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Abstract 
 

Caves, Christensen, Diewert introduced Malmquist output, input and productivity indexes 
into production theory in a systematic way. This paper revisits the debate on how to 
decompose Bjurek’s concept of a Malmquist productivity index into explanatory factors, 
with a focus on extracting technical progress, technical efficiency change, and returns to 
scale components. In order to define these components, a reference technology is 
required. The paper does not make any convexity assumptions on the reference 
technology but instead follows the example of Tulkens and his coauthors in assuming that 
the reference technology satisfies free disposability assumptions. The existence and 
properties of the underlying distance functions of the productivity decomposition are 
proven under relatively unrestrictive assumptions. The paper provides for the first time a 
theoretical justification for the geometric average form of the Bjurek productivity index.       
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1. Introduction 
 
Malmquist input, output and productivity indexes, initially defined by Caves, Christensen 
and Diewert (1982) (CCD), have attracted much interest in the literature on productivity 
analysis. These theoretical indexes use distance functions to represent the technology. 
CCD proposed a method for estimating a theoretical Malmquist productivity index for a 
firm whose technology could be represented by a translog technology. The assumptions 
CCD used were relaxed by Diewert and Fox (2010), who assumed that the firm solved a 
monopolistic profit maximization problem when the technology exhibited increasing 
returns to scale. However, Diewert and Fox continued to assume a translog technology 
whereas in the present paper, we will take a nonparametric approach to the measurement 
of productivity change.  
 
Since the contribution of CCD, and particularly following Färe, Grosskopf and Lovell 
(1994) and Bjurek (1996), an alternative form of the Malmquist productivity index has 
been proposed and there have been attempts to decompose this alternative Malmquist 
productivity index into technical change, efficiency change and scale change components 
using the linear programming based Data Envelopment Analysis (DEA) approach for 
estimating various Malmquist indexes.1 Determining the appropriate way to do this has 
led to a significant debate.2  
 
This paper revisits this debate of how to decompose the Bjurek form of the Malmquist 
productivity index into explanatory factors, with a focus on extracting technical progress, 
technical efficiency change and returns to scale components. In particular, our paper 
largely follows the approach taken by Balk (2001), except that we do not make use of his 
cone technology, which is assumed to envelop the actual technology.3 Furthermore, our 
regularity conditions on the reference technology are fairly weak and do not make any 
convexity assumptions. We follow the approach of Tulkens (1993) and his coauthors and 
replace convexity assumptions by free disposability assumptions.  
 
Our approach is consistent with what O’Donnell (2012; 255) describes as a “bottom-up 
approach”, which starts with basic definitions of the components of productivity and then 
uses these components to form a multiplicative decomposition of the Bjurek productivity 
index into the previously defined explanatory factors. However, given that we are not 
assuming convexity, we start even further back than specifying expressions for the 
components. Instead we start with proving the existence and the properties of the distance 
functions which form these components under our relatively unrestrictive regularity 
conditions 
 
                                                 
1 See Afriat (1972), Hanoch and Rothschild (1972), Charnes, Cooper and Rhodes (1978), Diewert and 
Parkan (1983), Varian (1984) and Charnes and Cooper (1985) on early applications of DEA. 
2  See Bjurek (1996), Ray and Desli (1997), Balk (2001), Lovell (2003), Nemoto and Goto (2005), 
O’Donnell (2010) (2012), Briec and Kirstens (2011) and Kerstens and Van de Woestyne (2014). None of 
these authors work with our weak regularity conditions nor do they derive our decomposition.  Grosskopf 
(2003) provides additional references and a nice historical review of the early stages of the debate.   
3 The enveloping cone technology approach runs into difficulties if the reference technology exhibits global 
increasing returns. 
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In deriving our productivity decomposition, the paper makes a number of additional 
contributions to the existing literature, including resolving some fundamental issues 
without resorting to specific functional form assumptions. For example, a previously  
unresolved issue in the literature was that Bjurek (1996; 310) provided no justification for 
taking the geometric mean of the alternative indexes to form his productivity index, and 
to our best knowledge neither have subsequent authors.4 We show that, besides satisfying 
other properties from index number theory, the geometric Bjurek index is the only index 
that is a homogeneous symmetric average of Laspeyres and Paasche Bjurek productivity 
indexes that satisfies the desirable time reversal property. The same property is shown for 
each of the components of the decomposition of the Bjurek index.  Hence, for the first 
time there is a solid theoretical justification for the geometric form of the Bjurek index, as 
well as its components. 
  
Differentiability is frequently assumed in the literature in order to get a local returns to 
scale term; e.g., differentiability is assumed in the productivity decompositions of Caves, 
Christensen and Diewert (1982; 1404-1408), Balk (2001), Nemoto and Goto (2005), 
Diewert and Fox (2010) and O’Donnell (2010) (2012). We define measures of global 
returns to scale term and show that these measures have sensible properties without 
relying on differentiability assumptions. 
 
In sections 2, 3 and 4 below, we follow Bjurek (1996) and define Malmquist input, output 
and productivity indexes for a production unit when knowledge of the reference best 
practice technology is available for the unit for the two periods under consideration.5 
Some of the axiomatic properties of these indexes are developed in these sections. 
 
In sections 5, 6 and 7 below, we follow Färe, Grosskopf and Lovell (1994), Balk (2001), 
Nemoto and Goto (2005) and O’Donnell (2012) for the most part and define measures of 
technical efficiency, technical change and returns to scale for a production unit using 
distance functions and assuming knowledge of the best practice technology for the two 
periods under consideration. Finally, in section 8 we use the measures defined in the 
previous sections to decompose the productivity of a production unit into the product of  
three explanatory factors. Section 9 concludes. The Appendix lists our assumptions on 
the reference technology and develops the properties of the associated distance functions 
under our relatively unrestrictive assumptions.    
 
2. Malmquist Input Indexes 
 
CCD used the distance function method for representing a technology in order to define 
families of input, output and productivity indexes. The distance function was introduced 
into the economics literature in the consumer context by Malmquist (1953) and in the 
production context by Shephard (1953). The CCD definitions for Malmquist output and 
input indexes were generalized by Bjurek (1996) to cover applications of these indexes 
when estimates of best practice technologies are available. In this section and the 

                                                 
4 Balk (2001; 171) justifies the use of the geometric mean simply as a way of avoiding a choice between 
alternative specifications. See also Nemoto and Goto (2005; 619-620) and O’Donnell (2012; 257-258). 
5 The term “reference technology” originates with Grosskopf (1986). 
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following one, we give the basic theoretical definitions for the CCD-Bjurek input and 
output indexes. These input and output indexes are then used in order to define a family 
of (Hicks-Moorsteen) Bjurek productivity indexes.6 
 
Let St be a reference production possibilities set for a production unit for periods t = 0,1. 
This reference technology could be determined via a data envelopment application or 
could be estimated using econometric techniques. It represents the best practice or 
efficient technology set for period t. We assume that St is a nonempty closed subset of the 
nonnegative orthant in Euclidean M+N dimensional space. If (y,x) belongs to St, then the 
nonnegative vector of M outputs y ≡ [y1,...,yM] ≥ 0M can be produced using the period t 
technology by the vector of N nonnegative inputs x ≡ [x1,...,xN] ≥ 0N.7 
 
Using the period t reference technology set St and given a nonnegative, nonzero output 
vector y > 0M and a strictly positive input vector x >> 0N, the period t input distance 
function Dt for periods t = 0,1 can be defined as follows: 
 
(1) Dt(y,x) ≡ max δ>0 {δ: (y,x/δ)∈St}. 
 
Thus given the nonnegative, nonzero vector of outputs y and the strictly positive vector of 
inputs x, Dt(y,x) is the maximal amount that the input vector x can be deflated so that the 
deflated input vector x/Dt(y,x) can produce the vector of outputs y using the period t 
technology St.  
 
Instead of deflating the input vector x so that the resulting deflated vector is just big 
enough to produce the vector of outputs y, we could think of deflating the output vector 
so that the resulting deflated output vector is just producible by the input vector x. Thus 
given y > 0M and x >> 0N and the period t reference technology St, the period t output 
distance function dt for periods t = 0,1 can be defined as follows: 
 
(2) dt(y,x) ≡ min δ>0 {δ: (y/δ,x)∈St}. 
 
It is not immediately clear that the maximum in (1) or the minimum in (2) will exist. In 
fact, in order to obtain the existence of the functions Dt and dt defined by (1) and (2), 
                                                 
6 CCD (1982; 1402) provided a definition for a Malmquist productivity index but their definition can best 
be interpreted as an index of technical progress. An alternative productivity index is the Bjurek productivity 
index and we will use this concept in the present paper. This second concept was defined initially by 
Moorsteen (1961) (for the case of two outputs and two inputs). Diewert (1992; 240) provided a general 
definition for this second type of productivity index in terms of distance functions but assumed technical 
efficiency (as did Moorsteen). Bjurek (1996) generalized these definitions to cover the case of technical 
inefficiency. Diewert (1992; 240) attributed this second productivity index concept to Hicks (1961; 22) (for 
his apparent description of the concept in words) and Moorsteen (1961) (for the case of two outputs and 
two inputs), and hence termed it the “Hicks-Moorsteen approach to productivity indexes”. The subsequent 
description by Hicks (1981; 253-265) of his “opportunity cost” methodology reveals that he did have a 
distance function interpretation for his output and input quantity indexes but his description was not very 
clear. Färe, Grosskopf and Roos (1996) provided conditions for the equivalence of the two types of 
Malmquist productivity indexes.   
7 Notation: y ≥ 0M means each component of the vector y is nonnegative, y >> 0M means that each 
component is strictly positive, and y > 0M means y ≥ 0M but y ≠ 0M. 
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some restrictions on the production possibilities sets St are required (in addition to the 
assumption that St is a closed, nonempty subset of the nonnegative orthant). Below, we 
postulate a simple set of restrictions on the St, properties P1–P7, which will guarantee the 
existence of these input and output distance functions. 
 
Given a reference output vector y > 0M and two strictly positive input vectors x0 >> 0N 
and x1 >> 0N, the input distance function Dt(y,x) that corresponds to the period t reference 
technology St can be used to define the following family of Malmquist input indexes,8  
Q(x0,x1,y,t): 
 
(5) Q(x0,x1,y,St) ≡ Dt(y,x1)/Dt(y,x0). 
 
A value of the index greater than one implies that the input vector x1 is larger than the 
input vector x0, using y as a reference output and the period t best practice technology, St, 
as the reference technology. In the following sections, x0 will be interpreted as the input 
vector that corresponds to a production unit that operates in period 0 and x1 will be 
interpreted as the input vector that corresponds to a production unit that operates in 
period 1. If N = 1, so that there is only one input, then Q(x1

0,x1
1,y,St) equals x1

1/x1
0.9 The 

geometry of the Malmquist input index for two inputs is illustrated in Figure 1.   
 

                                                 
8 The use of input distance functions to define input indexes can be traced back to Moorsteen (1961; 462). 
Fisher and Shell (1972; 51), Diewert (1980; 462) and Caves, Christensen and Diewert (1982; 1396) all used 
variants of this concept in the context of production theory. The general definition of the input index given 
by (5) is due to Bjurek (1996; 307).  
9 Let N = 1 and let y > 0M, x1

0 > 0 and x1
1 > 0. Let St satisfy the regularity conditions P1-P4 to be 

introduced below. Then it can be verified that (x: (y,x)∈St) is the set {x1 : x1 ≥ g(y) > 0} where g(y) is the 
minimum amount of input required to produce the vector of outputs y using the technology set St. Thus 
Dt(y,x1

0) = max δ {δ : (y,x1
0/δ)∈St} = max δ {δ: x1

0/δ ≥ g(y)} = δ0 where δ0 = x1
0/g(y) > 0. Similarly 

Dt(y,x1
1) = x1

1/g(y) > 0. Thus Q(x1
0,x1

1,y,St) ≡ Dt(y,x1
1)/Dt(y,x1

0) = x1
1/x1

0.      
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Given a reference technology set St and a reference output vector y > 0M, the set of inputs 
x that can produce the vector of outputs y is St(y) ≡ {x : (y,x)∈St}. In Figure 1, this set of 
feasible inputs lies on and above the kinked boundary line I-I. Note that the period 1 input 
vector x1 ≡ [x1

1,x2
1] lies in the interior of St(y) while the period 0 input vector x0 ≡ 

[x1
0,x2

0] is exterior to St(y). Define δ0 ≡ Dt(y,x0) so that x0/δ0 is on the boundary line I-I. 
It can be seen that δ0 is less than one and δ0 equals OA/OD, the distance OA divided by 
the distance OD. Define δ1 ≡ Dt(y,x1) so that x1/δ1 is on the boundary line I-I. It can be 
seen that δ1 is greater than one and, δ1 equals OC/OB. Thus the input index Q(x0,x1) is 
equal to [OC/OB]/[OA/OD] = [OC/OB][OD/OA] where the distance ratios OC/OB and 
OD/OA are both greater than one in this case. It can be seen that if both input vectors x0 
and x1 are on the frontier of the input production possibilities set St(y) (i.e., they are both 
on the boundary line I-I), then Q(x0,x1) equals one and the input vectors are regarded as 
having equivalent size.10 If x0 is below the boundary line I-I and x1 is on the boundary 
line or above it, then Q(x0,x1) is greater than one and x0 is regarded as being a smaller 
amount of aggregate input than the amount represented by x1. This is the idea behind the 
Malmquist (1953) index, which was originally developed in the consumer context.11  
 

                                                 
10 Note that the Malmquist input quantity index has no separate role for mix effects; i.e., there is no separate 
role for the possibility that x1 may not be proportional to x0. The role of mix effects will be revisited when 
considering our returns to scale measure in section 7. 
11 Note that if x is on the boundary line I-I, then (y,x) is on the boundary of St. However, this does not 
necessarily mean that (y,x) is efficient for the period t technology. Tulkens (1993; 192) recognized this 
problem with radial efficiency measures in the context of free disposal type reference technologies and he 
commented on the  problem as follows: “As no radial measure can circumvent this [difficulty], and in view 
of the easy interpretability of radial measures, it seems preferable to use them in numerical applications, 
with slacks reported separately.” For a comprehensive discussions on the difficulties associated with 
measuring technical efficiency, see Russell and Schworm (2009) (2011).   

x2 

x1 

x1 

x0 

St(y) ≡ {x : (y,x)∈St} 

         O              A      B         C         D 

Figure 1: The Geometry of the Malmquist Input Index 
I 

I 

x0/δ0 

x1/δ1 
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Now suppose that the strictly positive vector x0 in Figure 1 is shifted down to the point A 
on the x1 axis. It can be seen that in this case, Dt(y,x0) is not well defined; i.e., the x1 axis 
never touches the input production possibilities set St(y). Thus the restriction that the 
vectors x0 and x1 be strictly positive ensures that the Malmquist input index is well 
defined. The example in Figure 1 is also consistent with the free disposability of inputs 
and this is a restriction on the technology that we will impose that will ensure that the 
input distance functions are well defined for all positive input vectors.  
 
We will now list our regularity conditions on the reference technology set St that will 
ensure that the input distance function Dt(y,x) is well defined. Suppose that the reference 
technology set St satisfies the following regularity conditions:12 
 
P1. S is a nonempty closed subset of the nonnegative orthant in Euclidean M+N 
dimensional space. 
P2. For every y ≥ 0M, there exists an x ≥ 0N such that (y,x)∈S. 
P3. (y,x1)∈S, x2 ≥ x1 implies (y,x2)∈S. 
P4. y > 0M implies that (y,0N)∉S. 
 
The interpretation of P2 is that every finite output vector y is producible by a finite input 
vector x, if S satisfies P3 then there is free disposability of inputs, and P4 says that zero 
amounts of all inputs cannot produce a positive output; i.e., there is no free lunch in 
production. 
 
In the Appendix we show that Dt(y,x) then satisfies the following regularity conditions 
with respect to x over the positive orthant, ΩN ≡ {x: x >> 0N} in N dimensional space: for 
y > 0M, Dt(y,x) is positive, (positively) linearly homogeneous, nondecreasing (increasing 
if all inputs increase) and continuous function of x over ΩN. 
 
Let St satisfy properties P1–P4 and let y > 0M. We now look at the axiomatic properties of 
Q(x0,x1,y,St) defined by (5) above with respect to the two input vectors, x0 and x1. For 
brevity, we denote Q(x0,x1,y,St) by Q(x0,x1). Using the properties of the input distance 
function Dt(y,x) listed in the paragraph above, it is reasonably straightforward to show 
that Q(x0,x1) satisfies the following 12 properties for x0 = [x1

0,...,xN
0] >> 0N and x1 = 

[x1
1,...,xN

1] >> 0N: 
 
A1. Identity: Q(x,x) = 1; i.e., if the period 0 and 1 quantity vectors are equal to x >> 0N, 
then the index is equal to unity. 
 
A2: Weak Monotonicity in Current Period Quantities: Q(x0,x1) ≤ Q(x0,x) if x1 < x ; i.e., if 
any period 1 quantity increases, then the quantity index increases or remains constant. 
                                                 
12 For discussions on regularity conditions, see Färe and Lovell (1978), Deprins, Simar and Tulkens (1984), 
Färe, Grosskopf and Lovell (1985), Grosskopf (1986), Färe (1988), Tulkins (1993), Färe and Primont 
(1995), Coelli, Rao and Battese (1997), Balk (2001) (2003), O’Donnell (2010) (2012), Briec and Kerstens 
(2011), Zelenyuk (2013) and Kerstens and Van de Woestyne (2014). As mentioned earlier, none of these 
authors used our regularity conditions.  
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A3: Strong Monotonicity in Current Period Quantities: Q(x0,x1) < Q(x0,x) if x1 << x ; i.e., 
if all period 1 input quantities increase, then the quantity index increases. 
 
A4: Weak Monotonicity in Base Period Quantities: Q(x0,x1) ≥ Q(x,x1) if x0 < x; i.e., if 
any period 0 quantity increases, then the quantity index decreases or remains constant. 
 
A5: Strong Monotonicity in Base Period Quantities: Q(x0,x1) > Q(x,x1) if x0 << x; i.e., if 
all period 0 input quantities increase, then the quantity index decreases. 
 
A6: Proportionality in Current Period Quantities: Q(x0,λx1) = λQ(x0,x1) if λ > 0; i.e., if 
all period 1 quantities are multiplied by the positive number λ, then the resulting quantity 
index is equal to the initial quantity index multiplied by λ. 
 
A7: Inverse Proportionality in Base Period Quantities: Q(λx0,x1) = λ−1Q(x0,x1) if λ > 0; 
i.e., if all period 0 quantities are multiplied by the positive number λ, then the resulting 
quantity index is equal to the initial quantity index multiplied by 1/λ. 
 
A8: Mean Value: min n{xn

1/xn
0: n = 1,...,N} ≤ Q(x0,x1) ≤ max n{xn

1/xn
0: n = 1,...,N}; i.e., 

the input quantity index lies between the smallest and largest quantity relatives.13 
 
A9: Time Reversal: Q(x1,x0) = 1/Q(x0,x1); i.e., if the data for periods 0 and 1 are 
interchanged, then the resulting quantity index should equal the reciprocal of the original 
quantity index. 
 
A10: Circularity: Q(x0,x1)Q(x1,x2) = Q(x0,x2); i.e., the quantity index going from period 0 
to 1 times the quantity index going from period 1 to 2 equals the quantity index going 
from period 0 to 2 directly. 
 
The circularity and identity axioms imply time reversal; just set x2 = x0.  Thus circularity  
is essentially a strengthening of the time reversal property.  
 
A11: Commensurability: Q(λ1x1

0,...,λNxN
0;λ1x1

1,...,λNxN
1) = Q(x1

0,...,xN
0;x1

1,...,xN
1) = 

Q(x0,x1) for all λ1 > 0, ... , λN > 0; i.e., if we change the units of measurement for each 
input, then the input quantity index remains unchanged. 
 
A12: Continuity: Q(x0,x1) is a jointly continuous function of x0 and x1 for x0 >> 0N and x1 
>> 0N.14 

                                                 
13 Let β ≡ max n {xn

1/xn
0: n = 1,...,N}. Then x1 ≤ βx0 using the positivity of x0. Thus Q(x0,x1) ≤ Q(x0,βx0) 

(using A2) = βQ(x0,x0) (using A6) = β (using A1). Similarly, let α ≡ min n {xn
1/xn

0: n = 1,...,N}. Then x1 ≥ 
αx0 using the positivity of x0. Thus Q(x0,x1) ≥ Q(x0,αx0) (using A2) = αQ(x0,x0) (using A6) = α (using A1). 
This proof follows that of Eichhorn (1978; 155) in the price index context.  
14  O’Donnell (2010) (2012) considered many of these axioms and some additional axioms for input 
quantity indexes. The above axioms are essentially the modification of the axioms used by Diewert (1992) 
for bilateral price indexes of the form P(p0,p1,q0,q1) except that Q replaces P, x0 and x1 replace p0 and p1 and 
tests involving changes in q0,q1 are deleted. 
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Recall that (5) defines an entire family of Malmquist input quantity indexes, 
Q(x0,x1,y,St); i.e., for each reference output vector y > 0M and for each reference 
technology set St , there is a possibly different input quantity index Q(x0,x1,y,St). The 
question we now have to address is: if we are comparing the inputs of two different 
production units who have the observed output and input vectors (y0,x0) and (y1,x1), what 
is an appropriate choice of the reference output vector y and the reference technology set 
St to insert into the definition of the Malmquist input quantity index Q(x0,x1,y,St)? 
 
From the viewpoint of the period 0 production unit, the most appropriate choice of a 
reference output vector y would seem to be the actual output vector produced by the unit 
in period 0, which is y0. Similarly, the most appropriate reference technology for the 
period 0 production unit would appear to be the period 0 best practice technology, S0. 
Thus from the viewpoint of the period 0 production unit, the most appropriate input 
quantity index would appear to be the Laspeyres type Malmquist input index, QL(x0,x1), 
defined as follows: 
 
(6) QL(x0,x1) ≡ Q(x0,x1,y0,S0) = D0(y0,x1)/D0(y0,x0).      
 
Similarly, from the viewpoint of the period 1 production unit, the most appropriate input 
quantity index is the Paasche type Malmquist input index, QP(x0,x1), which uses the 
reference output vector y1 and best practice technology S1: 
 
(7) QP(x0,x1) ≡ Q(x0,x1,y1,S1) = D1(y1,x1)/D1(y1,x0).  
 
Since we have two separate relevant input quantity indexes 15  when comparing the 
relative size of the input vectors of two production units, it is natural to take a symmetric 
average of the two indexes defined by (6) and (7) in order to obtain a “final” measure of 
the relative magnitude of the input vector x1 relative to x0. But what form of average 
should we take? CCD (1982; 1397) found it convenient to take the geometric average of 
the above two indexes; i.e., define 
 
(8) QCCD(x0,x1) = [QL(x0,x1)QP(x0,x1)]1/2. 
 
However, CCD chose the geometric average of the Laspeyres and Paasche type 
Malmquist input indexes because it led to an exact bilateral index number formula when 
they made various translog assumptions on the underlying technology. In our present 
context, we want to avoid the use of price information so we need another justification 
for taking the geometric mean of QL and QP as opposed to taking some other form of 
average. The literature following CCD adopted their choice of geometric mean even 
when not assuming translog technology. Here we examine this choice.   
 

                                                 
15 The two input indexes defined by (6) and (7) were the ones that were introduced by Caves, Christensen 
and Diewert (1982; 1396). Diewert (1992; 235) also endorsed these two input indexes as being “natural” 
input indexes. 
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We should choose the form of average strategically so that the resulting index satisfies an 
important property, which we take to be Time Reversal; see A9 above.  
 
At this point, we need a bit of background information on the properties of averages or 
means. Let a and b be two positive numbers.  Diewert (1993; 361) defined a symmetric 
mean of a and b as a function m(a,b) that has the following properties: 
 
(9)   m(a,a) = a for all a > 0  (mean property); 
(10) m(a,b) = m(b,a) for all a > 0, b > 0 (symmetry property); 
(11) m(a,b) is a continuous function for a > 0, b > 0 (continuity property); 
(12) m(a,b) is a strictly increasing function in each of its variables (increasingness 
        property). 
 
It can be shown that if m(a,b) satisfies the above properties, then it also satisfies the 
following property: 
 
(13) min {a,b} ≤ m(a,b) ≤ max {a,b} (min-max property); 
 
i.e., the mean of a and b, m(a,b), lies between the maximum and minimum of the 
numbers a and b.16  Since we have restricted the domain of definition of a and b to be 
positive numbers, it can be seen that an implication of (13) is that m also satisfies the 
following property: 
 
(14)  m(a,b) > 0 for all a > 0, b > 0 (positivity property). 
 
If in addition, m satisfies the following property, then Diewert (1993) defined m to be a 
homogeneous symmetric mean: 
 
(15) m(λa,λb)  = λm(a,b) for all λ > 0, a > 0, b > 0. 
 
With the above material on homogeneous, symmetric means in hand, we can prove the 
following proposition: 
 
Proposition 1: The CCD input quantity index QCCD(x0,x1) defined by (8) above is the only 
index satisfying the time reversal property A9 that is a homogeneous symmetric average 
of the Laspeyres and Paasche Malmquist input quantity indexes, QL and QP defined by 
(6) and (7). 
 
Proof: Assume that the homogeneous mean function m satisfies the positivity and 
homogeneity properties, (14) and (15) above. 
 
Let x0 >> 0N and x1 >> 0N. Define a ≡ QL(x0,x1) > 0 and b ≡ QP(x0,x1) > 0. Looking at 
definitions (6) and (7), it can be seen that if we reverse the order of time: 
 

                                                 
16 Proof: Let a ≤ b. Then a = m(a,a) ≤ m(a,b) ≤ m(b,b) = b using (9), (11) and (12). 
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(16) QL(x1,x0) = 1/a = 1/QL(x0,x1) ; QP(x1,x0) = 1/b = 1/QP(x0,x1).     
 
Define the mean input quantity index Q using the function m as follows: 
 
(17) Q(x0,x1) ≡ m(QL(x0,x1),QP(x0,x1)) = m(a,b). 
 
where we have used the definitions of the numbers a and b above.  For Q to satisfy the 
time reversal test, the following equation must be satisfied:  
 
(18) Q(x1,x0) = m(QL(x1,x0),QP(x1,x0))  
                      = m(a−1,b−1)                                                                                      using (16) 
                      = 1/Q(x0,x1) 
                      = 1/m(a,b)                                                                                        using (17). 
 
Using the positivity of a and b and property (14) for m, (18) can be rewritten as follows: 
 
(19) 1 = m(a,b)m(b−1,a−1) 
          = am(1,b/a)a−1m(a/b,1)                                                        using property (15) for m 
          = m(1,x)m(x−1,1)                                                                 letting x ≡ b/a 
          = m(1,x)x−1m(1,x)                                                               using property (15) for m. 
 
Equation (19) can be rewritten as: 
 
(20) x = [m(1,x)]2. 
 
Take the positive square root of both sides of (20) and obtain 
 
(21) m(1,x) = x1/2. 
 
Using property (15) for m again, we have 
 

m(a,b) = am(1,b/a) 
                   = a[b/a]1/2                                                                     using (21) 
                   = a1/2b1/2. 
 
Now substitute for m(a,b) in (17) and we find that Q(x0,x1) = QCCD(x0,x1).            
Q.E.D.17  
                                              
Using the mathematical properties of the input distance functions D0(y0,x) and D1(y1,x) 
with respect to the strictly positive input vector x, it is straightforward to establish the 
following Proposition: 
 

                                                 
17 This proof is a modification of a proof due to Diewert (1997; 138) in the price index context. 
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Proposition 2:  Let the technology sets S0 and S1 satisfy properties P1–P4 and let y0 > 0M 
and y1 > 0M. Then the CCD Malmquist input quantity index QCCD(x0,x1) defined by (8) 
above satisfies the axioms A1-A12 listed above for all x0 >> 0N and x1 >> 0N. 
 
The above Proposition implies that QCCD(x0,x1) satisfies the circularity test A10 and this 
is true but note that this circularity test is conditional on only the two production 
possibility sets S0 and S1 and the two reference output vectors y0 and y1. Thus the index 
QCCD(x0,x1) should be more properly denoted by QCCD(x0,x1;y0,y1;S0,S1) and the 
circularity test that QCCD satisfies is the following one: for all x0 >> 0N, x1 >> 0N and x2 
>> 0N, we have: 
 
(22) QCCD(x0,x1;y0,y1;S0,S1)QCCD(x1,x2;y0,y1;S0,S1) = QCCD(x0,x2;y0,y1;S0,S1). 
 
Thus there is a certain lack of symmetry in the index when input comparisons are made 
between three or more production units. Hence the CCD Malmquist input index is best 
suited for bilateral comparisons between a pair of production units (or the same 
production unit over two time periods) rather than multilateral comparisons between 
many production units.          
 
We now turn our attention to Malmquist output indexes. 
 
3. Malmquist Output Indexes 
 
Given a strictly positive reference input vector x >> 0N and two nonnegative, nonzero 
output vectors y0 > 0M and y1 > 0M, the output distance function dt(y,x) defined by (2) that 
corresponds to the period t reference technology St can be used to define the following 
family of Malmquist output indexes,18  q(y0,y1,x,St): 
 
(23) q(y0,y1,x,St) ≡ dt(y1,x)/dt(y0,x). 
 
A value of the index greater than one implies that the output vector y1 is larger than the 
output vector y0, using x as a reference output and the period t best practice technology, 
St, as the reference technology. In the following sections, y0 will be the output vector that 
corresponds to a production unit that operates in period 0 and y1 will be the output vector 
that corresponds to a production unit that operates in period 1. If M = 1, so that there is 
only one output, then q(y1

0, y1
1,x,St) equals y1

1/y1
0.19 The geometry of the Malmquist 

output index for two inputs is illustrated in Figure 2.   
 

                                                 
18 The general definition of the output index given by (23) is due to Bjurek (1996; 307). Again Bjurek’s 
definition was a generalization of the CCD definition to allow for technical inefficiency.  
19 Let M = 1 and let x >> 0N, y0 > 0 and y1 > 0. Let St satisfy the regularity conditions P1 and P5-P7, to be 
introduced below. Then it can be verified that (y : (y,x)∈St) is the set {y : 0 ≤ y ≤ f(x)} where f(x) > 0 is the 
maximum amount of the single output that can be produced by the strictly positive input vector x using the 
technology set St. Thus dt(y0,x) = min δ {δ: (y0/δ,x)∈St} = min δ {δ: y0/δ ≤ f(x)} = δ0 where δ0 = y0/f(x) > 0. 
Similarly dt(y1,x) = y1/f(x) > 0. Thus q(y0,y1,x,St) ≡ dt(y1,x)/dt(y0,x) = y1/y0.   
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Given a reference technology set St and a reference input vector x >> 0N, the set of 
outputs y that can be produced by the vector of inputs x is St*(x) ≡ {y : (y,x)∈St}. In 
Figure 2, this set of feasible inputs is a subset of the nonnegative orthant and lies on and 
below the kinked boundary line I-I. Note that the period 1 output vector y1 ≡ [y1

1,y2
1] lies 

outside of St*(x) while the period 0 output vector y0 ≡ [y1
0,y2

0] is in the interior of St*(x). 
Define δ0 ≡ dt(y0,x) so that y0/δ0 is on the boundary line I-I. It can be seen that δ0 is less 
than one and δ0 equals OA/OD, the distance OA divided by the distance OD. Define δ1 ≡ 
dt(y1,x) so that y1/δ1 is on the boundary line I-I. It can be seen that δ1 is greater than one 
and, δ1 equals OC/OB. Thus the output index q(x0,x1) is equal to [OC/OB]/[OA/OD] = 
[OC/OB][OD/OA] where the distance ratios OC/OB and OD/OA are both greater than 
one in this case. It can be seen that if both output vectors y0 and y1 are on the frontier of 
the input production possibilities set St*(x) (i.e., they are both on the boundary line I-I), 
then q(y0,y1) equals one and the output vectors are regarded as having equivalent size. If 
y0 is below the boundary line I-I and y1 is on the boundary line or above it, then q(y0,y1) 
is greater than one and y0 is regarded as being a smaller amount of aggregate output than 
the amount represented by y1. Note that we do not require y0 and y1 to be strictly positive 
vectors in order for the output index to be well defined; we need only y0 > 0M and y1 > 0M.  
 
We will now list our regularity conditions on the reference technology set St that will 
ensure that the output distance function dt(y,x) is well defined. Suppose that the reference 
technology set St satisfies condition P1 listed in the previous section and the following 
three additional regularity conditions : 
 
P5. x ≥ 0N, (y,x)∈S implies 0M ≤ y ≤ b(x)1M where 1M is a vector of ones of dimension M 
and b(x) ≥ 0 is a finite nonnegative bound. 
P6. x >> 0N implies that there exists y >> 0M such that (y,x)∈S. 

y2 

y1 

y1 

y0 

         O              A      B         C         D 

Figure 2: The Geometry of the Malmquist Output Index 

I 

I 

y0/δ0 

y1/δ1 

St*(x) 
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P7. (y1,x)∈S, 0M ≤ y0 ≤ y1 implies (y0,x)∈S. 
 
The interpretation of P5 is that bounded inputs imply bounded outputs, P6 says that 
technology is such that every strictly positive input vector can produce a strictly positive 
vector of outputs, and P7 means that if the input vector x can produce the output vector y1 
and y0 is equal to or less than y1, then x can also produce the smaller vector of outputs, y0 
(i.e. free disposability of outputs).  
 
In the Appendix we show that dt(y,x) satisfies the following regularity conditions with 
respect to y over the nonnegative orthant excluding the origin, ΩM

* ≡ {y: y > 0N}: for x 
>> 0N, dt(y,x) is positive, (positively) linearly homogeneous, nondecreasing (increasing if 
all outputs increase) and continuous function of y over ΩM

*. 
 
Let St satisfy properties P1 and P5-P7 and let x >> 0N. We now look at the axiomatic 
properties of q(y0,y1,x,St) defined by (23) above with respect to the two output vectors, y0 
and y1. For brevity, we denote q(y0,y1,x,St) by q(y0,y1). Using the properties of the output 
distance function dt(y,x) listed in the paragraph above, it is straightforward to show that 
q(y0,y1) satisfies modified versions of properties A1-A12. The modified A1-A11 simply 
replace Q(x0,x1) by q(y0,y1) and the strictly positive input quantity vectors x0 and x1 by 
the nonnegative, nonzero output vectors y0 > 0M and y1 > 0M. For example, the first two 
modified tests are the following ones: 
 
B1. Identity: q(y,y) = 1; i.e., if the period 0 and 1 quantity vectors are equal to y > 0M, 
then the output quantity index is equal to unity. 
 
B2: Weak Monotonicity in Current Period Quantities: q(y0,y1) ≤ q(y0,y) if y0 > 0M and 0M 
< y1 < y ; i.e., if any period 1 quantity increases, then the quantity index increases or 
remains constant. 
 
However, the modified test A12 requires that the two output vectors y0 and y1 be strictly 
positive so that the test B12 is the following one: 
 
B12: Continuity: q(y0,y1) is a jointly continuous function of y0 and y1 for y0 >> 0M and y1 
>> 0M. 
 
Recall that (23) defines an entire family of Malmquist output quantity indexes, 
q(y0,y1,x,St); i.e., for each reference input vector x >> 0N and for each reference 
technology set St , there is a possibly different output quantity index q(y0,y1,x,St). Thus 
we now have to address the same type of question that we addressed in the previous 
section: if we are comparing the outputs of two different production units who have the 
observed output and input vectors (y0,x0) and (y1,x1), what is an appropriate choice of the 
reference input vector x and the reference technology set t to insert into the definition of 
the Malmquist output quantity index q(y0,y1,x,St)? 
 
From the viewpoint of the period 0 production unit, the most appropriate choice of a 
reference input vector x would seem to be the actual input vector used by the unit in 
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period 0, which is x0 (which we assume is a strictly positive vector). Similarly, the most 
appropriate reference technology for the period 0 production unit would appear to be the 
period 0 best practice technology, S0. Thus from the viewpoint of the period 0 production 
unit, the most appropriate output quantity index would appear to be the Laspeyres type 
Malmquist output index, qL(y0,y1), defined as follows: 
 
(24) qL(y0,y1) ≡ q(y0,y1,x0,S0) = d0(y1,x0)/d0(y0,x0).      
 
Similarly, from the viewpoint of the period 1 production unit, the most appropriate output 
quantity index is the Paasche type Malmquist output index, qP(y0,y1), which uses the 
strictly positive reference input vector x1 and the best practice technology S1: 
 
(25) qP(y0,y1) ≡ q(y0,y1,x1,S1) = d1(y1,x1)/d1(y0,x1).  
 
Since we have two separate relevant output quantity indexes 20  when comparing the 
relative size of the output vectors of two production units, it is natural to take a symmetric 
average of the two indexes defined by (24) and (25) in order to obtain a “final” measure 
of the relative magnitude of the output vector y1 relative to y0. But what form of average 
should we take? CCD (1982; 1401) found it convenient to take the geometric average of 
the above two indexes; i.e., define 
 
(26) qCCD(y0,y1) = [qL(y0,y1)qP(y0,y1)]1/2. 
 
The use of the geometric average of qL and qP instead of some other form of average can 
be justified if we want the average Malmquist output index to satisfy the time reversal 
property B9; i.e., we can establish the following proposition, using the same method of 
proof as was used in the proof of Proposition 1 in the previous section: 
 
Proposition 3: The CCD output quantity index qCCD(y0,y1) defined by (26) above is the 
only index satisfying the time reversal property B9 that is a homogeneous symmetric 
average of the Laspeyres and Paasche Malmquist output quantity indexes, qL and qP 
defined by (24) and (25). 
 
Assuming that x >> 0N, using the mathematical properties of the output distance 
functions d0(y,x) and d1(y,x) with respect to the nonnegative, nonzero output vector y that 
are established in the Appendix, it is straightforward to prove the following proposition: 
 
Proposition 4:  Let the technology sets S0 and S1 satisfy properties P1 and P5–P7 and let 
x0 >> 0N and x1 >> 0N. Then the CCD Malmquist output quantity index qCCD(y0,y1) 
defined by (26) above satisfies the axioms B1-B11 for all y0 > 0M and y1 > 0M and B12 
for all y0 >> 0M and y1 >> 0M. 
 
The above proposition implies that qCCD(y0,y1) satisfies the circularity test B10 and this is 
true but note that this circularity test is conditional on only the two production possibility 
                                                 
20  The two output indexes defined by (24) and (25) were the ones that were introduced by Caves, 
Christensen and Diewert (1982; 1400). 
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sets S0 and S1 and the two reference input vectors x0 and x1. Thus the index qCCD(y0,y1) is 
more properly denoted by qCCD(y0,y1,x0,x1;S0,S1) and the circularity test that qCCD 
satisfies is the following one: for all y0 > 0M, y1 > 0M and y2 > 0M, we have: 
 
(27) qCCD(y0,y1,x0,x1;S0,S1)qCCD(y1,y2,x0,x1;S0,S1) = qCCD(y0,y2,x0,x1;S0,S1). 
 
Thus as was the case for the CCD Malmquist input index, the CCD Malmquist output 
index is best suited for bilateral comparisons between a pair of production units (or the 
same production unit over two time periods) rather than multilateral comparisons 
between many production units.          
 
We now turn our attention to productivity indexes. 
 
4. Bjurek Productivity Indexes 
 
Having defined families of input and output indexes using distance functions in the 
previous two sections, it is natural to define a family of productivity indexes as the ratio of 
a family of output indexes to a family of input indexes. Our goal is to compare the 
productivity of two production units, 0 and 1, in the same industry which have the 
observed output and input vectors (y0,x0) and (y1,x1) respectively. We assume that the 
input vectors are strictly positive, so that x0 >> 0N and x1 >> 0N, and we assume that the 
output vectors are nonnegative but nonzero so that y0 > 0M and y1 > 0M. Our definition of 
the productivity index will also utilize a nonnegative, nonzero reference output vector y > 
0M and a strictly positive reference input vector x >> 0N. Finally, the definition utilizes a 
reference technology set St which satisfies the regularity conditions P1–P7. Recall the 
family of Malmquist input indexes, Q(x0,x1,y,t) defined by (5) above, and the family of 
Malmquist output indexes, q(y0,y1,x,t) defined by (23) above. These two families of 
indexes can be used in order to define the following family of Bjurek productivity 
indexes:  
 
(28) Π(x0,x1,y0,y1,x,y,St) ≡ q(y0,y1,x,St)/Q(x0,x1,y,St)  
                                         = [dt(y1,x)/dt(y0,x)/[Dt(y,x1)/Dt(y,x0)]. 
 
If Π(x0,x1,y0,y1,x,y,St) is greater (less) than one, we say that production unit 1 is more 
(less) productive than production unit 0; if Π(x0,x1,y0,y1,x,y,St) equals one, then the units 
have equal levels of productivity. At this level of generality, the index defined by (28) is 
due to Bjurek (1996; 308). Special cases of this type of index were described by Hicks 
(1961; 22), Moorsteen (1961; 462) and Diewert (1992; 240). The mathematical properties 
of Π with respect to x0,x1,y0,y1 are of course determined by the mathematical properties 
of the input index Q(x0,x1,y,t) with respect to x0 and x1 and the mathematical properties of 
the output index q(y0,y1,x,t) with respect to y0 and y1; see sections 2 and 3 above for these 
properties. It can be verified that if N = 1 and M = 1 so that there is only one input and 
one output, then the Bjurek productivity index collapses to [y1/y0]/[x1/x0], which is also 
equal to [y1/x1]/[y0/x0], the growth in Total Factor Productivity going from the production 
unit 0 inputs and outputs to the production unit 1 inputs and outputs. Thus if 
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Π(x0,x1,y0,y1,x,y,St) is greater than one, production unit 1 can produce more aggregate 
output per unit aggregate input than production unit 0. 
 
As usual when faced with a family of indexes, we need to determine which member of 
the family should be chosen for empirical applications. Again following the lead of CCD 
and Bjurek (1996; 310), it is natural to pick the two members of the family of indexes 
defined by (28) that are of most relevance to the two production units being compared. 
The most relevant productivity comparison for unit 0 is the Laspeyres version of (28), 
which is ΠL defined below by (29), where we pick the reference output and input vectors, 
y and x, to be the observed vectors for unit 0, y0 and x0, and we pick the reference 
technology set St to be S0, the best practice technology set for production unit 0. Thus 
define the Bjurek-Laspeyres productivity index between production units 0 and 1 as: 
 
(29) ΠL(x0,x1,y0,y1) ≡ q(y0,y1,x0,S0)/Q(x0,x1,y0,S0)  
                                = [d0(y1,x0)/d0(y0,x0)]/[D0(y0,x1)/D0(y0,x0)].  
 
Similarly, the most relevant productivity comparison for unit 1 is the Paasche version of 
(28), ΠP defined below by (30), where we pick the reference output and input vectors, y 
and x, to be the observed vectors for unit 1, y1 and x1, and we pick the reference 
technology set St to be S1, the best practice technology set for production unit 1. Thus 
define the Bjurek-Paasche productivity index between production units 0 and 1 as: 
 
(30) ΠP(x0,x1,y0,y1) ≡ q(y0,y1,x1,S1)/Q(x0,x1,y1,S1)  
                                = [d1(y1,x1)/d1(y0,x1)]/[D1(y1,x1)/D1(y1,x0)].  
 
Finally, Bjurek (1996; 310-311) suggested that a good productivity index would result if 
we took the geometric mean of the indexes defined by (29) and (30). Thus we define the 
Bjurek productivity index as follows: 
 
(31) ΠB(x0,x1,y0,y1) ≡ [ΠL(x0,x1,y0,y1)ΠP(x0,x1,y0,y1)]1/2 

   = {[d0(y1,x0)/d0(y0,x0)][D0(y0,x0)/D0(y0,x1)][d1(y1,x1)/d1(y0,x1)][D1(y1,x0)/D1(y1,x1)]}1/2. 
 

Thus the Bjurek productivity index is the product of two sets of output distance function 
ratios times two sets of input distance function ratios—a rather complicated function. 
 
When comparing the productivity levels of two production units, it is very useful to have 
the productivity measure satisfy the time reversal property; i.e., if we have a productivity 
measure Π(x0,x1,y0,y1) that compares the productivity level of production unit 1, 
characterized by the input-output data (x1,y1), with the productivity level of production 
unit 0, characterized by the input-output data (x1,y1), then the comparison should not 
depend materially on which unit is being compared to which; i.e., it would be desirable if 
the productivity measure satisfied the following time reversal property: 
 
(32) Π(x1,x0,y1,y0) = 1/Π(x0,x1,y0,y1). 
 
It is straightforward to establish the following counterpart to propositions 1 and 3 above: 
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Proposition 5: The Bjurek productivity index ΠB(x0,x1,y0,y1) defined by (31) above is the 
only productivity index satisfying the time reversal property (32) that is a homogeneous 
symmetric average of the Laspeyres and Paasche productivity indexes, ΠL(x0,x1,y0,y1) 
and ΠP(x0,x1,y0,y1)  defined by (29) and (30). 
  
Having established its mathematical properties, our goal is now to decompose (31) into 
the product of readily interpreted explanatory factors; namely changes in the technical 
efficiency of the production units, technical progress due to a change in the reference best 
practice technology set from S0 to S1 and a measure of returns to scale. Hence in the 
following sections, we will consider some definitions for these explanatory variables 
based on distance function representations.  
 
5. Radial Measures of Technical Efficiency 
 
Our measures of technical efficiency for the two production units being compared are 
variants of the conventional Debreu (1951) Farrell (1957; 254) radial measure of 
efficiency loss except that in what follows we use output measures of loss rather than the 
input oriented measures they used. 
 
We suppose that there are best practice technology sets S0 and S1 (satisfying properties 
P1 and P5–P7) that are relevant for production units 0 and 1. We assume that yt > 0M and 
xt >> 0N for t = 0,1 and that: 
 
(33) (y0,x0)∈S0 ; (y1,x1)∈S1. 
 
For production units t = 0,1, the output technical efficiency of unit t, εt, is defined as 
follows:21 
 
(34) εt ≡ dt(yt,xt) ≡ min δ {δ: (yt/δ,xt)∈St} ≤ 1 
 
where the inequalities in (34) follow from assumptions (33) using a feasibility 
argument.22      
 
If ε0 = 1, then production unit 0 is regarded as being efficient since the point (y0,x0) is on 
the frontier of the period 0 best practice production possibilities set. Similarly, if ε1 =1, 
then production unit 1 is regarded as being efficient. Alternatively, if ε0 < 1, then 
production unit 0 is clearly not efficient since an efficient period 0 producer could 
produce the output vector y0/ε0 which is strictly greater than y0 for all positive 

                                                 
21 This measure of technical efficiency was used by Färe, Grosskopf and Lovell (1994) and Balk (2001; 
163). 
22 Our regularity conditions also imply that ε0 > 0 and ε1 > 0. 
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components of y0, using the same input vector x0. The amount that ε0 is less than one is a 
quantitative indicator of the inefficiency of production unit 0.23 
 
For the case of a single output and a single input, the technical efficiency measures can be 
illustrated in Figure 3.  
 

 
 
The observed input for unit 0 is x0 and the corresponding amount of output produced is y0. 
Note that this point lies below the frontier of the period 0 best practice technology set, S0. 
The best practice technology can produce y0* > y0 units of output, using the same amount 
of input x0. Thus the technical efficiency of production unit 0 is ε0 ≡ d0(y0,x0) ≡ min δ {δ : 
(y0/δ,x0)∈S0} = δ0 = y0/y0* < 1. Similarly, the observed input for production unit 1 is x1 
and the corresponding amount of output produced is y1. This point lies below the frontier 
of the period 1 best practice technology set, S1. The best practice technology can produce 
y1* > y1 units of output, using the same amount of input x1. Thus the technical efficiency 
of production unit 1 is ε1 ≡ d1(y1,x1) ≡ min δ {δ: (y1/δ,x1)∈S1} = δ1 = y1/y1* < 1.  
 
We now turn our attention to defining measures of technical change. 
 
 

                                                 
23 The problem with this radial measure of inefficiency is that we could have ε0 or ε1 equal to one 
(indicating that production unit 0 or 1 is efficient) but in fact, production need not be completely efficient. 
This problem can be illustrated using Figure 2 where it can be seen that y1/δ1 is on the frontier of the 
reference production possibilities set St but it is clear that y1/δ1 is not completely efficient since we could 
use the same reference input vector to produce a greater amount of output 1 without reducing the 
production of output 2. This problem and possible solutions are discussed in depth by Russell and Schworm 
(2009) (2011). In the present paper, we will work with the rather weak measures of technical efficiency 
defined by (34) for the sake of simplicity but this limitation of our analysis should be kept in mind. 

Figure 3: Decomposition Factors for the One Output One Input Case 
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6. The Measurement of Technical Change 
 
In this section, we want to use output distance functions in order to construct measures 
indicating by how much the reference technology changes going from period 0 to 1.24    
 
Let the reference technology sets S0 and S1 satisfy properties P1 and P5–P7. Assume that 
the reference input vector x is strictly positive and that the reference output vector is 
nonnegative and nonzero. Then the two output distance functions d0(y,x) and d1(y,x) are 
well defined by (2) above and we can use these functions to define the following family 
of Malmquist output based technical change measures:25  
 
(35) τ(y,x,S0,S1) ≡ d0(y,x)/d1(y,x). 
 
Recall that the set of outputs y that are producible by the input vector x using the period t 
technology set St was denoted by St(x) ≡ {y: (y,x)∈St} for t = 0,1. It turns out that 
τ(y,x,S0,S1) defined by (35) is a radial measure of how much bigger (or smaller) the set 
S1(x) is relative to S0(x); i.e., if τ(y,x,S0,S1) > 1, then S0(x) is a strict subset of S1(x) and if 
if τ(y,x,S0,S1) < 1, then S1(x) is a strict subset of S0(x) as the proof of the following 
proposition will show. Thus if τ(y,x,S0,S1) is greater (less) than one, then we have 
technological progress (regress) in the best practice technology going from period 0 to 1. 
Note also that if we reverse the role of time, then we obtain the reciprocal of the original 
measure of technical change; i.e., τ(y,x,S1,S0) =1/τ(y,x,S0,S1).  
 
Proposition 6: Let x >> 0N and y > 0M and suppose that the reference technology sets S0 
and S1 satisfy properties P1 and P5–P7. Suppose that S0(x) is a subset of S1(x) so that the 
best practice technology does not suffer from technical regress at the reference input 
vector x. Then τ(y,x,S0,S1) ≥ 1. Conversely, suppose that S1(x) is a subset of S0(x). Then 
τ(y,x,S0,S1) ≤ 1. 
 
Proof: Let x >> 0N and y > 0M and suppose that S0(x) ⊂ S1(x). Using definition (35), we 
have: 
 
(36) τ(y,x,S0,S1) ≡ d0(y,x)/d1(y,x) 
            = min δ {δ: (y/δ,x)∈S0}/min δ {δ: (y/δ,x)∈S1} 
            = δ0/δ1 
 
where (y/δ0,x)∈S0 and (y/δ1,x)∈S1 and δ0 > 0, δ1 > 0. Note that y/δ0∈S0(x) and since 
S0(x) ⊂ S1(x), it can be seen that y/δ0∈S1(x) and hence, δ0 is feasible for the minimization 
problem min δ {δ: (y/δ,x)∈S1} = δ1. Thus 0 < δ1 ≤ δ0 and τ(y,x,S0,S1) ≥ 1. The second 
half of the Proposition follows in an analogous manner.                                            Q.E.D. 
 

                                                 
24 In the context of cross sectional comparisons of efficiency, we want to compare the best practice 
technology set in e.g. region 0 with the corresponding best practice set in region 1. 
25 This definition was used by Färe, Grosskopf and Lovell (1994) and Balk (2001; 163). 
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The technical progress measure defined by (35) is not completely satisfactory because it 
is local in nature. The problem is that there could be an outward shift in the reference 
production possibilities set going from period 0 to 1 that occurs in parts of the best 
practice technology sets but not at the particular (y,x) point that appears in our definition 
of τ(y,x,S0,S1). However, this problem will be minimized by careful selection of the 
reference (y,x) as will be seen in the following paragraph. 
  
It is useful to choose particular cases of the general measures of technical progress 
defined by (35) that are most relevant to the production units being compared. Thus it is 
natural to choose as the reference output and input vectors, y and x, the observed output 
and input vectors for production units 0 and 1. This leads to the following Laspeyres and 
Paasche type measures of technical progress:26  
 
(37) τL ≡ τ(y0,x0,S0,S1) ≡ d0(y0,x0)/d1(y0,x0) ; 
(38) τP ≡ τ(y1,x1,S0,S1) ≡ d0(y1,x1)/d1(y1,x1) . 
    
These measures can be illustrated in the one output, one input case using Figure 3 above. 
 
We start by analyzing the Laspeyres type measure of technical progress defined by (37) 
above. Note that (x0,y0) lies below the period 0 best practice frontier. We need to hold x0 
constant and increase y0 to y0* so that the resulting input and output combination, (x0,y0*) 
lies on the period 0 best practice frontier. The distance d0(y0,x0) ≡ δ0* will deflate y0 onto 
the period 0 frontier; i.e., we have y0/δ0* = y0* so that δ0* = y0/y0*. Next we need to hold 
x0 constant and increase y0 to y0** so that the resulting input and output combination, 
(x0,y0**) lies on the period 1 best practice frontier. The distance d1(y0,x0) ≡ δ0** will 
deflate y0 onto the period 1 frontier; i.e., we have y0/δ0** = y0** so that δ0** = y0/y0**. Thus 
we have τL = d0(y0,x0)/d1(y0,x0) = δ0*/δ0** = [y0/y0*]/[y0/y0**] = y0**/y0* and it can be seen 
that this is a perfectly sensible proportional measure of the increase in output that is 
producible by the best practice technology going from period 0 to 1, using x0 as the 
reference amount of input.     
 
The analysis of the Paasche type measure of technical progress defined by (38) above 
proceeds in a similar manner. Note that (x1,y1) lies below the period 1 best practice 
frontier. We need to hold x1 constant and increase y1 to y1* so that the resulting input and 
output combination, (x1,y1*) lies on the period 1 best practice frontier. The distance 
d1(y1,x1) ≡ δ1* will deflate y1 onto the period 1 frontier; i.e., we have y1/δ1* = y1* so that 
δ1* = y1/y1*. Next we need to hold x1 constant and deflate y1 to y1** so that the resulting 
input and output combination, (x1,y1**) lies on the period 0 best practice frontier. The 
distance d0(y1,x1) ≡ δ1** will deflate y1 onto the period 0 frontier; i.e., we have y1/δ1** = 
y1** so that δ1** = y1/y1**. Thus we have τP = d0(y1,x1)/d1(y1,x1) = δ1**/δ1* = 
[y1/y1**]/[y1/y1*] = y1*/y1** and it can be seen that this is a reasonable proportional 
measure of the increase in output that is producible by the best practice technology going 
from period 0 to 1, using x1 as the reference amount of input. 
 
                                                 
26 These indexes were defined in CCD (1982; 1402) but were labelled as productivity indexes. 
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We would like a measure of technical change that is a symmetric average of the 
Laspeyres and Paasche measures, τL and τP defined above by (37) and (38). As usual, 
taking a geometric average often has nice properties. Thus define a Fisher (1922) type 
measure of technical change τF as the geometric average of τL and τP: 
 
(39) τF ≡ [τLτP]1/2. 
 
Note that both τL and τP satisfy a time reversal test; i.e., we have: 
 
(40) τL = τ(y0,x0,S0,S1) = 1/τ(y0,x0,S1,S0); 
(41) τP = τ(y1,x1,S0,S1) = 1/τ(y1,x1,S1,S0). 
 
It can be seen that there is a counterpart to propositions 1, 3 and 5 above in the present 
context: the only measure of technical change that is a homogeneous symmetric average 
of τL and τP and also satisfies the time reversal test is the Fisher measure of technical 
change τF defined by (39). 
 
Our final factor for the explanation of productivity change between two production units 
is returns to scale and we now turn to a discussion of possible measures of returns to scale. 
 
7. Global Measures of Returns to Scale 
 
The period 0 best practice technology will exhibit increasing returns to scale if increases 
in the rate of growth of inputs lead to a proportionally greater rate of growth in outputs 
for input-output combinations on the frontier of S0. This concept can be illustrated in the 
case of one output and one input by using Figure 3. All of the Malmquist input indexes in 
the case of one input will be equal to x1/x0. For our measure of output growth, we cannot 
use the observed output growth ratio y1/y0 because the points (x0,y0) and (x1,y1) are not on 
the frontier of S0. However, the points (x0,y0*) and (x1,y1**) are on the frontier of S0 and it 
can be seen that our desired measure of period 0 efficient output growth (which 
corresponds to the input growth rate of x1/x0) is y1**/y0*. Thus in the case of one output 
and one input, our Laspeyres type measure of returns to scale, ρL, is defined to be 
[y1**/y0*]/[x1/x0]. Note that y1** is y1 divided by the output distance δ1** ≡ d0(y1,x1) so that 
(y1/δ1**,x1) is on the frontier of S0. Note also that y0* is y0 divided by the output distance 
δ0* ≡ d0(y0,x0) so that (y0/δ0*,x0) is also on the frontier of S0. We will use these output 
distance functions to project the observed output vectors y0 and y1 onto the frontier of the 
period 0 best practice technology in the general case of many outputs and many inputs. 
Thus assume S0 satisfies P1 and P5–P7, y0 > 0M, y1 > 0M, x0 >> 0N and x1 >> 0N. Define 
the projections of y0 and y1 onto the efficient period 0 best practice frontier S0, y0* and 
y1**, as follows: 
 
(42) y0* ≡ y0/d0(y0,x0) ; y1** ≡ y1/d0(y1,x1). 
 
Our Laspeyres type measure of returns to scale, ρL, is defined to be the Laspeyres type 
Malmquist output index, qL(y0*,y1**), defined by (24) above, divided by the Laspeyres 
type Malmquist input index, QL(x0,x1), defined by (6) above: 
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(43) ρL ≡ [d0(y1**,x0)/d0(y0*,x0)]/[D0(y0,x1)/D0(y0,x0)] 
            = [d0(y0,x0)/d0(y1,x1)][d0(y1,x0)/d0(y0,x0)]/[D0(y0,x1)/D0(y0,x0)] 
                                                        using (42) and the linear homogeneity of d0(y,x0) in y 
            = [ε0/ε1]τP

−1ΠL(x0,x1,y0,y1)    
 
where ε0 and ε1 are the technical efficiency measures for the production unit for periods 0 
and 1 defined by (34), τP is the Paasche type measure of technical progress defined by 
(38) and ΠL(x0,x1,y0,y1) is the Bjurek-Laspeyres productivity index between production 
units 0 and 1 defined by (29) above.27 Note that if production is technically efficient in 
both periods so that ε0 = ε1 = 1 and if there is no technical progress between the two 
periods so that τP = 1, then our returns to scale measure ρL collapses down to the Bjurek-
Laspeyres productivity index ΠL. This is an intuitively satisfactory result.28   
 
Naturally, there is a companion Paasche type measure of returns to scale that is 
determined by the period 1 best practice technology set S1. From Figure 3, in this case 
our desired measure of period 1 efficient output growth (which corresponds to the input 
growth rate of x1/x0) is y1*/ y0**. Thus with one output and one input, our Paasche type 
measure of returns to scale, ρP, is defined to be [y1*/y0**]/[x1/x0]. Note that y1* is y1 
divided by the output distance δ1* ≡ d1(y1,x1) so that (y1/δ1*,x1) is on the frontier of S1. 
Note also that y0** is y0 divided by the output distance δ0** ≡ d1(y0,x0) so that (y0/δ0**,x0) 
is also on the frontier of S1. We will use these output distance functions to project the 
observed output vectors y0 and y1 onto the frontier of the period 1 best practice 
technology in the general case of many outputs and many inputs. Thus assume S1 satisfies 
P1 and P5–P7, y0 > 0M, y1 > 0M, x0 >> 0N and x1 >> 0N. Define the projections of y0 and 
y1 onto the efficient period 1 best practice frontier S1, y0** and y1*, as follows: 
 
(44) y0** ≡ y0/d1(y0,x0) ; y1* ≡ y1/d1(y1,x1). 
 
Our Paasche type measure of returns to scale, ρP, is defined to be the Paasche type 
Malmquist output index, qP(y0*,y1**), defined by (25) above, divided by the Paasche type 
Malmquist input index, QP(x0,x1), defined by (7) above: 
 
(45) ρP ≡ [d1(y1*,x1)/d1(y0**,x1)]/[D1(y1,x1)/D1(y1,x0)] 
            = [d1(y0,x0)/d1(y1,x1)][d1(y1,x1)/d1(y0,x1)]/[D1(y1,x1)/D1(y1,x0)] 
                                                        using (44) and the linear homogeneity of d1(y,x1) in y 
            = [ε0/ε1]τL

−1ΠP(x0,x1,y0,y1)    
 
                                                 
27 Let N = 1 and M = 1. Then using the linear homogeneity properties of d0(y,x0) in y and the linear 
homogeneity properties of D0(y0,x) in x, it can be seen from the first equation in (43) that ρL = 
[y1**/y0*]/[x1/x0]; see Figure 3 for the geometric interpretation of this measure of returns to scale. 
28 This result is consistent with Balk’s (2001; 160) intuition as well, as the following quotation indicates. 
“Suppose that the technology, that is the feasible set of input-output quantity combinations, does not 
change, and that the firm is technically efficient, that is, operates on the boundary. Then the firm’s 
productivity, in a broad sense conceived as the ‘quantity’ of aggregate output divided by the ‘quantity’ of 
aggregate input, can nevertheless change by moving along  the boundary and making use of its curvature.”  
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where ε0 and ε1 are again the technical efficiency measures for the production unit, τL is 
the Laspeyres type measure of technical progress defined by (37) and ΠP(x0,x1,y0,y1) is 
the Bjurek-Paasche productivity index between production units 0 and 1 defined by (30) 
above. Note that if production is technically efficient in both periods so that ε0 = ε1 = 1 
and if there is no technical progress between the two periods so that τL = 1, then our 
returns to scale measure ρP collapses down to the Bjurek-Paasche productivity index ΠP. 
 
Note that our measures of returns to scale have a “global” nature to them; i.e., they look 
at the average rate of growth of aggregate output between the two production units 
divided by the corresponding rate of growth of aggregate input where the output vectors 
are scaled to be on the efficient frontiers (on the frontier of S0 for the Laspeyres measure 
and on the frontier of S1 for the Paasche measure). These measures of returns to scale are 
different from the local measures of returns to scale introduced by CCD, which relied on 
differentiability of the production surfaces. In our present approach, it is not necessary to 
make any differentiability assumptions. 
 
Suppose that the period 0 best practice technology S0 is a cone (in addition to satisfying 
the regularity conditions P1–P7).29 If x1 = αx0 and y1 = βy0 where α and β are positive 
scalars (so that inputs and outputs grow in a proportional manner between the two 
observations but at possibly different rates), then our Laspeyres type measure of returns 
to scale should equal one under these conditions. Similarly, if the period 1 best practice 
technology S1 is a cone, then our Paasche type measure of returns to scale should also 
equal one if outputs and inputs grow in a proportional manner. It turns out that our 
measures of returns to scale have these desirable properties as the following Proposition 
shows.  
 
Proposition 7: Suppose the period 0 and period 1 best practice production possibility sets 
S0 and S1 satisfy the regularity conditions P1–P7 and in addition, S0 and S1 are cones. Let 
x0 >> 0N and y0 > 0M. Suppose in addition, that the two production units being compared 
have proportional output and input vectors; i.e., there exist α > 0 and β > 0 such that 
 
(46) x1 = αx0 ; y1 = βy0. 
 
Then the Laspeyres and Paasche type measures of returns to scale defined by (43) and 
(45) are equal to one; i.e., we have ρL = 1 and ρP = 1. 
 
Proof: From the Appendix, we know that d0(y,x) is linearly homogeneous in the 
components of y and homogeneous of degree minus one in the components of x, where 
the latter property follows using the assumption that S0 is a cone. We also know that 
D0(y,x) is linearly homogeneous in the components of x. We shall use these homogeneity 
properties in the proof below. Using definition (43), we have: 
 
(47) ρL ≡ [d0(y0,x0)/d0(y1,x1)][d0(y1,x0)/d0(y0,x0)]/[D0(y0,x1)/D0(y0,x0)] 
             = [d0(y0,x0)/d0(βy0,αx0)][d0(βy0,x0)/d0(y0,x0)]/[D0(y0,αx0)/D0(y0,x0)]   using (46) 
                                                 
29 S0 is a cone if and only if (y,x)∈S0 and λ > 0 implies (λy,λx)∈S0.  
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             = [d0(y0,x0)/βα−1d0(y0,x0)][βd0(y0,x0)/d0(y0,x0)]/[αD0(y0,x0)/D0(y0,x0)] 
             = [α/β][β]/[α] 
             = 1. 
 
The proof that ρP = 1 is similar.                                                                                   Q.E.D. 
 
The above Proposition shows that our definitions of the two returns to scale measures are 
sensible.  
 
It should be noted that many authors further decompose their measures of returns to scale 
into the product of a pure measure of returns to scale (where outputs and inputs grow 
proportionally over the two periods being compared) times output and input mix effects.30 
We will explain why it is not necessary to do this decomposition in our framework. 
 
Recall our definition of the Laspeyres measure of returns to scale, ρL defined by (43). 
The numerator of this measure was the output growth index, d0(y1**,x0)/d0(y0*,x0), and the 
denominator of this measure was the input growth measure, D0(y0,x1)/D0(y0,x0). In order 
to define a “pure” measure of returns to scale, the output vector y1** in the numerator of 
the output growth measure should be replaced by an “equivalent” output vector that is 
proportional to the denominator output vector y0*. Similarly, the input vector x1 in the 
numerator of the input growth measure should be replaced by an “equivalent” input 
vector that is proportional to the denominator input vector x0. These equivalent output 
and input vectors, β1y0 and α1x0, are defined by the following two equations: 
 
(48) D0(y0,α1x0) = D0(y0,x1) ; 
(49) d0(β1y0*,x0) = d0(y1**,x0).  
 
Using the homogeneity properties of d0(y,x) in y and of D0(y,x) in x, the scalars α1 and β1 
are defined as follows: 
 
(50) α1 ≡ D0(y0,x1)/D0(y0,x0) ; β1 ≡ d0(y1**,x0)/d0(y0*,x0).         
 
Define the pure Laspeyres measure of returns to scale, ρL

*, as follows: 
 
(51) ρL

* ≡ [d0(β1y0*,x0)/d0(y0*,x0)]/[D0(y0,α1x0)/D0(y0,x0)] = β1/α1. 
 
Finally, Laspeyres measures of output and input mix change, θL and ηL, can be defined as 
follows: 
 
(52) θL ≡ d0(y1**,x0)/d0(β1y0*,x0) ; ηL ≡ D0(y0,x1)/D0(y0,α1x0). 
 
These mix effects show the effects on the output and input levels for period 1 of the 
switch from the output vector β1y0* to the equivalent output vector y1** and of the switch 
from the input vector α1x0 to the equivalent input vector x1.  
                                                 
30 See for example Balk (2001; 170), Nemoto and Goto (2005; 620) and O’Donnell (2010; 533) (2012; 263).   



 

26 
 

 
Definitions (43), (51), (52) and straightforward substitutions show that our initial 
definition of the Laspeyres measure of returns to scale, ρL, has the following 
decomposition: 
 
(53) ρL = [θL/ηL]ρL

*. 
 
Thus our “impure” measure of returns to scale can be decomposed into the product of 
mix effects times a “pure” measure of returns to scale. However, definitions (52) and the 
equalities (48) and (49) show that θL = ηL = 1 and hence ρL = ρL

*.31 Thus when we use 
distance functions to define output and input aggregates, mix effects are not relevant.32 
    
What happens to our measures of returns to scale if we compare unit 0 to unit 1 instead of 
comparing unit 1 to unit 0? Denote our original Laspeyres measure of returns to scale ρL 
as ρL(1/0) and our original Paasche measure of returns to scale ρP as ρP(1/0). Now reverse 
the role of time and interchange the data of the two units and interchange the reference 
best practice technology sets S0 and S1. Denote the resulting Laspeyres and Paasche type 
measures of returns to scale by ρL(0/1) and ρP(0/1). It can be shown that these new 
measures of returns to scale are related to the old measures in the following way:33 
 
(54) ρL(0/1) ≡ [d1(y1,x1)/d1(y0,x0)][d1(y0,x1)/d1(y1,x1)]/[D1(y1,x0)/D1(y1,x1)] = 1/ρP(1/0); 
(55) ρP(0/1) ≡ [d0(y1,x1)/d0(y0,x0)][d0(y0,x0)/d0(y1,x0)]/[D0(y0,x0)/D0(y0,x1)] = 1/ρL(1/0). 
 
Thus when we reverse the basis for comparing the two production units, the new 
Laspeyres type measure of returns to scale is equal to the reciprocal of the old Paasche 
type measure and the new Paasche type measure is equal to the reciprocal of the old 
Laspeyres type measure. The relations (54) and (55) suggest (as usual) that if we want a 
single measure of returns to scale that is a symmetric, homogeneous mean of ρL and ρP 
that is invariant to the way we compare the two production units, then taking the 
geometric mean of ρL and ρP leads to a “best” measure of returns to scale in the present 
context. Thus we define a Fisher type measure of best practice returns to scale ρF as the 
geometric average of ρL and ρP: 
 
(56) ρF ≡ [ρLρP]1/2. 
 
8. The Decomposition of Malmquist Productivity Indexes into Explanatory Factors 
 
In this section, we assume that the best practice production possibilities sets S0 and S1 
satisfy the regularity conditions P1–P7. Our goal is to compare the productivity of two 

                                                 
31 A similar result can be obtained for our “impure” Paasche measure of returns to scale. 
32 This result is due to O’Donnell (2012; 263). He also shows that mix effects are present when other 
methods of output and input aggregation are used. However, for our present application, we can ignore mix 
effects. 
33 For the new measures, use the old definitions but interchange 0 and 1 everywhere in the old definitions. 
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production units where the observed input vector for unit t is xt >> 0N and the observed 
output vector for unit t is yt > 0M for t = 0,1. 
 
Recall that the Bjurek-Laspeyres productivity index between units 0 and 1 was 
ΠL(x0,x1,y0,y1) defined by (29) above. Equation (43) in the previous section can be 
manipulated to give us the following exact expression for this productivity index: 
 
(57) ΠL(x0,x1,y0,y1) = [ε1/ε0] τP ρL  
 
where the unit t technical efficiency measures εt are defined by (34), the Paasche measure 
of technical progress τP is defined by (38) and the Laspeyres measure of returns to scale 
ρL is defined by the first equation in (43). Thus we have an exact decomposition of the 
Bjurek-Laspeyres productivity measure between units 0 and 1 into the product of the 
relative efficiency ratio ε1/ε0 times the Paasche measure of technical change between the 
two best practice technologies τP times the Laspeyres measure of returns to scale for the 
period 0 best practice technology ρL.        
 
In a similar fashion, recall that the Bjurek-Paasche productivity index between units 0 
and 1 was ΠP(x0,x1,y0,y1) defined by (30) above. Equation (45) in the previous section 
can be reorganised to give us the following exact expression for this productivity index: 
 
(58) ΠP(x0,x1,y0,y1) = [ε1/ε0] τL ρP  
   
where the unit t technical efficiency measures εt are defined by (34), the Laspeyres 
measure of technical progress τL is defined by (37) and the Paasche measure of returns to 
scale ρP is defined by the first equation in (45). Thus we have an exact decomposition of 
the Bjurek-Paasche productivity measure between units 0 and 1 into the product of the 
relative efficiency ratio ε1/ε0 times the Laspeyres measure of technical change between 
the two best practice technologies τL times the Paasche measure of returns to scale for the 
period 1 best practice technology ρP.34        
 
Recall that Bjurek’s recommended productivity index, ΠB(x0,x1,y0,y1) defined by (31), 
was the geometric mean of the above two productivity indexes. Using (57) and (58), we 
have the following exact decomposition of the Bjurek productivity index:    
 
(59) ΠB(x0,x1,y0,y1) ≡ [ΠL(x0,x1,y0,y1)ΠP(x0,x1,y0,y1)]1/2 
                                 = [ε1/ε0] τF ρF 
 
where τF is the geometric mean of  τL and τP and ρF is the geometric mean of ρL and ρP. 
The exact productivity decomposition given by (59) is our preferred decomposition of the 
Bjurek productivity index into explanatory factors using output distance functions.35   
                                                 
34 Of course, a knowledge of the best practice technology sets S0 and S1 is required in order to be able to 
implement the decompositions (57) and (58). 
35 It should be noted that Balk (2001; 170-171) and O’Donnell (2012; 265) obtained counterparts to our 
decompositions (57)-(59) for their models which used assumptions about the existence of enveloping cone 
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Note that we can derive a similar decomposition based on input distance functions.36 
Specifically, our preferred exact decomposition of the Bjurek productivity index into 
explanatory factors using input distance functions is as follows: 
 
(60) ΠB(x0,x1,y0,y1) = [ξ0/ξ1]τF

* ρF
*
. 

 
The terms in (60) are defined by equations (61)-(64) below, assuming that the reference 
technology sets S0 and S1 satisfy properties P1–P4, with the reference input vector x 
strictly positive and the reference output vector nonnegative and nonzero, so that the 
input distance functions D0(y,x) and D1(y,x) are well defined by (1). For production units 
t = 0,1, the input technical efficiency of unit t, ξt, is defined as: 
 
(61) ξt ≡ Dt(yt,xt) = maxδ{δ: (yt, xt/δ)∈St} ≥ 1. 
 
The family of Malmquist input based technical change measures can be defined as: 
 
(62) τ*(y,x,S0,S1) ≡ D1(y,x)/D0(y,x).  
 
The Fisher type measure of technical progress is defined as the geometric mean of the 
Laspeyres (τL

*
) and Paasche (τP

*) type measures of technical progress: 
 
(63) τF

* ≡ [τL
*τP

*]1/2 = [τ*(y0,x0,S0,S1)τ*(y1,x1,S0,S1)]1/2.       
  
Following similar steps as for the output oriented case presented in Section 7, we obtain 
the following Fisher type measure of returns to scale as the geometric mean of the 
Laspeyres (ρL

*) and Paasche (ρP
*) type measure of returns to scale:  

 
(64) ρF

*
 ≡ [ρL

*ρP
*]1/2 ≡ {[ξ1/ξ0][τP

*]−1ΠL(x0,x1,y0,y1) ∙ [ξ1/ξ0][τL
*]−1ΠP(x0,x1,y0,y1)}1/2.    

 
Using (31) and (63), a reorganisation of equation (64) leads to our productivity 
decomposition in (60). 
 

                                                                                                                                                  
technologies (and hence, their explanatory factors are different from our factors). It should also be noted 
that our decomposition (59) collapses to a decomposition obtained by O’Donnell (2012; 265) for the case 
when the reference technologies coincide for the two periods under consideration. However, in the general 
case with technical change occurring over the two periods, O’Donnell’s measure of technical progress is 
quite different from the one we use in equation (59).    
36 Deprins, Simar and Tulkens (1984; 247) make a strong case for the use of the input concept of technical 
efficiency in the context of regulated firms: “It was mentioned above that distances from any observed 
point to the efficiency boundary can be measured in other ways than in input terms, i.e., parallel to the input 
axis. In the case of the various plants of a monopolistic public enterprise such as the post office, however, 
there is a rational for sticking to this ‘input’ measure of efficiency: because of the ‘obligation of service’—
i.e., the obligation of serving whatever demand arises at the prevailing prices—each of the individual plants 
has no control on its output; its only possible decisions are to adjust its input requirements to the traffic.”   
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Finally, we note that a major problem with the decompositions of productivity growth 
developed in this paper is that it may be difficult to determine an appropriate reference 
technology set for each of the two periods under consideration. Here we simply note that, 
based on the Free Disposal Hull methods that were pioneered by Tulkens and his co-
authors, 37 Diewert and Fox (2014) developed a DEA-type approach for decomposing 
productivity growth for a panel of production units into explanatory factors using the 
same regularity conditions as employed here.  
  
9. Conclusion 
 
Our paper defined Malmquist-type output, input and productivity indexes covering two 
periods while making very weak free disposability assumptions on the reference 
technology sets for the two periods under consideration. We also developed the axiomatic 
properties of the Malmquist input and output indexes under our weak regularity 
conditions on the reference technologies and we provided a justification for taking the 
geometric mean of Laspeyres and Paasche type Malmquist output and input indexes.  
 
Using an output orientation, our preferred decomposition of the Bjurek productivity index 
into explanatory factors is given by (59), while using an input orientation our preferred 
decomposition is given by (60). The three explanatory factors are: (i) improvements in 
the technical efficiency of the production unit under consideration; (ii) technical progress 
for the industry over the two periods under consideration and (iii) the effects of industry 
returns to scale on the production unit.  
 
A significant limitation of our productivity decompositions is the restriction that the input 
vectors in the data set be strictly positive. These restrictions ensured that our input 
distance functions are well defined. However, depending on the nature of the reference 
technologies, it can be shown that it is not necessary that input vectors be strictly positive 
in order to obtain well defined input distance functions. Additional research is required in 
order to relax these positivity restrictions.38 One possible approach to relaxing the strict 
positivity restrictions on input vectors would be to assume that the production units 
minimize costs or more accurately, that the units should be minimizing costs. It makes 
sense to ask regulated firms and production units that provide government nonmarket 
services to minimize input costs even though market prices for their outputs are 
unavailable.39 In a cost minimization framework, input vectors would only be required to 
be weakly positive instead of strictly positive.  

                                                 
37 See Deprins, Simar, and Tulkens (1984) and Tulkens (1993).  
38 Consider replacing axiom P2 by the following more flexible axiom: P2*. For every y > 0M and x ≡ 
[x1,...,xN] > 0N, there exists x* ≡ [x1

*,...,xN
*] > 0N such that (y*,x*)∈S and xn

* = 0 if xn = 0 for n = 1,...,N. It is 
straightforward to modify the proof of part (i) of Proposition 8 in the Appendix and show that the input 
distance function, D(y,x) is well defined as max δ>0 {δ: (y,x/δ)∈S} for y > 0M and x > 0N using P2* in place 
of P2. But the new axiom allows for too much flexibility in production; i.e., it rules out some inputs being 
essential for the production of a positive output vector. It seems best to leave the development of a less 
restrictive version of axiom P2 to an actual empirical application.     
39 Diewert (2011) (2012) developed a cost based approach to productivity measurement in nonmarket 
contexts but instead of using a nonparametric approach with respect to outputs, he used an index number 
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Appendix: Regularity Conditions on the Reference Technology and Properties of 
Distance Functions 
 
In order to simplify the notation, we will drop the superscript t in what follows. We 
assume that the production possibilities set S is given and for y > 0M and x >> 0N, the 
input distance function D and the output distance function d are defined as follows: 
 
(A1) D(y,x) ≡ max δ>0 {δ: (y,x/δ)∈S}. 
(A2) d(y,x) ≡ min δ>0 {δ: (y/δ,x)∈S}. 
 
Diewert and Fox (2010) showed that if y > 0M and x >> 0N and S satisfies properties P1–
P4, then the input distance function D(y,x) is well defined as the maximum in (A1) with 
D(y,x) > 0. They also showed that if y >> 0M and x >> 0N and S satisfies properties P1 
and P5–P7, then the output distance function d(y,x) is well defined as the minimum in 
(A2) with d(y,x) > 0. Note that these results did not require any convexity assumptions on 
the technology set S.  
 
Variants of the following propositions are well known in the literature but our regularity 
conditions are a bit weaker than the convexity conditions used by others.40 Note that the 
restriction used by Diewert and Fox (2010) that y >> 0M is relaxed to the weaker 
restriction that y > 0M in Proposition 9 below. 
 
Proposition 8: Suppose the production possibilities set S satisfies properties P1–P4 listed 
above. Suppose the reference output vector y satisfies y > 0M and define the positive 
orthant in N dimensional Euclidean space by ΩN ≡ {x : x >> 0N}. Then the input distance 
function D(y,x) defined by (A1) above is (i) well defined and positive, (ii) nondecreasing, 
(iii) positively linearly homogeneous, (iv) increasing if all inputs increase and (v) 
continuous in x over ΩN. 
 
Proof of (i): Follows from Proposition 2 in Diewert and Fox (2010).41  
 
Proof of (ii): Let y > 0M and 0N << x0 < x1. Using definition (A1) and property (i), we 
have the existence of a positive scalar δ0 such that: 
 
(A3) D(y,x0) ≡ max δ>0 {δ: (y,x0/δ)∈S} = δ0 > 0 
 
where (y,x0/δ0)∈S. Since x1 > x0 and δ0 > 0,  

                                                                                                                                                  
approach, where “prices” for nonmarket outputs were based on unit costs or marginal costs for producing 
these outputs.  
40  For a fairly comprehensive discussion of regularity conditions on the technology and the resulting 
properties of the input and output distance functions, see Färe (1988).   
41 There is a typographical error in their proof. A corrected proof proceeds as follows. Let y > 0M and x >> 
0N. Then by P2, there exists x* ≥ 0N such that (y,x*)∈S. Since x >> 0N, there exists a δ* > 0 that is small 
enough such that x/δ* ≥ x*. Thus by P3, (y,x/δ*)∈S. We cannot increase δ* to plus infinity and conclude that 
(y,0N)∈S because this would contradict P4. Using the fact that S is a closed set, it can be seen that the 
maximization problem defined by (A1) has a finite positive maximum, δ**. 
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(A4) x1/δ0 > x0/δ0. 
 
Since (y,x0/δ0)∈S and (A4) holds, property P3 implies that 
  
(A5) (y,x1/δ0)∈S. 
 
Thus 
 
(A6) D(y,x1) ≡ max δ>0 {δ: (y,x1/δ)∈S} 
                      ≥ δ0                       since by (A5) δ0 is feasible for the maximization problem 
                      = D(y,x0)              using (A3).  
 
Proof of (iii): Let y > 0M, x >> 0N and λ > 0. Then using property (i) and definition (A1), 
we have the existence of a positive scalar δ* such that 
 
(A7) D(y,x) ≡ max δ>0 {δ: (y,x/δ)∈S} = δ* > 0.  
 
Thus (y,x/δ*)∈S and since λ > 0, we also have 
 
(A8) (y,λx/λδ*)∈S. 
 
Now calculate the value of the input distance function D(y,λx): 
 
(A9) D(y,λx) ≡ max ε>0 {ε: (y,λx/ε)∈S}= ε* ≡ λδ**  ≥ λδ* = λD(y,x) 
 
where the inequality follows from the feasibility of λδ* for the maximization problem in 
(A9); see (A8). Note that we have defined δ** ≡ ε*/λ. 
 
Suppose the strict inequality in (A9) holds. Then δ** is such that 
 
(A10) D(y,λx) = λδ** > λδ*. 
 
The equality in (A10) implies that (y,λx/λδ**)∈S. But then we also have 
 
(A11) (y,x/δ**)∈S. 
 
From (A7), we have 
 
(A12) δ* = max δ>0 {δ : (y,x/δ)∈S} 
               ≥ δ**                       since by (A11), δ** is feasible for the maximization problem 
               > δ*                        using λ > 0 and (A10). 
 
But (A12) is a contradiction and thus our supposition is false and property (iii) follows. 
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Proof of (iv): Let 0N << x0 << x1. Then there exists a scalar λ > 1 such that  
 
(A13) λx0 ≤ x1. 
 
Since λ > 1, we have: 
 
(A14) D(y,x0) < λD(y,x0)                                             since D(y,x0) > 0 and λ > 1 
                        = D(y,λx0)                                            using the linear homogeneity of D 
                        ≤ D(y,x1)                                              using (A13) and weak monotonicity. 
 
Proof of (v):  Let x0 >> 0N and choose α > 0 small enough so that x0 − αx0 = (1 − α)x0 >> 
0N. Define the hyperblock in N dimensional space of size α that is centered around x0 as 
follows: 
 
(A15) H(x0,α) ≡ {x: (1 − α)x0 ≤ x ≤ (1 + α)x0}. 
 
Note that H(x0,α) is a subset of the positive orthant and x0 is in the interior of H(x0,α). 
Using the definition of D(y,x0), there exists a δ0 > 0 such that D(y,x0) = δ0 and 
(y,x0/δ0)∈S. Using the linear homogeneity property of D(y,x) in x, we have: 
 
(A16) D(y,(1 − α)x0) = (1 − α)D(y,x0) = (1 − α)δ0 ; 
(A17) D(y,(1 + α)x0) = (1 + α)D(y,x0) = (1 + α)δ0 . 
 
Using the weak monotonicity property of D(y,x) in x and (A16) and (A17), it can be seen 
that for all x∈H(x0,α), we have: 
 
(A18) (1 − α)δ0 = D(y,(1 − α)x0) ≤ D(y,x) ≤ D(y,(1 + α)x0) = (1 + α)δ0. 
 
The inequalities in (A18) are sufficient to imply the continuity of D(y,x) at the point x0. 
Q.E.D. 
 
We turn to the analysis of the properties of the output distance function, d(y,x), in y for 
fixed x >> 0N. 
  
Proposition 9: Suppose the production possibilities set S satisfies properties P1 and P5–
P7 listed above. Suppose the reference input vector x satisfies x >> 0N and define the 
nonnegative orthant in M dimensional Euclidean space, excluding the origin, by ΩM

* ≡ 
{y : y > 0M}. Then the output distance function d(y,x) defined by (A2) above is (i) well 
defined and positive for y∈ΩM

*, (ii) nondecreasing, (iii) positively linearly homogeneous, 
(iv) increasing if all outputs increase and (v) continuous in y over the interior of ΩM

*; i.e., 
D(y,x) is continuous in y over the set of strictly positive y. 
 
Proof of (i): Let y > 0M and x >> 0N. Since x >> 0N, by P6, there exists a y* >> 0M such 
that (y*,x)∈S. Since y* is strictly positive and y is nonnegative but nonzero, there exists 
δ* > 0 large enough so that y/δ* ≤ y*. Using P7, we see that (y/δ*,x)∈S and thus we have a 
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feasible solution for the minimization problem in (A2). From definition (A2), we want to 
make δ ≥ 0 as small as possible such that (y/δ,x)∈S. However, we cannot make δ > 0 but 
arbitrarily close to 0 and have (y/δ,x) belong to S because this would contradict property 
P5. Using property P1, we see that a finite positive minimum for the minimization 
problem in (A2) exists. 
    
Proof of (ii): Let x >> 0N and 0M < y0 ≤ y1. Using definition (A2) and property (i), we 
have the existence of a positive scalar δ1 such that: 
 
(A13) d(y1,x) ≡ min δ>0 {δ: (y1/δ,x)∈S} = δ1 > 0 
 
where (y1/δ1,x)∈S. Since  y0 ≤ y1 and δ1 > 0,  
 
(A14) y0/δ1 ≤ y1/δ1. 
 
Since (y1/δ1,x)∈S and (A14) holds, Property P7 implies that 
  
(A15) (y0/δ1,x)∈S. 
 
Thus 
 
(A16) D(y0,x) ≡ min δ>0 {δ: (y0/δ,x)∈S} 
                      ≤ δ1                      since by (A15) δ1 is feasible for the minimization problem 
                      = D(y1,x)             using (A13).  
 
Proofs of (iii), (iv) and (v): Analogous to the proofs of (iii), (iv) and (v) in the previous 
proposition.                                                                                                                  Q.E.D.  
 
Note that we can only establish the continuity of d(y,x) in y over the positive orthant in 
M space; our regularity conditions are not strong enough to rule out discontinuities at the 
boundary of the positive orthant.                                                                                  
 
The regularity conditions on S listed above do not include any convexity assumptions. If 
we are willing to make some convexity assumptions on the reference technology, then we 
can deduce some additional properties for the output and input distance functions. Thus 
we consider the following two additional regularity conditions on S: 
 
P8: For each y > 0M, the input possibilities set S(y) ≡ {x: (y,x)∈S} is a convex set. 
P9: For each x >> 0N, the output possibilities set S*(x) ≡ (y: (y,x)∈S) is a convex set. 
 
Note that the convexity assumptions P8 and P9 do not rule out increasing returns to scale 
for the reference technology S. These types of convexity assumptions are relevant if the 
reference technology S is generated by a DEA exercise. 
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Proposition 10: Suppose the technology set S satisfies properties P1–P4 and P8. Then for 
each y > 0M, the input distance function D(y,x) is a concave function of x over the 
positive orthant ΩN. 
 
Proof: Let y > 0M. x1 >> 0N. x2 >> 0N and 0 < λ < 1. From Proposition 8, D(y,x) is 
positive, monotonic and linearly homogeneous in x for x∈ΩN. We first show that D(y,x) 
is a quasiconcave function of x over ΩN. Let D(y,x1) = δ1 > 0, D(y,x2) = δ2 > 0 and 
without loss of generality, assume: 
 
(A17)  0 < D(y,x1) = δ1 ≤ δ2 = D(y,x2). 
 
Using (A17) and the linear homogeneity property of D(y,x) in x, we have: 
 
(A18) D(y,x1/δ1) = 1; D(y,x2/δ2) = 1 
 
and hence (y,x1/δ1)∈S and (y,x2/δ2)∈S. Hence using property P8, we have 
 
(A19) (y,λ[x1/δ1] + (1−λ)[x2/δ2])∈S.    
 
Thus using definition (A1): 
 
(A20) D(y,λ[x1/δ1] + (1−λ)[x2/δ2]) ≡ max δ>0 {δ: (y,(λ[x1/δ1] + (1−λ)[x2/δ2])/δ)∈S} ≥ 1 
 
since by (A19), δ = 1 is feasible for the maximization problem in (A20). Thus we have 
 
(A21) 1 ≤ D(y,λ[x1/δ1] + (1−λ)[x2/δ2])  
              ≤ D(y,λ[x1/δ1] + (1−λ)[x2/δ1])       using (A17) and property (ii) in Proposition 8 
              =  [δ1]−1D(y,λx1 + (1−λ)x2)            using property (iii) in Proposition 8. 
 
But (A21) and (A17) shows that 
 
(A22) D(y,λx1 + (1−λ)x2) ≥ min {D(y,x1), D(y,x2)} 
 
which establishes the quasiconcavity of D(y,x) in x over ΩN. We now establish the 
concavity of D(y,x) with respect to x over ΩN. Recall the definitions and inequalities in 
(A17). Define α as follows: 
 
(A23) α ≡ D(y,x1)/D(y,x2) = δ1/δ2 ≤ 1. 
 
Therefore D(y,x1) = αD(y,x2) = D(y,αx2) using the linear homogeneity of D(y,x) in x. 
Thus for all µ such that 0 ≤ µ ≤ 1, we have 
 
(A24) min{D(y,x1), D(y,αx2)} = D(y,x1) ≤ D(y,µx1 + (1−µ)αx2) 
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where the inequality follows using the quasiconcavity of D(y,x) in x. Now look for a β > 
0 and a µ between 0 and 1 such that 
 
(A25) µx1 + (1−µ)αx2 = β[λx1 + (1−λ)x2]. 
 
The β and µ solution to (A25) is 
 
(A26) β = α/[1 − λ + λα] > 0 and µ = αλ/[1 − λ + αλ] 
 
where µ lies between 0 and 1. Using (A24), we have 
 
(A27) D(y,x1) ≤ D(y,µx1 + (1−µ)αx2) 
                        = D(y, β[λx1 + (1−λ)x2])          using (A25) 
                        = βD(y, λx1 + (1−λ)x2)             using the linear homogeneity of D(y,x) in x. 
 
(A27) can be rewritten as 
 
(A28) D(y, λx1 + (1−λ)x2) ≥ β−1 D(y,x1) 
                                           = [1 − λ + λα]α−1 D(y,x1)                                  using (A26) 
                                           = λD(y,x1) + [1 − λ]α−1 D(y,x1) 
                                           = λD(y,x1) + [1 − λ]D(y,x2)                               using (A23) 
 
which establishes the concavity of D(y,x) over ΩN.                                             Q.E.D. 
 
The fact that a positive, quasiconcave and linearly homogeneous function is also concave 
was first established by Berge (1963).   
   
Proposition 11: Suppose the technology set S satisfies properties P1, P5–P7 and P9. Then 
for each x >> 0N, the output distance function d(y,x) is a convex function of y over the 
nonnegative orthant less the origin ΩM

*. 
 
Proof: The proof is a straightforward modification of the proof of Proposition 10.   Q.E.D. 
 
There is one additional regularity condition that is useful to impose on the technology set 
S: 
 
P10: S is a cone.42 
  
Proposition 12: Suppose the technology set S satisfies properties P1–P7 and P10 and let 
λ > 0, y > 0M and x >> 0N. Then the output and input distance functions, d(y,x) and 
D(y,x), have the following homogeneity properties: 
 
(A29) d(y,λx) = λ−1d(y,x) ; 

                                                 
42 Thus if (y,x)∈S and λ ≥ 0, then (λy,λx)∈S. 
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(A30) D(λy,x) = λ−1D(y,x).  
 
Proof of (A29): Let λ > 0, y > 0M and x >> 0N. Then  
 
(A31) d(y,x) ≡ min δ>0 {δ : (y/δ,x)∈S} = δ* > 0 
 
where (y/δ*,x)∈S. Since S is a cone by assumption, we have:  
 
(A32) (λy/δ*,λx) = (y/λ−1δ*,λx)∈S. 
 
Using the definition of d(y,λx), we have: 
 
(A33) d(y,λx) ≡ min δ>0 {δ : (y/δ,λx)∈S}  
                        ≤ λ−1δ* 
 
since using (A32), it can be seen that λ−1δ* is feasible for the minimization problem. Now 
suppose that  
 
(A34) d(y,λx) ≡ δ** < λ−1δ*. 
 
Thus (y/δ**,λx)∈S. Since S is a cone, (y/δ**,λx)∈S implies (y/λδ**,x)∈S. Thus  
 
(A35) d(y,x) ≡ min δ>0 {δ : (y/δ,x)∈S} 
                    ≤ λδ**                                                                since (y/λ−1δ**,x)∈S 
                    < λλ−1δ*                                                            using (A34) 
                     = d(y,x). 
 
But (A35) is impossible so our supposition is false and hence we have (A29). The proof 
of (A30) follows using analogous feasibility arguments.                                            Q.E.D. 
 
In Diewert and Fox (2014), we showed how input and output distance functions and 
productivity decompositions could be computed where the reference best practice 
technologies were generated by the Free Disposal Hulls of a finite set of observations on 
production units for each of two periods.43 It may be useful to indicate how to calculate 
the input and output distance functions for a reference technology that consists of the 
union of the Free Disposal Hulls of a number of simple linear processes. We will indicate 
how this can be done for K processes which produce positive amounts of all M outputs 
and use positive amounts of all N inputs when operated at unit scale.44 
 
Suppose that the strictly positive output vector yk ≡ [y1

k,...,yM
k] >> 0M can be produced by 

the strictly positive input vector xk ≡ [x1
k,...,xN

k] >> 0N for k = 1,...,K. The Free Disposal 

                                                 
43 Of course, our decompositions drew on the pioneering work of Deprins, Simar and Tulkens (1984), 
Tulkens (1993) and Tulkens and Eeckaut (1995a) (1995b). 
44 Relaxing these strict positivity conditions leads to considerably more complicated formulae. 
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Conical Hull, Sk, generated by (yk,xk) is defined as the following production possibilities 
set: 
 
(A36) Sk ≡ {(y,x) : 0M ≤ y ≤ ykλ ; x ≥ xkλ ; λ ≥ 0} ;                                             k = 1,...,K. 
 
Now calculate the input distance function, Dk(y,x) for y ≡ [y1,...,yM] > 0M and x ≡ 
[x1,...,xN]  >> 0N that corresponds to the reference technology Sk for k = 1,...,K: 
 
(A37) δk ≡ Dk(y,x) ≡ max δ>0{δ : (y,x/δ)∈Sk} 
               = max δ > 0,λ≥0{δ : y ≤ ykλ ; x/δ ≥ xkλ}                                                  using (A36) 
               = max δ > 0,λ≥0{δ : y ≤ ykλ ; x ≥ xkλδ}  
               = max δ > 0{δ : x ≥ xkλkδ}                                    where λk ≡ max m=1,...,M {ym/ym

k} 
               = max δ > 0{δ : xn/(xn

kλk) ≥ δ ; n = 1,...,N} 
               = min n=1,...N{xn/xn

k}/max m=1,...,M{ym/ym
k}.                                              

 
Note that since x >> 0N and y > 0M, each δk is positive. Now define the reference 
technology S as the union of the K technology sets Sk: 
 
(A38) S ≡ ∪k=1

K Sk . 
 
Let D(y,x) be the input distance function that corresponds to S. Thus for y > 0M and x >> 
0N, we have: 
 
(A39) D(y,x) ≡ max δ>0{δ : (y,x/δ)∈S}= max δ>0{δ : (y,x/δ)∈∪k=1

K Sk} = max k=1,...,K{δk} 
 
where δk is defined by (A37) for k = 1,...,K.   
 
In a similar fashion, we can show that the output distance function dk(y,x) for y > 0M and 
x >> 0N that is generated by the production possibilities set Sk is defined as follows for k 
= 1,...,K: 
 
(A40) dk(y,x) ≡ min δ>0{δ : (y/δ,x)∈Sk} = max m=1,...,M{ym/ym

k}/min n=1,...N{xn/xn
k} ≡ φk  

 
where each φk is positive. The output distance function that corresponds to the union 
technology set S is defined as follows for y > 0M and x >> 0N:  
 
(A41) d(y,x) ≡ min δ>0{δ : (y/δ,x)∈S}= min δ>0{δ : (y/δ,x)∈∪k=1

K Sk} = min k=1,...,K{φk} 
 
where φk is defined in equations (A40) for each k. 
 
It is easy to see that D(y,x) is linearly homogeneous in x and homogeneous of degree −1 
in y and d(y,x) is linearly homogeneous in y and homogeneous of degree −1 in x. It can 
also be seen that our positivity restrictions y > 0M and x >> 0N are required in order to 
ensure that both distance functions are well defined as finite numbers.    
 



 

38 
 

 
References 
 
Afriat, S.N. (1972), “Efficiency Estimation of Production Functions”, International 

Economic Review 13, 568-598. 
 
Balk, B.M. (2001), “Scale Efficiency and Productivity Change”, Journal of Productivity 

Analysis 15, 159-183. 
 
Balk, B.M. (2003), “The Residual: On Monitoring and Benchmarking Firms, Industries 

and Economies with respect to Productivity”, Journal of Productivity Analysis 20, 
5-47. 

 
Berge, C. (1963), Topological Spaces, New York: Macmillan. 
 
Bjurek, H. (1996), “The Malmquist Total Factor Productivity Index”, Scandinavian 

Journal of Economics 98, 303-313. 
 
Briec, W. and K. Kerstens (2011), “The Hicks-Moorsteen Productivity Index Satisfies the 

Determinateness Axiom”, The Manchester School 79, 765-775. 
 
Caves, D.W., L.R. Christensen and W.E. Diewert (1982), “The Economic Theory of 

Index Numbers and the Measurement of Input, Output and Productivity”, 
Econometrica 50, 1393-1414. 

 
Charnes, A. and W.W. Cooper (1985), “Preface to Topics in Data Envelopment 

Analysis”, Annals of Operations Research 2, 59-94. 
 
Charnes, A., W.W. Cooper and E. Rhodes (1978), “Measuring the Efficiency of Decision 

Making Units”, European Journal of Operational Research 2, 429-444. 
 
Coelli, T., D.S. Prasada Rao and G. Battese (1997), An Introduction to Efficiency and 

Productivity Analysis, Boston: Kluwer Academic Publishers. 
 
Debreu, G. (1951), “The Coefficient of Resource Utilization”, Econometrica 19, 273-292. 
 
Deprins, D., L. Simar, and H. Tulkens (1984), “Measuring Labor Efficiency in Post 

Offices”, pp. 243-267 in M. Marchand, P. Pestieau, and H. Tulkens (eds.), The 
Performance of Public Enterprises: Concepts and Measurements, Amsterdam: 
North-Holland. 

 
Diewert, W.E. (1980), “Aggregation Problems in the Measurement of Capital”, pp. 433-

528 in The Measurement of Capital, D. Usher (ed.), Chicago: The University of 
Chicago Press. 

 



 

39 
 

Diewert, W.E. (1992), “Fisher Ideal Output, Input and Productivity Indexes Revisited”,  
Journal of Productivity Analysis 3, 211-248. 

 
Diewert, W.E. (1993), “Symmetric Means and Choice under Uncertainty”', pp. 355-433 

in Essays in Index Number Theory, Volume 1, W.E. Diewert and A.O. Nakamura 
(eds.), Amsterdam:  North-Holland. 

 
Diewert, W.E. (1997), “Commentary on Mathew D. Shapiro and David W. Wilcox: 

Alternative Strategies for Aggregating Price in the CPI”, The Federal Reserve 
Bank of St. Louis Review, 79:3, 127-137. 

 
Diewert, W.E. (2011), “Measuring Productivity in the Public Sector: Some Conceptual 

Problems”, Journal of Productivity Analysis 36, 177-191. 
 
Diewert, W.E. (2012), “The Measurement of Productivity in the Nonmarket Sector”, 

Journal of Productivity Analysis 37, 217-229. 
    
Diewert, W.E. and K.J. Fox (2010), “Malmquist and Törnqvist Productivity Indexes: 

Returns to Scale and Technical Progress with Imperfect Competition”, Journal of 
Economics 101(1), 73–95. 

 
Diewert, W.E. and K.J. Fox (2014),  “Reference Technology Sets, Free Disposal Hulls 

and Productivity Decompositions”, Economics Letters 122, 238–242.  
 
Diewert, W.E. and C. Parkan (1983), “Linear Programming Tests of Regularity 

Conditions for Production Functions,” pp. 131-158 in Quantitative Studies on 
Production and Prices, W. Eichhorn, R. Henn, K. Neumann and R.W. Shephard 
(eds.), Vienna:  Physica Verlag. 

 
Eichhorn, W. (1978), Functional Equations in Economics, London: Addison-Wesley. 
 
Färe, R. (1988), Fundamentals of Production Theory, Lecture Notes in Economics and 

Mathematical Systems 311, Berlin: Springer-Verlag. 
 
Färe, R., S. Grosskopf and C.A.K. Lovell (1985), The Measurement of Efficiency of 

Production, Boston:  Kluwer-Nijhoff. 
 
Färe, R., S. Grosskopf and C.A.K. Lovell (1994), Production Frontiers, Cambridge: 

Cambridge University Press. 
 
Färe, R., S. Grosskopf, M. Norris and Z. Zhang (1994), “Productivity Growth, Technical 

Progress and Efficiency Change in Industrialized Countries”, American Economic 
Review 84, 66-83. 

 
Färe, R., S. Grosskopf and P. Roos (1996), “On Two Definitions of Productivity”, 

Economic Letters 53, 269-274. 



 

40 
 

 
Färe, R. and C.A.K. Lovell (1978), “Measuring the Technical Efficiency of Production”, 

Journal of Economic Theory 19, 150-162. 
 
Färe, R. and D. Primont (1995), Multi-Output Production and Duality: Theory and 

Applications, Boston: Kluwer Academic Publishers. 
 
Farrell, M.J. (1957), “The Measurement of Production Efficiency”, Journal of the Royal 

Statistical Society, Series A, 120, 253-278. 
 
Fisher, F.M. and K. Shell (1972), “The Pure Theory of the National Output Deflator”, pp. 

49-113 in The Economic Theory of Price Indexes, New York: Academic Press. 
 
Grosskopf, S. (1986), “The Role of the Reference Technology in Measuring Productive 

Efficiency”, Economic Journal 96, 499-513. 
 
Grosskopf, S. (2003), “Some Remarks on Productivity and its Decompositions”, Journal 

of Productivity Analysis 20, 459-474. 
 
Hanoch, G. and M. Rothschild (1972), “Testing the Assumptions of Production Theory:  

A Nonparametric Approach”, Journal of Political Economy 80, 256-275. 
 
Hicks, J.R. (1961), “Measurement of Capital in Relation to the Measurement of Other 

Economic Aggregates”, in F.A. Lutz and D.C. Hague (eds.), The Theory of 
Capital, London: Macmillan. 

 
Hicks, J. (1981), “The Valuation of the Social Income III—the Cost Approach”, pp. 243-

268 in Wealth and Welfare, Cambridge, MA: Harvard University Press. 
 
Kerstens, K. and I. Van de Woestyne (2014), “Comparing Malmquist and Hicks–

Moorsteen Productivity Indices: Exploring the impact of unbalanced vs. balanced 
panel data,” European Journal of Operational Research 233, 749–758. 

Lovell, C.A.K. (2003), “The Decomposition of Malmquist Productivity Indexes”, Journal 
of Productivity Analysis 20, 437-458. 

 
Malmquist, S. (1953), “Index Numbers and Indifference Surfaces”, Trabajos de 

Estastistica 4, 209-242. 
 
Moorsteen, R.H. (1961), “On Measuring Productive Potential and Relative Efficiency”, 

Quarterly Journal of Economics 75, 451-467. 
 
Nemoto, J. and M. Goto (2005), “Productivity, Efficiency, Scale Economies and 

Technical Change: A new decomposition analysis of TFP applied to the Japanese 
prefectures”, Journal of the Japanese and International Economies 19, 617–634. 

 



 

41 
 

O’Donnell, C.J. (2010), “Measuring and Decomposing Agricultural Productivity and 
Profitability Change”, The Australian Journal of Agricultural and Resource 
Economics 54, 527–560. 

 
O’Donnell, C.J. (2012), “Nonparametric Estimates of the Components of Productivity 

and Profitability Change in U.S. Agriculture”, American Journal of Agricultural 
Economics 94, 875-890. 

 
Ray, S.C. and E. Desli (1997), “Productivity Growth, Technical Progress and Efficiency 

Change in Industrialized Countries: Comment”, American Economic Review 87, 
1033-1039. 

 
Russell, R.R. and W. Schworm (2009), “Axiomatic Foundations of Efficiency 

Measurement on Data Generated Technologies”, Journal of Productivity Analysis 
31, 77-86. 

 
Russell, R.R. and W. Schworm (2011), “Properties of Inefficiency Indexes on Input, 

Output Space”, Journal of Productivity Analysis 36, 143-156. 
 
Shephard, R.W. (1953), Cost and Production Functions, Princeton N.J.: Princeton 

University Press. 
 
Tulkens, H. (1993), “On FDH Efficiency Analysis: Some Methodological Issues and 

Application to Retail Banking, Courts, and Urban Transit”, Journal of 
Productivity Analysis 4, 183–210. 

 
Tulkens, H. and P.V. Eeckaut (1995a), “Non-Frontier Measures of Efficiency, Progress 

and Regress for Time Series Data”, International Journal of Production 
Economics 39, 83-97. 

 
Tulkens, H. and P.V. Eeckaut (1995b), “Nonparametric Efficiency, Progress and Regress 

Measures for Panel Data: Methodological Aspects”, European Journal of 
Operational Research 80, 474-499. 

 
Varian, H.R. (1984), “The Nonparametric Approach to Production Analysis”, 

Econometrica 52, 579-597. 
 
Zelenyuk, V. (2013), “Scale Efficiency and Homotheticity: Equivalence of primal and 

dual measures” Journal of Productivity Analysis, first online (DOI 
10.1007/s11123-013-0361-z). 

 


