ε

)
= 0. (A.1)

This is proved by the proof of Lemma 2 of HH with ρ(λ′gi(θ)) in place of their G(x, θ),

except that we use AL1(a) instead of Lemma 1 of HH. In particular, we apply AL1(a) with

c = 0 and h(Xi) = Cρ(Xi) − ECρ(Xi) or h(Xi) = ρ(λ′jgi(θj)) − Eρ(λ′jgi(θj)) for some

(θ′j , λ
′
j) ∈ Θ×Λ(θ). Since a zero vector is in Λ(θ), Θ and Λ(θ) are compacts, and ρ(0) = 0,

Assumption 2(d) implies that E|ρ(λ′gi(θ))|q1 < ∞ for all (θ′, λ′) ∈ Θ × Λ(θ). Thus, the

conditions for AL1(a) is satisfied by letting p = q1 and Assumption 2(d).

Next, we show

lim
n→∞

naP

(
sup
θ∈Θ

∥∥λ̄(θ)− λ0(θ)
∥∥ > ε

)
= 0, (A.2)

where λ̄(θ) = arg maxλ∈Λ(θ) n
−1
∑

i ρ(λ′gi(θ)). This is proved by using Step 1 of the proof

of Theorem 10 of S2007. Then, the present lemma (a) is proved by a similar argument

with the proof of Theorem 2.7 of Newey and McFadden (1994) using the concavity of

n−1
∑

i ρ(λ′gi(θ)) in λ for any θ.

Finally, the present lemma (b) can be shown as follows. By the triangle inequality,

combining the following results proves the desired result.

lim
n→∞

naP

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

ρ(λ̂(θ)′gi(θ))− n−1
n∑
i=1

ρ(λ0(θ)′gi(θ))

∣∣∣∣∣ > ε

)
= 0, (A.3)

lim
n→∞

naP

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

ρ(λ0(θ)′gi(θ))− Eρ(λ0(θ)′gi(θ))

∣∣∣∣∣ > ε

)
= 0. (A.4)

By Assumption 2(d), (A.3) follows from the present lemma (a) and AL1(b). Since λ0(θ) ∈
int(Λ(θ)), (A.4) follows from (A.1). Q.E.D.

Let β = (θ′, λ′) and B ≡ Θ × Λ(θ) for EL or ET. For ETEL, we introduce additional
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notations for the population auxiliary parameters. Define τ0(θ) ≡ Eeλ0(θ)′gi(θ) and

κ0(θ) ≡ −(Eeλ0(θ)′gi(θ)gi(θ)gi(θ)
′)−1τ0(θ)Egi(θ).

Analogous to the definition of Λ(θ), define T (θ) and K(θ) be compact sets such that τ0(θ) ∈
int(T (θ)) and κ0(θ) ∈ int(K(θ)). For ETEL, β ≡ (θ′, λ′, κ′, τ)′ and we define a compact set

B ≡ Θ× Λ(θ)×K(θ)× T (θ).

Let g and G(j) be an element of gi(θ) and G
(j)
i (θ), respectively, for j = 1, ..., d + 1. In

addition, let gk be a multiplication of any k-combination of elements of gi(θ). For instance,

if gi(θ) = (gi,1(θ), gi,2(θ))′, a 2 × 1 vector, then g2 = (gi,1(θ))2, gi,1(θ)gi,2(θ), or (gi,2(θ))2.

G(j)k is defined analogously. To further simply notation, write g0 and G
(j)
0 if gi and G

(j)
i

are evaluated at θ0 for j = 1, 2, ...d+ 1.

Lemma 3. Suppose Assumptions 1-3 hold with q1 ≥ 2, q1 > 2a, and q2 > max
{

2, 2a
1−2c

}
for some c ∈ [0, 1/2) and some a ≥ 0. Then, for all c ∈ [0, 1/2) and all a ≥ 0,

lim
n→∞

naP
(
‖β̂ − β0‖ > n−c

)
= 0,

where β̂ = (θ̂′, λ̂′)′ and β0 = (θ′0, λ
′
0)′ for EL and ET, and β̂ = (θ̂′, λ̂′, κ̂′, τ̂)′ and β0 =

(θ′0, λ
′
0, κ
′
0, τ0)′ for ETEL.

Proof. We first show for any ε > 0,

lim
n→∞

naP
(
‖β̂ − β0‖ > ε

)
= 0. (A.5)

First, consider EL or ET. Since ρ(λ0(θ)′gi(θ)) is continuous in θ and uniquely minimized at

θ0 ∈ int(Θ), standard consistency arguments using Lemma 2(b) show that

lim
n→∞

naP
(
‖θ̂ − θ0‖ > ε

)
= 0. (A.6)

Write λ̂ ≡ λ̂(θ̂) and λ0 ≡ λ0(θ0). By Lemma 2(a), (A.6), and the implicit function theorem

that λ0(θ) is continuous in a neighborhood of θ0, it follows

lim
n→∞

naP
(
‖λ̂− λ0‖ > ε

)
= 0. (A.7)

This proves (A.5) for EL and ET. For ETEL, (A.6) and (A.7) can be shown by Step 2 of

the proof of Theorem 10 of S2007 by applying AL1, AL2, and Lemma 2.

Since we have introduced auxiliary parameters (κ, τ) for ETEL, we need to prove con-

sistency of (κ̂, τ̂). Since κ̂ and τ̂ are continuous functions of θ̂ and λ̂, consistency of θ̂ and
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λ̂ implies that κ̂ and τ̂ are also consistent. Formally, this can be shown as follows. First,

we show

lim
n→∞

naP (‖τ̂ − τ0‖ > ε) = 0, (A.8)

where τ̂ = n−1
∑n

i=1 e
λ̂′ĝi and τ0 = Eeλ

′
0gi0 . This follows from

lim
n→∞

naP

(∥∥∥∥∥n−1
n∑
i=1

eλ̂
′ĝi − n−1

n∑
i=1

eλ
′
0gi0

∥∥∥∥∥ > ε

)
= 0, (A.9)

lim
n→∞

naP

(∥∥∥∥∥n−1
n∑
i=1

eλ
′
0gi0 − Eeλ′0gi0

∥∥∥∥∥ > ε

)
= 0. (A.10)

To show (A.9), we apply (A.6), (A.7), and AL1(b) with h(Xi) = C∂ρ(Xi) and p = q2. The

second result (A.10) follows from applying AL1(a) with c = 0, h(Xi) = eλ
′
0gi0−Eeλ′0gi0 , and

p = q2. Next, we show

lim
n→∞

naP (‖κ̂− κ0‖ > ε) = 0. (A.11)

This can be shown by combining (A.8) and the following results:

lim
n→∞

naP (‖ĝn − gn(θ0)‖ > ε) = 0, (A.12)

lim
n→∞

naP (‖gn(θ0)− Egi0‖ > ε) = 0, (A.13)

lim
n→∞

naP

(∥∥∥∥∥n−1
n∑
i=1

eλ̂
′ĝi ĝiĝ

′
i − n−1

n∑
i=1

eλ
′
0gi0gi0g

′
i0

∥∥∥∥∥ > ε

)
= 0, (A.14)

lim
n→∞

naP

(∥∥∥∥∥n−1
n∑
i=1

eλ
′
0gi0gi0g

′
i0 − Eeλ

′
0gi0gi0g

′
i0

∥∥∥∥∥ > ε

)
= 0. (A.15)

The first result (A.12) holds by Assumption 2(c), AL1(b) with h(Xi) = Cg(Xi) and p = qg,

and (A.6). The second result (A.13) holds by Assumption 2(c) and AL1(a) with h(Xi) =

gi(θ0) − Egi(θ0), c = 0 and p = qg. The third result (A.14) can be shown by applying the

triangle inequality, AL1(b), (A.6) and (A.7), and Schwarz matrix inequality multiple times.

In particular, we apply AL1(b) with h(Xi) = C∂ρ(Xi)‖gi0‖2, h(Xi) = C∂ρ(Xi)C
2
g (Xi),

h(Xi) = C∂ρ(Xi)Cg(Xi)‖gi0‖, h(Xi) = eλ
′
0gi0C2

g (Xi), and h(Xi) = eλ
′
0gi0Cg(Xi)‖gi0‖. For

h(Xi) = C∂ρ(Xi)‖gi(θ0)‖2, by Hölder’s inequality,

ECp∂ρ(Xi)‖gi0‖2p ≤
(
EC

p(1+ε)
∂ρ (Xi)

) 1
1+ε ·

(
E‖gi0‖2p(1+ε−1)

) ε
1+ε

, (A.16)

for any 0 < ε <∞. Since Assumption 2(c) holds for all qg <∞, we can take small enough

ε so that p = q2 > max{2, 2a} implies that (A.16) is finite by Assumption 3(d). Other
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h(Xi)’s can be shown to satisfy the condition similarly. Note that Assumption 3(d) implies

Eeq2λ
′
0gi(θ0) < ∞ for q2 > max{2, 2a}, because (i) a zero vector is in Λ(θ), (ii) Θ and Λ(θ)

are compacts, and (iii) ρ(0) = 0. The last result (A.15) can be shown by applying AL1(a)

with c = 0 and h(Xi) = eλ
′
0gi0gi0g

′
i0 − Eeλ

′
0gi0gi0g

′
i0. To see if h(Xi) satisfies the condition

of AL1(a), it suffices to show Eepλ
′
0gi0‖gi0‖2p <∞ for p ≥ 2 and p > 2a, but this condition

is met by letting p = q2 and using Hölder’s inequality. Thus, (A.5) is proved for ETEL.

Since we have established consistency of β̂ for β0, we now show the present lemma.

The proof is similar to that of Lemma 3 of A2002 and Step 3 of the proof of Theorem

10 of S2007. Since β̂ is in the interior of B with probability 1 − o(n−a), β̂ is the solution

to n−1
∑n

i=1 ψ(Xi, β̂) = 0 with probability 1 − o(n−a). By the mean value expansion of

n−1
∑n

i=1 ψ(Xi, β̂) = 0 around β0,

β̂ − β0 = −

(
n−1

n∑
i=1

∂ψ(Xi, β̃)

∂β′

)−1

n−1
n∑
i=1

ψ(Xi, β0), (A.17)

with probability 1−o(n−a), where β̃ lies between β̂ and β0 and may differ across rows. The

lemma follows from

lim
n→∞

naP

(∥∥∥∥∥n−1
n∑
i=1

∂ψ(Xi, β̃)

∂β′
− n−1

n∑
i=1

∂ψ(Xi, β0)

∂β′

∥∥∥∥∥ > ε

)
= 0, (A.18)

lim
n→∞

naP

(∥∥∥∥∥n−1
n∑
i=1

∂ψ(Xi, β0)

∂β′
− E∂ψ(Xi, β0)

∂β′

∥∥∥∥∥ > ε

)
= 0, (A.19)

lim
n→∞

naP

(∥∥∥∥∥n−1
n∑
i=1

ψ(Xi, β0)

∥∥∥∥∥ > n−c

)
= 0. (A.20)

First, to show (A.18), observe that the elements of (∂/∂β′)ψ(Xi, β) have the form

α · ρkρj (λ′gi) · gk0 ·Gk1 ·G(2)k2 , j = 1, 2, (A.21)

where α denotes products of components of β, kρ = 1, k0 ≤ 2, k1 ≤ 2, and k2 ≤ 1 for EL

and ET. For ETEL, we replace ρ
kρ
j (λ′gi0) with ekρλ

′
0gi0 , where kρ = 0, 1, k0 ≤ 3, k1 ≤ 2,

and k2 ≤ 1. For each element, we apply (A.5) and AL1(b) multiple times. For example,

ρ2(λ′gi(θ))gi(θ)gi(θ)
′ is an element of (∂/∂β′)ψ(Xi, β). Then,

‖ρ2(λ̃′g̃i)g̃ig̃
′
i − ρ2(λ′0gi0)gi0g

′
i0‖ (A.22)

≤ ‖β̃ − β0‖
(
C∂ρ(Xi) + |ρ2(λ′0gi0)| · Cg(Xi)

(
Cg(Xi)‖β̃ − β0‖+ 2‖gi0‖

))
,
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where g̃i = gi(θ̃). Now by using the fact that |ρ2(λ′0gi0)| ≤ C∂ρ(Xi)‖β0‖, Assumptions 2-3,

(A.5), and AL1(b), we show

P (‖ρ2(λ̃′g̃i)g̃ig̃
′
i − ρ2(λ′0gi0)gi0g

′
i0‖ > ε) = o(n−a). (A.23)

Other terms can be shown similarly. The condition of AL1(b) is satisfied by Assumptions

2-3, Hölder’s inequality, and letting p = q2. This proves (A.18). The second result (A.19)

can be shown analogously by using AL1(a) with c = 0 and h(Xi) = (∂/∂β′)ψ(Xi, β0) −
E(∂/∂β′)ψ(Xi, β0). The last result (A.20) holds by AL1(a) with h(Xi) = ψ(Xi, β0). By us-

ing Hölder’s inequality, the conditions of AL1(a) is satisfied if we let p = q2 > max{2, 2a
1−2c},

which hold by the assumption of the lemma. Q.E.D.

Let P ∗ be the probability distribution of the bootstrap sample conditional on the orig-

inal sample. Let E∗ denote expectation with respect to P ∗. Since we consider the non-

parametric iid bootstrap, E∗ is taken over the original sample with respect to the edf.

For example, E∗X∗i = n−1
∑n

i=1Xi. Write g∗i (θ) ≡ g(X∗i , θ) and ĝ∗i ≡ g∗(θ̂∗). Define

λ̂∗(θ) = arg maxλ∈RLg n−1
∑

i ρ(λ′g∗i (θ)). By the implicit function theorem, this solution

exists and is continuously differentiable in a neighborhood of θ̂∗. Write λ̂∗ ≡ λ̂∗(θ̂∗) for

notational brevity. Lemma 4 is the bootstrap version of Lemma 2. Let ρ(ν) = 1 − eν for

ETEL in the next lemma.

Lemma 4. Suppose Assumptions 1-3 hold with q1 ≥ 2 and q1 > 4a. Then, for all a ≥ 0

and all ε > 0,

(a) lim
n→∞

naP

(
P ∗
(

sup
θ∈Θ

∥∥∥λ̂∗(θ)− λ̂(θ)
∥∥∥ > ε

)
> n−a

)
= 0,

(b) lim
n→∞

naP

(
P ∗

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
ρ(λ̂∗(θ)′g∗i (θ))− ρ(λ̂(θ)′gi(θ))

)∣∣∣∣∣ > ε

)
> n−a

)
= 0.

Proof. We first show

lim
n→∞

naP

(
P ∗

(
sup

(θ,λ)∈Θ×Λ(θ)

∣∣∣∣∣n−1
n∑
i=1

(
ρ(λ′g∗i (θ))− ρ(λ′gi(θ))

)∣∣∣∣∣ > ε

)
> n−a

)
= 0. (A.24)

We use the proof of Lemma 8 of HH using AL6(a) with c = 0, rather than Lemma 7 of HH.

Since n−1
∑n

i=1 ρ(λ′gi(θ)) = E∗ρ(λ′g∗i (θ)), we apply AL6(a) with h(Xi) = ρ(λ′jgi(θj)) −
Eρ(λ′jgi(θj)) for any (θj , λj) ∈ Θ × Λ(θ) or h(Xi) = Cρ(Xi) − ECρ(Xi). By Minkowski

inequality, it suffices to show E|ρ(λ′jgi(θj))|p <∞ and ECpρ(Xi) <∞ for p ≥ 2 and p > 4a.

This is satisfied by letting p = q1.
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Next, we show

lim
n→∞

naP

(
P ∗
(

sup
θ∈Θ

∥∥λ̄∗(θ)− λ̄(θ)
∥∥ > ε

)
> n−a

)
= 0, (A.25)

where λ̄∗(θ) = arg maxλ∈Λ(θ) n
−1
∑n

i=1 ρ(λ′g∗i (θ)). We claim that for a given ε > 0, there

exists η > 0 independent of n such that for any θ ∈ Θ and any λ ∈ Λ(θ), ‖λ − λ̄(θ)‖ > ε

implies that n−1
∑

i ρ(λ̄(θ)′gi(θ))− n−1
∑

i ρ(λ′gi(θ)) ≥ η > 0 with probability 1− o(n−a).
This claim can be shown by similar arguments with the proof of Lemma 9 of A2002. For

any θ ∈ Θ and any λ ∈ Λ(θ), whenever ‖λ− λ̄(θ)‖ > ε, ‖λ− λ0(θ)‖ > ε/2 with probability

1−o(n−a) by the triangle inequality and Lemma 2. Since Eρ(λ′gi(θ)) is uniquely maximized

at λ0(θ) and continuous on Λ(θ), ‖λ−λ0(θ)‖ > ε/2 implies that there exists η(θ) such that

0 < η(θ) ≤ Eρ(λ0(θ)′gi(θ))− Eρ(λ′gi(θ)) (A.26)

≤ n−1
∑
i

ρ(λ̄(θ)′gi(θ))− n−1
∑
i

ρ(λ′gi(θ))

+Eρ(λ0(θ)′gi(θ))− n−1
∑
i

ρ(λ0(θ)′gi(θ))− Eρ(λ′gi(θ)) + n−1
∑
i

ρ(λ′gi(θ))

≤ n−1
∑
i

ρ(λ̄(θ)′gi(θ))− n−1
∑
i

ρ(λ′gi(θ))

+2 sup
(θ,λ)∈Θ×Λ(θ)

|n−1
∑
i

ρ(λ′gi(θ))− Eρ(λ′gi(θ))|.

Since (A.1) holds for all ε, letting ε = η(θ)/3 in (A.1) and η = infθ η(θ) proves the claim.

Then, we have

P (P ∗(sup
θ∈Θ
‖λ̄∗(θ)− λ̄(θ)‖ > ε) > n−a) (A.27)

≤ P

(
P ∗

(
sup
θ∈Θ

∣∣∣∣∣n−1
∑
i

(
ρ(λ̄(θ)′gi(θ))− ρ(λ̄∗(θ)′gi(θ))

)∣∣∣∣∣ > η

)
> n−a

)

≤ P

(
P ∗

(
sup

(θ,λ)∈Θ×Λ(θ)

∣∣∣∣∣n−1
∑
i

(
ρ(λ′g∗i (θ))− ρ(λ′gi(θ))

)∣∣∣∣∣ > η/2

)
> n−a

)
= o(n−a).

The second inequality holds by adding and subtracting n−1
∑

i ρ(λ̄(θ)′g∗i (θ)), and using the

definition of λ̄∗(θ). The last equality follows by (A.24). The present lemma (a) can be ob-

tained by replacing λ̄∗(θ) and λ̄(θ) with λ̂∗(θ) and λ̂(θ), respectively. Since n−1
∑

i ρ(λ′gi(θ))

and n−1
∑

i ρ(λ′g∗i (θ)) are concave in λ for any θ, as long as λ̄(θ) and λ̄∗(θ) are in the inte-

rior of Λ(θ), they are maximizers on RLg by Theorem 2.7 of Newey and McFadden (1994).

But by Assumption 2, λ̄(θ) ∈ int(Λ(θ)) with probability 1− o(n−a) and λ̄∗(θ) ∈ int(Λ(θ))
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with P ∗ probability 1 − o(n−a) except, possibly, if χ is in a set of P probability o(n−a).

Therefore, the present lemma (a) is proved.

Finally, the present Lemma (b) follows from the results below:

lim
n→∞

naP

(
P ∗

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
ρ(λ̂∗(θ)′g∗i (θ))− ρ(λ̂(θ)′g∗i (θ))

)∣∣∣∣∣ > ε

)
> n−a

)
= 0, (A.28)

lim
n→∞

naP

(
P ∗

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
ρ(λ̂(θ)′g∗i (θ))− ρ(λ̂(θ)′gi(θ))

)∣∣∣∣∣ > ε

)
> n−a

)
= 0.(A.29)

(A.28) can be shown as follows. By Assumption 2(d) and standard manipulation,

P

(
P ∗

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
ρ(λ̂∗(θ)′g∗i (θ))− ρ(λ̂(θ)′g∗i (θ))

)∣∣∣∣∣ > ε

)
> n−a

)
(A.30)

≤ P

(
P ∗

(
n−1

∑
i

Cρ(X
∗
i ) > ε

)
> n−a/2

)
+ P

(
P ∗
(

sup
θ∈Θ
‖λ̂∗(θ)− λ̂(θ)‖ > 1

)
> n−a/2

)
.

We apply AL6(d) with h(Xi) = Cρ(Xi) and p = q1 for the first term in the right-hand side

(RHS) of the above inequality, and apply the present lemma (a) for the second term to

show that the RHS is o(n−a). This proves (A.28). Since λ̂(θ) ∈ int(Λ(θ)) with probability

1− o(n−a), (A.29) follows from (A.24). Q.E.D.

Lemma 5. Suppose Assumptions 1-3 hold with q1 ≥ 2, q1 > 4a, and q2 > max
{

2, 4a
1−2c

}
for some c ∈ [0, 1/2) and some a ≥ 0. Then, for all c ∈ [0, 1/2) and all a ≥ 0,

lim
n→∞

naP
(
P ∗
(
‖β̂∗ − β̂‖ > n−c

)
> n−a

)
= 0,

where β̂∗ = (θ̂∗
′
, λ̂∗

′
)′ and β̂ = (θ̂′, λ̂′)′ for EL and ET, and β̂∗ = (θ̂∗

′
, λ̂∗

′
, κ̂∗

′
, τ̂∗)′ and

β̂ = (θ̂′, λ̂′, κ̂′, τ̂)′ for ETEL.

Proof. The proof is analogous to that of Lemma 3 except that it involves additional steps

for the bootstrap versions of the estimators. First, we show

lim
n→∞

naP
(
P ∗
(
‖β̂∗ − β̂‖ > ε

)
> n−a

)
= 0. (A.31)

Consider EL or ET. We claim that for a given ε > 0, there exists η > 0 independent of n such

that ‖θ− θ̂‖ > ε implies that 0 < η ≤ n−1
∑

i ρ(λ̂(θ)′gi(θ))−n−1
∑

i ρ(λ̂′ĝi) with probability

1− o(n−a). This claim can be shown by a similar argument with (A.26) by using the fact

that Eρ(λ0(θ)′gi(θ)) is uniquely minimized at θ0 and continuous in θ, AL1(b), Lemma 2(a),
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(A.4), (A.6), and (A.7). Thus, we have

P
(
P ∗
(
‖θ̂∗ − θ̂‖ > ε

)
> n−a

)
(A.32)

≤ P

(
P ∗

(∣∣∣∣∣n−1
∑
i

(
ρ(λ̂(θ̂∗)′gi(θ̂

∗))− ρ(λ̂′ĝi)
)∣∣∣∣∣ > η

)
> n−a

)

≤ P

(
P ∗

(∣∣∣∣∣n−1
∑
i

(
ρ(λ̂(θ̂∗)′gi(θ̂

∗))− ρ(λ̂∗
′
g∗i ) + ρ(λ̂∗(θ̂)′g∗i (θ̂))− ρ(λ̂′ĝi)

)∣∣∣∣∣ > η

)
> n−a

)

≤ P

(
P ∗

(
sup
θ∈Θ

∣∣∣∣∣n−1
∑
i

(
ρ(λ̂∗(θ)′g∗i (θ))− ρ(λ̂(θ)′gi(θ))

)∣∣∣∣∣ > η/2

)
> n−a

)
= o(n−a),

by Lemma 4(b). To show

lim
n→∞

naP
(
P ∗
(
‖λ̂∗ − λ̂‖ > ε

)
> n−a

)
= 0, (A.33)

we use the triangle inequality, (A.6), (A.32), Lemma 2(a), Lemma 4(a), and the implicit

function theorem that λ0(θ) is continuously differentiable around θ0. This proves (A.31) for

EL or ET. For ETEL, an analogous result to Lemma 4(b),

lim
n→∞

naP

(
P ∗

(
sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

(
l̂∗n(θ)− l̂n(θ)

)∣∣∣∣∣ > ε

)
> n−a

)
= 0, (A.34)

where

l̂∗n(θ) = log

(
n−1

n∑
i=1

eλ̂
∗(θ)′(g∗i (θ)−g∗n(θ))

)
, (A.35)

can be shown by Lemma 4(a), AL6, and AL7. Then, replacing Eρ(λ0(θ)′gi(θ)) with l0(θ)

and n−1
∑

i ρ(λ̂(θ)′gi(θ)) with l̂n(θ), and applying a similar argument with (A.26) give

(A.32) and (A.33) for ETEL.

For the auxiliary parameters κ and τ , the bootstrap versions of the estimators are

κ̂∗ = −

(
n−1

n∑
i=1

eλ̂
∗′ ĝ∗i ĝ∗i ĝ

∗′
i

)−1

τ̂∗ĝ∗n, (A.36)

τ̂∗ = n−1
n∑
i=1

eλ̂
∗′ ĝ∗i . (A.37)

First, the bootstrap version of (A.8) is

lim
n→∞

naP
(
P ∗ (‖τ̂∗ − τ̂‖ > ε) > n−a

)
= 0. (A.38)
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This follows from the triangle inequality, AL6(d) with h(X∗i ) = C∂ρ(X
∗
i ), Lemma 4(b),

(A.32), (A.33), and the implicit function theorem that λ̂∗(θ) is continuously differentiable

around θ̂∗. Second, the bootstrap version of (A.11) is

lim
n→∞

naP
(
P ∗ (‖κ̂∗ − κ̂‖ > ε) > n−a

)
= 0, (A.39)

and this follows from (A.32), (A.33), (A.38), Lemma 4, AL7, and multiple applications of

AL6. In particular, the condition of AL6 is satisfied with p = q2 > max {2, 4a} by using a

similar argument with (A.16). Thus, (A.31) is proved for ETEL.

The rest of the proof to show the argument of the lemma (with n−c in place of ε) is

analogous to that of Lemma 3 except that we apply AL6 instead of AL1. By Hölder’s

inequality, the binding condition is p = q2 > max {2, 4a/(1− 2c)} for AL6 but this is

satisfied by the assumption of the lemma. Q.E.D.

Let f(Xi, β) be a vector containing the unique components of ψ(Xi, β) and its deriva-

tives with respect to the components of β through order d, and ψ(Xi, β)ψ(Xi, β)′ and

its derivatives with respect to the components of β through order d − 1. We also intro-

duce some additional notation. Let Sn be a vector containing the unique components of

n−1
∑n

i=1 f(Xi, β0) on the support of Xi, and S = ESn. Similarly, let S∗n denote a vec-

tor containing the unique components of n−1
∑n

i=1 f(X∗i , β̂) on the support of Xi, and

S∗ = E∗S∗n.

Lemma 6. (a) Suppose Assumptions 1-3 hold with q2 > max {4, 4a} for some a ≥ 0. Then,

for all ε > 0 and all a ≥ 0,

lim
n→∞

naP (‖Sn − S‖ > ε) = 0.

(b) Suppose Assumptions 1-3 hold with q1 ≥ 2, q1 > 2a, and q2 > max {4, 8a} for some

a ≥ 0. Then, for all ε > 0 and all a ≥ 0,

lim
n→∞

naP
(
P ∗ (‖S∗n − S∗‖ > ε) > n−a

)
= 0.

Proof. The present lemma (a) can be shown as follows. By the definitions of Sn and S, it

suffices to show

P

(∥∥∥∥∥n−1
n∑
i=1

f(Xi, β0)− Ef(Xi, β0)

∥∥∥∥∥ > ε

)
= o(n−a). (A.40)

We apply AL1(b) with c = 0 and h(Xi) being any unique component of f(Xi, β0) −
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Ef(Xi, β0). To satisfy the condition of AL1(b), p ≥ 2 and p > 2a, we need to investi-

gate the components of f(Xi, β0). For EL or ET, f(Xi, β) consists of terms of the form

α · ρkρj (λ′gi(θ)) · gk0 ·Gk1 · · ·G(d+1)kd+1 , (A.41)

where α denotes products of components of β and and kl’s are nonnegative integers for

l = 0, 1, ...d + 1. In addition, j = 1, ..., d + 1, kρ = 1, 2, k0, k1 ≤ d + 1, kl ≤ d − l + 1 for

l = 2, ..., d, kd+1 ≤ 1, and
∑d+1

l=0 kl ≤ d+1. For ETEL, we replace ρ
kρ
j (λ′gi(θ)) with ekρλ

′gi(θ),

where kρ = 0, 1, 2, k0 ≤ d+3, kl ≤ d− l+2 for l = 1, 2, ..., d+1, and
∑d+1

l=0 kl ≤ d+3. Since

we assume that all the finite moments exist for gi(θ), ∀θ ∈ Θ and G
(j)
i0 , j = 1, 2, ..., d+1, the

values of kl’s do not impose additional restriction on the values of qg and qG in Assumptions

2-3. What matters is kρ, because the value of kρ is directly related to q2 in Assumption 3(d).

Since kρ = 2 is the most restrictive case, it suffices to show EC2p
∂ρ(Xi)C

(d+3)p
g (Xi) < ∞,

EC2p
∂ρ(Xi)C

(d+3)p
G (Xi) < ∞, Ee2pλ′0gi0C

(d+3)p
g (Xi) < ∞ and Ee2pλ′0gi0C

(d+3)p
G (Xi) < ∞ for

AL1(b) to be applied. By Hölder’s inequality, letting p = q2 > max {4, 4a} satisfies these

conditions.

The present lemma (b) can be shown as follows. By the definitions of S∗n and S∗, it

suffices to show

P

(
P ∗

(∥∥∥∥∥n−1
n∑
i=1

f(X∗i , β̂)− n−1
n∑
i=1

f(Xi, β̂)

∥∥∥∥∥ > ε

)
> n−a

)
= o(n−a). (A.42)

By the triangle inequality,∥∥∥∥∥n−1
n∑
i=1

(
f(X∗i , β̂)− f(Xi, β̂)

)∥∥∥∥∥ ≤

∥∥∥∥∥n−1
n∑
i=1

(f(X∗i , β0)− f(Xi, β0))

∥∥∥∥∥ (A.43)

+

∥∥∥∥∥n−1
n∑
i=1

(
f(X∗i , β̂)− f(X∗i , β0)

)∥∥∥∥∥
+

∥∥∥∥∥n−1
n∑
i=1

(
f(Xi, β̂)− f(Xi, β0)

)∥∥∥∥∥ .
For the first term of the RHS of the inequality (A.43), we apply Lemma AL6(a) with c = 0

and h(Xi) = f(Xi, β0)−Ef(Xi, β0). By using a similar argument with the proof of (A.40),

the most restrictive condition is met with p = q2 > max {4, 8a}. The second and the last

terms are shown by combining Lemma 3 with c = 0 and the following results: For all

β ∈ N(β0), some neighborhood of β0, there exist some functions C(Xi) and C∗(X∗i ) such
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that

‖f(Xi, β)− f(Xi, β0)‖ ≤ C(Xi)‖β − β0‖, (A.44)

‖f(X∗i , β)− f(X∗i , β0)‖ ≤ C∗(X∗i )‖β − β0‖, (A.45)

and these functions satisfy for some K <∞,

lim
n→∞

naP (‖n−1
n∑
i=1

C(Xi)‖ > K) = 0, (A.46)

lim
n→∞

naP (P ∗(‖n−1
n∑
i=1

C∗(X∗i )‖ > K) > n−a) = 0. (A.47)

After some tedious but straightforward calculation using the binomial theorem, the tri-

angle inequality, and Hölder’s inequality, AL1(b) implies that the most restrictive case

for the existence of such C(Xi) occurs when kρ = 2, which is satisfied with p = q2 >

max {4, 4a}. Similarly, the condition of AL6(d) with h(X∗i ) = C∗(X∗i ) is satisfied with

p = q2 > max {4, 8a}. Q.E.D.

Lemma 7. Let ∆n and ∆∗n denote
√
n(θ̂−θ0) and

√
n(θ̂∗− θ̂), or TMR and T ∗MR. For each

definition of ∆n and ∆∗n, there is an infinitely differentiable function A(·) with A(S) = 0

and A(S∗) = 0 such that the following results hold.

(a) Suppose Assumptions 1-4 hold with q1 ≥ 2, q1 > 2a, and q2 > max
{

4, 4a, 2ad
d−2a−1

}
and

d ≥ 2a+ 2 for some a ≥ 0, where 2a is a positive integer. Then,

lim
n→∞

sup
z
na|P (∆n ≤ z)− P (

√
nA(Sn) ≤ z)| = 0.

(b) Suppose Assumptions 1-4 hold with q1 ≥ 2, q1 > 4a, and q2 > max
{

4, 8a, 4ad
d−2a−1

}
and

d ≥ 2a+ 2 for some a ≥ 0, where 2a is a positive integer. Then,

lim
n→∞

naP

(
sup
z
|P ∗(∆∗n ≤ z)− P ∗(

√
nA(S∗n) ≤ z)| > n−a

)
= 0.

Proof. The proof is analogous to that of Lemma 13(a) of A2002 that uses his Lemmas 1

and 3-9. His Lemmas 1, 5, 6, and 7 are used in the proof, and denoted by AL1, AL5, AL6,

and AL7, respectively. His Lemma 3 is replaced by our Lemma 3. His Lemmas 4 and 8 are

not required because GEL is a one-step estimator without a weight matrix. His Lemma 9

is replaced by our Lemma 5. The main difference is that the conditions on q1 and q2 do not

appear in the proof of A2002 for GMM. Lemma 6 is used to give conditions for q1 and q2.
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I provide a sketch of the proof and an explanation where the conditions of the lemma are

derived from.

For part (a), the proof proceeds by taking Taylor expansion of the FOC around β0

through order d − 1. The remainder term ζn from the Taylor expansion satisfies ‖ζn‖ ≤
M‖β̂ − β0‖d ≤ n−dc for some M < ∞ with probability 1− o(n−a) by Lemma 3. To apply

AL5(a), the conditions such that n−dc+1/2 = o(n−a) or dc ≥ a + 1/2 for some c ∈ [0, 1/2),

and that 2a is an integer, need to be satisfied. The former is satisfied if d > 2a + 1 or

d ≥ 2a+ 2 (both d and 2a are integers), and the latter is assumed. Since the condition on

q2 of Lemma 3 is minimized with the smallest c, let c = (a+ 1/2)d−1. By plugging this into

the condition of Lemma 3, we have q1 ≥ 2, q1 > 2a, and q2 > max{2, 2ad(d−2a−1)−1}. In

addition, we use Lemma 6(a) to use the implicit function theorem for the existence of A(·).
By collecting the conditions of Lemmas 3 and 6(a), we have the condition for the present

lemma.9

The proof of part (b) proceeds analogously. By plugging the same c into the condition

of Lemma 5, we have q2 > max{2, 4ad(d − 2a − 1)−1}. The condition of Lemma 6(b) is

q1 ≥ 2, q1 > 2a, and q2 > max{4, 8a}. The condition of the present lemma collects these

conditions. Q.E.D.

We define the components of the Edgeworth expansions of the test statistic TMR and

its bootstrap analog T ∗MR. Let Ψn =
√
n(Sn − S) and Ψ∗n =

√
n(S∗n − S∗). Let Ψn,j

and Ψ∗n,j denote the jth elements of Ψn and Ψ∗n respectively. Let νn,a and ν∗n,a denote

vectors of moments of the form nα(m)EΠm
µ=1Ψn,jµ and nα(m)E∗Πm

µ=1Ψ∗n,jµ , respectively,

where 2 ≤ m ≤ 2a + 2, α(m) = 0 if m is even, and α(m) = 1/2 if m is odd. Let

νa = limn→∞ νn,a. The existence of the limit is proved in Lemma 8.

Let πi(δ, νa) be a polynomial in δ = ∂/∂z whose coefficients are polynomials in the

elements of νa and for which πi(δ, νa)Φ(z) is an even function of z when i is odd and is an

odd function of z when i is even for i = 1, ..., 2a, where 2a is an integer. The Edgeworth

expansions of TMR and T ∗MR depend on πi(δ, νa) and πi(δ, ν
∗
n,a), respectively.

Lemma 8. (a) Suppose Assumptions 1-3 hold with q2 > 4(a + 1) for some a ≥ 0. Then,

for all a ≥ 0, νn,a and νa ≡ limn→∞ νn,a exist.

(b) Suppose Assumptions 1-3 hold with q1 ≥ 2, q1 > 2a, and q2 > max
{

8(a+ 1), 8a(a+1)
(1−2ξ)

}
9There is a trade-off between the values of d, smoothness of the moment function, and q2, the

existence of higher moments of C∂ρ(Xi) or eλ0gi0 . Since λ0 6= 0 under misspecification, the value of
q2 may restrict the DGP for the bootstrap to be implemented. This issue is treated separately in
Lee (2014b).
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for some a ≥ 0 and some ξ ∈ [0, 1/2). Then, for all a ≥ 0 and all ξ ∈ [0, 1/2),

lim
n→∞

naP
(
‖ν∗n,a − νa‖ > n−ξ

)
= 0.

Proof. We first show the present lemma (a). Since νn,a contains multiplications of possibly

different components of Ψn =
√
n(Sn−S), it suffices to show the result for the least favorable

term (with respect to the value of q2) in Ψn. Let si be the least favorable term in f(Xi, β0).

Since a = 2 is the largest number that we need in later lemmas, we show the lemma for

m = 2, 3, 4, 5, 6. Then, we can show

nα(2)EΠ2
µ=1Ψn,jµ = Es2

i − (Esi)
2 = lim

n→∞
nα(2)EΠ2

µ=1Ψn,jµ , (A.48)

nα(3)EΠ3
µ=1Ψn,jµ = Es3

i − 3EsiEs
2
i + 2(Esi)

3 = lim
n→∞

nα(3)EΠ3
µ=1Ψn,jµ , (A.49)

nα(4)EΠ4
µ=1Ψn,jµ =

1

n
Es4

i −
4

n
EsiEs

3
i +
−6n+ 12

n
(Esi)

2Es2
i (A.50)

+
3(n− 1)

n
(Es2

i )
2 +

3(n− 2)

n
(Esi)

4

→
n→∞

3(Esi)
4 + 3(Es2

i )
2 − 6(Esi)

2Es2
i = lim

n→∞
nα(4)EΠ4

µ=1Ψn,jµ .

nα(5)EΠ5
µ=1Ψn,jµ =

1

n
Es5

i −
5

n
EsiEs

4
i −

30(n− 1)

n
Esi(Es

2
i )

2 (A.51)

+
10(n− 1)

n
Es2

iEs
3
i +

50n− 60

n
Es2

i (Esi)
3

+
−10n+ 20

n
(Esi)

2Es3
i +
−20n+ 24

n
(Esi)

5

→
n→∞

−30Esi(Es
2
i )

2 + 10Es2
iEs

3
i + 50Es2

i (Esi)
3

−10(Esi)
2Es3

i − 20(Esi)
5 = lim

n→∞
nα(5)EΠ5

µ=1Ψn,jµ .

nα(6)EΠ6
µ=1Ψn,jµ =

1

n2
Es6

i −
6

n2
Es5

iEsi +
15(n− 1)

n2
Es4

iEs
2
i (A.52)

+
10(n− 1)

n2
(Es3

i )
2 − 15n− 30

n2
Es4

i (Esi)
2

−120(n− 1)

n2
Es3

iEs
2
iEsi +

15(n− 1)(n− 2)

n2
(Es2

i )
3

+
100n− 120

n2
Es3

i (Esi)
3 − 45(n2 − 7n+ 6)

n2
(Es2

i )
2(Esi)

2

+
15(3n2 − 26n+ 24)

n2
Es2

i (Esi)
4 − 5(3n2 − 26n+ 24)

n2
(Esi)

6

→
n→∞

15(Es2
i )

3 − 45(Esi)
2(Es2

i )
2 + 45(Esi)

4Es2
i − 15(Esi)

6

= lim
n→∞

nα(6)EΠ6
µ=1Ψn,jµ .

In order for all the quantities to be well defined, the most restrictive case is the existence
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of Es6
i . For EL or ET, si = α0 · ρ2

j (λ
′
0gi0) · gk00 Πd+1

l=1G
(l)kl
0 , 1 ≤ j ≤ d+ 1, where α0 denotes

products of components of β0. Since ρj(ν) = (∂j)(∂νj) log(1−ν), 1 ≤ j ≤ d+1 for EL, Es6
i

exists under Assumptions 2-3. In particular, UBC (3.7) ensures that E|ρj(λ′0gi0)|kρ < ∞
for any finite kρ and for j = 1, ..., d + 1. For ET, ρj(ν) = −eν for 1 ≤ j ≤ d + 1. Thus,

si = α0 · e2λ0gi0 · gk00 Πd+1
l=1G

(l)kl
0 , for 1 ≤ j ≤ d + 1. This case is not trivial. By Hölder’s

inequality, we need q2 > 12 for Es6
i to exist. Note that the values of k0 and kl’s do not

matter as long as they are finite. Since ETEL has the same term e2λ0gi,0 in si with ET,

except for different values for k0 and kl for l = 1, ..., d+ 3, q2 > 12 is also needed for Es6
i to

exist. For arbitrary 0 ≤ a ≤ 2, we use the fact that max{m} = 2a+2 to show q2 > 4(a+1).

Next we show the present lemma (b). Since the bootstrap sample is iid, the proof

is analogous to that of the present lemma (a). In particular, we replace E, Xi, and β0

with E∗, X∗i , and β̂, respectively. Let s∗i (β) be the least favorable term in f(X∗i , β) and

s∗n(β) = n−1
∑n

i=1 s
∗
i (β). In addition, write ŝ∗i ≡ s∗i (β̂), ŝi ≡ si(β̂), ŝ∗n ≡ s∗n(β̂), and

ŝn ≡ sn(β̂) for notational brevity.

We describe the proof with m = 2, and this illustrates the proof for other values of m.

Since nα(2) = 1,

nα(2)E∗Π2
µ=1Ψ∗n,jµ = E∗ŝ∗2i − (E∗ŝ∗i )

2 = n−1
n∑
i=1

ŝ2
i −

(
n−1

n∑
i=1

ŝi

)2

.

Since limn→∞ n
α(2)EΠ2

µ=1Ψn,jµ = Es2
i − (Esi)

2, combining the following results proves the

lemma for m = 2:

P

(∥∥∥∥∥n−1
n∑
i=1

ûi − n−1
n∑
i=1

ui

∥∥∥∥∥ > n−ξ

)
= o(n−a), (A.53)

P

(∥∥∥∥∥n−1
n∑
i=1

ui − Eui

∥∥∥∥∥ > n−ξ

)
= o(n−a), (A.54)

where ûi = ŝi or ûi = ŝ2
i , and ui = si or ui = s2

i . We use the fact ‖ŝ2
i − s2

i ‖ ≤
‖ŝi − si‖(‖ŝi − si‖ + 2si), (A.44), AL1(b), and Lemma 3 to show (A.53). The second

result is shown by AL1(a) with c = ξ and h(Xi) = s2
i − Es2

i or h(Xi) = si − Esi. By

considering the most restrictive form of si and combining the conditions of the lemmas,

we need q2 > max
{

8, 8a(1− 2ξ)−1
}

by Hölder’s inequality. For m = 3, 4, 5, 6, we can

show similar results with (A.53) and (A.54) for ui = smi by using the binomial expansion,

AL1, Lemma 3, and (A.44). Again, the most restrictive condition arises when we apply

AL1(a) with c = ξ and h(Xi) = s6
i − Es6

i , and we need q2 > max
{

24, 24a(1− 2ξ)−1
}

by

Hölder’s inequality. For arbitrary a ≥ 0, we use the fact that max{m} = 2a + 2 to have
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q2 > max
{

8(a+ 1), 8a(a+ 1)(1− 2ξ)−1
}

and this is assumed in the lemma. Q.E.D.

Lemma 9. (a) Suppose Assumptions 1-4 hold with q1 ≥ 2, q1 > 2a, and q2 > max
{

4(a+ 1), 2ad
d−2a−1

}
and d ≥ 2a+ 2 for some a ≥ 0, where 2a is a positive integer. Then,

lim
n→∞

na sup
z∈R

∣∣∣∣∣P (TMR ≤ z)−

[
1 +

2a∑
i=1

n−i/2πi(δ, νa)

]
Φ(z)

∣∣∣∣∣ = 0.

(b) Suppose Assumptions 1-4 hold with q1 ≥ 2, q1 > 4a, and q2 > max
{

8(a+ 1), 8a(a+ 1), 4ad
d−2a−1

}
and d ≥ 2a+ 2 for some a ≥ 0, where 2a is a positive integer. Then,

lim
n→∞

naP

(
sup
z∈R

∣∣∣∣∣P ∗(T ∗MR ≤ z)−

[
1 +

2a∑
i=1

n−i/2πi(δ, ν
∗
n,a)

]
Φ(z)

∣∣∣∣∣ > n−a

)
= 0.

Proof. The proof is analogous to that of Lemma 16 of A2002. We use our Lemma 7 instead

of his Lemma 13. The coefficients νa are well defined by Lemma 8(a). Lemma 8(b) with

ξ = 0 ensures that the coefficients ν∗n,a are well behaved. Q.E.D.

A.3 Proof of Theorem 1

Proof. For part (a), let a = 1. To satisfy the conditions of the lemmas, we need d = 4,

q1 > 4, and q2 > 16. We first show

P

(
sup
z∈R
|P (TMR ≤ z)− P ∗(T ∗MR ≤ z)| > n−(1/2+ξ)ε

)
= o(n−1). (A.55)

By the triangle inequality,

P

(
sup
z∈R
|P (TMR ≤ z)− P ∗(T ∗MR ≤ z)| > n−(1/2+ξ)ε

)
(A.56)

≤ P

(
sup
z∈R

∣∣∣∣∣P (TMR ≤ z)−

(
1 +

2∑
i=1

n−i/2πi(δ, ν1)

)
Φ(z)

∣∣∣∣∣ > n−(1/2+ξ) ε

4

)

+P

(
sup
z∈R

∣∣∣∣∣P ∗(T ∗MR ≤ z)−

(
1 +

2∑
i=1

n−i/2πi(δ, ν
∗
n,1)

)
Φ(z)

∣∣∣∣∣ > n−(1/2+ξ) ε

4

)

+P

(
sup
z∈R

n−1/2
∣∣π1(δ, ν1)− π1(δ, ν∗n,1)

∣∣Φ(z) > n−(1/2+ξ) ε

4

)
+P

(
sup
z∈R

n−1
∣∣π2(δ, ν1)− π2(δ, ν∗n,1)

∣∣Φ(z) > n−(1/2+ξ) ε

4

)
= o(n−1).
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The last equality holds by Lemma 9(a)-(b) and Lemma 8(b). The rest of the proof follows

the same argument with (5.32)-(5.34) in the proof of Theorem 2 of Andrews (2001). This

establishes the first result of the present theorem (a). The second and the third result can

be proved analogously.

For part (b), let a = 3/2. Then, we need d = 5, q1 > 6, and q2 > 30. We use

the evenness of πi(δ, ν3/2)Φ(z) and πi(δ, ν
∗
n,3/2)Φ(z) for i = 1, 3 to cancel out these terms

through Φ(z)− Φ(−z). The rest follows analogously.

For part (c), let a = 2. Then, we need d = 6, q1 > 8, and q2 > 48. The proof is the

same with that of Theorem 2(c) of A2002 with his Lemmas 13, 14, and 16 replaced by

our Lemmas 7, 8, and 9. The proof relies on the argument of Hall (1988, 1992)’s methods

developed for “smooth functions of sample averages,” for iid data. Q.E.D.
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DGP C-1
n = 100 n = 200

CI J test CI J test
.90 .95 .05 .90 .95 .05

T=4

Boot

GMM C HH .925 .968 .006 .911 .960 .021
GMM MR L .939 .979 n/a .924 .969 n/a
EL MR L .921 .977

n/a
.918 .970

n/a
EL MR BNS .899 .963 .901 .954
ET MR L .922 .976

n/a
.918 .971

n/a
ET MR BNS .896 .960 .900 .957
ETEL MR L .916 .972

n/a
.909 .969

n/a
ETEL MR BNS .902 .961 .904 .954

Asymp

GMM MR .781 .843
.037

.830 .888
.039

GMM C .775 .839 .823 .889
EL MR .742 .812

.119
.812 .871

.081
EL C .730 .807 .795 .867
ET MR .753 .829

.097
.823 .881

.076
ET C .732 .809 .796 .868
ETEL MR .745 .817

.165
.813 .874

.108
ETEL C .741 .817 .800 .869

T=6

Boot

GMM C HH .961 .989 .000 .932 .975 .002
GMM MR L .981 .994 n/a .950 .987 n/a
EL MR L .970 .993

n/a
.934 .974

n/a
EL MR BNS .933 .973 .919 .960
ET MR L .961 .990

n/a
.925 .973

n/a
ET MR BNS .931 .976 .924 .968
ETEL MR L .959 .992

n/a
.926 .973

n/a
ETEL MR BNS .934 .975 .912 .957

Asymp

GMM MR .656 .740
.031

.760 .836
.045

GMM C .643 .726 .759 .836
EL MR .693 .762

.419
.784 .862

.257
EL C .654 .736 .748 .828
ET MR .732 .800

.325
.808 .878

.210
ET C .656 .740 .761 .841
ETEL MR .710 .777

.557
.794 .871

.356
ETEL C .664 .743 .754 .839

Table 1: Coverage Probabilities of 90% and 95% Confidence Intervals for ρ0 based
on GMM, EL, ET, and ETEL under DGP C-1. Number of Monte Carlo repetition
r = 5, 000. The Warp-Speed Monte Carlo method is used.
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DGP C-2
n = 100 n = 200

CI J test CI J test
.90 .95 .05 .90 .95 .05

T=4

Boot

GMM C HH .907 .957 .033 .898 .943 .044
GMM MR L .927 .968 n/a .908 .962 n/a
EL MR L .908 .957

n/a
.900 .957

n/a
EL MR BNS .883 .932 .879 .941
ET MR L .908 .956

n/a
.896 .953

n/a
ET MR BNS .895 .939 .889 .942
ETEL MR L .907 .953

n/a
.898 .954

n/a
ETEL MR BNS .892 .941 .883 .941

Asymp

GMM MR .798 .867
.050

.847 .900
.051

GMM C .795 .860 .846 .901
EL MR .795 .854

.092
.840 .894

.067
EL C .783 .847 .833 .891
ET MR .798 .858

.090
.842 .896

.067
ET C .781 .849 .831 .889
ETEL MR .797 .859

.117
.842 .895

.081
ETEL C .787 .853 .835 .892

T=6

Boot

GMM C HH .921 .969 .006 .913 .956 .027
GMM MR L .957 .987 n/a .940 .977 n/a
EL MR L .959 .991

n/a
.929 .972

n/a
EL MR BNS .925 .969 .918 .963
ET MR L .945 .984

n/a
.921 .967

n/a
ET MR BNS .919 .963 .901 .954
ETEL MR L .951 .987

n/a
.922 .968

n/a
ETEL MR BNS .927 .972 .909 .961

Asymp

GMM MR .709 .783
.053

.804 .876
.056

GMM C .717 .797 .806 .881
EL MR .747 .817

.284
.838 .900

.135
EL C .731 .809 .823 .891
ET MR .777 .846

.257
.848 .909

.138
ET C .737 .814 .821 .891
ETEL MR .756 .829

.391
.846 .904

.196
ETEL C .737 .814 .825 .894

Table 2: Coverage Probabilities of 90% and 95% Confidence Intervals for ρ0 based
on GMM, EL, ET, and ETEL under DGP C-2. Number of Monte Carlo repetition
r = 5, 000. The Warp-Speed Monte Carlo method is used.
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DGP M-1
n = 100 n = 200

CI J test CI J test
.90 .95 .05 .90 .95 .05

T=4

Boot

GMM C HH .839 .931 .002 .889 .952 .036
GMM MR L .919 .970 n/a .949 .982 n/a
EL MR L .819 .899

n/a
.871 .938

n/a
EL MR BNS .776 .854 .824 .894
ET MR L .819 .899

n/a
.873 .942

n/a
ET MR BNS .771 .851 .824 .898
ETEL MR L .820 .902

n/a
.872 .935

n/a
ETEL MR BNS .779 .859 .826 .895

Asymp

GMM MR .511 .564
.172

.642 .697
.277

GMM C .422 .474 .551 .616
EL MR .585 .648

.251
.697 .760

.301
EL C .558 .625 .636 .701
ET MR .588 .654

.233
.707 .768

.308
ET C .549 .620 .632 .700
ETEL MR .596 .660

.312
.713 .776

.362
ETEL C .571 .638 .654 .719

T=6

Boot

GMM C HH .920 .967 .000 .943 .983 .011
GMM MR L .971 .993 n/a .987 .995 n/a
EL MR L .947 .977

n/a
.918 .969

n/a
EL MR BNS .849 .926 .852 .917
ET MR L .935 .974

n/a
.926 .970

n/a
ET MR BNS .888 .941 .878 .936
ETEL MR L .931 .970

n/a
.914 .959

n/a
ETEL MR BNS .872 .933 .868 .933

Asymp

GMM MR .436 .489
.263

.592 .662
.586

GMM C .344 .398 .500 .572
EL MR .583 .649

.800
.688 .761

.882
EL C .490 .558 .546 .624
ET MR .634 .697

.734
.739 .814

.857
ET C .482 .560 .562 .646
ETEL MR .603 .673

.885
.706 .779

.927
ETEL C .482 .552 .555 .631

Table 3: Coverage Probabilities of 90% and 95% Confidence Intervals for ρ0 based
on GMM, EL, ET, and ETEL under DGP M-1. Number of Monte Carlo repetition
r = 5, 000. The Warp-Speed Monte Carlo method is used.
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DGP M-2
n = 100 n = 200

CI J test CI J test
.90 .95 .05 .90 .95 .05

T=4

Boot

GMM C HH .858 .933 .036 .887 .943 .121
GMM MR L .917 .969 n/a .944 .975 n/a
EL MR L .880 .929

n/a
.911 .956

n/a
EL MR BNS .861 .909 .898 .954
ET MR L .878 .930

n/a
.909 .953

n/a
ET MR BNS .858 .905 .899 .946
ETEL MR L .880 .929

n/a
.906 .957

n/a
ETEL MR BNS .861 .912 . 906 .956

Asymp

GMM MR .611 .656
.198

.721 .770
.304

GMM C .525 .582 .653 .707
EL MR .775 .823

.194
.849 .901

.259
EL C .766 .812 .844 .891
ET MR .771 .818

.199
.849 .899

.276
ET C .752 .801 .837 .884
ETEL MR .776 .824

.224
.849 .901

.284
ETEL C .766 .813 .845 .889

T=6

Boot

GMM C HH .921 .964 .012 .908 .966 .313
GMM MR L .970 .992 n/a .982 .995 n/a
EL MR L .962 .983

n/a
.930 .971

n/a
EL MR BNS .911 .956 .904 .953
ET MR L .954 .979

n/a
.924 .973

n/a
ET MR BNS .919 .958 .907 .959
ETEL MR L .959 .982

n/a
.924 .966

n/a
ETEL MR BNS .919 .957 .908 .961

Asymp

GMM MR .549 .617
.277

.692 .766
.619

GMM C .454 .516 .597 .671
EL MR .778 .839

.555
.856 .913

.727
EL C .717 .791 .794 .865
ET MR .802 .859

.550
.872 .926

.739
ET C .703 .778 .785 .857
ETEL MR .792 .851

.649
.863 .922

.784
ETEL C .723 .796 .800 .873

Table 4: Coverage Probabilities of 90% and 95% Confidence Intervals for ρ0 based
on GMM, EL, ET, and ETEL under DGP M-2. Number of Monte Carlo repetition
r = 5, 000. The Warp-Speed Monte Carlo method is used.
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T = 4 T = 6
DGP n = 100 n = 200 n = 100 n = 200

.90 .95 .90 .95 .90 .95 .90 .95

C-1

GMM C HH .489 .619 .325 .396 .321 .407 .194 .235
GMM MR L .546 .703 .349 .435 .389 .495 .212 .266
EL MR L .595 .807 .397 .513 .439 .582 .212 .269
EL MR BNS .553 .724 .376 .466 .354 .452 .199 .244
ET MR L .599 .805 .391 .499 .411 .546 .204 .258
ET MR BNS .546 .711 .364 .456 .349 .462 .203 .248
ETEL MR L .589 .781 .379 .494 .410 .551 .204 .266
ETEL MR BNS .555 .725 .373 .459 .353 .466 .193 .241

C-2

GMM C HH .531 .663 .348 .414 .326 .408 .205 .248
GMM MR L .584 .730 .362 .456 .395 .499 .232 .280
EL MR L .600 .776 .382 .475 .427 .576 .219 .269
EL MR BNS .544 .676 .361 .446 .358 .452 .211 .255
ET MR L .612 .780 .380 .471 .392 .520 .213 .261
ET MR BNS .579 .717 .373 .449 .352 .440 .201 .242
ETEL MR L .596 .757 .379 .468 .403 .537 .214 .260
ETEL MR BNS .563 .702 .364 .444 .360 .459 .206 .251

M-1

GMM C HH 1.157 1.566 .935 1.363 .798 1.101 .491 .723
GMM MR L 2.449 3.533 1.589 2.268 1.544 2.177 .924 1.292
EL MR L .925 1.340 .707 1.062 .807 1.224 .443 .618
EL MR BNS .779 1.076 .582 .804 .500 .702 .335 .439
ET MR L .953 1.382 .742 1.105 .793 1.201 .422 .569
ET MR BNS .803 1.096 .624 .850 .603 .826 .350 .447
ETEL MR L .921 1.351 .670 .987 .756 1.092 .420 .559
ETEL MR BNS .776 1.087 .555 .745 .564 .765 .359 .462

M-2

GMM C HH 1.230 1.742 .782 1.111 .705 .974 .371 .512
GMM MR L 2.132 3.093 1.328 1.845 1.342 1.864 .707 1.004
EL MR L .711 1.041 .415 .539 .585 .847 .247 .306
EL MR BNS .652 .867 .395 .527 .413 .546 .227 .277
ET MR L .739 1.119 .436 .562 .579 .827 .249 .317
ET MR BNS .666 .890 .415 .532 .458 .596 .234 .289
ETEL MR L .695 1.019 .412 .541 .552 .789 .237 .291
ETEL MR BNS .640 .874 .413 .538 .420 .542 .225 .279

Table 5: Width of 90% and 95% Bootstrap Confidence Intervals for ρ0 based on GMM,
EL, ET, and ETEL. Number of Monte Carlo repetition r = 5, 000. The Warp-Speed
Monte Carlo method is used.
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OLS GMM EL ET ETEL

const
β̂ .294 -.561 .016 -.059 -.023
s.e.C (.235) (.089) (.097) (.101) (.100)
s.e.MR (.194) (.109) (.125) (.121)

educ
β̂ .054 .056 .068 .070 .071
s.e.C (.010) (.006) (.005) (.006) (.006)
s.e.MR (.018) (.006) (.009) (.008)

exper
β̂ .068 .140 .076 .081 .082
s.e.C (.025) (.006) (.007) (.007) (.007)
s.e.MR (.022) (.008) (.011) (.010)

exper2

β̂ -.002 -.004 -.002 -.002 -.002
s.e.C (.001) (.0002) (.0002) (.0002) (.0002)
s.e.MR (.0006) (.0002) (.0003) (.0002)

IQ
β̂ .004 .007 .005 .006 .005
s.e.C (.001) (.001) (.001) (.001) (.001)
s.e.MR (.002) (.001) (.002) (.002)

KWW
β̂ .008 -.0003 -.002 -.004 -.005
s.e.C (.003) (.003) (.003) (.003) (.003)
s.e.MR (.007) (.003) (.004) (.004)

J test χ2
13 477.3 177.5 285.2 196.2

p-value [.000] [.000] [.000] [.000]

Table 6: Estimation of the Mincer equation using Census moments
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Estimator CI s.e. LB Point Est. UB Width

OLS Asymp n/a .033 .054 .074 .041

GMM

Asymp C .044

.056

.068 .024
Asymp MR .021 .091 .070
Boot (sym) MR L .003 .108 .105
Boot (eqt) MR L .019 .115 .096

EL

Asymp C .058

.068

.079 .021
Asymp MR .056 .080 .024
Boot (sym) MR L .041 .096 .055
Boot (sym) MR BNS .054 .083 .029
Boot (eqt) MR L .049 .099 .050
Boot (eqt) MR BNS .055 .085 .030

ET

Asymp C .058

.070

.081 .023
Asymp MR .052 .087 .035
Boot (sym) MR L .035 .104 .069
Boot (sym) MR BNS .047 .092 .045
Boots (eqt) MR L .047 .110 .063
Boots (eqt) MR BNS .047 .093 .046

ETEL

Asymp C .060

.071

.083 .023
Asymp MR .056 .086 .030
Boot (sym) MR L .039 .104 .066
Boot (sym) MR BNS .052 .090 .038
Boot (eqt) MR L .051 .108 .057
Boot (eqt) MR BNS .053 .093 .040

Table 7: 95% Confidence Intervals for the Returns to Schooling. Number of Bootstrap
Repetition B = 5, 000.
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