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Abstract

This paper presents new evidence on the impact of public infrastructure on the Aus-

tralian economy. The contribution of the paper is three-fold. First, it estimates measures of

multifactor productivity for each of the states and territories. Second, it employs a new data

set on public infrastructure. Third, the paper applies detailed econometric investigations in

an attempt to readdress the crucial econometric shortcomings of earlier studies. The analysis

presented here is designed to investigate two widely-debated questions. First, whether ag-

gregate time-series analysis is incapable of capturing infrastructure spillovers to productivity

and, consequently, results in incredibly high estimates of infrastructure elasticity. Second,

whether state-specific characteristics exhibit a significant role in explaining effects on pro-

ductivity. To answer the first question, the study applies time-series regressions on both a

national and state-by-state basis. Results from this approach confirm the implausibly large

effect of infrastructure for the whole economy and four states. To examine the second issue,

the paper develops a panel cointegration model which controls for state fixed effects. In sharp

contrast with findings from aggregate time-series, results from the fixed effects approach are

more plausible and robust to sensitivity tests. In another piece of evidence, estimation of an

error-correction model reveals that a long-run identification and modelling of the relationship

(i.e. a cointegration) reflects the important positive role of infrastructure on productivity.

However, short-run dynamics provide no support for a positive effect which explains why

earlier studies which employed differenced data found infrastructure has no discernible effect

on productivity. In addition, applying a causality test suggests a long-run unidirectional

causality running from public infrastructure to productivity.
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1 Introduction

The question of ‘how productive is public infrastructure?’ has remained an issue on the research

agendas of many decades. Since Aschauer’s (1989) work, which suggests a strong influence of

public capital on productivity, researchers have continued to investigate this issue by using dif-

ferent methodologies and data sets. Nevertheless, no agreement on the nature and size of the

effect has yet been achieved. Authors have followed several approaches to examine the relation-

ship between public infrastructure and productivity. The aims, assumptions, and findings of

these approaches have extensively been reviewed and assessed in the theocratical and empirical

literature.1 Most of the first generation studies that followed Aschauer (1989) in applying aggre-

gate level analyses have found incredibly large elasticity estimates of productivity (e.g Munnell

1990b; Wylie 1996; and Fernald 1999). This finding has prompted the use of disaggregate data

(e.g., state, region, metropolitan areas) as opposed to aggregate data (see Munnell 1990a; and

Garcia-Mila and T.McGuire 1992 for example). The main argument of regional studies relates to

the existence of positive geographic externalities from infrastructure which are not captured by

aggregate analysis. By employing regional data (and hence allowing for the externalities), such

studies find a considerable reduction in the estimated effect on productivity. However, all of the

first generation studies, whether using aggregate or disaggregate data, have been criticised from

different perspectives such as obtaining a wide range of estimates, and the lack of robustness

to more sophisticated econometric techniques (for example, see Holtz-Eakin 1994; Cashin 1995;

Baltagi and Pinnoi 1995).

The subsequent generation of researchers has attempted to respond to the criticism by using

more appropriate econometric methods, but the findings are controversial. While one group of

studies continues to assert a strong positive effect, the other group has found insignificant or

negative impact (see Makin and Paul 2003 for an overview on recent literature). The conflicting

outcomes have left researchers and policy makers in a quandary as to what the accurate effect

on productivity could be and whether, given the tight federal budgetary policies, resources have

to be shifted from or to public infrastructure investments.

Recently, there has been redirection of the research towards spatial/regional panel analyses.

There is some consensus that regions have individual characteristics which affect the role of

infrastructure. These characteristics have to be accounted for when assessing the benefit on pro-

ductivity. Although applying disaggregated analyses seems to provide some avenues to overcome

the limitations of the aggregate analyses, the unavailability of suitable data has continued to

hamper the efforts of this approach. Therefore, panel productivity analyses have been conducted

in only a few countries outside the U.S.; some examples are Stephan (2003) for West Germany,

Destefanis and Sen (2005) for Italy, and Cadot, Roller and Stephan (2006) for Spain.

In Australia, the limited availability of regional/state data has restricted previous investi-

gations to the national level only. When surveying the empirical literature, only three panel

analyses are found, namely, Productivity Commission (2007), Louca (2003) and Burgio-Ficca

1See Bom and Ligthart (2008), Romp and de Haan (2007) and Infrastructure Canada (2007) for comprehensive
coverage of this literature.
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(2004) in which the authors examine the effects of research and development (R&D) investment

on productivity. The dearth of evidence using state level data has motivated us to examine the

topic using state-by-state and panel data frameworks. Thus, to make this goal possible, data at

state level have first to be constructed.

The contribution of this paper is three-fold. First, since the official data available for multi-

factor productivity (MFP) are estimates for the market sector of the whole economy, the present

study provides estimates of MFP for each of the Australian states and territories.2 Second, we

aim to carefully select a relevant measure of public infrastructure capital. In particular, we

emphasise the role of economic infrastructure such as transport, telecommunication, water and

gas (in contrast to social infrastructure) as a subset of infrastructure that has a more immedi-

ate influence on the production process. One of the reasons that earlier studies have achieved

divergent results is that various authors have modelled a variety of different indicators of infras-

tructure. In many cases (often due to the lack of data) the scope of infrastructure is defined to

encompass a wide range of public assets such as educational institutions and hospitals, which in

turn has resulted in a large estimated effect of infrastructure. To construct an appropriate mea-

sure for public economic infrastructure (or, as it is interchangeably called, core infrastructure)

we utilise the engineering construction data published by the Australian Bureau of Statistics

(ABS). These data, to a great extent, are similar to the spending on core infrastructure. As

we are not aware of any other study within our context of investigation that has made use of

these data, this adds one more dimension of departure from other Australian studies. Third, the

estimated data are employed to develop a comprehensive econometric approach which aims to

investigate two questions that have been widely discussed in earlier studies. More precisely, the

intention is to inquire what Australian data says with respect to the argument of (i) inability

of time series analysis to produce sensible results, and (ii) the impact of state characteristics in

explaining productivity.

The econometric analysis attempts to address the crucial econometric shortcomings, such as

spurious regression and endogeneity of regressors which have not received adequate treatment

in the earlier Australian studies. For this purpose, we estimate long and short-run cointegration

approaches to investigate the relationship between public infrastructure and productivity. To

examine the first question, nationwide and state-by-state time series regressions are conducted.

The estimated elasticity of public infrastructure for the whole economy and four states is found

to be incredibly large. Thus, arguments against time-series analysis find some support from

Australian data. Next, being able to construct estimates for the key variables at the state level

gives us some hope with a set of data that has both cross section and time series dimensions.

This, perhaps, has enabled us to overcome some of the limitations associated with aggregate

time-series by making use of some recent developments in unit root and cointegration testing

procedures and the advancements in panel data estimation techniques.

In contrast to the findings from aggregate analysis, using panel Dynamic Ordinary Least

Squares (panel DOLS) and panel Error-Correction Model (ECM), which are widely recom-

mended approaches to estimate panel cointegration coefficients, we find that the control of the

2From now on, whenever ‘state’ is referred to in the text, it also encompasses the two territories.
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state individual characteristics produces long-run elasticities that are often reasonably in line

with economic theory. Moreover, the panel ECM provides us with evidence on the different

quality of productivity responses to changes in public infrastructure provision during the short-

and long-run. We find that in the short-run, when infrastructure investments are perhaps not

fully operational, no clear benefit appears in the production sector; however, during the longer

terms, the positive benefits are well captured by the business sector. An extra piece of evidence

relates to the debate on the causal link between infrastructure provision and productivity. Our

error-correction model suggests that there is a long-run unidirectional causality running from

public infrastructure to MFP.

Finally, the clear inconsistency between the outcomes of the state-by-state results and panel

results induces us to question the homogeneity restriction inherent in panel procedures, which

assumes that the estimated parameters are equal across the states. Applying formal poolability

tests does not reveal statistical support for the homogeneity assumption. We look at the issue

of poolability in some detail.

The paper proceeds as follows. The next section briefly discusses the major econometric

problems in the earlier literature. The theoretical framework and the setup of econometric

models are put forward in Section 3. In Section 4, we describe the sources of data and the

construction of the variables used in the estimation procedures. Section 5 presents the results

of unit root and cointegration tests on individual and panel series. In Section 6 we present the

estimation techniques and the analysis of the results. Section 7 conducts sensitivity testing of the

results by relaxing the assumption of constant returns to scale (CRS), which is imposed to derive

MFP indexes. In Section 8 we present the rate of return of public infrastructure that is implied

from our preferred results. Some discussion on the issue of data poolability is offered in Section

9. Section 10 tests the direction of causality between public infrastructure and productivity and

Section 11 concludes.

2 Earlier literature and major criticisms

To highlight the shortcomings that need to be addressed, this section focuses on the main

features of the criticism raised against the general approach adopted by earlier studies. Briefly

speaking, and following Munnell (1992), one can summarise these criticisms as follows:

Spurious correlation

Some critics argue that the data on output and public infrastructure used in the earliest models

are non-stationary, which in turn has a serious implication regarding the long-term relationship,

because a strong correlation appearing between non-stationary series variables might not result

from a causal effect but reflect a spurious relationship.

Generally speaking, researchers have followed two approaches to deal with the issue of spu-

rious correlation. The first group (e.g., Aschauer 1989 and Munnell 1990b) avoids the notion of

spurious regression and assumes a causal relationship between infrastructure and productivity.
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Although on some occasions the non-stationarity of the data is acknowledged, that group of

studies handles the problem of non-stationarity by either including a deterministic time trend or

simply assuming cointegration without performing a formal cointegration test. The other group

of studies shows concern with the issue of non-stationarity. One possible solution suggested to

solve this problem is to estimate the production function using first differences. For example,

Tatom (1991) has estimated a production function and tested for unit root in the level of the

variables in his estimated equation. According to his evidence, non-stationarity cannot be re-

jected for most of the employed variables. To overcome the potential spurious correlation, the

author suggests to first-difference the data.

Munnell (1992) has responded to authors like Tatom by mentioning that the approach of

first-differencing the data has important shortcomings because it is less likely that the growth in

the stock of public capital will correlate with the growth of output or productivity in the same

year. This is also justifiable for all the other factors of production. Hence, using first differences

may result in non-significant estimates, not only for public capital, but also for the other factors.

In addition, Munnell argues that ‘first-differencing destroys any long-term relationship in the

data, which is exactly what one is trying to estimate’ Munnell (1992, p. 193).

In this light, Munnell emphasises that a better approach is to use cross-section data. By

comparing the results from studies using national data (such as Aschauer 1989 and Munnell

1990b) with those using regional or state data (e.g., Munnell 1990a; Mera 1973; and Eisner

1991), the author concludes that the estimates of the elasticity of public capital are sensitive

to geographical disaggregation: the more disaggregated the data, the smaller the estimated

elasticity. Besides Munnell’s (1992) argument, Engle and Granger (1987) have earlier shown

that a first-differenced model of non-stationary variables is misspecified if the elements of the

data vector are cointegrated, in which case an error-correction model is the proper specification.

Thus, to preserve the long-run information, some studies have proceeded to formally test and

model for cointegration.

Specification problems

Although there is some support for employing disaggregate data, critics argue that the stud-

ies of regions, states or metropolitan areas suffer from a specification problem. For instance,

Holtz-Eakin (1994) emphasises that an estimation of the production function that neglects the

important factors of differentials in regional productivity will result in biased parameters. To

avoid this bias, Holtz- Eakin proposes allowing for state-specific characteristics such as location,

climate, and endowments of natural resources when estimating production function.

Reverse causality

Is the positive correlation found between output and infrastructure due to the positive return

from public infrastructure to output, or due to the effect of output on the demand for the

quantity of public capital? Could causality run from the two directions simultaneously? These

questions on the risk of reverse causation reflect another challenge facing the earlier aggregate
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approach, since variables on the regression are likely to be endogenous and this will indicate

a problem with the single equation model (see Hurst 1994, p. 62). To account for the risk of

reverse causality, some studies construct a simultaneous equations model (e.g., Flores De Frutos

and Pereira 1993), while others apply the Granger causality test; for example, Tatom (1993),

who has concluded that the Granger test shows strong evidence of reverse causality. Nonetheless,

Fernald (1999) does not agree with the direction of causality that results from Tatom’s study.

Missing explanatory variables

One more limitation raised against the earlier models is the failure to include other important

explanatory variables besides infrastructure. In relation to a finding in the U.S., for example,

Tatom (1991, p. 7) observes that: ‘The omission of energy price effects on productivity after

1973 could result in attributing energy-related productivity losses to the decline in the growth

of public capital’. In addition, Gramlich (1994) claims that the decrease of public infrastructure

expenditure was one of many usual explanatory variables of the lower productivity level in the

U.S. after the oil shocks in the seventies.

3 Theoretical framework

The theoretical framework adopts a conventional production function approach in which public

capital represents a separate input in the production process. A general Cobb-Douglas repre-

sentation of the production function with Hicks-neutral technical change is assumed and given

by:3

Y = ALβ1Kβ2
1 Kβ3

2 , (1)

where Y is the total output (for private and public sectors); A is multifactor productivity (MFP)

representing technological change; L, K1, and K2 are labour, private capital, and public capital

(including public economic infrastructure) respectively. The exponential coefficient of each input

represents the elasticity of output with respect to that input.

Taking the natural logarithm, the Cobb-Douglas production function is rewritten in the form:

lnY = lnA+ β1 lnL+ β2 lnK1 + β3 lnK2. (2)

In infrastructure studies, some authors estimate models based on (2) to assess the effect of

public infrastructure on output or on labour productivity by dividing all terms in the equation

by L. Others follow a two-step method where the index of MFP is derived independently in the

first step, and the result is used in an estimation procedure with infrastructure in the second

step. The two-step method has the advantage of conserving the degrees of freedom relative

to (2) and could help to avoid multicollinearity between inputs. Thus, following Shanks and

Barnes (2008), Shanks and Zheng (2006), and others, we first derive the indexes of MFP. The

3As Connolly and Fox (2006) mention, evidence from previous studies has shown identical results from both
the Cobb-Douglas functional form and from more flexible functional forms, such as the CES or translog functions.
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procedure adopted to estimate MFP index conforms to the ABS method, which is based on

Solow’s (1956) growth accounting approach, to estimate the MFP index. Within the framework

of growth accounting, we maintain two assumptions: (i) constant returns to scale (CRS) over

labour, private and public capital (i.e. β1 +β2 +β3 = 1), and (ii) competitive equilibrium in both

input and output markets in which factors are rewarded according to their marginal products.

Given these two assumptions, (2) can be rewritten as:

lnMFP ≡ lnY − s1 lnL− s2 lnK1 − s3 lnK2 = lnA, (3)

where s1, s2, and s3 are income shares of labour, private and public capital respectively.4

In the second step, one can use (3) to estimate the effects of factors which were not accounted

for in the construction of MFP. Although public infrastructure - being a part ofK2 - is included in

the calculation of MFP, this does not necessarily mean we have fully accounted for all its effects.

To elaborate this point, let us consider how public infrastructure is deemed to affect productivity

in the earlier literature. Generally speaking, services provided by public infrastructure are

assumed to have two types of effects on the production process. These are direct and indirect

effects. Direct services such as water, power, sewerage and transportation facilities can be seen as

intermediate inputs necessary for the production process. In addition, infrastructure could have

indirect effects on the productivity of other inputs, since it can be a complement or a substitute

to these inputs and hence affects their productivity. Furthermore, public infrastructure indirectly

enables, facilitates and/or creates opportunities for innovations in other sectors. These latter

effects are called production spillovers. Shanks and Barnes (2008) provide a detailed discussion

of these effects with examples of spillovers by type of infrastructure capital.

The method applied to construct MFP indexes in this study has captured the direct free input

effect of public infrastructure and the direct effect with user charges. However, the spillovers

effect has not been accounted for; thus, we re-enter the public infrastructure, G, in Model (3) as

an additional explanatory variable.5 Also, to avoid omitted variable bias other factors affecting

productivity are included and represented by a vector Z(n× 1):

lnMFP = lnA+ γ lnG+ θZ, (4)

where lnG is the natural logarithm of public infrastructure and θ (n × 1) is a vector of coeffi-

cients.

Finally, we allow for an error in the CRS assumption. As mentioned earlier, CRS over labour,

4Notice that the state level multifactor MFP estimates pertain to the whole (public and private) economy.
Conventionally, authors are inclined to evaluate the effect of public infrastructure on private sector productivity.
However, in our case, the data on hand for labour and output are not separated into private and public sectors.
To avoid major measurement errors in the estimation of MFP, we preferred to calculate a measure for the whole
economy. Furthermore, in the definition of MFP, we apply a share for the public capital which is commonly
treated in other studies as a free input that enters the private sector production function. This mainly due to
the nature of the Australian System of National Accounts data mentioned above. Thus, in our calculations we
combined public and private capital to construct a joined measure that is consistent with the joined capital income
share.

5This approach was followed by Shanks and Barnes (2008), who employed the ABS market sector estimates
of MFP, which includes public capital as a component of usual capital.
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private and public capital is assumed to construct the MFP index. Although it is conventional

to assume CRS over private inputs (labour and private capital), there is some argument about

the return to scale on public infrastructure. Given that increasing economies to scale are usually

associated with the public provision of goods and services, one can argue that public infrastruc-

ture has increasing returns to scale in the production process. By contrast, in some cases the

additional provision of infrastructure might lead to decreasing returns. One example of this is

the problem of congestion in the case of transport infrastructure.

In sum, if the assumption of CRS does not hold, the coefficient on public infrastructure will

not only capture the effect of the production spillovers, it will also capture the scale effect and

this in turn will bias the estimate of the coefficient. One way to allow for an error in CRS

assumption, is to enter a scale control variable in the model. To demonstrate how this works,

let us suppose that a scale control variable is denoted by S with a coefficient equal to (ω − 1),

where ω is the true scale technology. Thus, (ω−1) T 0 if, ω ≡ β1 +β2 +β3 T 1. In other words,

if the true technology is CRS, the coefficient on S will be zero, (ω−1) = 0; if the true technology

is increasing returns to scale, the coefficient will be positive, (ω− 1 > 0) while if it is decreasing

returns to scale the coefficient will be negative, (ω − 1 < 0). Therefore, by including S as an

explanatory variable, the hope is that the coefficient on public infrastructure will entirely reflect

the spillover effects.6

Economists have used different measures as proxies for the scale variable. Some examples

are labour, capital or a combination of the two inputs. The current study follows Otto and Voss

(1994) who apply a combination index for labour and capital inputs.7 Hence, by including the

scale variable in the model, the resultant model will be:

lnMFP = lnA+ γ lnG+ (ω − 1)S + θZ. (5)

The subsequent task is to determine what other factors, apart from capital and labour, influence

the level of output. In other words, what variables are included in the vector Z. Previous the-

oretical and empirical models in Australia and other countries suggest a range of determinant

variables in explaining the variation in output and productivity. For example, Aschauer (1989)

using U.S. data and Otto and Voss (1994) using Australian data have controlled for the effect

of the business cycle by including a capacity utilisation variable when they study the impact of

public capital on productivity. On the other hand, Munnell (1990a) has used the unemployment

rate to control for cyclical fluctuation in productivity in the U.S. Connolly and Fox (2006),

who examine the role of high-tech capital use on productivity at the industry level in Australia,

have included R&D, openness, and terms of trade in addition to some environment variables

as control variables. Among others, Madden and Savage (1998) suggest some determinants for

Australian labour productivity such as fixed capital, human capital, and telecommunications,

plus trade openness and international competitiveness. In a productivity commission working

paper designed to investigate the relationship between R&D and productivity growth in Aus-

6This could be true if there are no misspecification problems or other omitted variables bias.
7The labour and capital indexes are combined using their respective income shares to form an aggregate input

index using a Tornqvist methodology.
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tralia, Shanks and Zheng (2006) have used human capital among other explanatory variables to

control for the variations in productivity.

In terms of the studies published at the level of the Australian states to examine the return

of R&D on MFP and output, Louca (2003) has controlled for the rates of industrial disputation

to account for labour market reform, high school retention rates to capture the rise in potential

human capital stock, and capacity utilisation to account for the cyclical swings in MFP. In

addition, another study by the Productivity Commission (2007) uses, among other variables,

the percentage of state residents with a post-schooling qualification as a proxy for human capital,

while Burgio-Ficca (2004) has controlled for deregulation through tariff reductions and industry

protection.

Guided by the model specifications of earlier work, although being limited by the availabil-

ity of data at the state level, we were able to construct measures for the following variables:

openness, capacity utilisation, human capital, unemployment rate, union density, and finally,

industrial disputation.8 Definitions and the sources of data used to construct these variables are

presented in the data section below.

The model presented in (5) can be expressed in the following two linear regression equations

lnMFPt = µ+ γ lnGt +
n∑
i=1

θiZit + (ω − 1)St + νt, (6)

lnMFPst = µ+ γ lnGst +
n∑
i=1

θiZist + (ω − 1)Sst + νst, (7)

where t = 1, ..., T and s = 1, ...,M index the time-series and state respectively; γ is the MFP

elasticity with respect to public infrastructure.

The two equations are identical except for the state subscript in the second equation. (6)

represents the basic econometric setting for time-series estimation, while (7) represents the

basic econometric setting for pooled-data estimation.

As indicated in the introduction section, the critics of public capital hypothesis stress that

the shortcomings of aggregate time-series analysis are the main causes of implausible results

in previous studies. Consequently, regional studies assert the role of the state or region as a

source of information on the spillovers (externalities) from public capital. For example, Munnell

(1990a) uses pooled cross-section annual time series for the 48 continental states and obtained

elasticity coefficient of 0.15 which was a reduction of around a third compared with the first

studies by Aschauer (1989) and Munnell (1990b). Hulten and Schwab (1991) and Holtz-Eakin

and Schwartz (1995) also find a relatively small elasticity of output with respect to public capital

in the range of 0.00-0.15. In addition, an earlier study than Aschauer’s was accomplished by

Eberts (1986). By using 38 U.S. metropolitan areas, the author finds a very low rate of return

to public infrastructure; in particular, the estimated elasticity of output is found to be 0.03.

The issue of observing a sizeable discrepancy between results from regional level and national

8Economic theory suggests that capacity utilisation, openness, and human capital will have positive effects on
productivity, while the unemployment rate, rate of disputation and trade unionisation are expected a priori to
have negative effects on productivity.
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level has received attention from some researchers such as Gramlich (1994), Boarnet (1998), and

Lall (1999). To explain such disparity in the results, these authors have focused on the positive

geographic spillovers in productivity benefits that are not captured by highly disaggregated

analyses. To elaborate on this, Munnell, says ‘as the geographic focus narrows, the estimated

impact of public capital becomes smaller. The most obvious explanation is that, because of

leakages, one cannot capture all of the payoff to an infrastructure investment by looking at a

small geographic area.’ Munnell (1992, p. 193).

That generation of state studies has been criticised for neglecting to consider the impact

of regional characteristics (such as the natural resource endowment, size, location, climate,

and amenities) in explaining productivity. A strand of literature (e.g., Islam 1995, Temple

1999, and Holtz-Eakin 1994) asserts the role played by the state-specific effects in productivity

analysis. The argument of this literature can be summarised as follows. The effects of public

infrastructure on productivity may correlate with some omitted variables which have been shown

to play an important role in productivity. Thus, to disentangle the effect of public infrastructure

on productivity, we need control over these state characteristics; ‘ because the prosperous states

are likely to spend more on public capital, there will be a positive correlation between state

specific-effects and public sector capital. This should not be confused, however, with the notion

that greater public capital leads a state to be more productive’ (Holtz-Eakin 1994, p. 13).

From his econometric evidence, Holtz-Eakin suggests that there are no quantitatively important

spillover effects across states.

From an Australian perspective, the current study aims to perform two levels of investigation.

First, it seeks to inquire whether aggregate time-series analysis has severe limitations that make

it unsuitable for the examination of the infrastructure spillovers to productivity, hence, (6) is

employed to perform regressions for each individual state and the whole country. Second, it aims

to test the hypothesis of regional characteristics of Holtz-Eakin; hence, an alternative assumption

to adopt is that each of the Australian states possesses individual characteristics which result

in differential productivity across them. To account for these effects, the error term in (7) is

rewritten as follows:

νst = µs + ηt + εst, (8)

where µs is state-specific effects which captures those characteristics of the production function

in each state and does not vary over time; ηt is a time-specific effect that captures the shocks

to the production function that are common to all states in each time period; and εst is an

idiosyncratic error. Substituting (8) in (7) results in the following equation:

lnMFPst = µs + ηt + γ lnGst +
n∑
i=1

θiZist + (ω − 1)Sst + εst. (9)

To establish an intuitive long-run relationship, the estimation of (6) and (9) entails that all

the variables included in the equation should have specific statistical properties. A minimum

requirement is that all variables should be stationary. If the variables are non-stationary, then
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estimating these equations in levels will result in spurious regression unless the variables are

cointegrated. Most of the disputes associated with the results from other studies centre on the

issue of the non-stationarity of the data and the method employed to deal with the problem.

Therefore, after describing the construction of the data in the following section, we proceed to

investigate the statistical time series properties of the series.

4 Data

All the data are primarily sourced from the ABS for the eight Australian states and territories of

New South Wales (NSW), Victoria (VIC), Queensland (QLD), South Australia (SA), Western

Australia (WA), Tasmania (TAS), Northern Territory (NT), and Australian Capital Territory

(ACT) over the period 1990-2009. Because of the lack of data for some variables, ACT is not

included in all regressions. Thus, the analysis is based on the data of seven (or eight) states and a

twenty-year span, forming in total 140 observations.9 The variables employed in the regressions

are defined and sourced as follows:

Multifactor productivity (MFP)

Although Australia first published estimates for multifactor productivity for the market sector

in 1985, and recently started to construct equivalent measures for individual industries, these

indexes are restricted to the national level. This stance is perhaps not surprising since the

process of establishing and maintaining productivity statistics requires a sizeable investment of

resources; see Fox (2007) and Griliches (1994) for discussions on difficulties and challenges in the

measurement of productivity. An initial exercise to perform, then is to construct a productivity

measure for each of the states.

In line with the ABS method, we apply the Tornqvist index number approach which estab-

lishes a link between the production function, in the context of the growth accounting framework

set out by Solow (1956), and index number theory. Briefly, MFP is defined as the ratio between

an output measure and an input measure, i.e. MFP = Y
QK,L

where Y is a volume measure of

value added output; and QK,L is a combined index of capital and labour inputs.10 Using the

Tornqvist method to estimate the inputs index requires data on capital, labour, and their in-

come shares. The output is defined as gross value added, while the labour input is measured as

number of hours worked. The capital stock is constructed using the perpetual inventory method

(PIM). Income shares for labour and capital are calculated as the share of compensation on

employees plus the labour component in mixed income, and the gross operating surplus plus the

9When ACT is included, the period of the study is reduced to cover only up to 2007; hence, the corresponding
number of observations is 144.

10If only capital and labour are included as inputs, the appropriate measure for output is value added output
and the corresponding MFP index is known as value added output-based MFP . Alternatively, if intermediate
inputs are also included, the appropriate measure of output should be the gross output, and the corresponding
MFP index is known as gross output-based MFP. See Schreyer (2001) for more description on the difference
between the value added and gross output-based MFP indexes.
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capital component in mixed income in the total factor income respectively.11

Figure 1 below shows a plot of the estimated series of MFP indexes for all the states over

the period 1990-2009. It is noticeable from the figure that all states, with the exception of NT,

have experienced an upward trend in MFP which indicates a growth during the 1990s. Since

2005, productivity growth has slowed. It is also clear that the productivity level varies across

the states. South Australia is an exception, as it exhibits a relatively higher level of productivity

in comparison with the rest of the states from the mid-1990s until the end of the period. The

higher level of SA productivity is mainly driven by the decrease in total capital stock during the

period of the study.12

Infrastructure

The choice of an appropriate measure that correctly defines public infrastructure service has

always been a challenge facing infrastructure researchers. One example is the complexity of

issues relating to ownership, such as how to isolate the public from private ownership given the

condition of the privatisation of assets over time. Another example is the scope of measuring

infrastructure capital. For instance, one can think about the difference of the effects between

economic infrastructure, such as roads and communications, with their relatively immediate

effect on the production process, versus social infrastructure such as hospitals and educational

institutions with their long-term effects. Because there is no standard definition of infrastructure,

using a variety of approaches in measurement by previous studies has resulted in a wide range

of outcomes. In the Australian context, often because of data limitations, most of the earlier

studies have employed the official data on general government and public corporation net capital

stock published by the ABS. The problem of public net capital stock is that it includes a wide

range of public assets and does not distinguish between economic infrastructure and other types

of public capital.

The present study exploits estimates of engineering construction activity which were compiled

from the Engineering Construction Survey (ECS) and published by the ABS. The estimates

cover the value of work done in each of the states on: roads, highways and subdivisions; bridges,

railways and harbours; electricity generation, transmission etc. and pipelines; water storage and

supply, sewerage and drainage; telecommunications; heavy industry; recreation and other. This

data source has many advantages. First, the ECS covers all capital types which it is relevant to

define as true economic infrastructure. Second, the availability of the data at the level of the

state, sector, or industry, and the type of capital, opens some channels for further disaggregate

empirical investigations. Also, we are not aware of any other work that exploits this data within

the same framework of analysis.

11Details of the construction of these variables and a demonstration of the Tornqvist method are provided in
the Appendix

12Using PIM to estimate public corporation capital stock for SA resulted in a decreasing trend series. This is
explained by the fact that public corporation gross fixed capital formation in SA continuously decreased from 1990
until it recorded negative values in 2000 and 2001. Such a negative investment level indicates that the amount of
public investment was not enough to offset the depreciation. After 2002, public corporation investment started
to increase.
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Figure 2 looks at the investment in economic infrastructure as a proportion of GDP by

public and private sectors separately. It is quite noticeable that for most of the states since the

end of the 1990s and the beginning of the 2000s, the decline in public sector investment in core

infrastructure has been more than off-set by private sector investment. Although the composition

of the ECS data reflects a variety of advantages and opens interesting investigation avenues for

infrastructure researchers, yet there are two issues with these data which are sources of concern.

First, the ECS merely reflects the amount of investment in new infrastructure capital; however,

it is generally recognised that what actually matters for the production process is the flow of

services from the stock, and not just the amount of new investments. Because of the lack of

data on the flow of capital services, researchers tend to assume that the flow of capital services

is proportional to the capital stock. Thus, using the stock of infrastructure represents a good

approximation of infrastructure services. In most of the cases, empirical studies employ the PIM

method to construct public infrastructure capital. The approach adopted in the present study

applies the PIM to estimate the stock of infrastructure capital from ECS data to handle the

problem of data lack on infrastructure services flow.13

Another concern with ECS data, is the complexity in dealing with the event of privatisation.14

Australia was subjected to increased privatisation through the 1980s and 1990s as the ownership

of some assets has transferred from public sector to private sector. This notion implies difficulties

when construction of public capital stock is considered. To estimate capital stock using PIM,

all previous investment expenditures are assumed to be involved in the accumulation process.

However, when a public corporation is privatised the allocation of previous investments would

need to be changed in statistical collections.

To avoid the problem of recent extent of privatisation and the difficulties in dealing with

them, previous empirical studies of Australia have tended to focus on public infrastructure owned

by general government. Nevertheless, with the current structure of ECS data, the course of

excluding public corporations in order to obtain more accurate measures for public infrastructure

capital seems infeasible.15 Because of the difficulties mentioned above, the analysis undertaken

here does not take into account the recent event of privatisation. The econometric analysis only

focuses on the estimates of engineering construction by the public sector as a measure for public

economic infrastructure investment.

Openness

The variable openness represents a proxy for trade openness and is constructed as a sum of

export and import of goods and services relative to gross state product. Data sources are ABS

cat. no. 5220.0 and 5206.0.

13Readers can refer to the Appendix for a full description of PIM.
14Privatisation exists if the private sector finances an infrastructure project, or as an asset transfers ownership

from the public to private sector
15The available composition of ECS data captures the sector that an organisation belongs to, i.e. public or

private sector. For the public sector, it further identifies the level of government (Federal, State and local).
However, there is no detail as it would be possible to classify expenditure under the general government or public
corporations.
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Figure 2 Ratios of public and private infrastructure investment to GSP q3:1989-q2:2008
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Capacity utilisation

Capacity utilisation is measured as the difference between the natural logarithm of output and

its trend. The trend is calculated using Hodrick-Prescott filter (Hodrick and Prescott 1997) with

the smoothing parameter equal to 1,600.16

Human capital

Human capital is measured as high school retention rates and is calculated as the proportion

of students in their first year of high school that remained in high school until year 12. Data

source is the ABS (cat. no. 4221.0).

Unemployment rate

The unemployment rate is the number of unemployed persons expressed as a percentage of the

labour force (Labour force cat. no. 6202.0).

Union Density

This variable is constructed to reflect trade union membership (ABS 63100TS0001 Employee

earnings, benefits and trade union membership).

Dispute

Dispute reflects the rate of industrial disputation and is calculated as the number of working

days lost per 1000 employees due to industrial disputes, (ABS cat. no. 6321.0.55.001).

Summary statistics of all variables are presented in Table 1.

5 Integration and cointegration testing

In this section, we examine the time series properties of the data. Performing formal unit root

tests for both the individual time-series and panel data reveals that our measures for productivity

indexes and public infrastructure capital stock are integrated of degree one. Given such a non-

stationarity feature of the data, it becomes necessary to test for cointegration to ensure that

the estimated effect of infrastructure on productivity is not due to spurious relation, but that

it stems from a well-established long-term relationship. Thus, formal cointegration tests are

applied to state-by-state and panel data. Detailed descriptions of these tests and their results

are presented in the following subsections.

5.1 State-by-state unit root and cointegration tests

A widely used test for non-stationarity in the time series literature is the Augmented Dickey-

Fuller (ADF) test which entails testing the null of hypothesis Ho : θ = 0 in the following

16Since the series of the gross state product are smooth, using different values of the smoothing parameter
produces almost exactly the same trend.
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regression:

∆yt = α+ θyt−1 +
m∑
p=1

∆yt−p + εt, (10)

where y is the variable tested, and ε is a white noise error term. We reject the null hypothesis

against the alternative H1 : θ < 0 if tθ̂ < c where tθ̂ is the t-test statistic and c is the critical

value.17

Extensions could be made to allow for time trend and/or drift. We first perform an ADF test

on the level of all individual data series (key plus control variables) using Schwartz Information

criteria to determine the optimal lag length. Three forms of non-stationarity of all variables are

examined: (I) random walk with drift, (II) random walk with drift and deterministic trend and

(III) pure random walk. Results of the tests are presented in Table 2.18 Although there is not

much evidence on random walk with drift in most of the series, the evidence that each of the

series possesses either pure random walk, random walk with drift and deterministic trend or

both is strong in all the states. Next, employing test I and III to examine the first difference of

the variables concludes that all of those variables are first difference stationary.19 With such

strong evidence on unit root, the subsequent step is to test for cointegration. The well-known

Engle and Granger (1987) procedure is employed. This procedure examines the stationarity of

the OLS residuals from the estimated cointegrating relationship. Throughout this analysis, we

consider four different specifications (labelled Models 1-4) to estimate the relationship between

MFP and infrastructure. A general representation of this relationship is described by (6); nev-

ertheless, in each specification we include a different set of control variables.20 For each of the

four specifications, an augmented Dickey-Fuller regression is applied to the corresponding OLS

residuals to test for the null hypothesis of no cointegration. Reading Table 3, which presents

the results, indicates that the null hypothesis is rejected across the four specifications in each

of NSW, SA, NT and ACT. Specification 1 does not reflect a cointegration vector in TAS while

specification 2 does not reflect a cointegration vector in VIC, QLD and WA. In addition, in

WA only specification 1 represents a cointegration vector. Thus, using state data, there is in

general good evidence that productivity and public infrastructure cointegrate. The few cases in

which we failed to find evidence on cointegration are attributed mainly to the short span of data

employed in the test. A major and widely cited setback with the ADF test is the inherent low

power when it is applied to short data sets.21 Hence, with the short time span in our sample

17Note that since under the Ho, yt−1 is assumed to have unit root, the standard t statistic is not valid; however,
assuming that t has DF distribution, we can conduct the t test using DF tabulated critical values (Dickey and
Fuller, 1979).

18Unit root and cointegration tests, in addition to the regression analysis presented in the paper are all performed
using the computer package STATA.

19A random walk with or without a drift can be transformed to a stationary process by differencing. A non-
stationary process with drift and deterministic trend becomes stationary by first removing the trend, or detrending
and then differencing.

20Exact details on the four specifications is presented in the footnote of Table 3.
21The power of the test is the ability to reject the null of non-stationarity when it is false; because DF has low

power, it may suggest that a series has a unit root while it is stationary. One suggested solution to improve the
power of DF is to increase the number of observations by increasing the span of data.
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Table 2 State-by-state unit root test(1990-2009)

State I II III I III I II III I III

lnMFP ∆ lnMFP lnG ∆ lnG

NSW 0.035 0.992 0.289 0.023 0.004 0.046 0.988 0.362 0.001 0.008
VIC 0.052 1.000 0.399 0.001 0.009 0.917 0.533 0.997 0.011 0.002
QLD 0.104 0.994 0.614 0.046 0.386 0.778 0.305 0.991 0.041 0.033

SA 0.034 0.927 0.224 0.001 0.004 0.201 0.660 0.798 0.018 0.048
WA 0.070 0.997 0.488 0.049 0.406 0.922 0.955 0.997 0.066 0.552
TAS 0.051 0.995 0.388 0.024 0.038 0.065 0.855 0.449 0.037 0.014
NT 0.143 0.926 0.707 0.042 0.023 0.157 0.706 0.733 0.037 0.059
ACT 0.009 0.995 0.152 0.084 0.000 0.912 0.935 0.997 0.182 0.775

Openness ∆ Openness Cap. utilis. ∆Cap. utilis.
NSW 0.512 0.141 0.961 0.009 0.058 0.026 0.722 0.219 0.000 0.000
VIC 0.002 0.601 0.173 0.002 0.016 0.036 0.907 0.290 0.028 0.006
QLD 0.616 0.157 0.977 0.008 0.051 0.052 0.743 0.397 0.048 0.012

SA 0.121 0.987 0.659 0.046 0.012 0.006 0.801 0.037 0.000 0.000
WA 0.372 0.488 0.920 0.001 0.002 0.012 0.372 0.222 0.001 0.007
TAS 0.132 0.706 0.683 0.001 0.001 0.043 0.413 0.340 0.013 0.090
NT 0.008 0.254 0.053 0.023 0.035 0.027 0.107 0.224 0.006 0.029
ACT 0.007 0.189 0.038 0.018 0.043 0.063 0.784 0.439 0.002 0.005

ln Hum. cap. ∆ ln Hum. cap. Unemp. ∆ Unemp.

NSW 0.283 0.230 0.873 0.012 0.090 0.042 0.979 0.332 0.011 0.077
VIC 0.102 0.695 0.607 0.016 0.012 0.053 0.670 0.401 0.0001 0.000
QLD 0.073 0.587 0.505 0.034 0.013 0.441 0.815 0.944 0.017 0.022

SA 0.016 0.801 0.140 0.041 0.000 0.202 0.829 0.798 0.021 0.013
WA 0.020 0.408 0.162 0.005 0.022 0.271 0.540 0.864 0.013 0.092
TAS 0.110 0.960 0.628 0.038 0.079 0.791 0.312 0.992 0.001 0.001
NT 0.110 0.317 0.630 0.041 0.001 0.065 0.544 0.615 0.065 0.001
ACT 0.142 0.026 0.699 0.002 0.002 0.301 0.494 0.884 0.054 0.001

Dispute ∆ Dispute Union ∆ Union

NSW 0.017 0.053 0.144 0.012 0.088 0.011 0.191 0.079 0.025 0.000
VIC 0.181 0.064 0.064 0.004 0.000 0.002 0.771 0.004 0.014 0.001
QLD 0.208 0.008 0.806 0.005 0.028 0.209 0.002 0.806 0.006 0.025

SA 0.042 0.003 0.338 0.000 0.000 0.053 0.945 0.396 0.063 0.000
WA 0.084 0.013 0.548 0.000 0.000 0.053 0.815 0.035 0.022 0.015
TAS 0.023 0.012 0.187 0.000 0.000 0.022 0.991 0.172 0.019 0.007
NT 0.079 0.462 0.527 0.005 0.026 0.017 0.114 0.133 0.009 0.054
ACT 0.232 0.568 0.829 0.001 0.003 0.299 0.300 0.882 0.052 0.049

The Values in the columns are p-value of the tests.
I, II, and III stand for random walk with drift, random walk with drift around a
stochastic trend, and random walk without drift and trend respectively.
‘Cap. utilis.’ stands for capacity utilisation, ‘unemp.’ stands for unemployment rate,
and ‘Hum. cap.’ stands for human capital.

(20 years) performing an ADF test for each state individually to test the stationarity of the

OLS residuals might, in some cases, not reject the null hypothesis of unit root. A relatively

recent, though popular, response to the problem of low power in time-series tests is the use

of panel data. There is a great advocacy in the literature that combining cross-sectional and

time-series information in the form of a panel can provide significant power improvement over an

individual unit root test over each cross section (Baltagi, 2005). This is explored in the following

subsection.
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Table 3 State-by-state augmented Engle and Granger cointegration test (1990-2009)

State Model 1 Model 2 Model 3 Model 4

NSW 0.0015(1) 0.0015(1) 0.000(1) 0.022(1)

VIC 0.004(0) 0.147(0) 0.075 (2) 0.009(0)

QLD 0.010(2) 0.621(0) 0.004(1) 0.004(1)

SA 0.008(0) 0.005(0) 0.001(0) 0.005(0)

WA 0.007(0) 0.480(0) 0.238(0) 0.289(0)

TAS 0.390(3) 0.008(0) 0.005(0) 0.008(0)

NT 0.000(1) 0.004(1) 0.013(1) 0.010(1)

ACT 0.006(0) 0.023(0) 0.087(0) 0.091(0)

The table shows the P-values of the ADF test. The numbers in parentheses are the

number of lags as determined by Schwartz Information criteria.

Model 1: lnMFPt = µ+ γ lnGt + θ1Cap. Utilis.+ θ2Dispute+ θ3Union+ νt.

Model 2: lnMFPt = µ+ γ lnGt + θ1Cap. Utilis.+ θ2Hum. Cap.+ θ3Dispute+ νt.

Model 3: lnMFPt = µ+ γ lnGt + θ1Cap. Utilis.+ θ2Unemployment +νt.

Model 4: lnMFPt = µ+ γ lnGt + θ1Cap. Utilis.+ θ2Openness +θ3Dispute+ νt.

Cap. Utilis. stands for capacity utilisation, and hum. cap. stands for human capital.

5.2 Panel unit root and cointegration tests

Recent years have witnessed the development of a variety of panel data unit root tests. Generally

speaking, two groups of these tests are well documented. The first group assumes independence

across cross sections; some examples for these tests are Levin, Lin and Chu (2002), Harris and

Tzavalis (1999), Breitung (2000), Im, Pesaran and Shin (2003), and Fisher type ADF and PP

tests presented by Maddala and Wu (1999). On the other hand, the second group assumes a

cross section dependence, e.g., Pesaran (2004), Bai and Ng (2004), Moon and Perron (2004)

and Phillips and Sul (2003). Our focus will be on the cross-section independence category since

these are well established and widely used in panel empirical literature.22

The main idea of these tests is based on the following regression:

∆yst = θsys,t−1 + z′stγs + εst. (11)

Depending on the options specified in the test, the term z′st represents either panel fixed-effects,

linear time trend or both.

The null hypothesis tested is Ho : θs = 0 ∀s against the alternative Ho : θs < 0 . All the tests

share the option that allows the inclusion of individual constants and time trends. Nevertheless,

they postulate different assumptions about the heterogeneity of the unit root process. For

example Levin et al. (2002), Harris and Tzavalis (1999) and Breitung (2000) assume the unit

root process is common to all cross sections, while the approach of Im et al. (2003) and Fisher

type ADF and PP tests allow for an individual unit root processes. Another difference is

embodied in the definition of the alternative hypothesis. As the Im et al. (2003), Fisher type

22Readers interested in more details of these two groups of panel unit root tests are directed to Baltagi (2005).
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ADF and PP tests allow some of the series to be non-stationary, the remainder of the tests

assume that all series are stationary.

Table 4 reports the results on unit root at the level of lnMFP and lnG using five different

tests. As reflected in the table, there is consistent evidence against the rejection of the unit

root hypothesis. In regards to lnMFP , the inclusion of an individual trend crucially affected

the result of Levin et al. (2002). If the deterministic trend is removed, the test gives a flawed

conclusion. Since the inclusion of the trend removes the trend from the series when it exists and

does not affect the test itself, our focus will be on the tests that include both trend and individual

constant. Regarding the variable lnG, all the tests have strong evidence for the existence of unit

root. Thus, our conclusion from these tests will be that both lnMFP and lnG are integrated

of order one.

Table 4 Panel unit root test for lnMFP and lnG (1990-2009)

variable LLC HT Breitung IPS PP

lnMFP (c) -4.836 0.915 2.595 -1.432 0.528
( 0.000) (0.867) (0.995) (0.076) (0.299)

lnMFP (c&t) 5.176 0.939 4.777 -0.6795 -2.614
(1.000) (0.999) (1.000) (0.996) (0.995)

∆ lnMFP (c) -3.669 0.078 -3.553 -4.269 12.397
(0.000) (0.000) (0.000) (0.000) (0.000)

lnG(c) 0.599 2.608 8.12348 4.298 -0.417
(0.725) (0.995) (1.000) (1.000) (0.338)

lnG(c&t) 0.152 2.487 3.959 0.598 0.083
(0.561) (0.994) (1.000) (0.725) (0.533)

∆ lnG(c) -1.327 0.473 -1.459 -1.877 2.590
(0.092) (0.000) (0.072) (0.030) (0.005)

P-values of the test statistic are presented in parentheses. (c) denotes
individual constant. (c&t) denote individual constant and trends.

Given this result, and from the discussion offered earlier on spurious regression, one runs

a risk by using the levels of lnMFP and lnG in a regression analysis. Some authors suggest

that a safe course to follow is to difference the variables before employing them in linear regres-

sion models (Tatom 1991). Although Tatom’s approach was highly criticised on the basis of

destroying the long-run information, we find it important to examine the properties of the first-

difference series. Applying the same category of tests used with the level variables, we test for

unit root in the first time-differences, i.e. the growth rates of MFP and public infrastructure.23

As shown in Table 4, the results indicate that the two growth rates are difference-stationary.

Besides the two core variables, the statistical properties of the control variables are examined

and presented in Table 5. Reading the P-values associated with those five tests suggests that

all variables are almost integrated of degree one.

The next part of our analysis continues on the assumption (supported by the tests performed

23The only distinction with the case of differenced data is that the alternative hypothesis is stationarity without
a trend, since any time trend in levels is removed by differencing.
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Table 5 Tests of panel unit roots for explanatory variables

Variable LLC HT Breitung IPS PP

Openness -0.979 0.576 2.328 -0.090 0.903
(0.164) (0.000) (0.990) (0.464) (0.183)

∆Openness -6.760 -0.118 -1.557 -3.014 119.703
(0.000) (0.000) (0.059) (0.001) (0.000)

Cap. utilis. 1.708 0.559 1.837 -2.121 1.208
( 0.956) (0.092) (0.966) (0.117) (0.114)

∆Cap. utilis. -5.880 0.267 -1.559 -7.179 83.005
(0.000) (0.000) (0.059) (0.000) (0.000)

Hum. cap. 0.730 0.6294 0.529 0.444 0.323
(0.767) (0.345) (0.702) (0.672) (0.373)

∆Hum. cap. -10.748 0.174 -1.104 -10.552 23.329
(0.000) (0.000) (0.135) (0.000) (0.000)

Unemp. 3.738 0.930 -0.755 1.708 4.816
(0.999) (0.921) (0.225) (0.956) (0.996)

∆Unemp. -7.956 0.396 -1.287 -6.435 5.469
(0.000) (0.003) (0.099) (0.000) (0.000)

Dispute -1.590 -0.007 -1.705 -1.185 -1.149
(0.056) (0.000) (0.144) (0.118) (0.128)

∆Dispute -4.011 -0.431 -4.556 -12.889 57.705
(0.000) (0.000) (0.000) (0.000) (0.000)

Union 0.415 0.589 0.876 0.944 19.114
(0.661) (0.244) 0.809 (0.827) (0.263)

∆Union -9.992 -0.322 -7.781 -8.933 44.095
(0.000) (0.000) (0.000) (0.000) (0.000)

Probabilities of the test statistic are presented in the parentheses.
(c) denotes individual constant.
and (c&t) denote individual constant and trends.

above) that the log-level of MFP and public infrastructure follow non-stationary processes, while

the log-differences of the variables follow stationary processes.

The literature on panel cointegration tests is relatively new, going back only to the end of the

1990s; for example, see Pedroni (1999, 2004) and McCoskey and Kao (1998). Roughly speaking,

there are two broad approaches to panel cointegration tests. First are the residual-based tests

which take no cointegration as a null hypothesis. Tests within this class are basically extensions

of the original panel unit root tests based on the residuals from a first-step cointegration regres-

sion, in the essence of the two-step cointegration test approach by Engle and Granger (1987). If

the residuals from the panel regression are found to be stationary, the panel regression is said to

be cointegrated. An important contribution in this category is Pedroni (1999, 2004). The second

approach is the error-correction-based (EC-based) tests put forward by Westerlund (2007) and

Persyn and Westerlund (2008). This approach is designed to test the null hypothesis that the

error-correction term in a conditional error-correction model is equal to zero. Thus, if the null

of no error-correction is rejected, then the null of no cointegration is also rejected.

The power of residual-based tests depends on the assumption of ‘common factor restriction’

due to Kremers et al. (1992), and it means that the long-run cointegrating vector for the vari-
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ables in their levels being equal to the short-run adjustment process for the variables in their

differences. If the common factor restriction fails, then the residual-based test may have low

power and we may fail to reject the null of no cointegration even in cases in which cointegra-

tion is strongly suggested by the theory. Westerlund (2007) aims to avoid the limitations of

the residual-based tests by allowing for differences between the long-run cointegrating vector

and the short-run adjustment process. However, EC-based tests depend crucially on the weak

exogeneity assumption; if it fails, the tests may have low power. Hence, the difference between

the two competing tests is expressed in terms of the trade-off in their power.

In the context of the current model, the Westerlund (2007) cointegration test can be ex-

pressed by the following equation:

∆ lnMFPst = δ′sdt + αs(lnMFPs,t−1 − β′s lnGs,t−1) +

pt∑
j=1

αsj∆ lnMFPs,t−j

+

pt∑
j=−qt

γsj∆ lnGs,t−j + εst, (12)

where pt and qt are the orders of lags and leads and are permitted to vary across individuals;

dt is a vector of deterministic components of both the level and first differenced relationships,

and for which there are three cases: (i) dt = 0, so (12) has no deterministic terms; (ii) dt = 1

, so ∆ lnMFPst is generated with a constant; and (iii) dt = (1, t)′, so ∆ lnMFPst is generated

with both a constant and a trend. The coefficient βs represents the cointegration coefficient

between lnMFPst and lnGst. The parameters αsj are the corresponding short-run adjustment

coefficients of ∆ lnMFPst. The linear combination (lnMFPs,t−1− β́slnKGs,t−1) is by assump-

tion stationary. A key parameter in this equation is αs which determines the speed at which

the system corrects back to the equilibrium relationship after a sudden shock. If αs has a sig-

nificantly negative value, this indicates that there is error-correction and hence lnMFPst and

lnGst are cointegrated. Alternatively, if αs = 0 then there is no error-correction which implies

no cointegration.

Westerlund (2007) offers four statistics to test for panel cointegration. Two of them are

referred to as group-mean statistics:

Gτ =
1

N

N∑
i=s

α̂s
SE(α̂s)

,

Gα =
1

N

N∑
s=1

T α̂s
α̂s(1)

,

where SE(α̂s) is the conventional standard error of the estimate α̂s and α̂s(1) = 1 −
ps∑
j=1

α̂sj .

The null and alternative hypotheses are formulated as, Ho : αs = 0 for all s, while the alterative

does not require αs to be equal, hence, H1 : αs < 0 for at least one s. This test suggests that

a rejection should be taken as evidence of cointegration for at least one of the cross-sectional
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units.

The second pair of statistics is the panel statistics:

Pτ =
α̂s

SE(α̂s)
,

Pα = Tαs ,

The null hypothesis remains the same, Ho : αs = 0 for all s, versus H1 : αs < 0 for all s; αs

is assumed to be equal for all s. This indicates that a rejection should be taken as evidence

of cointegration for the panel as a whole. As Westerlund (2007) demonstrates, the four tests

could be adjusted to individual-specific short-run dynamics, including serially correlated error

terms and non-strictly exogenous regressors, individual specific intercept and trend terms. Full

details on the test construction and asymptotic distributions are found in Westerlund (2007). In

sum, if weak exogeneity is satisfied, Westerlund’s (2007) test has the advantage of greater power

over the popular residual-base tests; in addition, the test allows for heterogeneity across the

individual units of the panel.24 The model could also be generalised to account for cross-sectional

dependence by simulating the finite sample distribution of each estimator via the bootstrap

procedure. We present the Westerlund (2007) EC-based test in Table (6).25 The table reports

both the computed test statistics and the associated p-values.26 Having established a long-run

Table 6 Westerlund error-correction based cointegration tests for panel data, 1990-2007

Statistic Value Z-value P-value

Gt -4.520 -7.621 0.000

Ga -15.338 -1.463 0.072

Pt -7.161 -1.380 0.084

Pa -29.775 -9.859 0.000

Westerlund (2007) takes no cointegration as the null hypothesis.
Tests are based onNewey and West (1994) variance estimator.
Test regression is fitted with 4(T/100)2/9 lags and leads.

cointegrated relationship between public infrastructure and productivity, it is important now

to carefully select an appropriate estimation strategy that can effectively address the serious

econometric issues discussed earlier.

24The study provides a discussion section and a test for weak exogeneity. The evidence from the test suggests
that infrastructure is weakly exogenous; this in turn validates the implementation of the Westerlund (2007)
cointegration test.

25Results presented in this table reflect a cointegration vector that includes only lnMFP and lnG. However,
as with the case of state-by-state, four different cointegration vectors (corresponding to the four specifications)
are formed and tested. Results in all cases support panel cointegration.

26Westerlund (2007) provides two sets of p-value. The first set that we report is based on asymptotic normal
distribution, and the second set is based on bootstrapped distribution.
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6 Estimation and results

This section provides empirical investigations on the effect of public infrastructure on produc-

tivity by using cointegration models from both time-series and panel data analyses. Note that

throughout this section we maintain the assumption of constant returns to scale (CRS). In other

words, our regression models at this stage do not include the scale variable S. Nonetheless, re-

sults obtained in this section will be subjected (in a later section) to a sensitivity testing by

relaxing the CRS assumption and including S in the models.

The estimation methodology considers a two-step procedure. The first step estimates the

coefficients of the long-run equilibrium relationship by employing the dynamic OLS approach

which is a widely used method to estimate single equations when there is cointegration. The

second step extends the analysis to estimate an error-correction mechanism, which allows mod-

elling the short-run dynamics explicitly. In each step, we present results from state-by-state as

well as panel data models and highlight the differences.

Before commencing the proposed two-step strategy, it worth first exploring whether the

data on hand confirm the main findings of the earlier work; namely, by replicating some earlier

prominent models, we would like to investigate whether the implausibly large effects of public

infrastructure obtained from using aggregate time-series by those models are still evident in the

recent data.

6.1 Estimation of aggregate production function

The regression exercise performed here replicates the standard approach of earlier researchers,

which focuses on estimating a level-equation of the aggregate economy in order to determine the

significance of any long-run elasticity of MFP to public infrastructure. This can be described

by the following equation:

lnMFPt = µ+ γ lnGt +

n∑
i=1

θiZit + εt. (13)

Some of the most influential work in the U.S. which has received great attention from economists

and policy makers are Aschauer (1989), which examines the period 1949 to 1985 and finds an

elasticity of productivity with respect to total net public capital ranging from 0.34 to 0.39; and

Munnell (1990b), which uses data over the period 1949 to 1987 and finds estimates ranging from

0.31 to 0.37. Otto and Voss (1994), using Australian data over the period 1966-67 to 1989-90,

have obtained results ranging from 0.38 to 0.45, which are obviously similar to Aschauer’s and

Munnell’s estimates. These authors control for capacity utilisation and include time trends in

their models, with the exception of Munnell (1990b) who excludes the time trend. Therefore,

we run analogous regressions, generally described by (13), and we present the results in Table

7.

Model I in the table shows that the elasticity of MFP with respect to public infrastructure after

controlling for capacity utilization is 0.94. This level of estimated effect is extremely high (even
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Table 7 Australian aggregate production function (1990-2009)

Dependant Variable:lnMFP

Model I Model II

lnG 0.942*** -2.879***
(0.161) (0.809)

Capacity utilisation 0.394 0.447
(0.377) (0.285)

Time - 0.046***
(0.010)

Constant 0.282 17.824
(0.757) (1.152)

D-W 0.40 0.63
R̄2 0.86 0.94
Heteroskedasticity and autocorrelation robust Newey-West standard errors
in parentheses. Terms*,**,*** denote significance at the 10%, 5% and 1%
levels respectively.

greater than the estimated effects of Aschauer and Otto and Voss); however, it is in line with

some earlier aggregate studies in Australia and other countries in which the elasticity estimates

reached more than one. In sum, this result supports the argument that aggregate time-series

generally results in implausibly high estimates.

On the other hand, Model II of Table 7 allows for linear time trends besides capacity utili-

sation. The inclusion of a time trend was significant, but it has led the coefficient on the public

infrastructure to change to an unexpectedly negative and significant magnitude. This counter-

intuitive result can be due to inappropriate inclusion of linear time trend with series which are

not trend stationary.27

Finally, it is noteworthy that results of Aschauer (1989) and Otto and Voss (1994) have not

proved robust to more sophisticated analysis of the time-series. Some recent studies by using

more advanced econometric techniques, tend to find a smaller effect of public infrastructure than

those of studies cited above.28 The following two sections implement the proposed DOLS and

ECM estimation procedures on a state-by-state basis and using panel data.

6.2 Dynamic OLS

In the standard cointegrating regressions, it is well recognised that the ordinary least squares

(OLS) estimates of the long-run static model, represented by (6) and (9), are ‘superconsistent’

and possess, at the limit, a normal distribution. However, in finite samples the OLS estimates

have a non-standard distribution and suffer from strong finite sample bias caused by the en-

27Some authors, for example Otto and Voss (1994) and Connolly and Fox (2006), prefer not to use the unit
root tests due to the small sample time-series data and choose instead to augment their models with linear time
trend, although they acknowledge that the inclusion of time trend is potentially irrelevant.

28At this stage, to estimate the national aggregate production function we follow the earlier traditional literature
where the standard OLS regression is utilised. However, since the resultant estimates can suffer from omitted
variable bias, and - as we are going to argue - can also suffer from endogeneity bias, in the subsequent section we
apply the DOLS estimator to correct for these deficiencies.
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dogeneity of regressors (Phillips and Moon 1999; Kao and Chiang 2000). To correct for the

problems of endogeneity, Saikkonen (1991) and Stock and Watson (1993) among others sug-

gested the DOLS estimator which entails including leads and lags of the first difference of the

explanatory variables. Another approach to correct for the endogeneity is the Fully Modified

OLS (FMOLS) (Phillips and Hansen 1990) where, in contrast to DOLS, the bias is corrected

in a non-parametric way.29 Extensions of the DOLS estimator to panel data are suggested by

Kao and Chiang (2000) and Mark and Sul (2003). For the FMOLS, extensions are suggested

by Pedroni (2001) and Phillips and Moon (1999). Kao and Chiang (2000) apply Monte Carlo

studies to examine the finite sample properties of OLS, FMOLS and DOLS and conclude that

DOLS outperforms OLS and FMOLS in estimating cointegrated panel regressions.

The only concern with DOLS, as Wooldridge (2009) mentions, is the potential of serial cor-

relation in the error term. To overcome this problem, Wooldridge (2009) suggests the use of

serial correlation-robust standard errors or a correction method such as the Cochrane-Orcutt

procedure.

Because of the advantage of DOLS stated above, we adopt the approach of Saikkonen (1991)

and Stock and Watson (1993) to estimate state-by-state cointegration coefficients, and Mark

and Sul (2003) to estimate the panel cointegration coefficients. Within the context of this study,

these two approaches of DOLS (p1,p2,q1,q2) are expressed respectively as follows:

lnMFPt = µ+ γ1 lnGt +
n∑
i=1

θ1iZit

+

q2∑
j=−q1

γ2,j∆ lnGt−j +
n∑
i=1

p2∑
k=−p1

θ2ik∆Zi,t−k + εt, (14)

lnMFPst = µs + ηt + λst+ γ1 lnGst +
n∑
i=1

θ1iZist

+

q2∑
j=−q1

γ2,j∆ lnGs,t−j +

n∑
i=1

p2∑
k=−p1

θ2ik∆Zis,t−k + εst, (15)

where all notations remain unchanged.

6.2.1 State-by-state results

From the discussion above one can anticipate that an estimation of model (14) - which hopefully

adjusts for some of the crucial econometric problems - yields an infrastructure elasticity with a

sensible size. This obviously would be the case if we neglect the claim on infrastructure spillovers

to productivity. Put somewhat differently, an estimation of (14) would be useful to judge on

the supposition of the innate limitation of time-series analysis to account for infrastructure

spillovers. A plausible magnitude of the estimated effect of infrastructure will refute this claim,

while an implausible magnitude would, somewhat, verify it. Nevertheless, the complex form of

29See Patterson (2000) for an intuitive derivation of FMOLS.
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this model with many parameters to estimate requires a large sample size in order to produce

a good fit. In the context of the current study, there is a challenge of a limited number of

observations at the state level. We wish if it is possible to collect a longer series; in such a

case one can regress the model in (14) with more confidence. Given this shortage of the data,

it appears that the strategy to perform a state-by-state estimation is subjected to a trade-off

between employing parsimonious models to reserve degrees of freedom while potentially suffering

from omitted variables bias, and complex models with better explanatory power but which run

the risk of losing many degrees of freedom.

Using different sets of control variables, the general estimation approach adopted in this

study focuses on four specifications that were indicated earlier by Model 1-Model 4 (see Table

3).30 However; because of the challenge of a small time span, presenting results from some

parsimonious regressions will be useful to assess the validity of the complex models. Table 8

presents results from three parsimonious specifications of (14). The first one estimates lnMFP

as a simple function of an intercept and the level of lnG. In the second and the third specifica-

tions we include only one other explanatory variable. A great number of earlier studies included

a business cycle variable in the productivity equation. Following this group of researchers we

control for the business cycle by including capacity utilisation as a proxy in one regression, and

in another by including the unemployment rate. Stock and Watson (1993) recommended the

inclusion of two leads and lags of the first difference of all explanatory variables; however to avoid

losing many observations, only the contemporaneous changes are included. This still helps to

solve the contemporaneous endogeneity between lnG and the error term, (Wooldridge 2009).31

To preserve against serial correlation Newey-West standard errors are employed. As shown in

the table, the coefficient on (the log of) infrastructure for each of NSW, QLD, SA, and WA has

the expected positive sign; however, the coefficients have unacceptably large size, with average

values of 0.41, 0.36, 2.60 and 0.33 for these states respectively. By contrast, infrastructure shows

significantly negative effects in each of VIC, TAS, NT, and ACT with average estimated coeffi-

cients of -0.38, -1.60, -0.14, and -0.18 respectively. This negative effect is certainly not what we

expect from investing in infrastructure.

As has been mentioned, results from parsimonious models could suffer from omitted variable

bias. To correct for this bias, we next move to estimate four complex forms of (14) by including

additional explanatory variables. However; to preserve degrees of freedom, only the contempo-

raneous changes are included. Results of the regressions are presented in Table 9 which indicate

a positive and large coefficient on infrastructure in each of NSW (with average elasticity of 0.47

across the specifications), QLD (0.37), SA (2.3), and WA (0.33); and a negative and significant

coefficient in each of VIC (-0.23), TAS (-1.68), NT (-0.11), and ACT (-0.23). The apparent

consistency between results presented in Table 8 and 9 suggests that no serious omitted variable

bias in the estimates from the parsimonious models.

Recall the claim on the innate limitation of time-series analysis to account for infrastructure

30Readers may refer to Section 4 to review the definitions and statistics of the control vector.
31Although the inclusion of leads and lags of the changes of explanatory variables is recommended in the DOLS

estimator, each time we add an additional lead or lag, we lose one observation and this can be costly unless we
have a large sample size.
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spillovers. Since a result of a negative effect of infrastructure is unacceptable on economic

grounds, the focus will be only on cases with a positive expected effect. Consequently, the

incredibly high estimates of infrastructure elasticity - which remains robust across different

specifications in four states - point to the effective inability of time-series analysis to model the

effects of infrastructure on productivity.

6.2.2 Panel results

Bearing in mind the above implausible findings obtained from individual time-series regressions,

we next turn to apply a pooled estimation using a panel regression technique. A fundamental

intent of panel techniques is to account for unobserved state-specific effects so that one can take

into consideration the state heterogeneity when assessing the impact on productivity. As we

argued earlier, states could have specific characteristics which do not vary with time, but sys-

tematically could relate to the level of investment in infrastructure. In that case, an estimation

using pooling across states or aggregate national data without accounting for these characteris-

tics will produce biased and inconsistent parameters. A standard and widely applied method to

estimate panel models is the fixed-effects method which, in principle, allows differences in the

intercepts while assuming the same slopes across the states.32

To estimate the long-run cointegrated relationship between infrastructure and productivity,

we therefore apply the panel DOLS given by (15). Following Mark and Sul (2003), Okubo (2008)

and Hämäläinen and Malinen (2009), we use one lead and one lag for all explanatory variables.33

This approach simultaneously allows for state fixed-effects and corrects for the endogeneity in

the regressors.

In the framework of Mark and Sul (2003), the authors assume a homogeneous cointegration

vector across individuals; however, they allow for individual heterogeneity to be captured via

short-run dynamics, individual-specific fixed-effects and individual-specific time trends. In addi-

tion, they assume that the inclusion of a common time-effect is useful in eliminating some degree

of cross-sectional dependence. The panel DOLS estimate from (15) is consistent with a normal

limiting distribution. Mark and Sul (2003) point out that the sequential limit distribution is the

same if we include only state fixed-effects; fixed-effects and common time effects; or fixed-effects,

common time effects, and trend.

Table 10 presents the results from the panel DOLS illustrated above. In addition, the table

presents results for Australia’s aggregate production function using time-series DOLS. As in the

case of individual states; due to the short time span and to avoid losing many observations, only

the contemporaneous changes of explanatory variables are included. The purpose of presenting

results of Australia’s aggregate production function here is to use them as a benchmark to

compare the outcomes from panel analysis. Note that while the results from the panel DOLS

32There is great controversy in the literature regarding poolability of the data. In fact, pooling the data and
performing fixed or variable effects is based on the assumption of the stability of long-run parameters across cross
sections. If this assumption does not hold, according to one strand of literature, we cannot pool. However, as we
are going to discuss later with more detail, even if the hypothesis of poolability is rejected, we might sometimes
need to trade some bias for a reduction in variance.

33The inclusion of further leads and lags changes our point estimates only marginally.
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stem from an approach that pools states-level data and then allows for heterogeneity across

the states; the results from time-series DOLS are essentially based on data constructed for an

aggregate economy.34 Concisely, Table 10 is composed from two panels. In Panel A, dynamic

fixed-effects results are reported in the first columns with the label ‘DFE’ while the results from

the dynamic time-series are reported in the second columns and labelled ‘DTS’. Again, the four

specifications used prior and denoted by Model 1-Model 4 are implemented here with each of

the two approaches.

The results from the DFE on the coefficient of lnG (which reflects the elasticity of public

infrastructure) is consistently positive and significant across the specifications. In particular,

the magnitude of the elasticity ranges from 0.10-0.13 with an average of 0.12. This implies that,

on average if public infrastructure were increased by 1 percent, ceteris paribus, MFP would

increase by 0.12 percent. Our diagnostic test of panel serial correlation using Wooldridge (2002)

and Drukker (2003) strongly rejects the null of no serial correlation in all of the specifications.

To guard against this problem, therefore, we apply Driscoll and Kraay (1998) heteroskedasticity

and autocorrelation robust standard errors. On the other hand, the results from the DTS are

also positive and significant across the four specifications with an average of 0.70. This elasticity

implies that, ceteris paribus, a 1 percent increase in infrastructure will boost productivity by

0.70 percent. This certainly is a very high level of effect and it is approximately equivalent to

six multiples of the estimated effect of fixed-effects regression.

One issue with the panel DOLS estimator worth mentioning is that, unlike time series, its

asymptotic properties depend on the assumption of cross-sectional independence in the error

terms. Mark and Sul’s Monte Carlo studies suggest that the inclusion of the common time-

effect is useful in eliminating some degree of cross-sectional dependence. Thus, following Mark

and Sul (2003), results from the fixed-effects model are compared to a model with time trends

and time-specific effects. Panel B of Table 10 shows the results.35 As is quite noticeable and

in line with the suggestions of Mark and Sul, the results obtained are robust to the inclusion of

time trend and time-specific effects.

It is well evident that the findings from panel dynamic specifications reflect plausible and

considerably small coefficients on public infrastructure when they are compared with the find-

ings from other studies in Australia.36 This considerable difference in results is obviously not

attributable to factors such as a disparity in the control variables, the econometric estimation

method, or a difference in the structure of data employed (e.g., the definition, measurement,

scope of variables or time horizon of the sample). The strategy accomplished in the current

study demonstrates that with the adoption of identical model specifications, econometric es-

timator, and data set, the aggregate time-series regressions have led to a significantly higher

effect on productivity than panel fixed-effects regressions. Moreover, some other measurements

34Methods used to construct the national level MFP index, public infrastructure capital, and the rest of the
control variables are identical to the methods used to construct state-level data.

35Panel B of the table reports the results on public infrastructure only, however the four specifications applied
in this part are similar to those of panel A. The performance of the control variables does not vary much from
the one presented in Panel A.

36A detailed survey on Australian studies and others is provided in Shanks and Barnes (2008).
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are made to address a number of factors highlighted by the critics as a potential source of high

magnitude estimates. To adjust for spurious correlation, formal unit root and cointegration tests

are performed, then applying DOLS which is a well known consistent estimator in cointegrated

data. To account for missing explanatory variable bias, a set of control variables suggested by

other studies is applied with different specifications. The estimated elasticities from aggregate

analysis still remain unacceptably high and far from what the fixed-effects regressions suggest.

Having accounted for all these potential factors, this striking finding motivates us to search

for another probable explanation. Bring to mind that the core difference between the panel

DOLS and the time-series DOLS presented in Table 10 is the control of the state characteristics;

the results obtained suggest that the literature on the impact of regional characteristics in

explaining productivity (Islam 1995; Temple 1999; Holtz-Eakin 1994) seems to be firmer ground

to rest on.

Results on the control variables are broadly acceptable and consistent with theory and prior

empirical findings. The results from both the panel and time-series approaches show that ca-

pacity utilisation has a positive effect on productivity although it not significant in all of the

specifications. Human capital has the expected positive effect with both regression methods,

although it is statistically insignificant only with fixed-effects. In addition, with fixed-effects the

coefficient on unemployment rate indicates the a priori expected negative impact on productivity;

however, time-series regression implies an unexpected positive effect. Openness has an ordinary

positive effect with the two types of regressions, however, it is insignificant in the two cases.

Results on the rate of disputation and trade unionisation are statistically negative, as expected,

although the small size of the coefficient does not suggest a sizeable effect on productivity.

Finally, to conclude the first step of our estimation strategy, one may legitimately ask whether

the large results obtained from national level aggregation are completely driven by the effects on

the productivity of one particular state. To answer this question and to provide more evidence

in support of the above findings, we perform a series of eight groups of regressions similar to

those presented in Table 10. The only alteration is that instead of including the eight states in

estimating the indexes of MFP, public infrastructure and the rest of the control variables, each

time we exclude one of the states and utilise the data on seven states to construct the aggregate

economy indexes. This exercise is repeated eight times to produce eight tables of results alike

in structure to Table 10.37 The most striking observation from these tables is that the results

presented earlier remain robust to the inclusion of the states.

6.3 Error-correction model

It is well acknowledged that investment in infrastructure is a domain in which the lagged effects

are usually expected. Also, we do not rule out observing some differences between the long-run

effects and the patterns of short-run dynamics in response to changes in infrastructure provision.

To shed more light on this issue, the study stresses the importance of further investigations within

a dynamic framework.

37These 10 tables are available directly from the author.
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To proceed, (6) and (9) have to be re-specified as an error-correction model (ECM). There

are different approaches proposed in the literature to estimate such a model. One example is

the ‘classical’ Engle and Granger (1987) two-step method (EGTSM). In EGTSM, the long-term

parameters are first estimated by running a static regression in the levels of variables. Second,

the dynamics are estimated using the error-correction term, which is the residual from the static

regression. Thus, EGTSM is a quite straightforward method and it has typically been applied

in cases where all the series are integrated of the order one.38 Difficulties with EGTSM arise

when the series are integrated of different orders.

A substantial literature in applied economics and other social sciences advocates the usage of

the single-equation error-correction model (SEECM) over EGTSM. An interesting debate on

this issue was raised during 1992-1993 (for example, see Durr 1993; Beck 1993; Williams 1992;

and DeBoef 2001). Recently, Keele and DeBoef (2005) have revisited this issue and shown that

the empirical properties of ECM are maintained even when stationary data are used. Another

advantage of SEECM is that unlike the EGTSM in which the parameters of the equilibrium equa-

tion are estimated separately from the parameters of the error-correction mechanism, SEECM

captures both the equilibrium and error-correction features of the cointegrated system (Phillips

and Loretan 1991). A general notation of the SEECM is given by:39

∆ lnMFPst = µs + ηt + λst+ φs(lnMFPs,t−1 − σ1s lnGs,t−1

−
n∑
i=1

σ2isZis,t−1) + β1s∆ lnGst +

n∑
i=1

θ1is∆Zist + εst . (16)

The term in parentheses is the error-correction mechanism. It represents the proportion of

the disequilibrium in MFP in one period which is corrected in the next period, and captures

the adjustment towards long-run equilibrium. On the other hand, ∆ lnGst captures the short-

run effects of public infrastructure. Therefore, shocks to public infrastructure have two effects

on a change in MFP. Some portions of the shocks might immediately affect MFP in the next

time period, so that ∆ lnMFPst responds to ∆ lnGs,t−1. Moreover, a shock to lnGst will

disturb the equilibrium between MFP and public infrastructure and hence drive MFP on a

long-run movement to a new level that reproduces the equilibrium state with the new level of

infrastructure. The parameter φs reflects the speed of return to equilibrium after a disturbance.

Obtaining a significantly negative value for φs from an empirical application is usually used as

evidence of series cointegration. Finally, the parameter σ1s estimates the long-run effect of lnG

on lnMFP . Such effects will be distributed over future time periods according to the rate of

adjustment.

38Under EGTSM, higher orders of integration are allowed for under the definition of cointegration, but all the
variables are required to be from the same order.

39A complete description on how SEECM is derived from an autoregressive lag model is provided in ppendix
A.2.
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6.3.1 State-by-state results

This part presents the results of applying the ECM regression with time-series for each individual

state. We have seen with the DOLS estimator that results from state-by-state regressions are not

very compelling. Results on the estimated elasticities of MFP have the unexpected negative sign

in four states, and the expected positive sign in the other four states but with an extremely large

size. With the ECM, the performance of state-by-state regressions is even more unsatisfactory.

As can be seen in Table 11, the long-run elasticity estimates not only have implausible sizes,

but in many cases they do not have the expected sign that is suggested by theory. In addition,

the general behaviour of the adjustment coefficient is not in line with what is anticipated from

a cointegrating relationship.

To discuss these results in more detail, let us start first with NSW where we find only two

specifications with a negative and strongly significant adjustment coefficient which - in such cases

- supports the result from the cointegration test performed earlier for this state. Across these two

specifications the average estimated long-run elasticity is 0.66. This magnitude is considerably

higher than the one found earlier with the DOLS regression. Similar to NSW, VIC has only two

specifications in which the adjustment coefficient is negative and significant. In one of these two

cases the long-run elasticity of public infrastructure is positive and strongly significant with a

magnitude of 0.41. This result contradicts the finding from the DOLS where all specifications

show a negative effect. On the other hand, for QLD none of the models has a significant negative

adjustment coefficient, and such an outcome opposes the finding by Engle & Granger’s (1987)

cointegration test. Even with no evidence on cointegration, there are two cases with a positive

and very high elasticity of infrastructure with an average of 0.90. In SA, there is strong evidence

of cointegration in two specifications because the adjustment coefficient is negative and highly

significant. However, the long-run elasticity is extremely large with an average of 2.90; this result

validates the finding from the DOLS. No specification for WA suggests cointegration; however,

the estimated elasticity is significant and positive with an average of 0.80.

Similar to the outcome from the DOLS, the results for TAS appear unacceptable although the

adjustment coefficient is significantly negative in two of the specifications. NT is the only state

in which the cointegration relationship found support across the four specifications; nevertheless,

only Model 1 shows a significant estimate for the infrastructure elasticity parameters. This result

is inconsistent with the finding from the DOLS. In the ACT results are mixed. While Model 3

reflects a cointegrating relationship with a significantly negative infrastructure elasticity, Model

4 reflects cointegration with a significantly positive elasticity.

Looking at the dynamics of productivity and infrastructure, with the exception of the NT

and ACT, the coefficient on public infrastructure in the short-run is always significant and

negative. This suggests that even though public infrastructure has a strongly positive effect

on productivity in the long-run, in the short-term this relationship is not established. More

discussion on this particular behaviour will be provided below. Results on the control variables

are not compelling either. On many occasions, the long and short-run coefficients do not have

the expected signs. To conclude, using an ECM finds virtually no support from either the

37



T
a
b

le
11

:
S

ta
te

-b
y
-s

ta
te

er
ro

r-
co

rr
ec

ti
on

m
o
d

el
es

ti
m

at
io

n
re

su
lt

s
(1

99
0
−

20
09

)

D
ep

en
d
en

t
va

ri
a
b
le

:
∆

ln
M
F
P

N
S
W

V
IC

Q
L

D

M
o
d
el

1
M

o
d
el

2
M

o
d
el

3
M

o
d
el

4
M

o
d
el

1
M

o
d
el

2
M

o
d
el

3
M

o
d
el

4
M

o
d
el

1
M

o
d
el

2
M

o
d
el

3
M

o
d
el

4

A
d
j.

c
o
e
ff

.
-0

.8
1
7
*
*
*

-0
.1

5
9

-0
.0

9
5

-0
.5

9
0
*
*
*

-0
.3

3
3
*
*

-0
.1

4
6

-0
.1

3
3

-0
.2

9
1
*

-0
.0

7
3

0
.1

6
2

0
.0

5
6

0
.1

2
1

(0
.1

3
0
)

(0
.1

8
7
)

(0
.2

3
9
)

(0
.1

2
3
)

(0
.1

5
1
)

(0
.1

0
1
)

(0
.1

2
9
)

(0
.1

5
8
)

(0
.0

7
8
)

(0
.1

1
5
)

(0
.1

5
1
)

(0
.1

2
7
)

L
R

c
o
e
ff

s.
ln
G

0
.4

0
4
*
*
*

0
.1

6
0
*
*

0
.7

5
7
*
*
*

0
.9

2
3
*
*
*

-0
.0

6
7

0
.5

1
4
*
*
*

0
.3

8
3
*
*
*

0
.4

0
5
*
*
*

-0
.2

1
4
*
*
*

0
.7

1
4
*
*
*

-0
.0

8
3

1
.1

3
5
*
*
*

(0
.0

0
6
)

(0
.0

6
5
)

(0
.0

9
8
)

(0
.0

8
1
)

(0
.0

4
5
)

(0
.5

1
4
)

(0
.0

8
9
)

(0
.1

1
4
)

(0
.0

3
9
)

(0
.0

4
1
)

(0
.1

1
2
)

(0
.1

0
2
)

O
p

en
n
es

s
-

-
-

-1
.7

5
2
*
*
*

-
-

-
1
.7

3
6
*
*
*

-
-

-
-3

.7
4
8
*
*
*

(0
.2

7
9
)

(0
.4

8
8
)

(0
.7

7
4
)

C
U

0
.6

2
5
*
*
*

-
-

-
0
.9

4
8
*
*
*

-
-

-
-0

.4
8
7

-
-

-
(0

.0
7
7
)

(0
.1

3
1
)

(0
.3

3
4
)

ln
H

K
-

0
.6

4
8
*
*

-
-

-
-0

.6
4
0
*
*
*

-
-

-
-1

.1
4
2
*
*
*

-
-

(0
.2

5
2
)

(0
.1

3
1
)

(0
.1

5
6
)

U
-

-
0
.0

6
5
*
*
*

-
-

-
0
.0

1
6
*
*
*

-
-

-
-0

.1
4
6
*
*
*

-
(0

.0
1
8
)

(0
.0

0
3
)

(0
.0

2
5
)

S
R

c
o
e
ff

s.

∆
ln
G

-0
.6

9
9
*

-0
.4

1
9

-0
.3

5
8

-0
.4

5
2
*

-1
.1

0
4
*

-1
.9

3
1
*
*
*

-1
.7

5
4
*
*
*

-1
.6

0
2
*
*
*

-0
.1

4
9

0
.4

2
7

-0
.0

5
0

0
.0

1
0

(0
.3

5
4
)

(0
.3

9
8
)

(0
.3

1
8
)

(0
.2

4
0
)

(0
.5

7
6
)

(0
.4

7
4
)

(0
.4

3
0
)

(0
.4

3
7
)

(0
.1

9
3
)

(0
.4

7
6
)

(0
.2

5
7
)

(0
.4

0
0
)

∆
O
p
en
n
es
s

-
-

-
0
.5

6
8

-
-

-
-0

.3
5
4

-
-

-
-0

.4
1
5

(0
.2

9
0
)

(0
.3

0
7
)

(0
.5

0
2
)

∆
C
U

0
.2

4
9
*
*

-
-

0
.5

0
4
*
*
*

-
-

-
0
.7

6
1
*
*

-
(0

.1
0
8
)

(1
.1

3
7
)

(0
.3

0
7
)

∆
ln

H
K

-
-0

.1
7
9
*

-
-

-
-0

.1
3
3
*
*

-
-

-
0
.0

6
7

-
-

(0
.0

9
5
)

(0
.0

4
7
)

(0
.0

9
7
)

∆
U

-
-

-0
.0

0
5

-
-

-
-0

.0
0
3

-
-

-
-0

.0
0
1
*

-
(0

.0
0
3
)

(0
.0

0
2
)

(0
.0

0
4
)

C
o
n
st

a
n
t

2
.2

5
2
*
*
*

0
.2

1
3

0
.0

7
1

0
.3

1
0

1
.6

5
8

0
.7

3
4

0
.3

5
4

0
.7

0
6

0
.4

4
6

-1
.0

1
4

-0
.3

4
2

-0
.0

0
8

(0
.3

4
9
)

(0
.9

9
5
)

(0
.7

3
2
)

(0
.3

7
9
)

(0
.9

4
0
)

(0
.8

6
6
)

(0
.7

7
2
)

(0
.9

2
4
)

(0
.2

8
5
)

(0
.7

5
6
)

(0
.4

3
7
)

(0
.3

5
1
)

D
-W

1
.7

4
1
.1

7
1
.1

2
0
.9

4
2
.2

6
2
.5

0
2
.4

9
2
.4

1
1
.1

9
2
.4

0
2
.2

6
1
.9

6

R̄
2

0
.6

7
0
.1

6
0
.1

4
0
.4

7
0
.6

3
0
.3

5
0
.2

8
0
.2

9
0
.5

3
0
.3

3
0
.3

5
0
.2

6

38



T
ab

le
11

:
co

n
ti

n
u

ed

D
ep

en
d
en

t
va

ri
a
b
le

:
∆

ln
M
F
P

S
A

W
A

T
A

S

M
o
d
el

1
M

o
d
el

2
M

o
d
el

3
M

o
d
el

4
M

o
d
el

1
M

o
d
el

2
M

o
d
el

3
M

o
d
el

4
M

o
d
el

1
M

o
d
el

2
M

o
d
el

3
M

o
d
el

4

A
d
j.

c
o
e
ff

.
-0

.2
0
1

-0
.5

3
1
*
*
*

-0
.2

4
2

-0
.3

0
7
*
*
*

-0
.0

1
4

0
.2

2
0

0
.2

1
9

0
.2

3
0

-0
.1

3
1
*
*
*

-0
.1

3
6
*
*

-0
.0

7
5

-0
.1

0
7

(0
.1

4
1
)

(0
.1

8
7
)

(0
.1

6
7
)

(0
.0

7
7
)

(0
.2

1
0
)

(0
.2

2
6
)

(0
.1

7
0
)

(0
.1

6
2
)

(0
.0

2
0
)

(0
.0

5
6
)

(0
.0

8
9
)

(0
.0

3
2
)

L
R

c
o
e
ff

s.
ln
G

2
.1

4
2
*
*
*

2
.5

9
5
*
*
*

3
.1

6
7
*
*
*

3
.1

4
9
*
*
*

-5
.9

4
5
*
*
*

0
.8

9
6
*
*
*

0
.7

6
8
*
*
*

0
.7

2
7
*
*
*

-1
.2

8
5
*
*
*

-2
.1

4
1
*
*
*

-2
.5

0
3
*
*
*

-1
.6

6
3
*
*
*

(0
.1

1
7
)

(0
.0

3
6
)

(0
.1

8
1
)

(0
.1

6
6
)

(1
.3

4
9
)

(0
.1

0
0
)

(0
.0

8
0
)

(0
.0

7
6
)

(0
.1

1
1
)

(0
.2

4
0
)

(0
.1

7
8
)

(0
.1

6
6
)

O
p

en
n
es

s
-

-
-

-1
.1

4
2
*
*

-
-

-
0
.5

9
3
*
*
*

-
-

-
3
.2

3
1
*
*
*

(0
.4

8
3
)

(0
.1

9
4
)

(0
.5

2
2
)

C
U

1
.0

9
4
*
*
*

-
-

-
-1

2
.2

0
0
*
*
*

-
-

-
1
.2

1
7
*
*
*

-
-

-
(0

.1
1
7
)

(2
.4

3
0
)

(0
.2

2
1
)

ln
H

K
-

-0
.1

4
1
*
*
*

-
-

-
-0

.3
4
8
*

-
-

-
-0

.0
1
6

-
-

(0
.0

2
5
)

(0
.1

7
4
)

(0
.0

6
2
)

U
-

-
0
.0

2
1
*
*

-
-

-
-0

.0
1
0
*
*

-
-

-
0
.0

1
8
*
*
*

-
(0

.0
0
8
)

(0
.0

0
3
)

(0
.0

0
5
)

S
R

c
o
e
ff

s.

∆
ln
G

-0
.2

5
1

-1
.4

3
1
*
*
*

-1
.2

6
1
*
*
*

-1
.1

7
1
*
*
*

-0
.0

1
5

0
.3

1
7

0
.3

2
7

0
.3

4
2

-.
1
7
7

-0
.4

6
7

-0
.5

5
5

-0
.4

8
7
*

(0
.5

9
8
)

(0
.3

9
8
)

(0
.3

9
7
)

(0
.3

0
3
)

(0
.3

2
8
)

(0
.2

8
4
)

(0
.2

9
7
)

(0
.2

6
4
)

(0
.1

9
0
)

(0
.2

8
1
)

(0
.3

3
1
)

(0
.2

4
1
)

∆
O
p
en
n
es
s

-
-

-
0
.4

6
6
*
*

-
-

-
-0

.2
1
9
*

-
-

-
-0

.2
2
8

(0
.1

7
0
)

(0
.0

8
2
)

(0
.3

1
6
)

∆
C
U

0
.6

6
9

-
-

0
.5

5
9
*

-
-

-
0
.6

9
4
*
*
*

-
(0

.5
5
1
)

(0
.3

0
8
)

(0
.1

6
8
)

∆
ln

H
K

-
0
.2

3
9
*
*
*

-
-

-
-0

.0
1
5

-
-

-
-0

.0
4
8

-
-

(0
.0

6
3
)

(0
.0

9
3
)

(0
.0

5
0
)

∆
U

-
-

0
.0

0
5

-
-

-
-0

.0
0
2

-
-

-
0
.0

0
3

-
(0

.0
0
7
)

(0
.0

0
2
)

(0
.0

0
6
)

C
o
n
st

a
n
t

-1
.0

4
2

-3
.6

1
2
*
*
*

-2
.4

6
7
*

0
.3

1
0

0
.4

9
1

-0
.4

1
1

-0
.2

3
2

-0
.1

9
5

1
.4

2
2
*
*

2
.0

3
0
*
*

1
.2

3
7

1
.2

7
4

(1
.2

7
3
)

(0
.7

4
2
)

(
1
.2

1
3
)

(0
.3

7
9
)

(0
.5

3
9
)

(1
.2

9
2
)

(0
.5

2
8
)

(0
.4

5
2
)

(0
.5

0
7
)

(0
.7

5
7
)

(1
.1

2
6
)

(0
.8

8
9
)

D
-W

2
.5

7
3
.2

6
2
.5

4
2
.7

9
1
.5

3
1
.8

9
1
.9

3
1
.7

7
2
.1

0
2
.0

6
2
.2

2
2
.0

6

R̄
2

0
.7

6
0
.6

8
0
.5

2
0
.5

1
0
.4

8
0
.2

6
0
.2

6
0
.4

8
0
.7

1
0
.2

8
0
.2

7
0
.2

8

39



T
ab

le
11

:
co

n
ti

n
u

ed

N
T

A
C

T

M
o
d

el
1

M
o
d

el
2

M
o
d

el
3

M
o
d

el
4

M
o
d

el
1

M
o
d

el
2

M
o
d

el
3

M
o
d

el
4

A
d

j.
c
o
e
ff

.
-0

.4
57

**
*

-0
.7

29
**

*
-0

.6
2
9
*
*

-0
.7

5
0
*
*
*

-0
.5

1
8

-0
.5

9
1

-0
.6

1
0
*

-0
.6

1
6
*
*

(0
.1

51
)

(0
.1

66
)

(0
.2

6
5
)

(0
.2

4
0
)

(0
.3

2
9
)

(0
.4

5
0
)

(0
.3

2
1
)

(0
.2

5
4
)

L
R

c
o
e
ff

s.
ln
G

0.
10

7*
**

-0
.0

14
0
.0

2
2

-0
.0

4
4

0
.1

4
5
*
*
*

-0
.2

2
7
*

-0
.1

2
7
*

0
.2

1
9
*
*
*

(0
.0

45
)

(0
.0

36
)

(0
.1

1
1
)

(0
.0

5
0
)

(0
.0

4
6
)

(0
.1

0
5
)

(0
.0

6
1
)

(0
.0

2
4
)

O
p

en
n

es
s

-
-

-
0
.1

0
2

-
-

-
-0

.0
5
7

(0
.0

7
7
)

(0
.0

8
2
)

C
U

0.
43

1*
**

-
-

-
0
.2

7
8

-
-

-
(0

.0
90

)
(0

.2
1
4
)

ln
H

K
-

0.
04

1
-

-
-

0
.1

1
6

-
-

(0
.0

36
)

(0
.4

8
6
)

U
-

-
-0

.0
0
7

-
-

-
0
.0

0
1

-
(0

.0
0
9
)

(0
.0

0
3
)

S
R

c
o
e
ff

s.
∆

ln
G

0.
86

5*
*

1.
65

0*
*
*

1
.4

4
3
*
*
*

1
.6

9
9
*
*
*

1
.4

3
9

1
.8

5
9

1
.1

9
1

2
.3

3
6
*
*
*

(0
.3

18
)

(0
.4

29
)

(0
.2

9
7
)

(0
.3

4
6
)

(1
.0

5
8
)

(0
.7

0
9
)

(1
.1

6
5
)

(0
.3

8
3
)

∆
O

p
en

n
es

s
-

-
-

-0
.0

1
4

-
-

-
-0

.1
2
2

(0
.0

8
1
)

(0
.0

6
8
)

∆
C

U
0.

53
0*

**
-

-
-

0
.2

3
1

-
-

-
(0

.1
58

)
(0

.2
5
3
)

∆
ln

H
K

-
-0

.0
14

-
-

-
0
.1

0
2

-
-

(0
.0

40
)

(0
.1

7
4
)

∆
U

-
-

0
.0

1
1
*
*

-
-

-
-0

.0
1
2

-
(0

.0
0
4
)

(0
.0

1
1
)

C
on

st
an

t
1.

93
5*

*
3.

35
7*

*
*

2
.9

3
2
*

3
.6

3
8
*
*

2
.7

8
4

3
.0

8
0

3
.2

1
1

3
.5

2
5
*
*

(0
.8

20
)

(0
.8

98
)

(1
.6

0
7
)

(1
.2

9
6
)

(1
.9

0
2
)

(3
.8

6
0
)

(1
.8

5
4
)

(1
.4

0
9
)

D
-W

2.
36

2.
14

2
.2

8
2
.2

4
2
.3

3
2
.1

8
2
.4

6
2
.4

5

R̄
2

0.
70

0.
40

0
.4

9
0
.4

3
0
.2

4
0
.1

9
0
.2

0
0
.3

8

E
st

im
at

io
n

s
co

ve
r

th
e

p
er

io
d

19
90

-2
0
0
9

ex
ce

p
t

fo
r

A
C

T
o
n

ly
u

p
to

2
0
0
7
.

S
R

an
d

L
R

st
an

d
fo

r
sh

or
t-

ru
n

an
d

lo
n

g
-r

u
n

co
effi

ci
en

ts
re

sp
ec

ti
ve

ly
.

C
U

,
U

a
n

d
ln
H
K

st
a
n

d
fo

r
ca

p
ac

it
y

u
ti

li
sa

ti
on

,
u

n
em

p
lo

y
m

en
t

ra
te

a
n

d
n

a
tu

ra
l

lo
g
a
ri

th
m

s
o
f

h
u

m
a
n

ca
p

it
a
l

re
sp

ec
ti

ve
ly

.
T

er
m

s
in

p
ar

en
th

es
es

co
rr

es
p

on
d

to
h

et
er

o
sk

ed
a
st

ic
it

y
a
n

d
a
u

to
co

rr
el

a
ti

o
n

ro
b
u

st
N

ew
ey

-W
es

t
st

a
n

d
a
rd

er
ro

rs
.

T
er

m
s*

,*
*,

**
*

d
en

ot
e

si
gn

ifi
ca

n
ce

a
t

th
e

1
0
%

,
5
%

a
n

d
1
%

le
ve

ls
re

sp
ec

ti
v
el

y.

40



economic or statistical point of view as it does not provide an adequate approximation of the

data generating process on a state-by-state basis. Consequently, as with the case of DOLS, this

motivates us to question the behaviour of the model within a panel regression framework.

6.3.2 Panel results

Table 12 indicates that with the control for state fixed-effects, results from ECM are quite in-

sightful as they clearly reflect a well-defined error-correction term across all specifications. This

in turn confirms that the series are cointegrated. The estimated value of the adjustment speed

indicates a convergence to equilibrium by annual rate ranging from 11 percent to 12 percent,

and this finding supports a slow speed of adjustment between productivity reactions and infras-

tructure changes. On the other hand, the long-term effects of public infrastructure are strongly

significant, with values ranging from 0.16 to 0.20 with an average of 0.17. This suggests that

an increase in public infrastructure capital stock by 1 percent, ceteris paribus, would result in

a 0.17 percent increase in productivity. This estimate is somewhat larger than the 0.12 point

estimate from the panel DOLS regressions. Considering the short-run effects of the growth rate

of public infrastructure on the growth rate of MFP, the estimated coefficient is always negative

and significant; this in line with our findings on a state-by-state basis and the findings of a

number of other studies (e.g., Nourzad 1998 ). The results from panel ECM suggest that over

the short term when the initial investments on public infrastructure are not fully operational,

benefits from these investments will not be realised by the production sector; consequently, no

discernible effects will be observed on productivity. However, over the longer term when the

production sector has had enough time to adjust to and absorb benefits from infrastructure

investment, positive effects on productivity would rather be expected.40 Shanks and Barnes

(2008) engage in some relevant discussion about the relationship between infrastructure and

productivity with reference to Australian experience over the past few decades. Citing Dowrick

(1994), the authors mention that between the mid- to the late 1990s, Australia has witnessed

a noticeable productivity surge; however, public investment declined rather than increased be-

tween the mid-1980s and late 1990s. In addition, during the early to mid-2000s, while there

has been a considerable growth in public investment, productivity growth has decreased. In

an attempt to explain this apparent lack of positive relationship, Shanks and Barnes (2008)

highlight three points which can be summarised as follows. First, the fact that there are lags

between expenditure and effects. In other words, the translation of investment in infrastructure

into operational assets may not be entirely smooth since, by their nature, infrastructure assets

are large and may take many years in creation and construction before they can operate fully.

Besides, further lags could exist between the time those assets become operational and the time

they practically provide improvement in productivity to their users. Second, due to the fast

pace of commercialisation and privatisation during the 1980s and 1990s, there was an observ-

able improvement in the efficiency with which services were provided from the current stock of

40Our results on the short-run dynamics may be used to explain why authors like Tatom (1991), who differences
the data to remove the unit root while neglecting to model for long-run relationships finds no benefit from public
investment in productivity.
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Table 12 Panel error-correction estimation results (1990-2007)

Dependent variable: ∆ lnMFP
Model 1 Model 2 Model 3 Model 4

Adjustment coefficient -0.118*** -0.115*** -0.108*** -0.124***
(0.020) (0.015) (0.020) (0.019)

Long-run coefficients

lnG 0.173*** 0.205*** 0.166*** 0.159***
(0.007) (0.007 (0.011) (0.006)

Openness - - - 0.174**
(0.058)

CU 0.709*** 0.269** 0.056 0.245**
(0.084) (0.088) (0.078) (0.084)

ln HK - 0.002 - -
(0.019)

U - - - -

Dispute 0.0001*** -0.0003 - -
(0.000) ( 0.0002)

Union -0.0003*** - - -
(0.004)

Short-run coefficients
∆ lnG -0.292** -0.310** -0.245** -2.328***

(0.102) (0.097) (0.122) (0.1043)
∆ Openness - - - 0.001

(0.066)
∆ CU 0.510*** 0.609** 0.632*** 4.658***

(0.083) (0.105) (0.092) (0.104)
∆ ln HK - 0.029 - -

(0.037)
∆ U - - 0.002 -

(0.001)
∆ Dispute -0.0000 -0.000 - -0.0001***

(0.000) (0.000) (0.000)
∆ Union -0.0001 - - -

(0.000)
Wooldridge’s (0.002) (0.001) (0.001) (0.002)

R2 0.42 0.45 0.47 0.45

a Estimations cover the period 1990-2009 except for ACT only up to 2007.
CU,U and lnHK stand for capacity utilisation, unemployment rate and
natural logarithms of human capital respectively.
Estimates of the intercept are not reported.
Terms in parentheses correspond to heteroskedasticity and autocorrelation
robust Driscoll-Kraay standard errors.
Terms*,**,*** denote significance at the 10%, 5% and 1% levels respectively.
The null hypothesis of Wooldridge’s test for autocorrelation is: Ho: no
first-order autocorrelation.

infrastructure. In other words, even though public spending was constrained, the allocation of

existing investments and the eventual provision of services has improved significantly. Third,

other important factors apart from infrastructure enhanced Australia’s productivity during the

1990s and 2000s, and by doing so have surpassed the beneficial effects of infrastructure.

To finalise the discussion with ECM, a few comments on the performance of other explanatory

variables are made as follows. Out of six controls, only capacity utilisation and openness show a

significant long-run relationship with productivity. The rest of the variables do not show either

long-run or short-run significant effects on productivity.
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7 Rate of return of public infrastructure

The coefficients on public infrastructure estimated so far are elasticities, which are somewhat

hard to interpret precisely since they are expressed as percentage changes. To evaluate the extent

to which public infrastructure impacts productivity, it is more informative to derive the rate

of return. In the traditional literature, the general approach to calculating the economic rate

of return to capital (which essentially measures the increase in output drawn from employing

additional capital) involves the multiplication of the estimated output elasticity with respect to

capital by the ratio of output to that capital. Because what has been estimated in the present

work is not a production function, it may seem a little complex to compare the MFP-based rates

of return derived here with the output-based rates of returns derived by other studies. However,

to the extent that the assumptions of constant returns to scale and factors paid according to

their marginal products (which are imposed to construct MFP indexes) hold, the estimated

MFP and output elasticities (even though they are conceptually different) are likely to be quite

similar. Thus, the implied rate of return using our estimates of MFP elasticities is likely to be

a close approximation to the output rate of return.

Table 13 presents the rates of return to the public infrastructure which are computed by

multiplying the estimated MFP elasticity with respect to public infrastructure by the ratio of

output to the stock of public infrastructure. Using the findings on elasticities from our preferred

estimator, panel DOLS, which are applied on four different specifications, this table presents a

set of four values of implied rates of return. Note that the mean value of value-added output and

public infrastructure capital stock over the period 1990-2007 are used to calculate output-capital

ratio. With the DOLS method, a range of 0.10-0.13 of elasticities is associated with a range of

51-66 percent rate of return. It is clear that the economic magnitude of this rate is very high and

may reflect under-investment in public infrastructure. This observation has important policy

implication as it may raise the question of whether capital used in building public infrastructure

is allocated efficiently (i.e. up to a level where its marginal product equals the rate of return)

Table 13 Implied rates of return to public infrastructure (1990-2007)

Panel DOLS

Model Elasticity Rate of return
(point estimate)

1 0.104 51
2 0.135 66
3 0.124 61
4 0.127 62

Average infrastructure capital stock 159386.7($millions)
Average value added (Y) 785432.6($millions)
Intensity ( YK ) 4.9

Rate of return is calculated as infrastructure elasticity multiplied by the ratio
of output to infrastructure stock (at mean values).

Figure 3 plots the flow of the gross rate of return. The elasticity used is the average across
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the four specifications, and the output-capital ratios are calculated in annual terms. As depicted

in the figure, the gross rate of return of public infrastructure increases over time. Remember

that the observed pattern is derived by two factors. First, the assumption that the average

estimated elasticity is constant over time. Second, that the Australian valued-added output

has grown faster - with a rate of 79 percent over the period of the study - relative to public

infrastructure stock, which has grown by only 23 percent.

Figure 3 Public infrastructure return, 1990-2007
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8 Sensitivity test of the returns to scale

As mentioned earlier, the methodology applied by the current study to construct the state level

MFP indexes is basically a replication of the ABS method in the estimation of the market

sector MFP in the spirit of Solow’s (1956) neoclassical model. The two standard assumptions

of the neoclassical model of production are perfect competitive markets and constant return to

scale (CRS). The satisfaction of these two assumptions implies the existence of allocative and

technical efficiency, plus income shares of labour and capital in the state accounts sum to unity.41

This indicates that the MFP index completely reflects technological progress.42 However, in

practice inefficiencies usually exist because markets are imperfectly competitive, and economies

or diseconomies of scale may also exist. Under these violations, the index of MFP may not

only reflect the technological change, but may also capture the changes in efficiency and scale

economies (Hall 1988, 1990). This stance can bias the estimated coefficients of the variables

in the modelling using a MFP equation. For instance, if the true technology is increasing

returns to scale, incorporating the CRS assumption can bias the estimates of parameters upward.

41The competitive markets and CRS assumptions are usually imposed in the applied work to avoid problems
such as the unavailability of independent estimates of input cost shares, and to give more structure to the
production function and simplify the interpretation and description.

42Recall that MFP is defined as the growth rate of output minus the revenue share-weighted average of the
growth rates of inputs. See the Appendix for exact details on the MFP index construction method.
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Equivalently, if the true technology is decreasing returns, CRS assumption can bias the estimates

of parameters downward.

Using econometric models, previous studies have tested for the assumption of CRS, but the

outcomes from these tests are mixed. While some authors find increasing returns (for example

see Morrison 1992; Basu and Fernald 1997; and Diewert and Fox 2008 in the U.S.) some others

find constant or decreasing returns (e.g., Fox and Nguyen 2007 in Australia). This section of

the study aims to test the sensitivity of the results on the effect of public infrastructure on the

productivity obtained above to the violation of the CRS assumption.43 Earlier we demonstrated

how the inclusion of a scale variable (measured as a combined index of labour and capital

services) in the MFP equation, allows us to account for CRS errors.44 To pursue the test,

we use our preferred estimator, the DOLS, for both state-by-state and panel data regressions,

represented by (14) and (15) respectively.

First, to discuss the effect of the alteration of the CRS assumption on the performance

of individual states regressions, let us examine Table 14 which presents the results of models

that include the scale variable (let us call them non-CRS-based models), and then compare it

with Table 9 which presents the results of regressions without the scale variable (i.e. CRS-

based models). Generally speaking, results across all the states are considerably affected by

relaxing the CRS assumption. In NSW for example, the average magnitude of MFP elasticity

has increased to 0.70 compared to 0.41 from CRS-based regression. This difference indicates a

downward bias in the earlier result and is explained by the significantly negative coefficient of the

scale variable. Similarly, there is evidence of decreasing returns in QLD in which the average

magnitude of the estimated elasticity is increased to 0.92 compared to 0.36 from CRS-based

regression. Results for SA remain stable, which is also verified by the insignificant coefficient

on scale variable across the four specifications. Allowing for decreasing returns to scale in WA

has noticeably increased the elasticity of MFP from 0.33, an average across all specifications, to

0.73. By contrast, the economically implausible results for VIC, TAS, NT and ACT (reflected

in a significant and negative coefficient on infrastructure) remain even after relaxing the CRS

assumption. In sum, results on a state-by-state basis appear to be sensitive to the violation of

the CRS assumption and point towards a downward bias in the first set of results; the already

poorly performing models over all the states do not show any improvement in terms of the size

of estimated MFP elasticities.

The results for the panel DOLS, presented in Table 15, do not show a substantial change

with the inclusion of the scale variable when they are compared with the CRS-based results

presented in Table 10. There is no evidence of either increasing or decreasing returns to scale

since the coefficient on the scale variable remain insignificant across the four specifications.

In addition, the size of the coefficient on public infrastructure has slightly increased in three

specifications and decreased in the fourth specification. This suggests that the dynamic fixed-

effects models find weak evidence against the CRS assumption. Table 15 also presents results for

43Note that the analysis presented here does not take into account, or test for, the violation of perfect compe-
tition. Some other authors (e.g., Hall 1988, 1990) show that the presence of market imperfections causes MFP to
underestimate real productivity growth.

44See Section 3 for more details.
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Australia’s aggregate production function using time-series DOLS. Interestingly, similar to the

case of individual states, there is strong evidence of decreasing returns throughout the employed

specifications. The almost doubling of elasticities of MFP points to a considerable downward

bias in the CRS-based elasticities.

9 Poolability of data

From the overall discussion put forward above, it is quite apparent that our dissatisfaction with

the results from a time-series estimation of aggregate production function on one hand and

of individual states on the other, has prompted us to put more emphasis on the results from

fixed-effects models. Nevertheless, since fixed-effects are based on pooling the data across the

states, an important hypothesis that needs to be considered before a decision to pool is the the

homogeneity of long-run parameters across the states. This is essentially an inherent assump-

tion with fixed-effects, plus the assumption of intercept heterogeneity. A casual inspection of

the state-by-state estimated coefficients in Tables 9 and 11 suggests that the coefficients are

not homogeneous. Conventionally, researchers use formal tests (known as poolability tests) to

examine the stability of the parameters of pooled cross sections. A typical poolability test is

based on the standard form of Wald-test. To evaluate the correctness of pooling T time periods

and N cross-sections, a Wald-test for linear restrictions could be extended to N linear regressions

and the residual sum of squares of a restricted model then compared with that of an unrestricted

model. However, the standard Wald-test is only valid for disturbances that meet the assump-

tions of homoskedasticity and no serial correlation. If these assumptions are not met, a proper

test to perform, as Baltagi (2005) suggests, is that described by Roy (1957) and Zellner (1962)

in the context of the Seemingly Unrelated Regression (SUR) model.45

Hence, the Roy-Zellner test is applied here to test the null hypothesis that slopes are equal.

Interestingly, the test has strongly rejected the homogeneity restrictions across the four specifi-

cations. According to the statistical properties, in order to justify pooling, the parameters have

to be stable. However, we failed to find the statistical support for the homogeneity assumptions.

This seems to be a puzzling outcome indeed: on one hand, results obtained from individual

time-series regressions are economically and statistically unsatisfactory, however, when we pool

the data across the states and utilise the benefits from applying fixed-effects estimation and

enjoy larger degrees of freedom, the results become more credible and robust across estimators,

specifications and violation of the CRS assumption. On the other hand, performing formal

testing rejects the stability restriction; thus if the prior belief is that homogeneity restrictions

are guaranteed only if formal poolability tests are passed, and if results obtained from poola-

bility test have solid grounds, then with the decision to pool we run a risk of obtaining biased

estimates.

Nevertheless, although the rejection of the homogeneity restriction leaves us with a dilemma,

it comes as no surprise since it is widely documented in previous research that whenever the

hypothesis of equal parameters is tested, it is almost always rejected. For example, Rapach

45For a review of these and other test procedures, see Baltagi (2005).
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and Wohar (2004) find a similar result from their long-run monetary model of exchange rate

determination over the post-Bretton Woods period. The authors obtain poor results on the

monetary model from applying country-by-country regressions. However, they find considerable

support for the monetary model using panel procedures. When Rapach and Wohar (2004) apply

formal tests for poolability, they do not find statistical support for the homogeneity assumptions.

Another relevant study is that of Baltagi, Griffin and Xiong (2000) who investigate cigarette

demand for a panel of the United States. Their obtained estimates from the panel regression

found support from the theory, while a Wald test rejects the null hypothesis that the slope

coefficients are the same across states. A third example, is Pesaran, Shin and Smith (1999) who

estimate a panel model to examine consumption and energy demand functions. In line with our

results, they find that some individual countries have long-run income elasticities that are at

odds with theory, while their pooled mean group estimates (which assume homogeneity of the

long-run coefficients) are more sensible in terms of theory. Again, the formal tests reject the

homogeneity restrictions.46

The problem of poolability has drawn sizeable attention in the literature. One response to the

conundrum of researchers with the frequent rejection of homogeneity restriction is a recent work

by Westerlund and Hess (2011). In their paper, the authors criticise the standard poolability

test based on the Wald approach and propose a new test based on the Hausman (1978) principle.

Westerlund & Hess have applied their new test on models such as Rapach and Wohar (2004)

mentioned above, and interestingly they find statistical support for poolability.

On the other hand, a strand of literature argues against the homogenous estimators and

emphasises that if the cross sections are heterogeneous, pooling the data could lead to incon-

sistent or maybe misleading results. One prominent example is Pesaran and Smith (1995) who

argue that an average of the individual state regressions can lead to consistent estimates of the

parameters as long as N and T tend to infinity. This procedure is known in the literature as

the mean group (MG) and entails estimation of equations such as (16) for each state separately,

and then calculate the averages of the individual coefficients.47

We have subjected our data to the MG estimator. Across four specifications none of the long-run

elasticities of infrastructure is significant or has acceptable size. A likely reason justifing such

poor performance of MG with our data is the small number of time-series observations, while

MG requires an infinitely large T. However, Baltagi et al. (2000) obtain an identical outcome

even with their relatively large T. ‘Even with a relatively long time series, heterogeneous models

for individual states tend to produce implausible estimates with inferior forecasting properties’

(Baltagi et al. 2000, p. 125).

Another concern with the MG is that although it counts for the heterogeneity between cross

sections, since it is derived from a fully heterogeneous model where no restrictions are imposed

on the cross section parameters, it does not take into consideration that certain coefficients may

be the same across cross sections. Pesaran, Shin and Smith (1999) have considered the weakness

46Some other examples of studies that report rejection of the poolability test are Baltagi (1981), Stephan (2003),
and Steiner (2009)

47See Pesaran and Smith (1995) for a complete description of the MG estimator.
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of the MG estimator and they propose an alternative procedure called the pooled mean group

(PMG) estimator. The PMG is described as an intermediate between the traditional pooled

estimators and the MG, and basically allows the short-run coefficients to differ across cross

sections (as the MG estimator) while pooling the data, and constrains the long-run coefficients

to be the same (as fixed-effect estimator); however it also requires a large T. To acquire more

evidence, we have also implemented the PMG procedure. Interestingly, the results from PMG are

also at odds with the theory. Hence, the failure to find economically plausible and statistically

significant results from the heterogeneous panel estimators provides a good reason to support

the results from the homogenous fixed-effects models.

In sum, the debate on poolability and homogeneity restriction is an ongoing issue. The

poolability tests have been highly criticised on the grounds that they exclusively evaluate the

validity of the hypothesis of stable parameters while not taking into account the advantage of

the small variance of the restricted model from the pooled data rather than the unrestricted

model. Even with the frequent rejection of the homogeneity restriction, a large number of

studies document that the performance of pooled models, such as fixed and random-effects which

posit homogeneous parameters, outperform both heterogeneous panel and individual time-series

models. To this end, our conclusion is that although one should be careful when interpreting the

results, there is a strong rationale to favour fixed-effect cointegrated estimates over individual

state estimates.

10 Granger-causality tests

One of the contributions of this study is to shed some light on the understanding of the direction

of causality between infrastructure and productivity. The widely cited Engle and Granger

(1987) shows that, if two variables are cointegrated, there will be a causal relationship at least

in one direction. The earlier aggregate production function approach is highly debated on

the basis that the estimation of production function implicitly assumes public infrastructure

causes productivity or output growth. However, the direction of causation could be in the

reverse direction. As a country becomes wealthier through achieving a higher rate of output

growth, it may have a tendency to spend more on infrastructure projects. This is referred

to in the literature as reverse causality. Considering the relationship between infrastructure

and productivity, there are three cases one can consider. Unidirectional causality that runs

from infrastructure to output; unidirectional causality that runs from output to infrastructure;

or bidirectional causality that runs from both directions. The cointegration analysis outlined

above does not tell us much about the direction of causality or whether it is unidirectional or

bidirectional, therefore a formal test for causality is required.

Some previous studies have applied the standard Granger-causality test (Granger 1969) to

detect the direction of causal relationship. In short, the Granger-causality test states that

a variable X Granger causes another variable Y if Y can be better predicted by the lagged

values of both X and Y than by the lagged value of Y alone. This test could be performed

by applying a standard Wald test on the coefficients of the lagged changes of X. However,
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Engle and Granger (1987) demonstrate a general duality between cointegration and the vector

error-correction model (VECM) and assert that, if variables are cointegrated, then the standard

Granger causality test is misspecified. Alternatively, one should apply the causality test within

an error-correction framework which enables the researcher to distinguish and test for long-run

and short-run causality.

For further demonstration, a starting point is the following bivariate VECM:

∆ lnMFPs,t = αo + φ1%s,t−1 +

p∑
j=1

λ1j∆lnKGs,t−j

+

q∑
j=1

δ1j∆lnMFPs,t−j + ε1s,t, (17)

∆ lnGs,t = βo + φ2%s,t−1 +

p∑
j=1

λ2j∆lnKGs,t−j

+

q∑
j=1

δ2j∆lnMFPs,t−j + ε2s,t, (18)

where %s,t−1 is one lagged error-correction term.

With VECM, sources of causality can be identified through three different channels: (i) channel

1, known as short-run Ganger causality (or weak causality). This is tested by the significance

of the coefficients of each explanatory variable by a joint Wald test. Thus, if the lagged values

of changes in lnG (∆ lnGt−1, ∆ lnGt−2,..., ∆ lnGt−j) in the lnMFP equation are significantly

different from zero, and the lagged values of changes in lnMFP ( ∆ lnMFPt−1, ∆ lnMFPt−2,...,

∆ lnMFPt−j ) in the lnG equation are not different from zero, then infrastructure Granger-

causes MFP in the short-run. However, if the lagged changes in lnMFP in the lnG equation are

significant as well, then there is bidirectional Granger causality between MFP and infrastructure.

(ii) channel 2, known as long-run Ganger causality, can be assessed by testing the significance

of the error-correction coefficients ,φ1 and φ2 in (17) and (18) respectively. The test can be

conducted by t-test. Therefore if φ2 = 0, then lnG is said to be weakly exogenous in the sense

of Engle, Hendry, and Richard (1983). If φ1 = 0, then lnMFP is said to be weakly exogenous.

(iii) channel 3, known as strong Granger causality, tests whether both channel 1 and channel 2

sources of causation are jointly significant.

Before discussing the results of the causality test, let us first differentiate between the con-

cepts of weak exogeneity, strict exogeneity and Granger causality. Weak exogeneity is a minimal

requirement for endorsing the estimation of and inference on the parameters of a regression

model. It implies that no information is lost (with respect to the parameters of interest) when

one conditions on a variable without explicitly modelling the variable. On the other hand,

Granger causality implies that the exogenous variable cannot be usefully forecasted or is not

Granger-caused by the other variables in the system (Strauss and Wohar, 2004). Put in a differ-

ent way, public infrastructure Granger causes productivity if we can forecast productivity from

the future values of public infrastructure. Finally, weak exogeneity of a variable in conjunction
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with Granger-causality in the short-run establishes strong exogeneity for that particular vari-

able. In other words, lnG is strongly exogenous in (17), if all δ2i = 0 and φ2 = 0. By contrast,

lnMFP is strongly exogenous in (18), if all λ1i = 0 and φ1 = 0.

Table 16 reports the results of the short and long-run single-equation Granger-causality test.

The p-values in the first three columns correspond to tests examining the direction of causation

from infrastructure to productivity, while the last three columns relate to the causation from

productivity to infrastructure. Short-run causality is tested by the significance of the joint Wald

test of the lagged dependent variables (the test considers from 1 to 5 lags). Long-run causality

is tested by the joint significance of both the error-correction terms and joint Wald test.

First, considering the causality from infrastructure to productivity, it is evident from the p-

values reported in the table that there is not enough evidence on the short-run causality; however,

the evidence on the long-run causality is very strong. Second, regarding the tests on causality

that run from productivity to infrastructure, the insignificance of all tests indicates insufficient

evidence of both short and long-run causality. Thus, from these tests one can deduce that while

productivity does not Granger causes infrastructure, the predictive effect of infrastructure on

productivity can be established only in the long-term.

11 Conclusion

By how much does investment in public infrastructure affect productivity? Mixed evidence

is found in the previous literature. To shed light on this important question, which is tied to

serious policy implications, this study has aimed to present a comprehensive analysis of the

relationship between public infrastructure and productivity in the Australian context.

With the conundrum of the incredibly high effect of infrastructure obtained from aggregate

regressions, there is a consensus among economists that disaggregate analysis should be applied.

Using region or state data in modelling the relationship between productivity and infrastructure

is assumed to result in more plausible outcomes. Researchers in this line establish two hypothe-

ses. The first emphasises the infrastructure spillovers to productivity which are not captured

by aggregate studies. To examine this conjecture, the study applies time-series regressions at

both national and state-levels. Our new results support the findings of earlier studies which

suggest impractically high estimates of infrastructure effects. In particular, the average esti-

mated elasticity from regressions across the national level is found to be 0.70. This outcome

confirms the argument on the innate inability of time-series analysis to capture infrastructure

spillovers to productivity, which renders it inadequate for providing clear evidence to guide

policy formulation.

The second hypothesis argues that with the existence of states-specific effects which correlate

with the level of investment in infrastructure, estimation using pooling across states or aggregate

national data without accounting for these characteristics will conceal the real effect of public

infrastructure on productivity. To test for this hypothesis, the study applies a panel technique

which controls for the state-fixed-effects. Interestingly, the panel regression yields estimates

which are much lower in value and reasonably in line with economic theory. More precisely, the
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average estimated elasticity is found to be 0.12 which is robust to a range of sensitivity tests.

The analysis completed in this study has applied a number of econometric techniques. These

are time-series, Dynamic OLS, and error-correction model. Each of these techniques is used to

implement both individual and panel regressions. The comparison of results on infrastructure

effect obtained from applying these methods supports the performance of panel DOLS.

The noticeable improvement in the estimation outcome, which is realised by moving from

time-series to fixed-effects models, reflects the ability of disaggregated analysis in making the

links between infrastructure and productivity more apparent. Thus, although one should be

careful when interpreting the results, there is a strong rationale for favouring fixed-effect coin-

tegrated estimates over aggregate time-series estimates.

Appendix

Estimating states’ multifactor productivity

Economists and statistical agencies traditionally motivate the computation of productivity using

Solow’s growth accounting approach (Solow 1956) which centres on accounting for the contribu-

tion to the growth of output made by the growth of factor inputs (usually capital and labour) and

attribute any growth unaccounted for to technological progress. To demonstrate this approach,

let us start with a production function defined in terms of capital (K), labour (L) and the level

of technological progress (A) which changes over time (t). (A) is also called Hicks-neutral or

disembodied technological change:

Y = F (L,K, t) = A(t)f(K,L). (A1)

Taking the logarithmic differential of (A1), (A2) indicates that the output growth is equal to

the sum of the growth rate in labour and capital weighted by their output elasticities plus the

technological progress:

Ẏt
Yt

=
Ȧt
At

+
∂F

∂L

Lt
Yt
.
L̇t
Lt

+
∂F

∂K

Kt

Yt
.
K̇t

Kt
. (A2)

These output elasticities are the only variables which are not directly observable. However, when

the production process is assumed to have constant returns to scale and perfect competition in

both output and input markets, input will be paid its marginal product, which in turn is equal

to the input price relative to the output price. Thus, (A2) can be rewritten as:

Ẏt
Yt

=
Ȧt
At

+ sLt
L̇t
Lt

+ sKt
K̇t

Lt
, (A3)
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where

sLt ≡
wtLt
ptYt

,

sKt ≡
rtKt

ptYt
,

and wt, rt and pt denote the prices of labour, capital and output respectively. As shown in (A3),

the factor income shares are equal to the respective output elasticity under perfect competition.

In addition, sLt + sKt = 1 due to the assumption of constant returns to scale.

Now rearranging as in (A4) shows that technological progress can be calculated as the residual

of output growth minus the growth in labour and capital weighted by their income shares:

Ȧt
At

=
Ẏt
Yt
− sLt

L̇t
Lt
− sKt

K̇t

Lt
. (A4)

(A4) is expressed in continuous time, and the last two terms on the right hand side of the

equation form a Divisia index number of the total input growth. Considering two discrete

points of time approximation, t and t − 1, and by using average income shares of labour and

capital, (A4) becomes:

ln(
At
At−1

) = ln(
Yt
Yt−1

)− s̄L ln(
Lt
Lt−1

)− s̄K ln(
Kt

Kt−1
), (A5)

where

s̄L ≡
1

2
(sLt + sLt−1), and

s̄K ≡
1

2
(sKt + sKt−1).

Given data on output, inputs and factor income shares at any two points of time, the rate of

growth in MFP can be directly estimated using (A5).

The productivity estimates can be derived wholly based on the index number theory, without

using the production function and the associated assumptions. Earlier, we defined productivity

as the ratio of volume measure of output over the volume measure of input, MFP = Y/QK,L, so

at some level of aggregation these volume measures are derived using index numbers. There are

many index number formulae that can be used to derive the volume input and output measures.

Generally speaking, the Tornqvist index given by (A6) is a preferred measure in productivity

analysis (see Diewert 1992):

Q0,1
K,L =

∏
i=l,k

(
q1
i

q0
i

) 1
2

(s0i +s1i )

, (A6)

where qti is the quantity of labour and capital input at period t; sti is the labour and capital

income share at period t; and t = 0, 1.

To construct annual indexes of MFP for each of the states; annual data on output, labour
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and capital inputs, and their income shares are required for each state. Below we outline the

construction methods and the sources of these data.

Output

The output measure is the state gross value-added (GVA) which is measured as chain-volume

and sourced from ABS (State Accounts cat. no. 5220.0).48

Capital

Official ABS estimates for net capital stock (NCS) are available only for Australia as a whole.

Accordingly, states capital stocks are constructed using the perpetual inventory method (PIM)

represented by the following formula:

Kst = Ks,t−1(1− δst) + Ist, (A7)

where Kst is the value of net capital stock in state s in the current period, Ks,t−1 is the value of

net capital stock in the previous period, Ist is the value of gross fixed capital formation (GFCF),

and δst is the rate of depreciation.

The ABS publishes estimates of chained volume measure GFCF at state level from the year

1985 (cat. no. 5206.0). These estimates are disaggregated into private and public sector invest-

ments. The private sector investment is further disaggregated into five types of assets: dwellings,

non-dwellings constructions, machinery and equipment, livestock and three types of intangible

fixed assets: artistic originals; mineral exploration; and computer software. This study measures

private capital as the sum of machinery and equipment and non-dwelling construction.49

Typically, when following the PIM method, researchers are faced with a difficulty in finding

a benchmark value of capital stock, Ks,o, to start the accumulation process. One traditional

solution is to allocate the national capital stock to the states. Different methods are proposed

to estimate the share of each state in the aggregate capital stock. For example, Holtz-Eakin

(1993), who presents estimates of capital stock for the U.S. states and local government, assumes

that the share of capital stock in each state is equal to its share of total current expenditure

in the benchmark year. In Australia, Louca (2003) has used nominal aggregate values of in-

vestment for a few years preceding the initial year. Some authors have criticised the method of

calculating the state share based on the share of national gross investment during a benchmark

period. For example, Haughwout (2002) argues that this method introduces the possibility of

systematic measurement error into the public capital measure, since investments made during

the benchmark period may correlate with factors other than historical investment patterns.

In an attempt to address the previous problems, a recent work forwarded by Mikhailitchenko,

Nguyen and Smith (2006) has developed estimates for the Australian states over the period

48Gross state product (GSP) and GVA are constructed by income approach. Although there is detailed data
on final demand, there is a lack of data on the changes in inventories by state and inter-state trade. This renders
it impossible to construct estimates of these measures using the expenditure approach.

49No further disaggregation by asset types is available for public GFCF, hence, we measure public capital as
the total of all assets.
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1984/85-2003/04.50 These authors accumulate the past investment flows in each state after

they have been adjusted for depreciation to estimate the states’ shares. More detail on their

approach, which is adopted in this study, is included in the text below.

Besides the method of allocating the national capital stock across the states, another method

which is also widely used to estimate the benchmark capital stock is based on information on the

average growth rate of investment flow over the period of study, the depreciation rate and the

value of investment in the initial period (see Fox and Kohli 1998 for example). An elaboration

on this procedure is presented below.

For the purpose of precision, this study adopts the two methods outlined above to estimate

two values of benchmark and, consequently, two series of capital stock for each state. Such an

exercise is useful for testing the sensitivity of the resultant MFP indexes to different series of

capital stock.

The approach of Mikhailitchenko et al. (2006) can be summarised in two phases. First,

because the official ABS data for national NCS are published for private and public sectors

combined, we use the available data on the national private and public GFCF to split the

national NCS into private and public components for the year 1989. The the procedure is

described by the following steps:

1. Apply an appropriate depreciation factor to each year’s investment flow in private and

public machinery and equipment and non-dwelling constructions separately. An homoge-

nous depreciation rate which is equal to the corresponding national rate is assumed for

the two sectors for each type of assets.51

2. Accumulate the depreciation-adjusted investment data for the two types of assets obtained

from the step above over the period 1960-1989.

3. Using the cumulative sum of the depreciation-adjusted investment in the private and the

public sectors obtained from the step above, the share of private machinery and equipment

in the total machinery and equipment is computed. A similar calculation is made for

private non-dwelling constructions.

4. The private sector shares for the two types of assets obtained above are applied to the

total of all assets of national NCS to yield estimates for national private NCS for the year

1989 corresponding to each asset type.

5. Apply an analogous procedure to estimate national public NCS for 1989.

50It worth mentioning that Levtchenkova and Petchey (2000), Louca (2003), and Mikhailitchenko et al. (2006)
are, according to our knowledge, the only attempts made to estimate capital stock data at state level, but
unfortunately their series do not cover recent years. This lack of data represents a stumbling block for research
and analysis at state level for both academics and government agents.

51To estimate the depreciation rate, we follow Otto and Voss (1996) and the Productivity Commission (2007)
in which the depreciation rate, δt, is defined as the ratio of consumption of fixed assets (COFA) at period t to
the national net capital stock NCS at period t − 1 and is permitted to vary through time, i.e. δt = COFAt

NCSt−1
.

There is enough information to estimate the depreciation rates corresponding to each asset type, but this can
be calculated only for the economy as whole; consequently, δt is assumed to be homogenous across the states.
This homogeneity assumption may cause one limitation of this procedure since it does not take into account the
different industry structures, vintages and asset mixes across the states.
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In phase 2, we allocate the 1989 national private and public NCS estimated in phase 1 among

the states. To calculate a share for each state, we again use the method of Mikhailitchenko

et al. (2006) in which the GFCF flows in each year before 1989 are adjusted for depreciation

and then accumulated by state. The states’ shares of the 1989 national NCS are then calculated

on the basis of the relative sizes of these cumulative sums of depreciation-adjusted investments.

Mikhailitchenko et al. (2006) point out that as earlier and earlier years are involved in the

process, the approximation becomes more and more reliable. However, since the data available

to us on chained volume GFCF only start in 1986, the state private and public GFCF values

are summed by state over the period 1986 to 1989. Each state’s share of the 1989 national

private and public NCS is then computed as the proportion between the state cumulative sum

mentioned above and the national total of all state sums. Finally, the obtained shares are applied

to the estimates of the national private and public NCS calculated in phase 1.

In the second method, the benchmark value of capital stock is computed based on the as-

sumption that the average growth rate, g, of the observed total GFCF for each state adequately

describes its annual growth rate for the indefinitely long preceding unobserved series. To illus-

trate this method, rewrite (A7) as:

Kt = It−1 + (1− δ)It−2 + (1− δ)2It−3 + (1− δ)3It−4. (A8)

If investment growth rate is constant, say, γ then,

It = It−1 + (1 + γ). (A9)

Substituting (A9) into (A8) and setting time to a base period t∗ results in the following equation:

Kt∗ =
I∗t

(γ + δ)
, (A10)

where δ is treated as a constant figure is equal to to 5 percent following Fox and Kohli (1998)

which is considered to be a good approximation of the annual rate of depreciation.

Labour

It is widely agreed that the number of hours worked is the best indicator of the labour input to

the production process if, for instance, it is compared with the number of workers. The ABS

publishes monthly and quarterly estimates for actual and usual hours worked at state level.

These estimates principally relate to the hours worked in the survey reference week, i.e. the

week prior to the survey interview.52 A problematic feature of these estimates is that they

relate only to a single week rather than the entire month, thus they cannot be aggregated across

time to produce, for example, the corresponding quarterly or annual estimates. This, perhaps,

represents a barrier for any analysis across time. Since our estimation of MFP indexes requires

annual measures for labour input, it is indeed necessary to construct annual flow measures for

52See cat. nos. 6291.0.55.001, 6291.0.55.003 and ABS (2006c) for more information.
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each of the states.53

Starting from 2006 and with the release of the 2005-06 system of national accounts, the ABS

started producing estimates of hours worked on a national level following a new method based

on the methodology currently used by Statistics Canada. These new estimates are considered

to be an improvement in the quality of the estimates of Australian hours worked because the

old method does not adjust for the effects of public holidays, school holidays and other non-

random events which tend to reduce hours actually worked and result in an upward bias in the

estimates (ABS 2006a). The problem of the upward bias manifests itself clearly in the case of

international comparisons. Guided by the estimates obtained from the old method and published

by the Organisation for Economic Co-operation and Development (OECD), Australians appear

to work longer hours than workers in other comparable countries. Using the new method of

estimating the level of hours worked, there is a reasonably large fall in the total number of hours

worked compared to the previous method.

The ABS’s new method proves to be more accurate in capturing the impact of public and

school holidays, hence removing the upward bias; nevertheless, implementing it for each of the

states is indeed a long-term procedure which may not fit the time-frame of this study. The good

news is that, according to an ABS information paper, although applying the new method has

a noticeable effect on the total number of hours worked when compared with the old method,

this effect tends to be very slight on the productivity measures:

“Using the new method of estimating the level of hours worked, there is a reasonably

large fall in the total number of hours worked but the index of total hours worked

shows little change when compared to the previous method. Thus there is little impact

on annual productivity growth rates or on the identification of peaks in productivity

growth cycles” ABS (2006b, p. 12).

Figure A1 below compares the ABS’s market sector multifactor productivity using the old and

new methods. Using data on a quarterly measure of hours worked by state and industry (division

level) which is published in the SuperTable E03 (publication 6291.0.55.003 - Labour Force),

we estimate the states’ total hours worked by applying the previous ABS method which is

summarised by the following steps:

1. take the average of total hours worked in the four mid-quarter months to estimate the

number of hours worked per week.

2. divide by seven to estimate the number of hours worked per day.

3. multiply by 365.25 to estimate the total annual or by 91.31 to estimate the quarter hours

worked during the year.54

53At the time the data used to estimate the states’ MFP indexes in this study were constructed, and the
the regression analysis completed, no monthly aggregates estimates of hours worked were published on the state
level. Interestingly, the ABS has recently started to publish new monthly aggregates by individual states (see cat.
no. 6202.0). As clarified below, although the previous method used by the ABS and adopted here to construct
our annual measure is deemed to result in upward biased estimates, fortunately no major effect occurs in the
corresponding productivity indexes.

54Being tempted by the ABS’s new release on the states’ aggregates of hours worked, we have subjected our
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Figure A1 The effect of the new method on market sector MFP

Source: Information paper, ABS, cat. no. 5204.0.55.003.

Income shares

In the ABS national accounts, total income = gross operating surplus (GOS) + gross mixed

income (MI) + compensation of employees (COE) + taxes less subsidies on production and

imports. The gross mixed income includes both capital and labour components and needs to be

split to obtain labour and capital income shares. Employing the published data on COE and

GOS for each state, we derive capital and labour shares in MI as COE/(COE + COS) and

COS/(COE +COS) respectively. Next, these shares are applied to the MI to split capital and

labour income shares in MI. In the following step, capital’s income share is computed as (GOS

+capital component in MI)/(total income), while labour’s income share is computed as (COE

+ labour component in MI)/(total income).

Derivation of error-correction model (ECM)

The starting point for ECM here is autoregressive distributed lag ARDL(1,1,..,1) given by:

lnMFPst = µs + αs lnMFPs,t−1 + βos lnGst + β1s lnGs,t−1

+ θ′osZst + θ′1sZs,t−1 + εst, (A11)

where all notations are as described in the text.

The short-run effects of public infrastructure measure, lnG, on the productivity measure,

lnMFP , is estimated by βos and β1s, which give the immediate effect of a change in lnG at a

given point of a time. The long-run equilibrium is given by the unconditional expectations of

the expected value of lnMFP . Thus, let lnMFP ∗st = E(lnMFPst), lnG∗st = E(lnGst), and

Z∗st = E(Zst) for all t. If in the long-run all processes move together without error, they will

computations of MFP indexes and the consequent regression analysis to these measures. Interestingly, all the
estimated results are found to be quite robust.
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converge to the following equilibrium:

lnMFP ∗s,t = αos + α1s lnMFP ∗st + βos lnKG∗st + β1s lnG∗st

+ θ′osZ
∗
st + θ′1sZ

∗
st. (A12)

Solving lnMFP in terms of lnG and Z results in the following equation:

lnMFP ∗st =
αos

1− α1s
+
βos + β1s

1− α1s
lnG∗st +

θos + θ1s

1− α1s
Z∗st

= kos + k1s lnG∗ + k′2sZ
∗, (A13)

where kos = αos/(1 − α1s); k1s = (βos + β1s)/(1 − α1s); and k′2s = (θos + θ1s)/(1 − α1s) . k1s

and k′2s represent the long-run multipliers of Gst andZst respectively with respect to lnMFPst.

However, the ARDL specification does not allow us to distinguish between short- and long-run

effects (see Banerjee et al. 1993). Thus, through some simple transformations, the ARDL can

be rewritten in the form of ECM where the short-run effects of changes in X are allowed to differ

from the long-run effects. To see this we follow Keele and DeBoef (2005). Consider the ARDL

(1,1,..,1) in A11, first we take the first difference of lnMFP to yield:

∆ lnMFPst = αo + (α1 − 1) lnMFPs,t−1 + βo lnGst + β1 lnGs,t−1 + εst. (A14)

Next, add and subtract βos lnGs,t−1 from the right hand side:

∆ lnMFPst = αo + (α1s − 1) lnMFPs,t−1 + βo∆ lnGst

+ (βo + β1) lnGs,t−1 + εst. (A15)

Then add and subtract (α1 − 1) lnGs,t−1 from the right hand side to produce the generalised

error-correction model (GECM):

∆ lnMFPst = αos + φs(lnMFPs,t−1 − σ1s lnGs,t−1 − σ′2sZs,t−1)

+ βs∆ lnGts + θ′s∆Zs,t + εst, (A16)

where φs = (α1s − 1), σ1s = (βos + β1s), and σ2s = (θos + θ1s).

(A16) as it is visible has nonlinear coefficients and obviously cannot be estimated using the

OLS. One option is to use the nonlinear least square, however, with a panel structure it is

problematic to model non-linear fixed-effects.55 Fortunately, as Keele and DeBoef (2005) among

others demonstrate, it is possible to rewrite the above non-linear specification of single equation

55In general, including panel-specific dummies to control for fixed-effects in non-linear models results in incon-
sistent estimates. For some non-linear models, the fixed-effect term can be removed from the likelihood function
by conditioning on a sufficient statistic, for example, applying the conditional fixed-effects logit model.
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ECM (SEECM) in the following more convenient form of ECM:

∆ lnMFPst = γo + φ lnMFPs,t−1 + γ1∆ lnGst + δ′oi∆Zst

+ γ2 lnGs,t−1 + δ′1iZs,t−1 + εst, (A17)

while the interpretation of the coefficients remain the same.

Since SEECM is a reparametrisation of ARDL, Keele & DeBoef (2005) suggest that we can

instead estimate the following representation :

∆ lnMFPst = αos + φs lnMFPs,t−1 + η1s∆ lnGts + η′2s∆Zs,t

+ σ1s lnGs,t−1 + σ′2sZs,t−1 + εst, (A18)

where k1 = σ1s/φs = (βos + β1s)(α1s − 1).

A disadvantage of the above model is that it does not provide standard errors of the long-run

parameters directly. Therefore, we need to apply Bewley transformation to obtain interpretable

t-statistics such as follows:

lnMFPst = ϕo + ϑ1∆ lnMFPst + δ1o lnGst + δ11∆ lnGst

+ δ′2oZst + δ′21Zst + µst. (A19)

However, ∆ lnMFPst in (A19) above correlates with the error term, µst, which could point to an

endogeneity problem. To resolve the latter problem of endogeneity, the Instrumental Variable

(IV) regression can be applied with the instrument ̂∆ lnMFP estimated from the following

regression:

∆ lnMFPst = αo + α1 lnMFPs,t−1 + α2o lnGst + α21∆ lnGst

+ α3oZst + α21Zst + µst. (A20)
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