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Abstract 

The idea of identifying structural parameters via heteroskedasticity is explored in the context 

of binary choice models with an endogenous regressor. Sufficient conditions for parameter 

identification are derived for probit models without relying on instruments or additional 

restrictions. The results are extendable to other parametric binary choice models. The semi-

parametric model of Manski (1975, 1985), with endogeneity, is also shown to be identifiable 

in the presence of heteroskedasticity. The role of heteroskedasticity in identifying and 

estimating structural parameters is demonstrated by Monte Carlo experiments. 
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1 Introduction 

In the literature on endogeneity in binary choice models, with both parametric and semi-

parametric approaches, attention has been focused on the cases where instruments, or 

exclusion restrictions, are available (see Heckman (1978), Rivers and Vuong (1988), Lewbel 

(2000), Blundell and Powell (2004) among others). The identification of structural 

parameters in binary choice models with endogeneity has not been available in the absence of 

instruments or exclusion restrictions. 

 Recently, a number of authors have exploited heteroskedasticity for the purpose of 

identifying structural parameters in linear simultaneous equation models where instruments 

or exclusion restrictions are not available (see Rigobon (2003), Klein and Vella (2010), 

Lewbel (2012) and Milunovich and Yang (2013) among others). Intuitively, variations in the 

conditional variances of regression errors bring out traces of the relationships amongst 

endogenous variables in the conditional mean, which in turn make it possible to identify 

structural parameters without relying on instruments or exclusion restrictions. 

Heteroskedasticity, which was traditionally regarded as a nuisance in regression analyses, 

turns out to be useful for dealing with endogeneity in linear models. 

 Extending the above literature, this article explores the idea of identifying structural 

parameters via heteroskedasticity for binary choice models that have an endogenous regressor. 

The models considered include popular probit and related parametric models, as well as the 

linear median model of Manski (1975, 1985) with endogeneity. In this article, the structural 

parameters in these models are shown to be locally identifiable in the presence of 

heteroskedasticity without relying on instruments or exclusion restrictions. Sufficient 

conditions for the identification of the structural parameters are formulated, in which a key 

requirement is described in terms of the conditional variances of error terms. Monte Carlo 

experiments are carried out to demonstrate the effect of heteroskedasticity on parameter 

identification and estimation. The framework and findings in this paper may be particularly 

useful for applications where instruments are unavailable and heteroskedasticity itself is of 

empirical interest. The results documented in this article are a new contribution to the 

existing literature. 

 The rest of the paper is organised as follows. Section 2 reports results about probit 

models, including some simulation evidence. Sections 3 and 4 discuss other parametric 

models and linear median models respectively. Section 5 is a conclusion. Proofs are collected 

in the appendix. 



2 Probit Models 

2.1 Probit model with endogeneity 

Consider the following probit model 

(1)    
    

              ,                 
     , 

       
           , 

 [
   

   
]             ,          [

  
  

] , 

where   is the observation index,      is the indicator function,              are observable, 

   is the set of all observable exogenous or predetermined variables for index  , and       

is a  -dementional vector of exogenous variables. The sense of endogeneity here is that the 

correlation   between     and     is non-zero. The second equation in (1) is potentially 

heteroskedastic and the conditional variance    
  may depend on   . As both equations 

involve the same exogenous regressors in   , the setup here covers the cases where neither 

instruments nor exclusion restrictions are available. In this setting, the instrument-variable 

related strategies (e.g., the control function method of Rivers and Vuong (1988)) are not 

applicable.  

 The joint normality of     
          implies 

(2)    
                       ,                   

                  . 

Suppose for now that        is constant (    is homoscedastic). In this case, when a single-

equation probit model    
    

              is estimated with endogeneity being ignored, 

the estimators of    and    will converge in probability to                       and 

                    respectively. Further, when (1) is treated as a simultaneous 

equation system, the parameters           are not identifiable without further restrictions, 

despite the fact that       
   can be identified and consistently estimated from the second 

equation. In the following section, we analyse the identification of the structural parameters 

in the presence of heteroskedasticity.  

2.2 Heteroskedasticity in Secondary Equation 

Combining (1) and (2), we write the model as 

(3)    
                       ,                  

     , 

            
       

   , 



                   
                  , 

     
     (         ) ,              , 

where the function           is continuously differentiable with respect to parameter vector 

  . Here    can be identical to    or a subset of    or a superset of   . It is now possible to 

identify and consistently estimate                because        and         (if not 

proportional to    and    ) serve as additional regressors in the conditional mean      . In 

other words, the heteroskedasticity     plays the role of an “instrument”.  

 

EXAMPLE 1. In the context of pooled cross-sections, suppose that data consist of random 

surveys from two different years (Year 0 and Year 1). The conditional variance is    
  

                , where     is a dummy variable that is one if observation   is from Year 1 

and zero otherwise. Here     may also be included in the conditional means of    
  and    . It 

can be verified that identification is achievable when       (see Theorem 2 below). 

 

 We now formalise the conditions for parameter identification in the framework of 

maximum likelihood (ML). The joint conditional probability density (or mass) is given by 

(4)                              (               ) (       
        )     , 

where      and      are the cumulative distribution and probability density functions of 

       respectively. The log likelihood function is 

(5)       ∑                          
 

 
        

   
 

    
        

    
   

    , 

where                      ,   is the sample size,      
         

       is the vector 

of the structural parameters. The ML estimator of   is the maximiser of (5). The log 

likelihood (5) can also be expressed in terms of the reduced-form parameter vector   

   
          

    
       by writing 

(6)             , 

                         
                      

        . 

By the comparison of (3) and (6), the map from the structural parameter vector   to the 

reduced-form parameter vector   is given by 



(7)        ,            ,           ,              , 

where             , the reduced-form and structural         are identical.  

 We rely on Theorem 6 of Rothenberg (1971) to examine the local identification of the 

structural parameters. In essence, the structural parameters are locally identified if: (a) the 

Jacobian of the map in (7) is of full rank in an open neighbourhood of the true structural 

parameter point   ; (b) the reduced form parameters are locally identified at the true reduced-

form parameter point    (corresponding to   ). Let   be the structural parameter space that 

excludes the points with      . For a matrix      whose elements are continuous fuctions 

of  , a parameter point   is a regular point of the matrix if the matrix’s rank does not change 

in an open neighbourhood of  . The following theorem confirms that the Jacobian of (7) is of 

full rank.  

 

THEOREM 1. The Jacobian of the map in (7) is of full rank in  . If   is an interior point, 

then it is a regular point of the Jacobian.  

 

 Given Theorem 1, we look for conditions under which the reduced-form parameters 

are identified. Let   
     

                
       and          

    
  , where    

   
          

  . The score for the observation with index   is given by 
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where       is the log likelihood of             ,    
     

  
 

         

    
 and            . 

With the partition in          
    

  , the details of (8) are 
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where                   ,               
   and             

   . Clearly, 

               and                   at the true parameter point     . It follows 

that at      
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where        
 |        

  
 

  
 

  
 

    
    and the fact      

     is used. Essentially,    

is locally identifiable when the above matrix is invertible (Theorem 1 of Rothenberg (1971)). 

The following theorem provides a set of sufficient conditions for identification that are 

specific to our context.  

 

THEOREM 2. Assume that (i) the data                 are independent draws from (3); (ii) 

      
     

   and         
   are invertible at   ; (iii)        at   , where the event    

{   
    

            for any non-zero constant vector    
    

   }; (iv)    is an interior 

point of  . Then,    is locally identified. Further, together with Theorem 1,    is also locally 

identified. 

 

 Condition (ii) ensures the identification of (     ) in the second equation of (3). 

Condition (iii) is the key requirement for identifying           in the first equation of (3). 

Obviously, if the model is homoscedastic, (iii) fails. Hence the presence of heteroskedasticity 

is necessary for identification in this context. Condition (iii) also place restrictions on the 

functional form of    . In particular, it fails when     is a linear function of   . The example 

below illustrates this possibility. 

 

EXAMPLE 2. Let           
  with            and      . For the case    

  

                 with      , conditions (ii) and (iii) can be verified. However, for the 

case                 with       (positivity assumed for    ), condition (iii) fails to 

hold because      
    

              for            and             
 .   

 

2.3 Heteroskedasticity in Both Equations 



The model with heteroskedasticity in both equations can be written as 

(10)    
    

                 ,                 
     , 

       
           , 

 [
   

   
]             ,          [

  
  

] , 

    
                  ,    

                  ,              , 

where functions    and    are continuously differentiable with respect to    and    

respectively. Define  

  ̅  
     

        
                     . 

The event     
     is equivalent to   ̅  

    . Clearly, if           is unrestricted, 

            will be observationally equivalent to                for any constant    . A 

normalisation rule is needed to resolve this indeterminacy. Let     be the set of    values for 

which           does not depend on the non-constant elements of   . The normalisation we 

use is:             for all       .  

 

EXAMPLE 3. When                      with               and     being non-

constant, it is normalised as                 . When                          

(             is assumed), the normalized version is                        . In 

both cases,     is the set of    values with      .  

 

 The model in (10) can be written as  

(11)  ̅  
                       ,                   

       
   , 

                       
                      , 

    
                  ,    

                  ,              . 

With the structural parameter vector      
            

    
   , the log likelihood expression 

in (5) is also valid for (11). The log likelihood can also be expressed in terms of the reduced-

form parameter vector      
          

       
    

    by re-defining 

(12)             , 



                         
                              

        . 

A comparison of (11) and (12) shows that the mapping from   to   is the same as (7), with 

the structural and reduced-form            being identical. Again, the identification of    in 

(11) is established if (a) the map from   to   has a full-rank Jacobian in an open 

neighbourhood of   ; (b)    is locally identified. As (a) is established in Theorem 1, we need 

only consider (b) here. The identification conditions are summarised in the following theorem, 

where an additional symbol is                   . 

 

THEOREM 3. Assume that (i) the data                 are independent draws from (12); (ii) 

      
     

   and         
   are invertible at   ; (iii)         at     where the event 

  {   
        

        
      

           for any non-zero constant vector    
    

    
   }; 

(iv)    is an interior point of   . Then,    is locally identified. Consequently, together with 

Theorem 1,    is also locally identified. 

 

 As in Theorem 2, condition (ii) ensures the identification of (     ) in the second 

equation of (11). Condition (iii) is the key requirement for identifying              in the 

first equation. It involves the conditional variances of both equations. Interestingly, condition 

(iii) may hold even when the second equation is homoscedastic (    is a constant).  There are 

three scenarios where (iii) fails. First, it fails when         is a constant (i.e.,        for 

     and               for any     ). Second, it fails when both       
    and 

      
    are linear functions of    (i.e.,        for      and        and      ). 

Third, it also fails when     is not a constant and      
    is linear in    or       

         for 

a constant matrix   (i.e.,        for      and         for any     ). The 

example below illustrates some of these scenarios.  

 

EXAMPLE 4. Let           
  and      , where     is a continuous random variable with 

          . Suppose                      and                  with      . As 

      , condition (ii) is satisfied. Since        ,    
        

        
      

           

with probability 1 for some    
    

     
    if and only if: either         (    becomes 

proportional to    ); or   
          (equivalently   

         ). Hence, condition (iii) holds 



provided that     is not proportional to     and   
            with      . The parameters 

are still locally identifiable when the second equation is homoscedastic with      .  

2.4 Simulation Experiments 

In this section, the role of heteroskedasticity in parameter identification and estimation is 

demonstrated in simulation experiments. The model in (3) is the data generating process 

(DGP), where           
  and       with     being independent       . The conditional 

variance of the second equation is specified as    
         

    . The parameter values for the 

DGP are as follows 

             
         

 ,                             , 

             
            ,                 

            , 

       ,           . 

Each sample consists of 500 independent observations on              drawn from the DGP 

(3). For each sample, the ML estimates are obtained by maximising the log likelihood (5). 

There are 500 independent samples. The biases and root mean squared errors (RMSE) are 

then computed from the 500 replications. The results are reported in Table 1 below. 

 

Table 1. Biases and RMSEs of the ML Estimators 

 
                             

        
        Bias 0.292 -0.299 -0.012 -0.037 -0.001 0.001 0.011 -0.006 

RMSE 0.624 0.616 0.142 0.217 0.047 0.044 0.063 0.063 

        
        Bias 0.083 -0.082 -0.008 -0.018 -0.003 -0.003 0.006 -0.008 

RMSE 0.325 0.302 0.112 0.171 0.046 0.044 0.064 0.063 

        
        Bias 0.025 -0.030 -0.002 -0.009 0.001 0.002 0.008 -0.003 

RMSE 0.185 0.176 0.089 0.116 0.046 0.040 0.064 0.065 

        
        Bias -0.001 -0.001 0.001 0.005 0.000 -0.001 0.008 -0.002 

RMSE 0.128 0.118 0.071 0.093 0.051 0.036 0.066 0.066 

        
        Bias -0.010 0.006 0.006 0.000 -0.003 0.000 0.007 0.003 

RMSE 0.089 0.093 0.065 0.075 0.051 0.038 0.063 0.066 

 



 In Table 1, as expected, the estimates of       ) are accurate with small biases and 

RMSEs that vary little as     changes. On the other hand, the accuracy of the estimates of 

          crucially depends on the strength of heteroskedasticity measured by    . For weak 

heteroskedasticity (       ) that is close to losing identification, the estimates of           

exhibit large absolute biases and RMSEs. The estimation accuracy improves markedly as     

increases and identification strengthens. When heteroskedasticity is strong (       ), the 

estimates of           are almost as accurate as those of       ). The results in Table 1 

indicate that heteroskedasticity, if present, may play an “instrumental” role in identifying and 

estimating the structural parameters in probit models when instruments and exclusion 

restrictions are not available.   

 The computation is carried out in R version 3.0.2 of R Core Team (2013). The 

function “optim” with the BFGS algorithm is used for maximising the log likelihood. 

3 Logit and Other Parametric Models 

The results in Section 2 depend on the joint normality of            to some extent. First, the 

reduced-form equation for    
 , as in (3) and (11), is derived under the normality assumption. 

Second, the property      
     is used in the proof of Theorems 2 and 3. Nonetheless, when 

    and     are linearly correlated, the approach used in Section 2 is applicable for cases with 

known distributions other than normal. For instance, consider a variant of (3) 

(13)    
    

              ,                 
     ,                   , 

       
           ,                      , 

             , 

where    is independent of     and follows a symmetric distribution (not necessarily normal) 

with zero mean. Logit models fit the above description. The results in Section 2.2 are 

applicable to (13) because the log likelihood in (5) or (6) is valid as long as       is 

interpreted as the cumulative distribution function of             . Similarly, (11) can also 

be extended to accommodate alternative conditional distributions for       . 

  



4 Linear Median Binary Response Model 

In the semi-parametric model of Manski (1975, 1985), the conditional median of the 

unobserved dependent variable    
  is assumed to be a linear function of exogenous variables. 

We consider the case with an endogenous regressor 

(14)    
    

              ,                 
     , 

       
           ,                    ,        

     (         ) ,           , 

             ,                       , 

where           is continuously differentiable with respect to   ,        is the conditional 

median, and         is an arbitrary distribution with mean   and variance  . Here, the 

conditional distribution of    
         is specified only up to the conditional median. It is 

assumed that the support of    is the whole real line. The second equation is simply a 

regression model with heteroskedasticity and the parameters         can be consistently 

estimated by Gaussian quasi ML even when    is not normal (see Section 8.4.4 of 

Gourieroux and Monfor (1989) among others). Further, the semi-parametric approach of 

Klein and Vella (2010) may be adopted to describe    
  such that the precise functional form 

          need not be specified.  

 From (14), the conditional median of    
  may be written as 

(15)      
                      

                  

                                   

in terms of the structural and reduced-form parameters respectively. The sign of the 

conditional median (15) is intimately related to the conditional probability of observing the 

sign of    
  (see Manski (1985)). In our context, a two-step approach may be used:  

Step 1: estimate         from the second equation of (14) by the Gaussian quasi ML (with 

 possibly semi-parametric    
 ); 

Step 2: estimate           from (15) by the maximum score of Manski (1975, 1985)
 1

 , or the 

 smoothed maximum score of Horowitz (1992), or the method of Lewbel (2000), using

 the estimated     and         from Step 1.  

                                                      
1
 Florios and Skouras (2008) suggest that the maximum score estimates be computed by mixed integer 

programming (MIP), which delivers the exact maximum point and computation efficiency. 



The following theorem shows that the parameters in Step 2 are locally linear-median 

identified up to scale. Although the structure of (15) prevents a direct application of Lemma 2 

of Manski (1985), his arguments there are closely followed in the proof of the following 

theorem. Notation-wise, define      
         

    
    and      

          
    

    
    as the 

structural and reduced-form parameters respectively. True parameter values are stared.  

 

THEOREM 4. Assume that (i) the data                 are independent draws from (14); (ii) 

      
     

   and         
   are invertible at   ; (iii)        at   , where the event 

  {                 
        for any non-zero constant vector    

    
    

   }; (iv)    

is an interior point with one of    
      being non-zero. Then,    

     
     is locally identified 

in Step 1 and    
     

    
    

     is locally identified up to scale in Step 2. Further,    
     

       

is locally identified up to scale in Step 2.  

 

 These sufficient conditions are derived by choosing     as “the regressor with non-

zero coefficient” (Manski’s   ). This choice appears natural for the cases with endogeneity 

(hence   
   ). The same result can be obtained if an exogenous regressor in    (with certain 

additional assumptions) is chosen as Manski’s “  ”.  

 Similar to the probit model in Section 2.2, condition (ii) provides the identification for 

the second equation in (14), whereas conditions (iii)-(iv) ensure the identification of (15). In 

addition to    being an interior point, condition (iv) requires that one of    
      be non-zero. 

Given that endogeneity is the focus, this requirement is not restrictive. Condition (iii) 

imposes certain restrictions (stronger than those in Theorem 2) on the functional form of    
 . 

It rules out the cases where     or    
  is a linear function of   .  

 

EXAMPLE 5. The statements of Example 2 are valid in the current context. Additionally, for 

the case    
             with       (positivity assumed for    

 ), condition (iii) in 

Theorem 4 fails to hold because      
    

     
          for            and    

         
 .   

  



5 Conclusion 

We show that heteroskedasticity may be exploited for identifying structural parameters in 

binary choice models with endogeneity, when instruments or exclusion restrictions are not 

available. Local identification is found to be generally achievable in the presence of 

heteroskedasticity. Formal conditions for local identification are provided for parametric 

models (such as probit and logit) and the semi-parametric model of Manski (1975, 1985). For 

these models, once parameter identification is established, estimation methods are available 

for inference purposes. 

 The results in this paper may be further extended to the cases where multiple 

endogenous regressors are included in the binary choice equation. One material issue in such 

cases is the handling of the correlations among these endogenous regressors. These 

correlations are expected to be relevant for the conditions for parameter identification.  

6 Appendix 

PROOF OF THEOREM 1. Notice the derivatives:           and            . The 

Jacobian of the map (7) from the structural parameters      
         

    
    to the reduced-

form parameters      
          

    
    

    is 

 

 

 

 

 

 

where    is the  -dimensional identity matrix,   is the size of    and    the size of  . The 

conclusion holds because the size of   is                     and there exists an 

invertible                     sub-matrix (on the deletion of the fourth block 

row corresponding to   ). The second claim is true because the Jacobian is continuous 

(matrix) function of  .   

 

     0       0 0 

 0         0 0 

  
  

   
  

0 0    0 0 

0 0     
        0 

 0 0 0    0 

 0 0 0 0    
 



PROOF OF THEOREM 2. The following statements are all made in reference to the true 

parameter point    (or    . By assumption (i), the information matrix is 

  
   

  

   

     ∑             
                              , 

which is a multiple of the matrix in (9). Given (ii), the matrix in (9) is invertible if and only if 

the sub-matrix on deleting the second block row and column is invertible, which can be 

written as (noting that      
    ) 

     [
  

 
   

    
   

] [  
   

   

    
   

 ]  [
  

 
 

 
        

  ] . 

The above matrix is not invertible if and only if there is a non-zero constant vector       
    

such that 

     ( 
    

   

    
  

    )
 

  
 

 
     

     
     , 

which together with condition (ii) forces     . The information matrix is not invertible if 

and only if         with probability 1 for a non-zero constant vector      
          

   , 

i.e., 

 (  
  

  
 

   
)     (   

  

   
)        

with probability 1. The event    {            for any          } is implied by the 

event   {(  
    

           for any    
    

    }. Conditional on  , the probability of 

  {       for some    } is zero because     is continuous and independent of   . 

Conditional on the complement  ̅ , the probability of   is one. It follows that      

                ̅    ̅     ̅    by (iii). Therefore the information matrix is 

invertible at   . Because the determinant of a matrix is a continuous function of its elements 

and the elements in (9) are continuous functions of  , the true parameter point   , being an 

interior point of the parameter space by (iv), is a regular point of the matrix in (9). Therefore, 

by Theorem 1 of Rothenberg (1971),    is locally identified. Finally, by Theorem 1 and 

Rothenberg’s Theorem 6, the structural parameter point    is also locally identified.   

 

PROOF OF THEOREM 3. The proof is similar to that of Theorem 2. Re-define   
  

   
                        

       and             
    

  , where       
          

  . 

Expression (8) is applicable and the scores for the observation with index   are given by 
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where    
     

  
 

         

    
,       

          and        (     )     for      . Also, 

               and                   hold at   . The information matrix at      is 
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 , 

where        
 |        

  
 

  
 

  
 

    
   and the fact      

     is used. The following 

statements are all made in reference to the true parameter point     . The structure of the 

information matrix indicates that it is invertible if and only if the sub-matrix on deleting the 

third block row and column is invertible, given that       
     

   is of full rank by (ii). This 

sub-matrix can be expressed as (noting that      
    ) 

     

[
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] . 

The information matrix is not invertible if and only there is a non-zero constant vector 

      
    

    such that  

     ( 
    

   

    
  

     
   

    
  

    )
 

   
 

 
     

     
     , 

which together with condition (ii) forces     . Hence, it is not invertible if and only if  

 (
  
 

   
 

  
 

   
 

  
    

    
  

 )    (
  

   
 

  

   
 

  
    

    
  )        

with probability 1 for some constant vector       
      

          
    

    . Note that the 

event   {              
 

 
  

             for any          
    } is implied by the 

event   {(  
        

      
 

 
  

      
           for any    

    
    

    }. Conditional 



on  , the probability of the above display is zero because     is continuous and independent 

of   . Conditional on  ̅ , the probability of the above display is one. It follows that the 

unconditional probability of the above display is    ̅    by (iii). Hence, the information 

matrix is invertible. Further, as in the proof of Theorem 2,    is a regular point of the 

information matrix by (iv). Hence,    is locally identified by Theorem 1 of Rothenberg 

(1971). Finally,    is locally identified by Theorem 1 and Rothenberg’s Theorem 6.   

 

PROOF OF THEOREM 4. For Step 1, because       
           is simply a linear 

regression with heteroskedasticity,    
     

     is identified under (i) and (ii). For Step 2 

identification,    
     

     is fixed and the proof follows closely the proof of Lemma 2 of 

Manski (1985). Let       
     

    
    

     be the true parameter point and   be a local 

alternative point that is not a scalar multiple of   . The goal is to show that       

       , where                   and                   are the events 

that   and    lead to different outcomes of     conditional on       
                

        . 

Let              and   
    

    
     . All probability statements discussed below are 

conditional on the event   
    implicitly (the cases of   

    are similar). The conclusions 

hold unconditionally since     
       by (iii) and (iv). Let          ,        

   and          . We note 

                                  

and similarly for      . Define  ̃     
    

      
  and  ̃     

    
   . First, when        , 

              ̃  ̃           ̃   ̃    
       

           

and similarly            because        has positive tail probabilities. Second, when 

       , either 

              ̃   ̃    
        ̃  ̃      

              or 

              ̃  ̃           ̃   ̃    
              

holds because    ̃  ̃      ̃   ̃    
     by the fact that   is not a scalar multiple of    

and      
    

               
     

            
    . The latter probability is positive 

since the event in the brackets is equivalent to      
       , where      is a quadratic 

function with constant vector coefficients, and        
           by (iii) and (iv). Then,  

                                                    



because         (hence one of       and       must be positive) in a neighbourhood 

of    by (iii) and (iv). Finally, as the map from    
         to    

          
    is given by 

     ,      ,      and         for given   , the Jacobian is clearly of full rank in 

an open neighbourhood of    by (v). Hence,    
     

       is identified according to 

Rothenberg’s Theorem 6.   
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