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Abstract

I propose a nonparametric iid bootstrap procedure for the empirical likeli-
hood, the exponential tilting, and the exponentially tilted empirical likelihood
estimators that achieves sharp asymptotic refinements for ¢ tests and confidence
intervals based on such estimators. Furthermore, the proposed bootstrap is ro-
bust to model misspecification, i.e., it achieves asymptotic refinements regard-
less of whether the assumed moment condition model is correctly specified or
not. This result is new, because asymptotic refinements of the bootstrap based
on these estimators have not been established in the literature even under cor-
rect model specification. Monte Carlo experiments are conducted in dynamic
panel data setting to support the theoretical finding. As an application, boot-
strap confidence intervals for the returns to schooling of Hellerstein and Imbens

(1999) are calculated. The returns to schooling may be higher.
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1 Introduction

This paper establishes asymptotic refinements of the nonparametric iid bootstrap for
t tests and confidence intervals (CI's) based on the empirical likelihood (EL), the
exponential tilting (ET), and the exponentially tilted empirical likelihood (ETEL)
estimators. This is done without recentering the moment function in implementing
the bootstrap, which has been considered as a critical procedure for overidentified
moment condition models. Moreover, the proposed bootstrap is robust to misspecifi-
cation, i.e., the resulting bootstrap CI’s achieve asymptotic refinements for the true
parameter when the model is correctly specified, and the same rate of refinements
is achieved for the pseudo-true parameter when misspecified. This is a new result
because in the existing literature, there is no formal proof for asymptotic refinements
of the bootstrap for EL, ET, or ETEL estimators even under correct specification.
In fact, any bootstrap procedure with recentering for these estimators would be in-
consistent if the model is misspecified because recentering imposes the correct model
specification in the sample. This paper is motivated by three questions: (i) Why
these estimators? (ii) Why bootstrap? (iii) Why care about misspecification?

First of all, EL, ET, and ETEL estimators are used to estimate a finite dimensional
parameter characterized by a moment condition model. Traditionally, the generalized
method of moments (GMM) estimators of Hansen (1982) have been used to estimate
such models. However, it is well known that the two-step GMM may suffer from finite
sample bias and inaccurate first-order asymptotic approximation to the finite sample
distribution of the estimator when there are many moments, the model is non-linear,
or instruments are weak. See Altonji and Segal (1996) and Hansen, Heaton, and
Yaron (1996) among others on this matter.

Generalized empirical likelihood (GEL) estimators of Newey and Smith (2004)
are alternatives to GMM as they have smaller asymptotic bias. GEL circumvents the
estimation of the optimal weight matrix, which has been considered as a significant
source of poor finite sample performance of the two-step efficient GMM. GEL includes
the EL estimator of Owen (1988, 1990), Qin and Lawless (1994), and Imbens (1997),
the ET estimator of Kitamura and Stutzer (1997) and Imbens, Spady, and Johnson
(1998), the continuously updating (CU) estimator of Hansen, Heaton, and Yaron
(1996), and the minimum Hellinger distance estimator (MHDE) of Kitamura, Otsu,
and Evdokimov (2013). Newey and Smith (2004) show that EL has the most favor-



able higher-order asymptotic properties than other GEL estimators. Although EL is
preferable to other GEL estimators as well as GMM estimators, its nice properties
no longer holds under misspecification. In contrast, ET is often considered as robust
to misspecification. Schennach (2007) proposes the ETEL estimator that shares the
same higher-order property with EL under correct specification while possessing ro-
bustness of ET under misspecification. Hence, this paper considers the most widely
used, EL, the most robust, ET, and a hybrid of the two, ETEL.! An extension of the
result to other GEL estimators is possible, but not attempted to make the argument
succinct.

Secondly, many efforts have been made to accurately approximate the finite sam-
ple distribution of GMM. These include analytic correction of the GMM standard
errors by Windmeijer (2005) and the bootstrap by Hahn (1996), Hall and Horowitz
(1996), Andrews (2002), Brown and Newey (2002), Inoue and Shintani (2006), Allen,
Gregory, and Shimotsu (2011), Lee (2014), among others. The bootstrap tests and
CT’s based on the GMM estimators achieve asymptotic refinements over the first-order
asymptotic tests and CI’s, which means their actual test rejection probability and CI
coverage probability have smaller errors than the asymptotic tests and CI’s. In par-
ticular, Lee (2014) applies a similar idea of non-recentering to GMM estimators by
using Hall and Inoue (2003)’s misspecification-robust variance estimators to achieve
the same sharp rate of refinements with Andrews (2002).

Although GEL estimators are favorable alternatives to GMM, there is little evi-
dence that the finite sample distribution of GEL test statistics is well approximated
by the first-order asymptotics. Guggenberger and Hahn (2005) and Guggenberger
(2008) find by simulation studies that the first-order asymptotic approximation to
the finite sample distribution of EL estimators may be poor. Thus, it is natural
to consider bootstrap ¢ tests and CI’s based on GEL estimators to improve upon
the first-order asymptotic approximation. However, few published papers deal with
bootstrapping for GEL. Brown and Newey (2002) and Allen, Gregory, and Shimotsu
(2011) employ the EL implied probability in resampling for GMM estimators, but
not for GEL estimators. Canay (2010) shows the validity of a bootstrap procedure

for the EL ratio statistic in the moment inequality setting. Kundhi and Rilstone

! Precisely speaking, ETEL is not a GEL estimator. However, the analysis is quite similar because
it is a combination of the two GEL estimators. Therefore, this paper uses the term “GEL” to include
ETEL as well as EL and ET to save space and to prevent any confusion.



(2012) argue that analytical corrections by Edgeworth expansion of the distribution
of GEL estimators work well compared to the bootstrap, but they assume correct
model specification.

Lastly, the validity of inferences and CI’s critically depends on the correctly spec-
ified model assumption. Although model misspecification can be asymptotically de-
tected by an overidentifying restrictions test, there is always a possibility that one
does not reject a misspecified model or reject a correctly specified model in finite sam-
ple. Moreover, there is a view that all models are misspecified and will be rejected
asymptotically. The consequences of model misspecification are twofold: a poten-
tially biased probability limit of the estimator and a different asymptotic variance.
The former is called the pseudo-true value, and it is impossible to correct the bias
in general. Nevertheless, there are cases such that the pseudo-true values are still
the object of interest: see Hansen and Jagannathan (1997), Hellerstein and Imbens
(1999), Bravo (2010), and Almeida and Garcia (2012). GEL pseudo-true values are
less arbitrary than GMM ones because the latter depend on a weight matrix, which is
an arbitrary choice by a researcher. In contrast, each of the GEL pseudo-true values
can be interpreted as a unique minimizer of a well-defined discrepancy measure, e.g.
Schennach (2007).

The asymptotic variance of the estimator, however, can be consistently estimated
even under misspecification. If a researcher wants to minimize the consequence of
model misspecification, a misspecification-robust variance estimator should be used
for ¢ tests or confidence intervals. The proposed bootstrap uses the misspecification-
robust variance estimator for EL, ET, and ETEL in constructing the ¢ statistic. This
makes the proposed bootstrap robust to misspecification without recentering, and en-
ables researchers to make valid inferences and CI’s against unknown misspecification.

The remainder of the paper is organized as follows. Section 2 explains the idea
of non-recentering by using a misspecification-robust variance estimator for the ¢
statistic. Section 3 defines the estimators and the t statistic. Section 4 describes
the nonparametric iid misspecification-robust bootstrap procedure. Section 5 states
the assumptions and establishes asymptotic refinements of the misspecification-robust
bootstrap. Section 6 presents Monte Carlo experiments. An application to estimate
the returns to schooling of Hellerstein and Imbens (1999) is presented in Section 7.

Section 8 concludes the paper. Lemmas and proofs are collected in Appendix A.



2 Outline of the Results

This section explains why the proposed procedure achieves asymptotic refinements
without recentering. The key idea is to construct an asymptotically pivotal statistic
regardless of misspecification. Bootstrapping an asymptotically pivotal statistic is
critical to get asymptotic refinements of the bootstrap (e.g. see Beran, 1988; Hall,
1992; Hall and Horowitz, 1996; Horowitz, 2001; Andrews, 2002; and Brown and
Newey, 2002). That is, the asymptotic distribution of the test statistic should not
depend on unknown population quantities or data generating process (DGP), under
the null hypothesis. Thus, we need to construct the ¢ statistic that converges in
distribution to the standard normal, both in the sample and in the bootstrap sample.
Usually, there is no need to treat the bootstrap sample or statistic specially. For
overidentified moment condition models, however, it is important to understand the
impact of overidentification when constructing the ¢ statistic in the bootstrap sample.

Suppose that x,, = {X; : i < n} is an independent and identically distributed (iid)
sample. Let F' be the corresponding cumulative distribution function (cdf). Let 6 be
a parameter of interest and g(Xj;,6) be a moment function. The moment condition

model is correctly specified if
He : Eg(X;,60p) =0 (2.1)
for a unique 0. The hypothesis is denoted by Hs. The hypothesis of interest is
Hy: 0 = 0y. (2.2)

The usual ¢ statistic T is asymptotically standard normal under Hy and He.

Now define the bootstrap sample. Let x;, = {X} : i < n,} be a random draw with
replacement from y,, according to the empirical distribution function (edf) F,,. In this
section, I distinguish the number of sample n and the number of bootstrap sample

ng, which helps understand the concept of the conditional asymptotic distribution.?

2ng should be distinguished from the number of bootstrap repetition, often denoted by B. For
more discussions, see Bickel and Freedman (1981).



The bootstrap versions of Ho and Hy are

He o Eg(X7,0) =0, (2.3)
Hi: 6=09, (2.4)

where E* is the expectation taken over the bootstrap sample and 0 is a GEL estimator.
Note that 6 is considered as the true value in the bootstrap world. The bootstrap
version of the usual ¢ statistic 7¢, however, is not asymptotically pivotal conditional

on the sample because H(, is not satisfied in the sample if the model is overidentified:
E*g(X;,0)=n"") g(X;,0) #0. (2.5)

Thus, Hall and Horowitz (1996), Andrews (2002), and Brown and Newey (2002)
recenter the bootstrap version of the moment function to satisfy Hf. The resulting ¢
statistic based on the recentered moment function, T¢, z, tends to the standard normal
distribution as n;, grows conditional on the sample almost surely, and asymptotic
refinements of the bootstrap are achieved.

This paper takes a different approach. Instead of jointly testing Ho and Hy, I
solely focus on Hy, leaving that Hs may not hold. If the model is misspecified, then
there is no such @ that satisfies Hq:

Eg(X;,0) £0,Y0 € ©, (2.6)

where O is a compact parameter space. This may happen only if the model is overi-
dentified. Since there is no true value, the pseudo-true value 6, should be defined.
Instead of He, 0 is defined as a unique minimizer of the population version of the em-
pirical discrepancy used in the estimation. For EL, this discrepancy is the Kullback-
Leibler Information Criterion (KLIC). For ET, it maximizes a quantity named en-
tropy. This definition is more flexible since it includes correct specification as a special
case when H¢ holds at 6,. Without assuming Ho, we can find regularity conditions for
v/n—consistency and asymptotic normality of 0 for the pseudo-true value . Assume

such regularity conditions hold. Then, we have

~

\/5(0 — 6‘0) —d N(O, ZMR); (27)



as the sample size grows where the asymptotic variance matrix ¥y, is different from
the standard one. ;g can be consistently estimated using the formula given in the
next section. Let 3 MR be a consistent estimator for ¥,,z. The misspecification-robust

t statistic is given by?

~

0—40
TMR - A—O, (28)
A / EMR/R
and T)/g is asymptotically standard normal under H,, without assuming H¢.
Similarly, the bootstrap version of the ¢ statistic is
0 — 6
(2.9)

Tyr = T
\/ E}k\/IR/nb

where 6* and XAITWR are calculated using the same formula with 0 and % mr. Condi-
tional on the sample almost surely, T}, tends to the standard normal distribution as
n, grows under H. Since the conditional asymptotic distribution does not depend
on H¢., we need not recenter the bootstrap moment function to satisfy Hf. In other
words, the misspecification-robust t statistic Ty, g is asymptotically pivotal under Hy,
while the usual ¢ statistic T¢ is asymptotically pivotal under Hy and He. This paper
develops a theory for bootstrapping Th/g, instead of T-. Note that both can be used
to test the null hypothesis Hy : 6 = 6y under correct specification. Under misspecifi-
cation, however, only T);r can be used to test Hy because T¢ is not asymptotically
pivotal. This is useful when the pseudo-true value is an interesting object even if the
model is misspecified.

To find the formula for ¥,,r, I use a just-identified system of the first-order con-
ditions (FOC’s) of EL, ET, and ETEL estimators. This idea is not new, though.
Schennach (2007) uses the same idea to find the asymptotic variance matrix of the
ETEL estimator robust to misspecification. For GMM estimators, the idea of rewrit-
ing the overidentified GMM as a just-identified system appears in Imbens (1997,2002)
and Chamberlain and Imbens (2003). Hall and Inoue (2003) find the formula for ¥,
of GMM estimators by expanding the FOC. They show that the formula is different
from the one under correct specification, but it coincides with the standard GMM
variance matrix if the model is correctly specified.

A natural question is whether we can use GEL implied probabilities to construct

3For notational brevity, let § and X,z be scalars in this section.



the cdf estimator F' and use it instead of the edf F, in resampling. This is possible
only when the population moment condition is correctly specified. By construction, F
satisfies E*g( X}, é) = 0, so that the bootstrap moment condition is always correctly
specified. For instance, Brown and Newey (2002) argue that using the EL-estimated
cdf FEL(,Z) = > . 1(X; < z)p;, where p; is the EL implied probability, in place of
the edf F, in resampling would improve efficiency of bootstrapping for GMM. Their
argument relies on the fact that 3 w1, 1s an efficient estimator of the true cdf F. If
the population moment condition is misspecified, however, then the cdf estimator
based on the implied probability is inconsistent for F' because E*g(X7,0) = 0 holds
even in large sample, while Eg(X;,0y) # 0. In contrast, the edf F, is uniformly
consistent for F' regardless of whether the population moment condition holds or not
by Glivenko-Cantelli Theorem. For this reason, I mainly focus on resampling from
F,, rather than F' in this paper. However, a shrinkage-type cdf estimator combining
F, and F , similar to Antoine, Bonnal, and Renault (2007), can be used to improve
both robustness and efficiency. For example, a shrinkage that has the form

~! €, — 0 as n grows, (2.10)

Ti=¢€npi+(1—€) n
where p; is a GEL implied probability, would work with the proposed misspecification-

robust bootstrap because
Big(X:,0) = (1 = e > g(X:,0) 40, (211)

where the expectation is taken with respect to Fi(z) = 32, 1(X; < 2)m;. A promising
simulation result using this shrinkage estimator in resampling is provided in Section
6.

Note that the definition of misspecification considered in this paper is different
from that of White (1982). In his quasi-maximum likelihood (QML) framework, the
underlying cdf is misspecified. Since the QML theory deals with just-identified models
where the number of parameters is equal to the number of moment restrictions, (2.1)
holds even if the underlying cdf is misspecified. Hence, the model is not misspecified

in this paper’s framework. For bootstrapping QML estimators, see Gongalves and

White (2004).



3 Estimators and Test Statistics

Let g(X;,0) be an L, x 1 moment function where § € © C R is a parameter of
interest, where L, > Ls. Let GY(X;,0) denote the vectors of partial derivatives
with respect to 6 of order j of g(X;,0). In particular, GM(X;,0) = G(X;,0) =
(0/00")g(X;,0) is an L, x Ly matrix and G®(X;,0) = (9/00")vec{G(X;,0)} is an
L,Lg x Ly matrix, where vec{-} is the vectorization of a matrix. To simplify notation,
write g;(6) = g(X;,8), GY(0) = GV (X;,6), §: = 9(X;,0), and GY) = GU)(X,, 6) for
j=1,..,d+1, where § is EL, ET or ETEL estimator. In addition, let gy = g;(6,)
and G;o = G;(0y), where 6y is the (pseudo-)true value.

3.1 Empirical Likelihood and Exponential Tilting Estimators

To define EL and ET estimators, I follow the notation of Newey and Smith (2004)
and Anatolyev (2005). Let p(r) be a concave function in a scalar v on the domain
that contains zero. For EL, p(v) = log(1 —v) for v € (—o0,1). For ET, p(v) =1—¢"
for v € R. In addition, let p;(v) = & p(v)/OvI for j =0,1,2,---.

The EL or the ET estimator, é, and the corresponding Lagrange multiplier, 5\,

solve a saddle point problem

) 1 ;-
iz 3 p(Xg.(0). 3.1
The FOC'’s for (é, 5\) are
_ 1 N A A{A _ -1 $ra A
L90><1 =n Zpl()\ gz)Gz)\, Lg0x1 n E pl()\ gl)gz‘ (3‘2)

i=1 i=1

A useful by-product of the estimation is the implied probabilities. The EL and the

ET implied probabilities for the observations are, for : =1, ..., n,

1
EL: pi=—7>57,

N g

(3.3)

e

Zj:l e

(3.4)

These probabilities may be used in resampling to increase efficiency under correct

9



specification.
The FOC’s hold regardless of model misspecification and form a just-identified
moment condition. Let (X;, 8) be a (Lg + L,) x 1 vector such that

ﬁ) ;Xk,/? P A/gi 0 (;i 0)' \

b8y = | D& il ,( NGO | (3.5)
a(Xi, B) p1(N'gi(0))gi(0)

Then, the EL or the ET estimator and the corresponding Lagrange multiplier denoted

by an augmented vector, B= (é', ;\')’, are given by the solution to n=' >"" ¢(X;, B) =

0. In the limit, the pseudo-true value By = (6j, A,)’ solves the population version of

the FOC’s:
0 = Ep1(Agi0)Gigho, 0 = Epi(Xygio)io- (3.6)

Lgx1 Lgx1

In this setting, consistency and asymptotic normality of 3 = (é’ Y ) for By = (0, Ap)’
can be shown by using standard asymptotic theory of just-identified GMM, e.g.
Newey and McFadden (1994).

For EL, Chen, Hong, and Shum (2007) provide regularity conditions for \/n-
consistency and asymptotic normality under misspecification. In particular, they

assume that the moment function is uniformly bounded:

UBC: sup |g(z,0)| <oo and inf (1—Ng(z,0)) >0, (3.7)
0€0,zex 0€O,NEA(0),zEX

where © and A(f) are compact sets and x is the support of X;. This is a strong
condition on the support of the data, e.g., Schennach (2007). Nevertheless, if the
data is truncated or the moment function is constructed to satisfy UBC, then the EL
estimator would be /n-consistent for the pseudo-true value and the bootstrap can
be implemented. For ET, UBC is not required. The ET estimator is /n-consistent
and asymptotically normal under a slightly weaker condition than Assumption 3 of
Schennach (2007).4

Assuming regularity conditions, we have the following proposition:

Proposition 1. Suppose reqularity conditions hold. In particular, assume that UBC
holds for EL. Let 3 = (é’, ;\’)’ be either the EL or the ET estimator and its Lagrange

4We need to replace Schennach(2007)’s Assumption 3(2) with the ET saddle-point problem. In
addition, we only require ko = 0, 1,2 instead of ks = 0,1,2,3,4 in Assumption 3(6).

10



multiplier, and By = (04, \;)" be the corresponding pseudo-true value. Then,
V(B = flo) =4 N(O,D7MW(I) ),

where I' = E(0/08" )Y (X, Po) and ¥ = Ep (X5, Bo) (X, o)’

The Jacobian matrix for EL or ET is given by

06(Xi,B) _ [ (0/00)61(X,,B) (0/ON )1 (X;, 5) 58

op’ (0/00")1h2( X5, 8)  (9/ON)h2( X5, B)
where

81#1(8);@75) P1<)\/gi(9))()\l ® [Lg)Gz@)(e) + PQ(XQZ'(9))Gi(‘9)/)\)\/Gi<0)’ (3.9)

QBB ORD) (0G0 + N 0) G0 i 0).

W p2(Ngi(6))g:(0)g:(6)".

I' and ¥ can be estimated by

I=n" i %ﬂi’ﬁ) and ¥ =n"! i WX, B (X, B, (3.10)

% 7

respectively. The upper left Ly x Ly submatrix of T™W(I”)~! denoted by X/g, is the
asymptotic variance matrix of \/ﬁ(é — ). This coincides with the usual asymptotic
variance matrix Yo = (EG} (Egiogly) " EGi) ' under correct specification, but they
differ in general under misspecification. Let S be the corresponding submatrix of
the variance estimator f’_l‘if(f’ )~!. Even under correct specification, S is different
from f)c, the conventional variance estimator consistent for ¥, because )y MR contains

additional terms which are assumed to be zero in ﬁ]g.

3.2 Exponentially Tilted Empirical Likelihood Estimator

Schennach (2007) proposes the ETEL estimator which is designed to be robust to
misspecification without UBC, while it maintains the same nice higher-order prop-

erties with EL under correct specification. The ETEL estimator and the Lagrange

11



multiplier (6, \) solve

1 0 0;(0) = - A1
argergm —n Z ognw;(0), wi(0) > eA0)g;(0) (3:.11)

where A = A(0) and
MO) = arg max —n_ Z eN9il0 (3.12)

i=1
This estimator is a hybrid of the EL estimator and the ET implied probability. Equiv-

alently, the ETEL estimator 6 minimizes the objective function

Zn( = log ( Z A(8)' (9i(6)~gn 9))) (3.13)

where ¢,(0) =n' Y7, g;(f). In order to describe the asymptotic distribution of the
ETEL estimator, Schennach introduces auxiliary parameters to formulate the problem
into a just-identified GMM. Let 8 = (#', N, x’,7)', where k € Rl and 7 € R. By
Lemma 9 of Schennach (2007), the ETEL estimator 0 is given by the subvector of
B = (6, N,~,7), the solution to

n Y (X, B) =0, (3.14)
where
1(Xi, B) e OG(0) (k + Agi(0)' — N) + 7G4(0)' X
Vo (X, B T —eN00) . g;(0) + MO - g,(0)g:(0)
g = | e | | )-ai0) (6)0i(0)
V3(Xy, B) X9 - g,(0)
Ya(Xi, B) eNoil®) — 7
(3.15)
Note that the estimators of the auxiliary parameters, < and 7 are given by
- -1
n . n e)\/gi
F=n"t Z % and &= — (n_l Z - Q@;) G, (3.16)
T
=1 =1

12



where g, = n7'>".g;. The probability limit of B is the pseudo-true value By, =
(0, Ao, k6, To)' that solves E(X;, fy) = 0. In particular, a function Ag(€) is the
solution to Eer9:(®) gi(6) = 0, where \g = \g(6p) and 6y is a unique minimizer of the

population objective function:

1o(0) = log (B @ @0 Ea0)) (3.17)
By Theorem 10 of Schennach,

V(B = o) = N(O,T710(I) ), (3.18)

where I' = E(9/08")¥(X;, Bo) and ¥ = Ev(X;, Bo)Y(Xi, Bo).

I' and ¥ are estimated by the same formula with (3.10). In order to estimate I,
we need an exact formula of (0/95")¥(X;, B). The partial derivative of 1 (X;, 5) is
given by

; o1(X4,8)  01(Xe,B)  Ovi(Xy,B)  9v1(Xa,B
M:( e T T >), (3.19)
op’ Lox Ly LoxLg LoxLg Lox1
where

W NI LG (0) (N + A&+ Agi(0) KN — AN)Gy(6) (3.20)
H 4R aON = N) © 1)GP0 | 7V © 1,)G26),

%‘)}?’B) NG (0) {()\gi(e)’fi +r—=Ng(0) + (9:(0) Kk — 1)ILg} (3.21)
+7Gi(6)/,

PZD) a0 ) (1, + Aal6)), (3.22)

- A
61/)1 (Xw ﬁ) /
— = GO (3.23)

The partial derivative of ¥,(X;, ) is given by

; O (X, o2 (X, ! g;
QBB _ (o S S0a0a0) a0)), 2
op' LyxLg LgxLg LgxLyg Lyx1

13



where

Oa( Xy, ) Oi(Xy, B)

= 3.25
00’ ox (3:25)
aw leﬁ 'q;
% X g,(0)g:(0) (rg;(0) — I1,). (3.26)
The partial derivative of ¥3(X;, ) is given by
(91/)3(Xl,6) B 01 (Xi,8) N9 0) 0. (0)a: () 0 0
o LgaXﬁLg ngX(Lg)g( ) LoxLg  Lgx1 J> (3:27)
and the partial derivative of 14(X;, 8) is given by
M4 (X, B) Na@ONG(0) eN9Og. ()Y 0 —1
= NGl ) e leggz( oo o). (3.28)

The upper left Ly x Ly submatrix of D71W(T")~!, denoted by Yy, is the asymptotic
variance matrix of /n(0 — 6y). Let S be the corresponding submatrix of the

-1

variance estimator ffl\i/(f’ ) Again, ¥y is different from ¥¢ in general under

misspecification, but they become identical under correct specification.’

3.3 Test statistic

Let 6 be either the EL, the ET, or the ETEL estimator and let Sur be the corre-
sponding variance matrix estimator. Let 6,, 6;,, and 0, denote the rth elements of
0, 6y, and 0 respectively. Let )y mr, denote the rth diagonal element of Sur. The t
statistic for testing the null hypothesis Hy : 0, = 0, is

b —bor (3.29)

Tur = —=———
EMR,r/n

Since the t statistic Th;g is studentized with the misspecification-robust variance
estimator 3, rr, Tar has an asymptotic N(0, 1) distribution under Hy, without as-
suming the correct model, Ho. This is the source of achieving asymptotic refinements

without recentering regardless of misspecification. In contrast, the usual ¢ statistic

5Under correct specification, the asymptotic variance matrix Y is the same for EL, ET, and
ETEL, which is the asymptotic variance matrix of the two-step efficient GMM.

14



T¢ is studentized with 3¢, a non-robust variance estimator. Hence, it is not asymp-
totically pivotal if the model is misspecified. Note that the only difference between
Tyvr and T is the variance estimator.

Both one-sided and two-sided ¢ tests and CI’s are considered. The asymptotic one-
sided t test with asymptotic significance level o of Hy : 0, < 6, against Hy : 6, > 0o,
rejects Hy if Thyr > z., where z, is the 1 — a quantile of the standard normal dis-
tribution. The upper one-sided CI with asymptotic confidence level 100(1 — «)%
is (—oo,ér + za\/i mrr/n]. Note that this asymptotic CI is robust to misspecifi-
cation because Xy is used. The asymptotic two-sided ¢ test with asymptotic sig-
nificance level a of Hy : 0, = 6y, against Hy : 0, # 6, rejects Hy if [Tagr| > 2o

The misspecification-robust two-sided asymptotic CI with asymptotic confidence level

100(1 — )% s [0y & 2aj2\/Sarnr/n).

4 The Misspecification-Robust Bootstrap Procedure

The nonparametric iid bootstrap is implemented by resampling X7, --- , X randomly
with replacement from the sample X;,--- . X,,. Although GEL implied probabilities
are useful by-products of the estimation procedure, those probabilities cannot be
naively used in resampling, because the cdf estimators based on such implied prob-
abilities would be inconsistent for the true cdf if the model is misspecified. Alter-
natively, the bootstrap sample can be drawn from a simple shrinkage cdf estimator
that combines a GEL implied probability and the empirical probability in the form
of (2.10).

The bootstrap estimator 0% is given by the subvector of 3* = (é*’, 5\*')’ for EL or
ET, or 3* = (é*/, MR 7*) for ETEL, the solution to

nTh Y R(X] 87 =0, (4.1)

where (X;, 8) is given by (3.5) for EL or ET, and (3.15) for ETEL. The bootstrap
version of the variance matrix estimator is I*~'W*(I™*)~1, which can be calculated
using the same formula with (3.10) using the bootstrap sample instead of the original
sample. Let f)}"w r be the upper left Ly x Ly submatrix of the bootstrap covariance
estimator [*~'W*(I*)~1. It should be emphasized that the only difference between

the bootstrap and the sample versions of the estimators is that the former are calcu-
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lated from the bootstrap sample, x, in place of the original sample, x,, because we
need no additional correction such as recentering as in Hall and Horowitz (1996) and
Andrews (2002).

The misspecification-robust bootstrap ¢ statistic is

Tip= - (4.2)

Let 27, and 2y, , denote the 1—a quantile of T}, and [T}, 5|, respectively. Following
Andrews (2002), we define 27, , to be a value that minimizes [P*(|T}z| < 2)—(1—a)
over z € R, because the distribution of |Typ| is discrete. The definition of 27, is
analogous. Each of the following bootstrap tests are of asymptotic significance level
a. The one-sided bootstrap ¢ test of Hy : 0, < 0y, against H; : 0, > 0y, rejects H
if Thp > 2T The symmetric two-sided bootstrap ¢ test of Hy : 0, = 0y, versus
H, : 0, # 0o, rejects if |Tyr| > Z\*T|,a' The equal-tailed two-sided bootstrap ¢ test
of the same hypotheses rejects if Tyr < 271,/ 08 Tvr > 27,5 Similarly, each of

the following bootstrap CIs for 6, are of asymptotic confidence level 100(1 — «)%.
The upper one-sided bootstrap CI is (—oo,ér + z}ya\/iMRw/n]. The symmetric

and the equal-tailed bootstrap percentile-t intervals are [6, + z|*T|7a\/fJMRJ /n] and

[ér — Z:*F,a/ﬂ / ZA]MR’T/n, 0, — 227’,1—a/2\ / ZA]MR,r/n], respectively.

In sum, the misspecification-robust bootstrap procedure is as follows:

1. Draw n random observations y; with replacement from the original sample, x,.

2. From the bootstrap sample x;, calculate 0* and f]*MR using the same formula

with their sample counterpart.
3. Construct and save Ty, p.
4. Repeat steps 1-3 B times and get the distribution of T}, which is discrete.

5. Find 2, , and z7,, from the distribution of [T}, [ and T}, respectively.

5 Main Result

Let f(X;, 3) be a vector containing the unique components of ¢ (X;, #) and its deriva-
tives with respect to the components of 5 through order d, and ¥ (X;, 5)¢(X;, §)" and
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its derivatives with respect to the components of 5 through order d — 1.
Assumption 1. X, i =1,2,..n are id.
Assumption 2.

(a) © is compact and 0y is an interior point of ©; A(0) is a compact set containing

a zero vector such that \o(0) is an interior point of A(0).

(b) (0, )) solves (3.1) for EL or ET, or (3.11) for ETEL; (6, \o) is the pseudo-
true value that uniquely solves the population version of (3.1) for EL or ET, or
(3.11) for ETEL.

(c) For some function Cy(z), ||g(x,01) — g(z,02)|| < Cy(x)||61 — 02| for all x in
the support of Xy and all 01,0, € ©; EC{*(X,) < 0o and E||g(X1,0)||% < oo for
all 0 € © for all 0 < g, < 0.

(d) For some function C,(x), |p(Nig(z,61)) — p(Nyg(x,0))| < C,(2)||(67, N)) —

(05, Xy)]] for all x in the support of Xi and all (07, \)), (05, N,) € © x A(0);

EC#(X1) < oo for some qi > 4. In addition, UBC (3.7) holds for EL.
Assumption 3.

(a) T is nonsingular and V is positive definite.

(b) g(z,0) is d + 1 times differentiable with respect to 6 on N(6y), some neigh-
borhood of 0y, for all x in the support of X1, where d > 4.

(c) There is a function Cq(x) such that ||GY) (x,0) — G (z,0y)|| < Ca(x)||0— 0|
for all x in the support of Xy and all @ € N(y) for j =0,1,...,d+1; EC¥(X;) <
oo and E||GY (X1, 00)|% < oo for j =0,1,....,d+1 for all 0 < gg < co.

(d) There is a function Cy,(x) such that

10i(N'g(x,0)) = pi(Nog(, 00))| < Cop(x) | (6", X') — (65, Xo)

for all x in the support of X1 and all (0',\') € N(0y) x A(0) for j =1,....,d+1;
ECE(X1) < oo for some go > 16.
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(e) f(Xy,Bo) is once differentiable with respect to Xy with uniformly continuous

first derivative.

Assumption 4. Fort € R*™() lim SUD|[£] 00 | e IXvfo)| <1 where i = v/—1.

Assumption 1 is that the sample is iid, which is also assumed in Schennach (2007)
and Newey and Smith (2004). Assumption 2(a)-(c) are similar to Assumption 2(a)-(b)
of Andrews (2002). Assumption 2(d) is similar to but slightly stronger than Assump-
tion 3(4) of Schennach (2007) for ET or ETEL, and it includes Assumption 3(1) of
Chen, Hong, and Shum (2007) for EL to avoid a negative implied probability under
misspecification. Assumption 2(c)-(d) are required to have the uniform convergence
of the objective function. Assumption 3(a) is a standard regularity condition for a
well-defined asymptotic covariance matrix. Assumption 3 except for (d) is similar to
Assumption 3 of Andrews (2002). The assumptions on g, and g¢ are slightly stronger
than necessary, but yield a simpler result. This is also assumed in Andrews (2002) for
the same reason. Assumption 3(d) is similar to but stronger than Assumption 3(6)
of Schennach (2007). It ensures that the components of higher-order Taylor expan-
sion of the FOC have well-defined probability limits. Assumption 4 is the standard
Cramér condition for Edgeworth expansion.

Throughout the proof, I pay a particular attention to the values of ¢; and ¢ that
may restrict DGP’s under misspecification for ET and ETEL. For example, since
a zero vector is in A(#), Assumption 3(d) implies Fe®*9(X1.00) < oo where \g # 0
under misspecification. Lee (2014b) provides a simple example that the model cannot
be misspecified too much to have Ee®*9(X10) < oo for some ¢, for ET and ETEL,
and the set of possible misspecification shrinks to zero as ¢, gets larger.

Theorem 1 formally establishes asymptotic refinements of the bootstrap t tests and
CI’s based on EL, ET, and ETEL estimators. This result is new, because asymptotic
refinements of the bootstrap for this class of estimators have not been established in

the existing literature even under correct model specifications.

Theorem 1. (a) Suppose Assumptions 1-4 hold with ¢1 > 4, q2 > 16, and d = 4.
Under Hy : 0, = by, for all £ € [0,1/2),

P(Tyr > 27,) = a+ o(n=Y*9)) and

P(Tyr < 27070 07 Tvr > z}l_am) = a + o(n~ (/210
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(b) Suppose Assumptions 1-4 hold with ¢, > 6, g2 > 30, and d = 5. Under Hy : 0, =
90,7‘7 fOT allg S [O, 1/2)7

P(|TMR| > ZFTL@) =a+ 0(71_(1+£)).

(c) Suppose Assumptions 1-4 hold with q¢; > 8, g > 48, and d = 6. Under Hy : 0, =
00,7‘;
P(|Tyr| > z|*T|’a) =a+0(n™?).

By the duality of ¢ tests and CI’s, asymptotic refinements of the same rate for the
bootstrap CI’s follow from Theorem 1. The equal-tailed percentile-t CI corresponds
to Theorem 1(a). The symmetric percentile-t CI corresponds to Theorem 1(b)-(c).
Recall that the corresponding asymptotic ¢ test and CI based on T),r are correct up
to O(n~1/2), O(n~'), and O(n™!) for (a), (b), and (c), respectively. The reason that
the two-sided ¢ tests and the symmetric CI achieve a higher rate of refinements is due
to a symmetry property of Hall (1992).

The proof of Theorem 1 is similar to that of Andrews (2002) that establishes
asymptotic refinements of the bootstrap for GMM estimators under correct specifica-
tion. Since I consider GEL estimators rather than GMM, and allow misspecification
rather than assuming correct specification, the detailed proof is slightly different from
that of Andrews but the fundamental idea is the same. I use the fact that the FOC of
GEL estimators can be written as a just-identified system of moment function regard-
less of misspecification. Writing an overidentified model as a just-identified system
by augmenting additional parameters also appears in Imbens (1997, 2002), Chamber-
lain and Imbens (2003), and Schennach (2007). Then, consistency and asymptotic
normality of the estimator follow by standard arguments using Newey and McFad-
den (1994). I show that the misspecification-robust ¢ statistic is well approximated
by a smooth function of sample averages of the data by taking Taylor expansion of
the FOC, and prove asymptotic refinements by using Hall (1988,1992)’s argument on

Edgeworth expansion of a smooth function of sample averages.

6 Monte Carlo Results

This section compares the finite sample coverage probabilities of CI’s for a scalar

parameter of interest, under correct specification and misspecification. To reduce
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computational burden of calculating GEL estimators B times for each Monte Carlo
repetition,® the warp-speed Monte Carlo method of Giacomini, Politis, and White
(2013) is used. The method also appears in White (2000) and Davidson and MacKin-
non (2002, 2007), but the validity of the method is formally established in Giacomini,
Politis, and White (2013). The key difference between the warp-speed method and
a usual Monte Carlo experiment is that the bootstrap sample is drawn only once
for each Monte Carlo repetition rather than B times, and thus computation time is
significantly reduced.

I consider the AR(1) dynamic panel model of Blundell and Bond (1998). For
1=1,...nand t=1,..T,

Yit = PoYir—1 + 1 + Vit, (6.1)

where 7; is an unobserved individual-specific effect and v; is an error term. To

estimate pg, we use two sets of moment conditions:

Eyi—s)(Ayit — poAyi—1)) = 0, t=3,..T, and s > 2, (6.2)
EAZ/z‘(t—U(yz't - pOyi(t—l)) =0, t=3,..T. (6-3)

The first set (6.2) is derived from taking differences of (6.1), and uses the lagged values
of y; as instruments. The second set (6.3) is derived from the initial conditions on
DGP and mitigates weak instruments problem from using only the lagged values.
Blundell and Bond (1998) suggest to use the system-GMM estimator based on the
two sets of moment conditions. The number of moment conditions is (T'+1)(T —2)/2.

Four DGP’s are considered: two correctly specified models and two misspecified
models. For each of the DGP’s, T' = 4,6 and n = 100, 200 are considered. To mini-
mize the effect of the initial condition, I generate 100+T time periods and use the last
T periods for estimation. In Tables 1-4, “Boot” and “Asymp” mean the bootstrap CI
and the asymptotic CI, respectively. The third column shows which estimator the CI
is based on. GMM denotes the two-step GMM based on the system moment condi-
tions. The fourth column shows which standard error (or variance estimator) is used:
“C” denotes the usual standard error and “MR” denotes the misspecification-robust

one. The fifth column shows how the bootstrap is implemented for the bootstrap

SFor example, if B = 1,000 and the number of Monte Carlo repetition is 7 = 1,000, then one
simulation round involves 1, 000,000 nonlinear optimizations.
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CI's: “L” denotes the misspecification-robust bootstrap proposed in this paper and
in Lee (2014), “HH” denotes the recentering method of Hall and Horowitz (1996),
and “BNS” denotes the efficient bootstrapping of Brown and Newey (2002) with a

~1/4 The columns

shrinkage estimator. The shrinkage is given by (2.10) with ¢, =n
under “CI” show the coverage probabilities. The column under “J test” shows the re-
jection probability of the overidentification test: the Hall-Horowitz bootstrap J test,
the asymptotic J test, the EL likelihood-ratio (LR) test, the ET LR test, and the
ETEL LR test results are presented.

In sum, eight bootstrap CI’s and eight asymptotic CI’s are compared. GMM-C-
HH serves as a benchmark, as its properties have been relatively well investigated.
GMM-MR-L is suggested by Lee (2014). Both EL-MR-L and EL-MR-BNS are sug-
gested in this paper, while they differ in resampling methods. CI’s based on ET and
ETEL are defined similarly. Note that CI’s using the usual standard error (C) are
not robust to misspecification.

The DGP for a correctly specified model is the same as that of Bond and Wind-

meijer (2005). Fori=1,...,nand t=1,..T,

DGP C-1: Yit = PoYit—1 + M + Vit,
Xi—1
V2

M 1
i1 = ;Ui ~ N |0, ——= | .
Y=, T ( 1—1%)

n; ~ N<07 1)§ Vit ~

Since the bootstrap does not solve weak instruments (Hall and Horowitz, 1996), I let
po = 0.4 so that the performance of the bootstrap is not affected by the problem. The
simulation result is given in Table 1. First of all, the bootstrap CI’s show significant
improvement over the asymptotic CI’s across all the cases considered. Second, similar
to the result of Bond and Windmeijer (2005), the bootstrap CI’s coverage probabilities
tend to be too high for 7" = 6. This over-coverage problem becomes less severe as the
sample size increases to n = 200, especially for those based on EL, ET, and ETEL.
Interestingly, resampling from the shrinkage estimator (BNS) seems to mitigate this
problem. Third, the asymptotic CI’s using the robust standard error (MR) work
better than the ones using the usual standard error (C). This result is surprising
given that the model is correctly specified. One reason is that both standard errors

underestimate the standard deviation of the estimator while the robust standard error
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is relatively large in this case. For example, when 7' = 6 and n = 100, the difference in
the coverage probabilities between Asymp-ET-C and Asymp-ET-MR is quite large.
The unreported standard deviation of the ET estimator is 0.0819, while the mean
of robust and usual standard errors are 0.0592 and 0.0472, respectively. Finally, the
overidentification tests based on GEL estimators or the HH bootstrap show significant
size distortion, especially when T = 6.

Next a heteroskedastic error term across individuals is considered. The DGP is

DGP C-2: Yit = PoYit—1 + N + Vi,
ni ~ N(0,1); v ~ N(0,62); 07 ~ U[0.2.1.8],

2
i 9
o 1—PO+U1U1 ( 1—P(2))

The result is given in Table 2. The findings are similar to that of Table 1, except that
the over-coverage problem of the bootstrap CI’s based on GEL estimators improves
quickly as the sample size grows.

To allow misspecification, consider the case that the DGP follows an AR(2) process
while the model is still based on the AR(1) specification, (6.1). For i = 1,...,n and
t=1,..T,

DGP M-1: Yit = P1Yig—1 + P2Yit—2 + M + Vi,

2
X1 —1
zNNoal Vg ~ ——F—,
n ( ) t \/ﬁ
i 1—ps
Yil = T + Uit Ut NN(Q )
L—p1—po (L4 p2)[(1 = p2)? = pi]

Since the EL estimator is not y/n—consistent under misspecification unless the UBC
(3.7) is satisfied, I also consider DGP M-2 which is identical to DGP M-1 except that
ni, ud, and vy are generated from a truncated standard normal distributed between
-3 and 3, where u;; = \/ 1=p2

0
(o) [(1—p2)2—p7] Vi1
If the model is misspecified, then there is no true parameter that satisfies the

moment conditions simultaneously. It is important to understand what is identified

and estimated under misspecification. The moment conditions (6.2) and (6.3) impose

Eyi Ay L Eyi(t—3)Ayit _ Eyi(t—z)Ayit _ EAyi(t—l)yit
EyilAyi(tfl) Eyi(tf?))Ayi(tfl) Eyi(th)Ayi(tfl) EAyi(tfl)yi(tfl)

, (6.4)
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for ¢ = 3,...,T. Under correct specification, the restriction (6.4) holds and a unique
parameter is identified. However, each of the ratios identifies different parameters
under misspecification, and the probability limits of GMM and GEL estimators are

weighted averages of the parameters. For example, when T' = 4, we have five moment

P2
p1—p2°
When T' = 6, we have fourteen moment conditions. Eight of them identify p%,, three

conditions. Four of them identify p%, = p; —p» and the other identify p%, = pi+

identify p%,, two identify

(3 4 p2)(p1 — pa) + p1p2

- 6.5
Pre pi(pr = p2) + p2 (6:5)
and the other identifies
. (P} + 2p1p2) (1 — p2) + pa(pi + p2) (6.6)
e (p7 + p2)(p1 — p2) + prp2

Thus, the pseudo-true value pg is defined as
T=4: po = wippy+ (1 —wi)php, (6.7)
T=6: po = c1pfy+cappy+capis+ (1 — 1 —ca— c3)pry, (6.8)

where w; and ¢y, ¢9, c3 are some weights between 0 and 1. The pseudo-true values
are different for 7' = 4 and T' = 6. Moreover, GMM and GEL pseudo-true values
would be different because their weights are different. Observe that if p; = 0, then
the pseudo-true values coincide with p;, the AR(1) coefficient. Thus, the pseudo-true
values capture the deviation from the AR(1) model. If |ps] is relatively small, then the
pseudo-true value would not be much different from p;, while there is an advantage
of using a parsimonious model. If one accepts the possibility of misspecification and
decides to proceed with the pseudo-true value, then GEL pseudo-true values have
better interpretation than GMM ones because GEL weights are implicitly calculated
according to a well-defined distance measure while GMM weights depend on the
choice of a weight matrix by a researcher.

Tables 3-4 show the coverage probabilities of CI’s under DGP M-1 and M-2, re-
spectively. I set p; = 0.6 and p, = 0.2. The pseudo-true values are calculated using
the sample size of n = 30,000 for T' = 4 and n = 20,000 for T' = 6.7 It is clearly seen

"The two-step GMM and GEL pseudo-values are not that different. They are around 0.4 when
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that the bootstrap CI’s outperform the asymptotic CI’s. In particular, the perfor-
mances of Boot-EL-MR-L, Boot-ET-MR-L, and Boot-ETEL-MR-L CI’s are excellent
for T'= 4. When T = 6, these CI’s exhibit over-coverage but the problem is less
severe than Boot-GMM-MR-L. In addition, the bootstrap CI’s using the shrinkage
in resampling are found to improve on the over-coverage problem. Although DGP
M-1 does not satisfy the UBC (3.7), the performance of the CI based on EL does not
seem to be affected. One may wonder why the HH bootstrap CI works quite well
under misspecification even though the CI is not robust to misspecification. This is

spurious and cannot be generalized. In this case, the usual standard error \/ZA]C /n is
considerably smaller than the robust standard error \/Syz /n, while the HH boot-

strap critical value is much larger than the asymptotic one, which offsets the smaller
standard error. Lee (2014) reports that the performance of the HH bootstrap CI un-
der misspecification is much worse than that of the MR bootstrap CI. In addition, the
HH bootstrap J test shows very low power relative to the asymptotic tests. Among
the asymptotic CI’s, those based on GEL estimators and the robust standard errors
show better performances.

Finally, Table 5 compares the width of the bootstrap CI’s under different DGP’s.
Since this paper establishes asymptotic refinements in the size and coverage errors
of the MR bootstrap ¢ tests and CI’s based on GEL estimators, the width of CI’s is
not directly related to the main result. Nevertheless, the table clearly demonstrates a
reason to consider GEL as an alternative to GMM, especially when misspecification
is suspected. Under correct specification (C-1 and C-2), all the bootstrap CI’s have
similar width. This conclusion changes dramatically under misspecification (M-1 and
M-2). The CI's based on GMM are much wider than those based on GEL. For
example, when T"= 6 and n = 200 in DGP M-2, the width of the Boot-GMM-MR-L
95% CI is 1.004, while that of Boot-EL-MR-BNS 95% CI is 0.277, almost a fourth.
The main reason for this is that the GEL standard errors are smaller than the GMM
ones under misspecification. In addition, the bootstrap CI’s using the shrinkage in
resampling are generally narrower than the nonparametric iid bootstrap CI’s.

The findings of Monte Carlo experiments can be summarized as follows. First, the
misspecification-robust bootstrap CI’s based on GEL estimators are generally more

accurate than other bootstrap and asymptotic CI’s regardless of misspecification. Not

T =4 and around 0.5 when T = 6.
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surprisingly, the coverage of non-robust CI’s are very poor under misspecification.
Second, the GEL-based bootstrap CI’s improve on the severe over-coverage of the
GMM-based bootstrap CI’s, which is also a concern of Bond and Windmeijer (2005).
In addition, the GEL-based bootstrap CI’s using the shrinkage in resampling (BNS)
can mitigate over-coverage of the bootstrap CI's when T is relatively large.® Lastly, it
is recommended to use the misspecification-robust variance estimator in constructing
t statistics and CI’s regardless of whether the model is correctly specified or not,
because the coverage of the misspecification-robust CI’s tends to be more accurate

even under correct specification.

7 Application: Returns to Schooling

Hellerstein and Imbens (1999) estimate the Mincer equation by weighted least squares,

where the weights are calculated using EL. The equation of interest is

log(wage;) = B+ B - education; + S, - experience; + S35 - experience?

+054 - 1Q; + B5 - KWW, + ¢, (7.1)

where KWW denotes Knowledge of the World of Work, an ability test score. Since the
National Longitudinal Survey Young Men’s Cohort (NLS) dataset reports both ability
test scores and schooling, the equation (7.1) can be estimated by OLS. However, the
NLS sample size is relatively small, and it may not correctly represent the whole
population. In contrast, the Census data is a very large dataset which is considered
as the whole population, but we cannot directly estimate the equation (7.1) using
the Census because it does not contain ability measures. Hellerstein and Imbens
calculate weights by matching the Census and the NLS moments and use the weights
to estimate the equation (7.1) by the least squares. This method can be used to
reduce the standard errors or change the estimand toward more representative of the
Census.

Let y; = log(wage;) and x; be the regressors on the right-hand-side of (7.1). The

Hellerstein-Imbens weighted least squares can be viewed as a special case of the EL

8The choice of n~1/* rate in the shrinkage estimator is arbitrary, but no guidance of how to
choose the rate is provided. Nevertheless, the shrinkage estimator improves on the over-coverage of
the bootstrap CI's and make the CI’s narrower. This topic deserves more research.
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estimator using the following moment condition:

where FE[-] is the expectation over a probability density function fy(y;,x;), which is

labeled the sampled population. The moment function g;(3) is

gi(ﬁ)=< %y — ) ) (7.3)

m(ylv Xz) - Etm(yh XZ)

where (3 is a parameter vector, m(y;,x;) is a 13 x 1 vector, and E;[-] is the expecta-
tion over a probability density function f;(y;,x;), labeled the target population. The
first set of the moment condition is the FOC of OLS and the second set matches the
sample (NLS) moments with the known population (Census) moments. In particular,
the thirteen moments consisting of first, second, and cross moments of log(wage), ed-
ucation, experience, and experience squared are matched. If the sampled population
is identical to the target population, i.e., the NLS sample is randomly drawn from
the Census distribution, the moment condition model is correctly specified and (7.2)
holds. Otherwise, the model is misspecified and there is no such  that satisfies (7.2).
In this case, the probability limit of the EL estimator solves the FOC of OLS with
respect to an artificial population that minimizes a distance between the sampled and
the target populations. This pseudo-true value is an interesting estimand because we
are ultimately interested in the parameters of the target population, rather than the
sampled population.

Table 6 shows the estimation result of OLS, two-step GMM, EL, ET, and ETEL
estimators. Without the Census moments, the equation (7.1) is estimated by OLS and
the estimate of the returns to schooling is 0.054 with the standard error of 0.010. By
using the Census moments, the coefficients estimates and the standard errors change.
The two-step GMM estimator is calculated using the OLS estimator as a preliminary
estimator, and it serves as a benchmark. EL, ET, and ETEL produce higher point
estimates and smaller standard errors than those of OLS. Since the J-test rejects
the null hypothesis of correct specification for all of the estimators using the Census
moments, it is likely that the target population differs from the sampled population.
If this is the case, then the conventional standard errors are no longer valid, and

the misspecification-robust standard errors should be used. The misspecification-
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Bootstrap Distribution of the t statistic
T T T

Density

-8 -6 -4 -2 0 2 4
Data

Figure 1: Bootstrap distribution of the ¢ statistics based on 2-step GMM estimator
(solid), EL estimator (solid with circle), ET estimator (solid with triangle), and ETEL
estimator (solid with rectangle).

robust standard errors, s.e.p g, of EL, ET, and ETEL are slightly larger than the
usual standard errors assuming correct specification, s.e.c, but still smaller than the
standard errors of OLS. In contrast, s.e.p;g of GMM is much larger than s.e.o, which
is consistent with the simulation result given in Section 6.

Table 7 shows the lower and upper bounds of CI’s based on various estimators
and their respective width. The width of the GMM based CI’s are relatively wide
compared to those based on GEL estimators. Among the GEL estimators, the ET
estimator has the widest CI, while the EL estimator has the narrowest. Although the
bootstrap CI’s are generally wider than the asymptotic CI’s, using the shrinkage in
resampling reduces the width significantly. The upper bounds of the bootstrap CI’s
range from 8.3% to 11%, which are higher than those of the asymptotic CI's. I also
present a nonparametric kernel estimate of the bootstrap distribution of the ¢ statistics
based on GMM, EL, ET, and ETEL estimators in Figure 1. The distributions are
skewed to the left, which implies the presence of a downward bias. Overall, the

estimation of (7.1) using GEL estimators and the resulting bootstrap CI's suggest that
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the returns to schooling is likely to be higher than originally estimated by Hellerstein

and Imbens.

8 Conclusion

GEL estimators are favorable alternatives to GMM. Although asymptotic refinements
of the bootstrap for GMM have been established, the same for GEL have not been
done yet. In addition, the current literature on bootstrapping does not consider model
misspecification that adversely affects the refinement and validity of the bootstrap.
This paper formally established asymptotic refinements of the bootstrap for ¢ tests
and CI’s based on GEL estimators. Moreover, the proposed bootstrap is robust to
misspecification, which means the asymptotic refinements of the bootstrap is not
affected by unknown model misspecification. Simulation results did support this
finding. As an application, the returns to education was estimated by extending the
method of Hellerstein and Imbens (1999). The exercise found that the estimates of
Hellerstein and Imbens were robust across different GEL estimators, and the returns

to education could be even higher.
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A Appendix: Lemmas and Proofs

A.1 Proof of Proposition 1

proof. The proof is similar to that of Theorem 10 of Schennach (2007), and thus omitted.

A.2 Lemmas

The lemmas and the proofs are analogous to those of Hall and Horowitz (1996) and Andrews
(2002) that show asymptotic refinements of the bootstrap for GMM estimators under correct
specification. I also use some proof techniques of Schennach (2007) for GEL estimators.
For brevity, Hall and Horowitz (1996) is abbreviated to HH, Andrews (2002) to A2002,
and Schennach (2007) to S2007. In the lemmas, a constant a that determines the rate of
convergence in probability appears. To show the theorem, we only need ¢ = 1,1.5 and 2,
but I assume that a > 0 throughout the lemmas for generality.

Lemma 1 modifies Lemmas 1, 2, 6, and 7 of A2002 for a nonparametric iid bootstrap
under possible misspecification. The modified Lemmas 1, 2, 6, and 7 are denoted by AL1,
AL2, AL6, and AL7, respectively. In addition, Lemma 5 of A2002 is denoted by ALSH

without modification.
Lemma 1.

(a) Lemma 1 of A2002 holds by replacing X, and N with X; and n, respectively, under

our Assumption 1.
(b) Lemma 2 of A2002 for j =1 holds under our Assumptions 1-3.

(c¢) Lemma 6 of A2002 holds by replacing )?, and N with X; and n, respectively, and
by letting l = 1 and v = 0, under our Assumption 1.

(d) Lemma 7 of A2002 for j =1 holds by replacing )N(, and N with X; and n, respec-
tively, and by letting l =1 and v = 0, under our Assumptions 1-3.

Proof. The proof is given in Lee (2014). Q.E.D.

Lemma 2 shows the uniform convergence of the so-called inner loop and the objective
function in #. Since ET and ETEL solve the same inner loop optimization problem, we let
p(v) = 1—e” for ETEL for the next lemma. Define \(9) = arg max, gy - >; p(Ngi(6))
and \g(f) = argmax, gz, Ep(AN'g;(#)). Such solutions exist and are continuously differen-
tiable around a neighborhood of 6 and Ay, respectively, by the implicit function theorem
(Newey and Smith, 2004, proof of Theorem 2.1).
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Lemma 2. Suppose Assumptions 1-3 hold with g1 > 2 and ¢ > 2a for some a > 0. Then,
for alla >0 and all € > 0,

(a) lim n®P (sup H;\(G) - /\O(Q)H > 5) =0,

n—o0 0cO

n—oo =te)

(b) lim n®P (Sup

n Y (p(M6)5:(0)) — Bo(r(6)5:(9)))
i=1

>5>:0.

Proof. Since the proof is similar to those of Lemma 2 of HH and Theorem 10 of S2007, I

provide a sketch of the proof. First, we need to show

Y (PN gil0)) = Ep(N gi(0))

lim n*P ( sup > 5) =0. (A.1)
n—00 (67, \) €OxA(D)

This is proved by the proof of Lemma 2 of HH with p(\g;(#)) in place of their G(z,0),
except that we use AL1(a) instead of Lemma 1 of HH. In particular, we apply AL1(a) with
¢ = 0 and h(X;) = Cp(X;) — ECp(X;) or h(X;) = p(N;gi(0;)) — Ep(N;gi(0;)) for some
(05, X;) € © x A(f). Since a zero vector is in A(f), © and A(0) are compacts, and p(0) = 0,
Assumption 2(d) implies that E|p(Ng;(0))|"* < oo for all (¢, N) € © x A(). Thus, the
conditions for AL1(a) is satisfied by letting p = ¢; and Assumption 2(d).

Next, we show

lim n®P <sup [ A(8) = Ao(8)]| > 5) =0, (A.2)

n—o0 0cO

where \(f) = arg maxyepgyn s P(Ngi(f)). This is proved by using Step 1 of the proof
of Theorem 10 of S2007. Then, the present lemma (a) is proved by a similar argument
with the proof of Theorem 2.7 of Newey and McFadden (1994) using the concavity of
n~t>" p(Ngi(0)) in A for any 6.

Finally, the present lemma (b) can be shown as follows. By the triangle inequality,

combining the following results proves the desired result.

lim n*P <Sug n' Y p(A(0) g:(0)) — n Y p(Mo(0) gi(0))] > 5) =0, (A.3)
€ i=1 i=1

nh_)ngo n®P (Z,ug nt Zp(Ao(H)/gi(G)) — Ep(Mo(0) gi(0))| > 8> = 0. (A.4)
€ i=1

By Assumption 2(d), (A.3) follows from the present lemma (a) and AL1(b). Since A\(f) €
int(A(0)), (A.4) follows from (A.1). Q.E.D.

Let 8 = (#,\) and B = 0O x A(f) for EL or ET. For ETEL, we introduce additional
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notations for the population auxiliary parameters. Define 74(0) = Ee*(0)'9:(0) and
ko(0) = — (B9 g,(8)g,(0)) " 10(6) Egi (6).

Analogous to the definition of A(#), define 7(6) and KC(#) be compact sets such that 7(6) €
int(T(0)) and ko(0) € int(K(0)). For ETEL, 8 = (¢', N, ', 7)" and we define a compact set
B=0 xA(0) x K(0) x T(6).

Let g and GY) be an element of g;() and Gz(j)(é?), respectively, for 7 = 1,...,d + 1. In
addition, let g* be a multiplication of any k-combination of elements of g;(#). For instance,

if g;(0) = (9i,1(0),i2(0))’, a 2 x 1 vector, then > = (9i,1(9))2, 9i,1(8)gi2(0), or (gi72(9))2.
(4)

i

GU* is defined analogously. To further simply notation, write gy and G((Jj ) if g; and G
are evaluated at 6y for j =1,2,..d + 1.

Lemma 3. Suppose Assumptions 1-3 hold with q1 > 2, ¢1 > 2a, and go > max {2, %}
for some ¢ € [0,1/2) and some a > 0. Then, for all c € [0,1/2) and all a > 0,

lim 7P (|| — Bl > n°) =0,
n—oo

where B = (é’,j\/)/ and ﬁo — (96,)\/0)/ fO?“ EL and ET, and B _ (é/,j\/’%/’%)/ and 50 _
(04, Ny, kGs T0) for ETEL.

Proof. We first show for any ¢ > 0,
Tim 7P (”5 — Boll > 5) ~0. (A.5)

First, consider EL or ET. Since p(Ao(6)'g;(6)) is continuous in 6 and uniquely minimized at

0y € int(O), standard consistency arguments using Lemma 2(b) show that
lim n%P (||é — Go|| > 5) —0. (A.6)
n—oo

Write A = A(0) and Ao = A\o(fp). By Lemma 2(a), (A.6), and the implicit function theorem

that \o(#) is continuous in a neighborhood of 6y, it follows
lim n%P (||§ — ol > e) ~0. (A7)
n—o0

This proves (A.5) for EL and ET. For ETEL, (A.6) and (A.7) can be shown by Step 2 of
the proof of Theorem 10 of S2007 by applying AL1, AL2, and Lemma 2.
Since we have introduced auxiliary parameters (k,7) for ETEL, we need to prove con-

sistency of (,7). Since & and 7 are continuous functions of § and ), consistency of § and
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A implies that # and 7 are also consistent. Formally, this can be shown as follows. First,
we show

lim 7P (|7 = ]| > 2) = 0, (A.8)

A — A/A. / . .
where 7 =n"1 Y1 €M% and 7y = Feto%0. This follows from

n n
. a -1 Ngg -1 N gi _
T}Ln;OnP<n Ze n Zeoo >5>—O, (A.9)
i=1 i=1
n
; a -1 A0gio _ Fer09io —
nh_)rrgon P( n z;e 0 Ee™o > 6) 0. (A.10)
i

To show (A.9), we apply (A.6), (A.7), and AL1(b) with h(X;) = Cy,(X;) and p = ¢2. The
second result (A.10) follows from applying AL1(a) with ¢ = 0, h(X;) = e*0%0 — B9 and
p = q2. Next, we show

7lli_>n;on“P(H/%—/£o|| >¢e)=0. (A.11)

This can be shown by combining (A.8) and the following results:

lim nP (||gn — gn(60)|| > ¢€) =0, (A.12)
n—oo
lim n®P (||gn(6o) — Egiol| > ) =0, (A.13)
n—oo

n R n
lim n*P < n~! Z eNigigh —nt Z €090 gioglo || > 5) =0, (A.14)
nee i=1 =1

n
nh_}r{)lo n*P ( nt Zl 090 g0 glo — Ee?090 gioglo 1l > 5) =0. (A.15)

P

The first result (A.12) holds by Assumption 2(c), AL1(b) with h(X;) = Cy(X;) and p = qq,
and (A.6). The second result (A.13) holds by Assumption 2(c) and AL1(a) with h(X;) =
9i(60) — Egi(0o), c = 0 and p = g4. The third result (A.14) can be shown by applying the
triangle inequality, AL1(b), (A.6) and (A.7), and Schwarz matrix inequality multiple times.
In particular, we apply AL1(b) with h(X;) = Ca,(Xi)llgioll?, h(Xi) = Ca,(Xi)CF(X5),
h(X;) = Cop(Xi)Co(Xi)llgioll, M(Xi) = €¥090C5(X;), and h(X;) = €690 Cy(X)|giol|. For
h(X:) = Cs,(X;)|lg:(60)]|?, by Holder’s inequality,

1 e
ECH,(X)lgol® < (ECH(X0)) ™ - (Bllga @+ D), (A16)

for any 0 < € < co. Since Assumption 2(c) holds for all ¢, < oo, we can take small enough
€ so that p = g2 > max{2,2a} implies that (A.16) is finite by Assumption 3(d). Other
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h(X;)’s can be shown to satisfy the condition similarly. Note that Assumption 3(d) implies
Ee®209:(%) < oo for gy > max{2,2a}, because (i) a zero vector is in A(0), (ii) © and A(6)
are compacts, and (iii) p(0) = 0. The last result (A.15) can be shown by applying AL1(a)
with ¢ = 0 and h(X;) = 090 g;0gl, — Ee090gi0gl0. To see if h(X;) satisfies the condition
of AL1(a), it suffices to show EeP09 | g;0||?? < oo for p > 2 and p > 2a, but this condition
is met by letting p = g2 and using Hélder’s inequality. Thus, (A.5) is proved for ETEL.

Since we have established consistency of B for By, we now show the present lemma.
The proof is similar to that of Lemma 3 of A2002 and Step 3 of the proof of Theorem
10 of S2007. Since B is in the interior of B with probability 1 — o(n~%), B is the solution
ton 130, w(Xi,BA) = 0 with probability 1 — o(n™®). By the mean value expansion of
n iy ¥(X;,8) = 0 around fy,

B—fo=— ( -y 20X ) X”ﬁ)) 1S (X o), (A17)
=1 =1

with probability 1 —o(n=%), where B lies between B and 8y and may differ across rows. The

lemma follows from

nlggo n®P ( n1 Z 7¢(X“B n~! Z ou ;;Z; o) 8) =0, (A.18)
i=1
(R au(XiBe) 0w, Bo) )
lim n%P | |[n~1 ; —F ; >e| =0, (A.19)
n—00 ( ZZ_; op op
nh_{r;o n®P ( n~t Z@Z)(Xi, Bo)l|| > n_c) = 0. (A.20)
=1

First, to show (A.18), observe that the elements of (9/98")¥(X;, 8) have the form
o pi"(Ng) - gk - GFGOR =12, (A.21)

where « denotes products of components of 3, k, = 1, kg < 2, k1 < 2, and ko < 1 for EL
and ET. For ETEL, we replace p?"()\’gig) with eFe2090  where k, = 0,1, ko < 3, k1 < 2,
and ko < 1. For each element, we apply (A.5) and AL1(b) multiple times. For example,
p2(Ngi(0))gi(0)g:(0) is an element of (9/98")(X;, 3). Then,

lp2(N3:)Gidi — p2(Nogio)giodloll (A.22)
< 13 = Boll (Cap(X) + l2(Vgio)l - Co(X) (Co(X0) 1B = Boll + 2llgioll) ) -
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where g; = g;(¢). Now by using the fact that |p2(Agi0)| < Cop(Xi)||Bol|, Assumptions 2-3,
(A.5), and AL1(b), we show

P(llp2(N3:)3ig; — p2(Nogio)giogloll > €) = o(n™?). (A.23)

Other terms can be shown similarly. The condition of AL1(b) is satisfied by Assumptions
2-3, Holder’s inequality, and letting p = g2. This proves (A.18). The second result (A.19)
can be shown analogously by using AL1(a) with ¢ = 0 and h(X;) = (9/98")¢(X,, Bo) —
E(0/98")¢(Xi, o). The last result (A.20) holds by AL1(a) with h(X;) = ¥(X;, By). By us-
ing Holder’s inequality, the conditions of AL1(a) is satisfied if we let p = g2 > max{2, 13—‘120},
which hold by the assumption of the lemma. Q.E.D.

Let P* be the probability distribution of the bootstrap sample conditional on the orig-
inal sample. Let E* denote expectation with respect to P*. Since we consider the non-
parametric iid bootstrap, E* is taken over the original sample with respect to the edf.
For example, E*X = n~' 37 | X;. Write g*(d) = g(X/,0) and §¢ = g¢*(8*). Define
M (0) = arg max, gz, T _; p(Ngi(#)). By the implicit function theorem, this solution
exists and is continuously differentiable in a neighborhood of §*. Write A* = \*(6*) for
notational brevity. Lemma 4 is the bootstrap version of Lemma 2. Let p(v) = 1 — ¢e” for
ETEL in the next lemma.

Lemma 4. Suppose Assumptions 1-8 hold with ¢1 > 2 and q1 > 4a. Then, for all a > 0
and all € > 0,

(a) lim n®P <P* <sup

n—o0 0cO

(b) lim n®P (P* <sup
n—oo PcO

Proof. We first show

lim n*P | P* sup
=00 (6,0 €OXA(0)

We use the proof of Lemma 8 of HH using AL6(a) with ¢ = 0, rather than Lemma 7 of HH.
Since n~' Y7L, p(Ngi(0)) = E*p(Ngi(9)), we apply AL6(a) with h(X;) = p(N;g:i(6;)) —
Ep(N;gi(0;)) for any (6;,;) € © x A(0) or h(X;) = Cp(X;) — EC,(X;). By Minkowski
inequality, it suffices to show E|p(X)gi(6;))|P < oo and ECH(X;) < oo for p > 2 and p > 4a.

nt Y (PO (0) 4 (8)) - p(5(6) 0i(9)))

=1

nt Z; (p(N'gi(8)) — p(Ngi(0)))

> E) > na> =0. (A.24)

This is satisfied by letting p = ¢1.
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Next, we show

lim n*P (P <sup |A*(0) — A(9)|| > 5) > n_a) =0, (A.25)
n—00 fcO

where \*(0) = arg maxyepg) " 2iey P(Ng5(0)). We claim that for a given e > 0, there
exists n > 0 independent of n such that for any § € © and any A € A(), |A — A (0)] > ¢
implies that n=1 Y7, p(A(0) g:(0)) —n~ 1>, p(Ngi(0)) > n > 0 with probability 1 — o(n™%).
This claim can be shown by similar arguments with the proof of Lemma 9 of A2002. For
any § € © and any A € A(6), whenever | — X(0)|| > ¢, [|A — Xo(0)|| > /2 with probability
1—o0(n™?) by the triangle inequality and Lemma 2. Since Ep(X ¢;(6)) is uniquely maximized
at A\o(f) and continuous on A(6), [|A — Ao(0)|| > /2 implies that there exists n(#) such that

0<n(®) < Ep(ro(0)g -<e>>—Ep<x ®) (A.26)
< ‘12,0 (0)gi(0)) — n 120 'gi(0
+Ep(>\o(9 Zp (8 Ep(Ng 120 g:(0
<

n! Z p(A(0)':(0)) — n’l Z p(Ngi(0))

+2  sup  [nTt Y p(Ngi(6) — Ep(Ngi(9))]-
(0, 0)€OxA(6) -
Since (A.1) holds for all e, letting € = n(0)/3 in (A.1) and 1 = infyn(f) proves the claim.

Then, we have

PP (sup [ X(0) = A@)] > €) > ™) (A.27)

< P (P* ( sup > 77/2) > n‘“) =o(n™%).
(0.0)€OxA(0)

The second inequality holds by adding and subtracting n =1 Y, p(A(9) g7 (0)), and using the
definition of A*(#). The last equality follows by (A.24). The present lemma (a) can be ob-
tained by replacing A\*(0) and A(#) with A*(6) and A(0), respectively. Since n~ > p(Ngi(0))
and n=1 3", p(NgF () are concave in A for any 6, as long as A(f) and A\*(6) are in the inte-
rior of A(f), they are maximizers on R¥s by Theorem 2.7 of Newey and McFadden (1994).
But by Assumption 2, A() € int(A(#)) with probability 1 — o(n™%) and \*(0) € int(A(0))

N
Y
7
>
*
/\m
>
=1
(Oke}

Y (PN i (0)) = p(Ni(0))
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with P* probability 1 — o(n™%) except, possibly, if x is in a set of P probability o(n™%).
Therefore, the present lemma (a) is proved.

Finally, the present Lemma (b) follows from the results below:

lim n®P (P* (sup > e) > na> =0, (A.28)
n—oo 0cO

lim n®P (P* <sup > 8) > n_a) =0.(A.29)
n—oo PcO

(A.28) can be shown as follows. By Assumption 2(d) and standard manipulation,

P (P* (sup > 5) > n“) (A.30)
0cO
< P (P* <n—1 D CuX7) > 5) > n—a/2> +P <P* <Sug IA*(0) — A(0)] > 1> > n_“/2> .

We apply AL6(d) with h(X;) = C,(X;) and p = gq; for the first term in the right-hand side
(RHS) of the above inequality, and apply the present lemma (a) for the second term to
show that the RHS is o(n~%). This proves (A.28). Since A(6) € int(A(f)) with probability
1—o0(n™%), (A.29) follows from (A.24). Q.E.D.

n Y (A (0)91(0)) — p(A0) 57 (0)))

=1

n

w3 (005 ©) =~ p00) i)

w3 (00061 0) - (3050 0))

Lemma 5. Suppose Assumptions 1-3 hold with q1 > 2, ¢1 > 4a, and g > max {2, lf—‘éc}
for some ¢ € [0,1/2) and some a > 0. Then, for all ¢ € [0,1/2) and all a > 0,

lim n®P (p* (HB* — B> n—c) > n—a) —0,

n—oo

where B* = (0¥, XY and B = (0", N) for EL and ET, and 3* = (0¥, \*,&*,#*) and
B=(0,N,i,?) for ETEL.

Proof. The proof is analogous to that of Lemma 3 except that it involves additional steps

for the bootstrap versions of the estimators. First, we show
lim n%P <P* (||,é* ~ B> 5> > n—“) —0. (A.31)
n—oo

Consider EL or ET. We claim that for a given € > 0, there exists n > 0 independent of n such
that [|§ — 8| > e implies that 0 < 7 < n =132, p(A(8)'g:(8)) —n~' 32, p(N'§;) with probability
1 —o(n™®). This claim can be shown by a similar argument with (A.26) by using the fact

that Ep(Ag(0) ¢i(9)) is uniquely minimized at 6y and continuous in 8, AL1(b), Lemma 2(a),
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(A.4), (A.6), and (A.7). Thus, we have

P (P* (Hé* 9| > 5) > n*a) (A.32)
o s i ] o)
< ( p* ( *12( V9:(0) = p(\'g7) + p(A*(0) 95(0)) — p(N3) )| > ?7) > "a>
< P< *<228 3 (050~ O 910) >77/2> >n“) = o(n™),

by Lemma 4(b). To show
lim nP (P* (HJ\* ~ Al > g> > n*a) =0, (A.33)
n—oo

we use the triangle inequality, (A.6), (A.32), Lemma 2(a), Lemma 4(a), and the implicit
function theorem that A\g(#) is continuously differentiable around #y. This proves (A.31) for
EL or ET. For ETEL, an analogous result to Lemma 4(b),

> 6) > n_“> =0, (A.34)

lim n®P [ P* | sup |n~" ZZ 0) — 1,,(0
n—00 < (068 ;< ( ) ( ))
i (0) = log (n_l Zeﬁ\*(e)’(gf(ﬁ)—gZ(G))> , (A.35)

=1

where

can be shown by Lemma 4(a), AL6, and AL7. Then, replacing Ep(A\o(0)'gi(0)) with lo(6)
and n1Y", p(A(0) gs(0)) with 1,(0), and applying a similar argument with (A.26) give
(A.32) and (A.33) for ETEL.

For the auxiliary parameters x and 7, the bootstrap versions of the estimators are

-1
n
A= —(ane”?‘gfg:> 0 (A.36)
i=1
n St
R (A.37)
i=1

First, the bootstrap version of (A.8) is

lim n®P (P*(|#* = 7| > ) >n~*) =0. (A.38)

n—oo

40



This follows from the triangle inequality, AL6(d) with h(X) = Cp,(X;), Lemma 4(b),
(A.32), (A.33), and the implicit function theorem that A*(#) is continuously differentiable
around 6*. Second, the bootstrap version of (A.11) is

lim n®P (P*(|&* — &[] >¢) >n"%) =0, (A.39)

n—oo

and this follows from (A.32), (A.33), (A.38), Lemma 4, AL7, and multiple applications of
ALG6. In particular, the condition of ALG is satisfied with p = g2 > max {2,4a} by using a
similar argument with (A.16). Thus, (A.31) is proved for ETEL.

The rest of the proof to show the argument of the lemma (with n™¢ in place of ¢) is
analogous to that of Lemma 3 except that we apply AL6 instead of AL1. By Holder’s
inequality, the binding condition is p = ¢ > max{2,4a/(1 —2¢)} for AL6 but this is
satisfied by the assumption of the lemma. Q.E.D.

Let f(X;, ) be a vector containing the unique components of ¥ (X;, 5) and its deriva-
tives with respect to the components of S through order d, and ¥ (X;, 8)¥(X;, 3) and
its derivatives with respect to the components of 8 through order d — 1. We also intro-
duce some additional notation. Let S, be a vector containing the unique components of
n~tS | f(Xi, Bo) on the support of X;, and S = ES,. Similarly, let S} denote a vec-
tor containing the unique components of n~! S f (Xf,ﬁ) on the support of X;, and
S* = FE*S;.

Lemma 6. (a) Suppose Assumptions 1-8 hold with g2 > max {4,4a} for some a > 0. Then,
for all e >0 and all a > 0,

lim n®P (||S, — S| > ¢) = 0.
n—oo

(b) Suppose Assumptions 1-3 hold with 1 > 2, ¢1 > 2a, and g2 > max{4,8a} for some
a > 0. Then, for alle >0 and all a > 0,

lim nP (P* (S — S7|| > ) >n~?) = 0.

n—oo

Proof. The present lemma (a) can be shown as follows. By the definitions of S, and S, it

d

We apply AL1(b) with ¢ = 0 and h(X;) being any unique component of f(X;, o) —

suffices to show

n~t Z f(Xi, B0) — Ef(Xi, Bo)

1=1

> 5> =o(n™%). (A.40)
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Ef(X;, Bp). To satisfy the condition of AL1(b), p > 2 and p > 2a, we need to investi-
gate the components of f(X;, 8y). For EL or ET, f(X;, ) consists of terms of the form

ol (Ngi(0)) - gh - GH - G Dl (A41)

where « denotes products of components of 8 and and k;’s are nonnegative integers for
l=0,1,..d+ 1. In addition, j = 1,...,d + 1, k, = 1,2, ko, k1 < d+1 ki <d—-1+1 for
1=2,..,d,kgsq1 <1,and ZdH k; < d+1. For ETEL, we replace p] ?(Ngi(0)) with eFeA'9:(0)
where k, =0,1,2, ko <d+3,k <d—Il+2forl=1,2,...,d+1, and ZdH k; < d+3. Since
we assume that all the finite moments exist for ¢;(#), V0 € © and G%), 7=1,2...,d+1, the
values of k;’s do not impose additional restriction on the values of ¢, and g in Assumptions
2-3. What matters is k,, because the value of k, is directly related to go in Assumption 3(d).
Since k, = 2 is the most restrictive case, it suffices to show EC ( )ngd%) (Xi) < o0,
ECI(X)CETP(X;) < oo, BePNooCi P (X;) < o0 and Eegp’\oglOC(d+3) (X;) < oo for
AL1(b) to be applied. By Hoélder’s inequality, letting p = g2 > max {4, 4a} satisfies these
conditions.

The present lemma (b) can be shown as follows. By the definitions of S} and S*, it

suffices to show

p<p*(

By the triangle inequality,

‘IZ( B (Xl,ﬁ))H <

DS XA =0t F(X0 B)
=1 i=1

> 8) > na) =o(n™%). (A.42)

_IZ (XZaBO))

| (A.43)

12 (r(x:.8) - :,5()))“
1Z(f X, 8) — (Xz‘,ﬁo))H-

For the first term of the RHS of the inequality (A.43), we apply Lemma AL6(a) with ¢ =0
and h(X;) = f(Xi, Bo) — Ef(Xi, o). By using a similar argument with the proof of (A.40),

the most restrictive condition is met with p = g > max {4,8a}. The second and the last

terms are shown by combining Lemma 3 with ¢ = 0 and the following results: For all
B € N(Bp), some neighborhood of Sy, there exist some functions C(X;) and C*(X;) such
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that

1/ (X3, 8) = f(Xi, Bo)l < C(Xi)|B = Boll, (A.44)
1f (X5, 8) = F(XT o)l < CHXD)B — Boll, (A.45)
and these functions satisfy for some K < oo,
. 1
nh_)rglon (Iln™ ZC’ )l > K)=0, (A.46)
. * —1 * —ay __
nlg]gon (P*(||n ZC’ O >K)>n"%) =0. (A.47)

After some tedious but straightforward calculation using the binomial theorem, the tri-
angle inequality, and Hoélder’s inequality, AL1(b) implies that the most restrictive case
for the existence of such C(X;) occurs when k, = 2, which is satisfied with p = ¢2 >
max {4,4a}. Similarly, the condition of AL6(d) with h(X}) = C*(X}) is satisfied with
p = g2 > max {4, 8a}. Q.E.D.

Lemma 7. Let A, and A% denote /n(0—0y) and /n(60* —0), or Tarr and Ty p- For each
definition of A, and A, there is an infinitely differentiable function A(-) with A(S) =
and A(S*) = 0 such that the following results hold.

(a) Suppose Assumptions 1-4 hold with ¢1 > 2, q1 > 2a, and g2 > max {4,4@, #j_l} and

d > 2a 4+ 2 for some a > 0, where 2a is a positive integer. Then,
lim supn® P(A, < z2) — P(vV/nA(S,) < 2)| = 0.
n—oo z

(b) Suppose Assumptions 1-4 hold with ¢1 > 2, ¢1 > 4a, and g2 > max {4, 8a, #ad_l} and

d > 2a+ 2 for some a > 0, where 2a is a positive integer. Then,

n—o0

lim n*P <sup |P*(A} < 2) — P*(VnA(S)) < z)| > na) =0.

Proof. The proof is analogous to that of Lemma 13(a) of A2002 that uses his Lemmas 1
and 3-9. His Lemmas 1, 5, 6, and 7 are used in the proof, and denoted by AL1, AL5, ALG,
and AL7, respectively. His Lemma 3 is replaced by our Lemma 3. His Lemmas 4 and 8 are
not required because GEL is a one-step estimator without a weight matrix. His Lemma 9
is replaced by our Lemma 5. The main difference is that the conditions on ¢; and g2 do not

appear in the proof of A2002 for GMM. Lemma 6 is used to give conditions for ¢; and qo.
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I provide a sketch of the proof and an explanation where the conditions of the lemma are
derived from.

For part (a), the proof proceeds by taking Taylor expansion of the FOC around f
through order d — 1. The remainder term (, from the Taylor expansion satisfies ||(,| <
M||B — Bo|¢ < n~% for some M < oo with probability 1 — o(n~®) by Lemma 3. To apply
AL5(a), the conditions such that n=%*+%/2 = o(n=%) or dc > a + 1/2 for some ¢ € [0,1/2),
and that 2a is an integer, need to be satisfied. The former is satisfied if d > 2a + 1 or
d > 2a + 2 (both d and 2a are integers), and the latter is assumed. Since the condition on
g2 of Lemma 3 is minimized with the smallest ¢, let ¢ = (a +1/2)d~!. By plugging this into
the condition of Lemma 3, we have ¢1 > 2, ¢1 > 2a, and ¢ > max{2,2ad(d —2a—1)"'}. In
addition, we use Lemma 6(a) to use the implicit function theorem for the existence of A(-).
By collecting the conditions of Lemmas 3 and 6(a), we have the condition for the present
lemma.”

The proof of part (b) proceeds analogously. By plugging the same ¢ into the condition
of Lemma 5, we have go > max{2,4ad(d — 2a — 1)~'}. The condition of Lemma 6(b) is
q1 > 2, q1 > 2a, and g2 > max{4,8a}. The condition of the present lemma collects these
conditions. Q.E.D.

We define the components of the Edgeworth expansions of the test statistic Thyr and
its bootstrap analog Ty;p. Let ¥, = \/n(S, —S5) and ¥}, = /n(S;; — 5*). Let ¥, ;
and U7, . denote the jth elements of W, and U} respectively. Let vy and vy, denote
vectors of moments of the form no‘(m)EHl’f:l‘~I/n’jH and no(m) g* Z”‘zllll:‘l’ju, respectively,
where 2 < m < 2a+ 2, a(m) = 0 if m is even, and a(m) = 1/2 if m is odd. Let
Vg = limy, 500 Vn,q- The existence of the limit is proved in Lemma 8.

Let m;(d,v,) be a polynomial in 6 = 9/0z whose coefficients are polynomials in the
elements of v, and for which 7;(d, v,)®(2) is an even function of z when i is odd and is an
odd function of z when i is even for 7 = 1,...,2a, where 2a is an integer. The Edgeworth

expansions of Ty g and T}, depend on 7;(6, v,) and m;(6, v}, ,), respectively.

' Pnia

Lemma 8. (a) Suppose Assumptions 1-3 hold with q» > 4(a + 1) for some a > 0. Then,
for alla >0, vy, and v, = limy, o0 Vp o €xist.

(b) Suppose Assumptions 1-3 hold with g1 > 2, ¢1 > 2a, and g2 > max {8((1 +1), Sa(f;;))}

9There is a trade-off between the values of d, smoothness of the moment function, and ¢, the
existence of higher moments of Cy,(X;) or e?o9i0 . Since \g # 0 under misspecification, the value of
g2 may restrict the DGP for the bootstrap to be implemented. This issue is treated separately in
Lee (2014b).
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for some a >0 and some & € [0,1/2). Then, for all a >0 and all £ € [0,1/2),

lim n*P (Hl/ — V|| > nfg) = 0.

n—oQ

Proof. We first show the present lemma (a). Since vy, , contains multiplications of possibly
different components of ¥,, = \/n(S,,—95), it suffices to show the result for the least favorable
term (with respect to the value of g2) in ¥,,. Let s; be the least favorable term in f(X;, 5p).

Since a = 2 is the largest number that we need in later lemmas, we show the lemma for
m=2,3,4,5,6. Then, we can show

na(Q)EHZZI\IJ”Ju —

na(3) EHZ‘:I\IITZ,]M =

no(4) Enﬁzlqu =

©

na(5)EHZZI\IJW.M —

n—0o0

na(G)EHﬁzl‘I’n i —

WJp

n—o0

Es? — (Es;)? = lim n*®EI2_ ¥

n—oo

(A.48)

n,Ju
Es} — 3Es;FEs? 4 2(Fs;)® = Tim n*G B _ W, 5, (A.49)

1 4 — 12
—Es} — —FEs;Es3 + L(Esi)QES? (A.50)
n n n

-1 -2

n n

(2

(Esi)4
3(Esi)" +3(Es2)? — 6(Es;)?Es? = lim n*WEI_ 1w, ;.

n—o0
1 5 30(n — 1
~Bs} — > Es;Es| _ 300 =Y g2y (A51)
n n
10 50n — 60
+ (n )ES?ES? + LES?(E&P
n
10 + 20 —20n + 24
+ (B B+ (B’

—30Es;(Fs?)? + 10Es?Es; 4+ 50Es?(Es;)®
—10(Es;)?Es} — 20(Es;)® = lim n®®)EIL_ W, ;.

Jm
%E; - %ES?E«% L (4:52)
P20 gy 102 gt 2
_120(22_1)E8§E8%E5i § Bl _:L;(n —2 sy’
A0 gt - IO oy
T TR e

15(Es?)? — 45(Es;)*(Es?)? + 45(Es;)* Es? — 15(Es;)°
lim n*®EIS_, W, ;.

n—oo

In order for all the quantities to be well defined, the most restrictive case is the existence
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of EsY. For EL or ET, s; = ap - p?()\{)gig) -ggoﬂfillGél)kl, 1 < j <d+1, where ag denotes
products of components of 3. Since p;(v) = (87)(0v7)log(1 —v), 1 < j < d+1 for EL, Es}
exists under Assumptions 2-3. In particular, UBC (3.7) ensures that E|p;(\ygio)|" < oo
for any finite k, and for j = 1,...,d + 1. For ET, p;(v) = —e” for 1 < j < d+ 1. Thus,
5; = ag - €290 -g’goﬂfill(}’g)k’, for 1 < j < d+ 1. This case is not trivial. By Holder’s
inequality, we need g2 > 12 for EsY to exist. Note that the values of ky and k;’s do not
matter as long as they are finite. Since ETEL has the same term e>*%.0 in s; with ET,
except for different values for ko and k; for [ = 1,...,d + 3, g2 > 12 is also needed for Es to
exist. For arbitrary 0 < a < 2, we use the fact that max{m} = 2a+2 to show g2 > 4(a+1).

Next we show the present lemma (b). Since the bootstrap sample is iid, the proof
is analogous to that of the present lemma (a). In particular, we replace E, X;, and [y

with £*, X, and ﬁ, respectively. Let sf(/5) be the least favorable term in f(X,3) and

A~

si(B) = n Y0 sH(B). In addition, write 8f = sj(ﬁ), 5 = si(B), & = s5(B), and
8n = sn(B) for notational brevity.
We describe the proof with m = 2, and this illustrates the proof for other values of m.

Since n*? =1,

2
n n
n*@ By = B - (BT =0Tty 8 - <n—1 Zs> .
=1 =1

Since lim,, oo na(Q)EHizl\I/ij = Es? — (Esi)z, combining the following results proves the

P (
P (

where 4; = §; or 4; = §?, and u; = s; or u; = s?. We use the fact H.§ZQ — s?” <

I15; — sill(||8: — sill + 2s4), (A.44), AL1(b), and Lemma 3 to show (A.53). The second

result is shown by AL1(a) with ¢ = ¢ and h(X;) = s? — Es? or h(X;) = s; — Es;. By

considering the most restrictive form of s; and combining the conditions of the lemmas,

lemma for m = 2:

n n
nt E di—n_l E U;
i=1 i=1

n
nt E u; — Fu;
i=1

> n_£> =o(n™%), (A.53)

> n_€> =o(n™%), (A.54)

we need ¢ > max{8,8a(1 — 25)*1} by Holder’s inequality. For m = 3,4,5,6, we can
show similar results with (A.53) and (A.54) for u; = s by using the binomial expansion,
AL1l, Lemma 3, and (A.44). Again, the most restrictive condition arises when we apply
AL1(a) with ¢ = £ and h(X;) = s — EsY, and we need go > max {24,24a(1 — 2¢)"'} by
Holder’s inequality. For arbitrary a > 0, we use the fact that max{m} = 2a + 2 to have
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g2 > max {8(a+1),8a(a+ 1)(1 — 2¢)"'} and this is assumed in the lemma. Q.E.D.

Lemma 9. (a) Suppose Assumptions 1-4 hold with g1 > 2, ¢1 > 2a, and g2 > max {4(& +1), #ad_l}

and d > 2a + 2 for some a > 0, where 2a is a positive integer. Then,

lim n®sup |P(Tvg < 2) = 0.

n—oo 2€R

1—|—Zn o méua]i)(z)

(b) Suppose Assumptions 1-4 hold with ¢ > 2, ¢1 > 4a, and g2 > max {8(a +1),8a(a + 1), %}

and d > 2a + 2 for some a > 0, where 2a is a positive integer. Then,

2a
P (Typ<z)— |1+ Zn_i/Qﬂ'i(& Vn,a)
i=1

lim n®P [ sup
n—oo 2cR

Proof. The proof is analogous to that of Lemma 16 of A2002. We use our Lemma 7 instead
of his Lemma 13. The coefficients v, are well defined by Lemma 8(a). Lemma 8(b) with
are well behaved. Q.E.D.

§ = 0 ensures that the coefficients vy, ,

A.3 Proof of Theorem 1
Proof. For part (a), let a = 1. To satisfy the conditions of the lemmas, we need d = 4,

q1 > 4, and g > 16. We first show

P <sup |P(Tyg < z) — P*(Tip < 2)| > n—<1/2+€>g> =o(n7Y). (A.55)
zeR

By the triangle inequality,

P <sup |P(Tyg < 2) — P (Typ < 2)| > n_(1/2+5)5> (A.56)
z€ER
< P (Sup P(Tyr < 2) (1 + Zn (8,1 ) D(2)| > n_(1/2+5)€>
z€ER 4
+P (sup |[P*(Typ<z)— 1+ Zn*i/%(@ vi) | @(z)| > n- /2O E
zER im1 ’ 4
+P (Sup n~1/2 |m1(6, 1) — m1(8, v 1)| @(2) _(1/2+f)€>
z€ER 4
+P <supn |m2(8, 1) — ma(6, v, |<I> (1/2+5)6) =o(n™h).
zeR 4
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The last equality holds by Lemma 9(a)-(b) and Lemma 8(b). The rest of the proof follows
the same argument with (5.32)-(5.34) in the proof of Theorem 2 of Andrews (2001). This
establishes the first result of the present theorem (a). The second and the third result can
be proved analogously.

For part (b), let a = 3/2. Then, we need d = 5, ¢ > 6, and g2 > 30. We use
the evenness of 7;(d,v3/2)®(2) and ;(d, 1/;73/2)@(2) for i = 1,3 to cancel out these terms
through ®(z) — ®(—z). The rest follows analogously.

For part (c), let @ = 2. Then, we need d = 6, ¢; > 8, and g2 > 48. The proof is the
same with that of Theorem 2(c) of A2002 with his Lemmas 13, 14, and 16 replaced by
our Lemmas 7, 8, and 9. The proof relies on the argument of Hall (1988, 1992)’s methods

developed for “smooth functions of sample averages,” for iid data. Q.E.D.
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n = 100 n = 200

DGP C-1 CI J test CI J test
90 95 05 90 95 .05
CMM C HH 925 968 .006 .911 .960 .021
GMM MR L 939 979 n/a .924 969 n/a
EL MR L 921 977 / 918 970 W/
Boot  EL MR BNS 899 963 % 901 .954
00 ET MR L 922 976 / 918 971 o/
ET MR BNS 896 960 % 900 .957 2
ETEL MR L 916 972 a 009 969 a
- ETEL MR BNS .902 .961 /% 004 .954
GMM MR 781 843 830 888
CMM C 775 830 U7 go3 ggg 039
EL MR 742 812 812 871
A EL C 730 807 Y 705 se7 081
SYMP g MR 753 820 o 823 881
ET C 732 809 796 868
ETEL MR 745 81T o 813 8T4 o
ETEL C 741 817 800 869
CMM C HH 961 .989 .000 .932 .975  .002
GMM MR L 981 .994 n/a .950 987 n/a
EL MR L 970 993 a 934 974 a
Boot L MR BNS 933 973 % 919 .960
00 ET MR L 961 .990 o/ 925 973 o/a
ET MR BNS 931 .976 924 968
ETEL MR L 959 992 a 026973 a
_ ETEL MR BNS .934 .975 912 957
GMM MR 656 740 760 836
GMM C 643 7126 Bl 759 g3 0P
EL MR 693 762 784 862
N EL C 654 736 M qus ses 27
Yp g MR 732800 o0 808 878
ET C 656 740 761 841
ETEL MR 710 777 794 871
ETEL C 664 743 7 754 g39 590

Table 1: Coverage Probabilities of 90% and 95% Confidence Intervals for p, based
on GMM, EL, ET, and ETEL under DGP C-1. Number of Monte Carlo repetition
r = 5,000. The Warp-Speed Monte Carlo method is used.
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n = 100 n = 200

DGP C-2 CI J test CI J test
9 95 .05 90 95 .05
GMM C  HH 907 .957 .033 .898 .943  .044
GMM MR L 927 968 n/a .908 962 n/a
EL MR L 908 957 900 957
Boot L MR BNS .883 .932 879 941
ET MR L 908 956 896 953
ET MR BNS 895 039 ™2 g9 .40 0/2
ETEL MR L 907 953 898 054
- ETEL MR BNS .892 .941 883 941
GMM MR 798 86T o AT 900
GMM C 795 860 846 901
EL MR 795 854 840 894
Asymp L C 783 847 097 g33 g 007
ET MR T8 88 o 842 806 o
ET C 781 849 831 889
ETEL MR 79T 89 o 842 805 o
ETEL C 787 853 835 892
GMM C HH 921 969 .006 913 .956  .027
GMM MR L 057 987 n/a .940 977 n/a
EL MR L 959 991 929 972
Boot L MR BNS .925 .969 918 963
ET MR L 945 984 921 967
ET MR BNS 919 963 M* 901 o054
ETEL MR L O5L 98T 922 968
_ ETEL MR BNS .927 .972 909 961
GMM MR 709 783 804 876
GMM C 717 797 03 gop g1 090
EL MR AT 817 838 .900
Asymp L C 731 809 2% go3 g1 1B
ET MR TOT846 o 48900 o
ET C 737 814 821 891
ETEL MR 756820 Lo 846 904 o
ETEL C 737 814 825 894

Table 2: Coverage Probabilities of 90% and 95% Confidence Intervals for p, based
on GMM, EL, ET, and ETEL under DGP C-2. Number of Monte Carlo repetition
r = 5,000. The Warp-Speed Monte Carlo method is used.
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n = 100 n = 200

DGP M-1 CI J test CI J test
90 95 .05 90 95 .05
GMM C  HH 839 931 .002 .889 .952 .036
GMM MR L 919 970 n/a .949 982 n/a
EL MR L 819 899 / 871 938 w/a
Boot  EL MR BNS .776 854 M? 824 894
00 ET MR L 819 .899 ) 873 .942 o/
ET MR BNS .771 851 "M% 824 8983 a
ETEL MR L 820 .902 a 872 935 a
- ETEL MR BNS 779 859 /% 89 .895
GMM MR 511 564 642 697
GMM C 492 ata Y2 551 g6 207
EL MR 585 648 697 760
A EL C 558 625 1 636 o1 OVl
SYIP - pp MR 588654 0T TGS o
ET C 549 620 632 700
ETEL MR 596 660 L, TIBTT6 o
ETEL C 571 638 654 719
GMM C  HH 920 .967 .000 .943 .983 .01l
GMM MR L 971 993  n/a 987 995 n/a
EL MR L 947 977 ) 918 969 o/a
Boot  EL MR BNS .849 926 "M% 852 917
00 ET MR L 935 974 ) 926 .970 o/
ET MR BNS .888 .941 M® 878 936 a
ETEL MR L 931 970 a 914 .959 o/a
_ ETEL MR BNS 872 933 ™* 868 .933
GMM MR 436 489 592 .662
GMM C 344 308 203 500 572 O8O0
EL MR 583 .649 688 761
A EL C 490 558 D00 sug goa 082
SYIP - pp MR 634697 . 739 8U o
ET C 482 560 562 .646
ETEL MR 603 673 706 779
ETEL C 482 552 U89 g g31 2

Table 3: Coverage Probabilities of 90% and 95% Confidence Intervals for p, based
on GMM, EL, ET, and ETEL under DGP M-1. Number of Monte Carlo repetition
r = 5,000. The Warp-Speed Monte Carlo method is used.
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n = 100 n = 200
DGP M-2 CI J test CI J test
90 95 .05 90 95 .05
CMM C HH 858 .933 .036 .887 .943 .121
GMM MR L 917 969 n/a 944 975 n/a
EL MR L 880 929 ) 911956 a
Boot  EL MR BNS 861 .909 ™% 898 954
00 ET MR L 878 930 / 909 953 /
ET MR BNS 858 .905 /% 899 946 2
ETEL MR L 880 .929 a 906 957 a
- ETEL MR BNS .81 912 " 906 .956
GMM MR 611 656 721 770
GMM C 525 582 198 g3 qo7 S04
EL MR 775 823 849 .901
A EL C 766 812 9 suq g1 29
SYIP - pp MR TILO8IS o 849 899
ET C 752 801 837 884
ETEL MR 776 824 849 .901
ETEL C 766 813 22t 45 ssg 28
GMM C  HH 921 964 .012 .908 .966 .313
GMM MR L 970 992 n/a 982 .995 n/a
EL MR L 962 983 ) 930 971 a
Boot  EL MR BNS 911 .956 % 904 953
00 ET MR L 954 979 / 924973 /
ET MR BNS 919 958 % 907 .959 2
ETEL MR L 959 982 a 924966 a
_ ETEL MR BNS 919 957 " 908 961
GMM MR 549 617 692 766
GMM C 454 516 20 597 g1 D9
EL MR 778 839 856 .913
A EL C 717 791 0% o4 865 2
SYIP pp MR 802 839 . 872 926 .
ET C 703 778 785 857
ETEL MR 792 851 863 .922
ETEL C 723 796 9 g00 g3 T84

Table 4: Coverage Probabilities of 90% and 95% Confidence Intervals for p, based
on GMM, EL, ET, and ETEL under DGP M-2. Number of Monte Carlo repetition
r = 5,000. The Warp-Speed Monte Carlo method is used.
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T=4 T=6

DGP n = 100 n = 200 n = 100 n = 200
90 .95 90 .95 90 95 .90 .95
GMM C HH 489 619 325 396 .321 407 194 .235
GMM MR L D46 703 349 435 389 495 212 .266
EL MR L 95 807 397 513 439 B82 212 .269
C-1 EL MR BNS 553 .724 376 .466 .354 .452 .199 244
ET MR L 099 805 391 499 411 546 204 258
ET MR BNS 546 .711 .364 456 .349 462 .203 .248
ETEL MR L b8 781 379 494 410 551 204 .266
ETEL MR BNS 555 725 373 459 353 466 .193 241
GMM C HH b31 663 348 414 326 408 .205  .248
GMM MR L 584 730 362 456 395 499 232 .280
EL MR L 600 776 .382 475 427 576 219  .269
09 EL MR BNS 544 676 .361 .446 .358 452 211  .255
ET MR L 612 780 .380 471 .392 520 213  .261
ET MR BNS 579 717 373 449 352 440 .201 @ .242
ETEL MR L 596 757 379 468 403 537 214 .260
ETEL MR BNS 563 .702 .364 444 360 .459 .206 .251
GMM C HH 1.157 1.566 .935 1.363 .798 1.101 .491 .723
GMM MR L 2449 3.533 1.589 2.268 1.544 2.177 .924 1.292
EL MR L 925 1.340 707 1.062  .807 1.224 443  .618
M1 EL MR BNS 779 1.076 .582 .804 .500 .702 .335 .439
ET MR L 953 1.382 742 1.105 793 1.201 422  .569
ET MR BNS 803 1.096 .624 .850 .603 .826 .350  .447
ETEL MR L 921 1351  .670 987  .756 1.092 420  .539
ETEL MR BNS 776 1.087 .555 .745 .5b64 .765 .359  .462
GMM C HH 1.230 1.742 782 1.111 .705 974 .371  .512
GMM MR L 2.132 3.093 1.328 1.845 1.342 1.864 .707 1.004
EL MR L 2711 1.041 415 539 585 .847 .247  .306
M9 EL MR BNS 652 .867 .395 .527 413 546 .227 277
ET MR L 739 1.119 436 562 579 827 249 317
ET MR BNS .666 .890 415 .532 458 .596 .234  .289
ETEL MR L 695 1.019 412 541 552 789 .237  .291
ETEL MR BNS .640 874 413 538  .420 .542 .225 .279

Table 5: Width of 90% and 95% Bootstrap Confidence Intervals for py based on GMM,

EL, ET, and ETEL. Number of Monte Carlo repetition » = 5,000. The Warp-Speed

Monte Carlo method is used.
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OLS GMM EL ET ETEL

B 294  -561  .016  -.059  -.023
const  s.e.c (.235) (.089)  (.097) (.101)  (.100)
S.e.MR (.194)  (.109)  (.125)  (.121)
B 054 .056 068 070 071
educ s (.010) (.006) (.005) (.006)  (.006)
S.e.MR (.018)  (.006)  (.009)  (.008)
B 068  .140 076  .081  .082
exper se.c  (.025) (.006)  (.007) (.007)  (.007)
S.e.rn (.022)  (.008)  (.011)  (.010)
B ~.002  -.004  -.002  -.002  -.002
exper?  s.e.c (.001) (.0002) (.0002) (.0002) (.0002)
S.e.MR (.0006) (.0002) (.0003) (.0002)
B 004  .007  .005  .006  .005
1Q se.c  (.001) (.001) (.001) (.001)  (.001)
S.e.MR (.002)  (.001)  (.002)  (.002)
B 008  -.0003 -.002  -.004  -.005
KWW sec  (.003) (.003) (.003) (.003) (.003)
S.e.MR (.007)  (.003)  (.004)  (.004)
Jtest  xis 4773 1775 285.2  196.2
p-value [.000]  [.000]  [.000]  [.000]

Table 6: Estimation of the Mincer equation using Census moments
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Estimator CI s.e. LB Point Est. UB Width

OLS Asymp n/a .033 .054 074 .041
Asymp C 044 068 .024
Asymp MR 021 091 .070
GMM Boot (sym) MR L .003 056 108 .105
Boot (eqt) MR L .019 115 .096
Asymp C .058 079 .021
Asymp MR .056 080  .024
BL Boot (sym) MR L 041 063 096  .055
Boot (sym) MR BNS .054 ' 083 .029
Boot (eqt) MR L .049 099 050
Boot (eqt) MR BNS .055 085 .030
Asymp C 058 081 .023
Asymp MR .052 087  .035
- Boot (sym) MR L .085 . 104 069
Boot (sym) MR BNS .047 ' 092 .045
Boots (eqt) MR L 047 110 .063
Boots (eqt) MR BNS .047 093 .046
Asymp C .060 083 .023
Asymp MR .056 086  .030
Boot (sym) MR L 039 104 .066
ELTEL Boot (sym) MR BNS .052 V7L .090 .038
Boot (eqt) MR L .051 108 057
Boot (eqt) MR BNS .053 093  .040

Table 7: 95% Confidence Intervals for the Returns to Schooling. Number of Bootstrap
Repetition B = 5, 000.
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