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Abstract—The purpose of this research is to search for the best
(highest performing) risk profile of agents who successively choose
among risky prospects. An agent’s risk profile is his attitude
to perceived risk, which can vary from risk preferring to risk
neutral (an expected-value decision maker) to risk averse. We use
the Genetic Algorithm to search in the complex stochastic space
of repeated lotteries. We find that agents with a CARA utility
function learn to possess risk-neutral risk profiles. Since CARA
utility functions are wealth-independent, this is not surprising.
When agents have wealth-dependent, CRRA utility functions,
however, they also learn to possess risk profiles that are about risk
neutral (from slightly risk-averse to even slightly risk-preferring),
which is surprising.

Keywords—

I. I NTRODUCTION

Informally, it is widely held that in an uncertain world, with
the possibility of the discontinuity of bankruptcy, the most
prudent risk profile is risk aversion. Indeed, “Risk aversion
is one of the most basic assumptions underlying economic
behavior” [1], perhaps because “a dollar that helps us avoid
poverty is more valuable than a dollar that helps us become
very rich” [2]. But is risk aversion the best risk profile? Even
with bankruptcy as a possibility?

To answer this question, we use two kinds of utility
function (the wealth-independent exponential utility function,
or Constant Absolute Risk Aversion CARA, and the Constant
Relative Risk Aversion CRRA function, which is sensitive to
the agent’s level of wealth) and run computer experiments in
which each agent chooses among three lotteries, and is then
awarded with the outcome of the chosen lotteryk.

Repetition of this choice by many agents allows us use a
technique from machine learning – the Genetic Algorithm or
GA [3] – to search for the best risk profile, where “best” means
the highest average payoff when chosing among lotteries.

Modelling the agent’s utility directly allows us to avoid
the indirect inference of Szpiro [1], who argues that the
evolutionary learning technique of the GA does two things:
it allows wealth-maximizing agents to succeed even in highly
stochastic environments, and it allows the emergence of risk
aversion. Indeed, Szpiro argues that risk aversion is the best
risk profile to adopt in such an environment.

II. D ECISIONS UNDERUNCERTAINTY AND RISK
PROFILES

The von Neumann-Morgenstern formulation of the
decision-maker’s attitude to risk is based on the observation
that individuals are not always expected-value decision makers.
That is, there are situations in which people apparently prefer

a lower certain outcome to the higher expected (or probility-
weighted) outcome of an uncertain prospect (where the pos-
sible outcomes and their possibly subjective, or Bayesian,
probabilities are known).

An example is paying an insurance premium that is greater
than the expected loss without insurance. On the other hand,
people will sometimes “gamble” by apparently preferring a
lower uncertain outcome to a higher sure thing: this is risk-
preferring.

We can formalise this by observing that, by definition, the
utility of a lottery is its expected utility, or

U(L) =
∑

piU(xi), (1)

where each (discrete) outcomexi occurs with probabilitypi,
andU(xi) is the utility of outcomexi. It is useful to define the
Certainty Equivalent̃x (or C.E.), which is a certain outcome
which has the identical utility as the lottery:

U(x̃) = U(L) =
∑

piU(xi) (2)

We can use the C.E. to describe the decision-maker’s risk
profile [4]. Define the Expected Valuēx of the Lottery as:

x̄ =
∑

pixi. (3)

When x̃ = x̄, then the decision-maker’s utility function
exhibits risk neutrality; wheñx < x̄, then risk aversion; and
when x̃ > x̄, then risk preferring.

A. Approximating the Certainty Equivalent

Expand utilityU(.) about the expected valuēx.

U(x0) ≈ U(x̄) + (x0 − x̄)U ′(x̄) +
1
2
(x0 − x̄)2U ′′(x̄)

The C. E.x̃ of a continuous lottery is obtained by integra-
tion over the probability density function (p.d.f.)fx(.):

U(x̃) =
∫

dx0U(x0)fx(x0)

∴ U(x̃) ≈ U(x̄) + 0 +
1
2
σ2U ′′(x̄), (4)

whereσ2 is the variance. But, by expansion,

U(x̃) ≈ U(x̄) + (x̃− x̄)U ′(x̄). (5)

Therefore, from (4) and (5),

x̃− x̄ ≈ 1
2
σ2 U ′′(x̄)

U ′(x̄)



∴ x̃ ≈ x̄ +
1
2
σ2 U ′′(x̄)

U ′(x̄)
(6)

B. Risk Aversion

Risk aversion is not indicated by the slope of the utility
curve: it’s thecurvature: if the utility curve is locally –

• linear (say, at a point of inflection), then the decision
maker is locally risk neutral;

• concave (its slope is decreasing – Diminishing
Marginal Utility), then the decision maker is locally
risk averse;

• convex (its slope is increasing), then the decision
maker is locally risk preferring.

III. U TILITY FUNCTIONS

We consider two types of utility function:

1) those which exhibit constant risk preference across
all outcomes (so-called wealth-independent utility
functions, or Constant Absolute Risk Aversion CARA
functions), and

2) those where the risk preference is a function of the
wealth of the decision maker (the Constant Relative
Risk Aversion CRRA functions).

A. Wealth Independence

If an increase of all outcomes in a lottery by an equal
amount∆ increases the C.E. of the lottery by∆, then the
decision maker exhibits wealth independence:

U(x̃ + ∆) = U(L′) =
∑

piU(xi + ∆).

Acceptance of this property restricts possible utility functions
to be linear (risk neutral) or exponential, or constant-absolute-
risk-aversion (CARA) functions.

CARA utility functions charactise risk preference by a sin-
gle number, therisk aversion coefficient,γ. Since CARA utility
functions are wealth-independent, any aversion to bankruptcy
is thus precluded, by definition. Whether a decision maker
exhibits a wealth-independent utility function is an empirical
question.

B. CARA Utility Functions

When utility is linear in outcomes, the decision maker is
risk-neutral, across all outcomes, but such a simple constant-
risk-profile utility function is of no further interest. Instead, we
consider the exponential constant absolute risk averse (CARA)
functions, where utilityU is given by

U(x) = 1− e−γx, (7)

where U(0) = 0 and U(∞) = 1, and whereγ is the risk
aversion coefficient:

γ = −U ′′(x)
U ′(x)

. (8)

1) Risk Aversion with Exponential Utility:From (6) and
(8), for exponential utility,

x̃ ≈ x̄− 1
2
σ2γ

which indicates that whenγ = 0, thenx̃ ≈ x̄ (risk neutrality),
whenγ > 0, then x̃ < x̄ (risk averse), and whenγ < 0, then
x̃ > x̄ (risk preferring), with positive variance.

C. CRRA Utility Functions

We want a utility function which isnot wealth-independent,
to see whether that will result in risk-averse agents doing best.

The Arrow-Pratt measure of relative risk aversion (RRA)
ρ is defined as

ρ(w) = −w
U ′′(w)
U ′(w)

= wγ (9)

This introduces wealthw into the agent’s risk preferences,
so that lower wealth can be associated with higher risk
aversion. The risk aversion coefficientγ is as in (8).

The Constant Elasticity of Substitution (CES) utility func-
tion:

U(w) =
w1−ρ

1− ρ
, (10)

with positive wealth,w > 0, exhibits constant relative risk
aversion CRRA, as in (9).

1) Risk Aversion with CES Utility:In the CRRA simula-
tions, we use the cumulative sum of the realisations of payoffs
won (or lost, if negative) in previous lotteries chosen by the
agent plus the possible payoff in this lottery as the wealthw
in (10). Each agent codes forρ.

From (6), the C.E. with CES utility is approximated by

x̃ ≈ x̄− 1
2

ρ

w
σ2.

Iff 1
2

ρ
wσ2 > 0 (or ρ/w > 0), then then C.E.̃x < the expected

meanx̄, and the decision maker is risk averse.

With w > 0, ρ > 0 is equivalent to risk aversion. With
w > 0 andρ = 1, the CES function becomes the (risk-averse)
logarithmic utility function,U(w) ≈ log(w). With w > 0 and
ρ < 0, it is equivalent to risk preferring.

IV. T HE SIMULATIONS

Each lottery is randomly constructed: the two payoffs
(“prizes”) are randomly chosen in the interval between− and
+ MAP, (where the Maximum Absolute Prize, MAP, is usually
100); and the probability is also chosen randomly. (Each lottery
has, of course, a single degree of freedom for probability).
Each agent calculates the expected utility of each of the three
lotteries, using its utility function (a function of itsγ or ρ/w),
and chooses the lotteryk with the highest expected utility. To
do this, agents know the prizes and probabilities of all three
lotteries.

Then the actual (simulated) outcome of the chosen lottery
k is randomly realised, using its probability. The winnings
of the Constant Absolute Risk Aversion agent (respectively,



the wealth of the Constant Relative Risk Aversion agent)
is incremented accordingly. Each agent successively chooses
1000 lotteries.

Calculate the three expected utilities for lotteries X, Y, and
Z, functions ofγ (or ρ andw):

U(X) = pxU(x1) + (1− px)U(x2)

U(Y ) = pyU(y1) + (1− py)U(y2)

U(Z) = pzU(z1) + (1− pz)U(z2)

Choose the lotteryI with the highest expected utility. Win
(or lose) whichever prize (i1 or i2) is realised in that lottery,
based in the lottery’s probabilitypi.

A. Searching with the Genetic Algorithm

We use a population of 100 agents, each of which has a
average winnings or a cumulative level of wealth, based on its
risk profile and the successive outcomes of its choices among
the lotteries. The GA’s mutation rate is controllable by the
simulator, on-screen.

We use an implementation [5] of the GA to search for the
best risk profile. That is, we select the best-performing agents
to be the “parents” of the next generation of agents, which is
generated by “crossover” and “mutation” of the chromosomes
of the pairs of parents. Each of the new generation of agents
chooses the lotteryk with highest expected utility a thousand
times. Again, the best are selected to be the parents of the next
generation.

We use the GA simulation in this search as an empirical
alternative to solving for the best (highest performing) risk
profile analytically. Note that Rabin [2] asserts that “theory
actually predicts virtual risk neutrality.” We return to this paper
in the Discussion below.

B. Simulations with Utility-Maximizing Agents

Uing NetLogo [6], we model each agent as a binary string
which codes to its risk-aversion coefficient,γ, for CARA
agents (respectively,ρ, for CRRA agents) in the interval
±1.048576.

Each lottery is a two-prize lottery, where each prize is
chosen from a uniform distribution, between− and + MAP
(Maximum Absolute Prize), where MAP can be set up to 100
by the simulator, and the single probability is chosen randomly
from uniform [0,1].

Each agent chooses the lotteryk with the highest expected
utility from (1) and (7), based on its value ofγ (respectively,ρ
and wealthw). Then a realised outcome is calculated for that
lottery, based on its probability.

Each agent faces 1000 lottery choices, and the cumulative
winnings that agent’s “fitness” for the GA.

C. The CARA Results

The windows in Fig. 1 captured from the NetLogo simu-
lations 1 show three things clearly:

1See http://www.agsm.edu.au/bobm/teaching/SimSS/NetLogo4-models/RA-
CARA-EU-3l2p.html for a Java aplet and the Netlogo code.

Fig. 1. CARA Simulation Results

1) The mean (black) fitness (cumulative winnings)
grows quickly to a plateau after 20 generations (along
the x axis) or so;

2) the mean, maximum, and minimum risk-aversion co-
efficientsγ (respectively, black, green, red) converge
to close to zero (risk neutrality) over the same period,
and

3) Any γ deviation from zero up (more risk-averse) or
down (more risk-preferring) leads to the minimum
(red) fitness in that generation collapsing from close
to the mean fitness.

These observations clearly show that CARA agents per-
form best (in terms of their lottery winnings) who are closest
to risk neutral (γ = 0). Too risk averse, and they forgo fair
lotteries; too risk preferring and they choose too many risky
lotteries.

Despite our prior belief, the CARA agents do not learn to
be risk averse, but to be risk neutral. Is this because the wealth-
independent CARA utility function precludes bankruptcy?

D. The CRRA Results

We could, of course, put a floor on agent wealth, below
which is oblivion, but better to use a utility formulation that
is not wealth independent and repeat the search. We use the
CES utility functions (10) that exhibits CRRA.

The results are surprising (see Fig. 2, for one simulation
run): 2 the CRRA agents do not learn to be risk averse, but
are very close to risk neutral.

2See http://www.agsm.edu.au/bobm/teaching/SimSS/NetLogo4-
models/DRA-CRRA-EU-revCD-3l2p.html for a Java aplet and the NetLogo
code.



Fig. 2. CRRA Simulation Results

Remember:γ = ρ
w , so dividing theρ values by the high

w values attained implies corresponding minute values ofγ
here.

E. Changing the Fitness Function

For the simulations in 4.1.(CARA) and 4.2 (CRRA), the
GA’s fitness function (or performance measure) is the arith-
metic mean of the agent’s cumulative winnings (or losses) in
the 1000 lottery choices:

fitness =
1

1000

∑
t

Lkt

whereLkt is the realisation of the the highest-expected-utility
lottery k, chosen at periodt.

We now use the geometric mean:

fitness =
∏

t

(Lkt)
0.001

The motivation behind this is that the log of the geometric
mean of the expected value of a lottery equals its expected
utility with a logarithmic utility function.

Does risk-aversion emerge with this new fitness?3 This
would requireγ > 0 (for CARA) andρ > 0 (for CRRA). No:
whether we use arithmetic or geometric means for our fitness
function, the agents – whether CARA or CRRA – appear to
converge (if slowly) on risk-neutral decision making.4

3See http://www.agsm.edu.au/bobm/teaching/SimSS/NetLogo4-models/RA-
CARA-EU-GM-revC.html for a Java aplet and the NetLogo code of the CARA
model with geometric mean.

4See http://www.agsm.edu.au/bobm/teaching/SimSS/NetLogo4-
models/DRA-CRRA-EU-GM-revH-3l2p.html for a Java aplet and the
NetLogo code of the CRRA model with geometric mean.

V. D ISCUSSION

Unlike the GA simulations of Szpiro [1], we find that the
best-performing CARA agents are risk-neutral, not risk averse.
Because of the indirect way in which Szpiro modelled the risk
profiles of his agents (unlike a referee’s suggestion, footnote
3, Szpiro’s model “only distinguishes between risk-averse
automata and all others”), explanation of the contradictory
results is not easy, but since our models allow any risk profile
to emerge, we argue that they are more general than Szpiro’s.

Should we be surprised that risk neutrality does better than
risk aversion in CARA utility functions? Rabin [2] suggests a
reason why not, at least for small-stakes lotteries. He argues
that von Neumann-Morgenstern expected-utility theory is inap-
propriate for reconciling actual human behaviour as revealed in
risk attitudes over large stakes and small stakes. If there is risk
aversion for small stakes, then expected-utility theory predicts
wildly unrealistic risk aversion when the decision maker is
faced with large stakes. Or risk aversion for large stakes must
be accompanied by virtual risk neutrality for small stakes.

Rabin [2] argues thatloss aversion[7], rather than risk
aversion, is a better (i.e. more realistic) explanation of how
people actually behave when faced with risky decisions. This
suggests possibilities for further simulations, although “loss
aversion” suggests a prior conclusion.

But we do not appeal to empirical evidence or even to prior
beliefs of what sort of risk profile is best. Whereas there has
been much research into reconciling actual human decision
making with theory (see [8]), we are interested in seeing what
is the best (i.e. most profitable) risk profile for agents faced
with risky choices.

And we find that for wealth-independent CARA utility
functions (exponential) agents learn to become risk-neutral
decision makers in order to maximise their returns when
choosing among risky propositions. This is different from the
risk-averse agents that Szpiro [1] observed. But for wealth-
dependent CRRA utility functions (CES) our agents often do
learn to be slightly risk averse, as expected, but not always.

An analytical study [9] posits an adaptive process for
decision-making under risk such that, despite people being
seen to be risk averse over gains and risk seekers over losses
with respect to the current reference point [7] – the so-called
dual risk attitude, the agent eventually learns to make risk-
neutral choices. Their result appears consistent with our results,
although the learning in their model is not that of the GA, but
rather agents observing how their choices result in systemic
undershooting (or overshooting) of their targets, which then
results in more realistic targets and choices. Their lotteries are
symmetrical (for tractability), unlike ours. Our results suggest
that their results might generalise to asymmetric lotteries, such
as our.

VI. CONCLUSION

Using a demonstrative agent-based model – which demon-
strates principles, rather than tracking historical phenomena –
we have used the Genetic Algorithm to search the complex,
stochastic space of decision making under uncertainty, in
which agents successively choose among three (asymmetric)
lotteries with randomly allocated probabilities and outcomes



(two per lottery), in order to maximize their expected utilities.
The GA searches for the best-performing utility function,
whether CARA (or wealth-independent) or CRRA (when
wealth, and hence bankruptcy, matters).

Despite our prior belief that a risk-averse agent does best
in these circumstances, we find that both CARA and CRRA
utilities converge (if slowly, in the latter case) to risk neutrality.
This is consistent with analytical work that proves that with
symmetric lotteries, and agents with dual risk attitude, risk-
neutral decisions are the eventual outcome of agents adjusting
their aspirations and targets in response to the realisations of
their choices. Further work will reveal the robustness of our
results.
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Note: Java aplets of the simulation models and the NetLogo
code is available online, together with graphical output of the
simulation results, as referenced in the four footnotes above.

These models will also generate real-time results, includ-
ing graphs of their performance, when your computer’s Java
security allows. Moreover, you can explore the impact of the
GA mutation rate on the simulation evolution.
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