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Abstract

In this paper, the role of matching efficiency (equivalently, mismatch) at the aggregate

level in driving unemployment fluctuations is estimated using a TVP-SVAR model.

Modelling mismatch at the aggregate level sidesteps the problematic implicit assump-

tion of orthogonality of sources of mismatch at disaggregated levels (industrial, oc-

cupational, geographical, etc.) and is not sensitive to the level of disaggregation by

construction. Observing that estimated aggregate matching efficiency lags business

cycles, I identify a structural shock to aggregate matching efficiency using standard

timing restrictions. Based on impulse response analysis and forecast error variance

decompositions, I conclude that the matching efficiency shock explains no more than

20% of the variation in unemployment in the United States between 1967-2013, whereas

aggregate shocks explain well above 70% of unemployment fluctuations. Related, the

rise in the unemployment rate during the Great Recession is dominated by a slump in

aggregate demand rather than driven by structural factors.
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1 Introduction

In the aftermath of the recent global financial crisis, the United States is suffering from a

frustratingly slow recovery in the labor market. This painful experience has resurrected an

old debate about the source of the slow recovery in employment among both economists

and policymakers. Among others, Delong (2010) argues that it is a shortfall in aggregate

demand rather than structural factors that raised the unemployment rate drastically during

the Great Recession. In contrast, Kocherlakota (2010) favors the opposite hypothesis that

mismatch should be blamed for the sluggish recovery, as quoted from his speech that1

“Monetary stimulus has provided conditions so that manufacturing plants want to hire new

workers. But the Fed does not have a means to transform construction workers into

manufacturing workers.”

Debate about the role of mismatch in shaping unemployment fluctuations can be traced

back to Lilien (1982), Abraham and Katz (1986), and Davis (1987). Lilien (1982) finds that

the unemployment rate is positively correlated to the dispersion in the employment growth

rates across sectors, with this dispersion heightened in recessions. Thus, he attributes a

large part of the rise in unemployment to sectoral reallocations. However, Abraham and

Katz (1986) argue that the positive correlation between the unemployment rate and the

dispersion in employment growth rates is not necessarily a result from sectoral reallocations.

As long as elasticities of different sectors to the aggregate demand shock are diverse enough, I

would expect a positive correlation of this sort. Subsequently, Davis (1987) provides evidence

for the existence of reallocations. Specifically, the sectoral employment growth rates tend

to be highly autocorrelated so that they can not reverse themselves easily. Otherwise, they

would if purely driven by diverse sensitivities to business cycles. More recent empirical studie

on gauging the importance of mismatch in determining unemployment fluctuationss using

disaggregated data include Sahin et al. (2012), Barnichon and Figura (2010, 2014), Herz

and Van Rens (2011) and Davis et al. (2013), among others.

To shed light on this issue, it is important to construct a proper measure of mismatch

(no matter at the aggregate or disaggregated level) and understand its transmission effect

to unemployment. As one of the contributions of this paper, I develop an original two-stage

approach relying on aggregate data only to understand mismatch at the aggregate level and

its transmission mechanism. In the first stage, I define the residuals from the standard Cobb-

Douglas matching function as aggregate matching efficiency which measures the aggregate

1Some authors argue that the matching efficiency has slumped during the Great Recession that ends up
with much less new hires than what would be predicted absent heightened mismatch in the labor market,
for example, see Barlevy (2011) and Veracierto (2011).
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level of mismatch implicitly “averaged” over every source of mismatch. In the second stage,

aggregate matching efficiency is endogenized in the time-varying parameter vector autore-

gression (TVP-VAR) model. The intrinsic matching efficiency shock is identified with the

standard recursive scheme by ordering aggregate matching efficiency first in the TVP-SVAR

model. There is evidence showing that aggregate matching efficiency displays cyclical fluctu-

ations and typically lags business cycles. Thus, I argue it is necessary to endogenize aggregate

matching efficiency to properly assess the impact of mismatch at the aggregate level and that

my identification of matching efficiency shock with timing restrictions is reasonable.

The advantages of my approach are three-fold. First, because I am modeling matching

efficiency at the aggregate level, the results are not sensitive to the level of disaggregation,

which would be a serious problem for modeling disaggregated data as noted by Sahin et al.

(2012) and Barnichon and Figura (2014). Second, looking into the transmission mechanism

of one specific source of mismatch at a time implicitly assumes that disaggregated sources of

mismatch are orthogonal. This orthogonality assumption is questionable. For example, a (se-

vere) local mismatch at industry level facilitates the incentives of worker mobility. However,

the migration can be hindered by “house-locking” effects due to a (drastic) decline in average

family income that leads to a slump in house prices, see Valletta (2013). In return, the aver-

age unemployment spell may last longer and result in a large shortfall in aggregate demand

that imposes upward pressure on industrial mismatch, and so forth.2 Instead, the transmis-

sion mechanism of aggregate matching efficiency shock does not rely on an orthogonality

assumption for different sources of mismatch. Third, a TVP-VAR model is a natural way to

endogenize aggregate matching efficiency without the need to explicitly model disaggregated

sources of mismatch. With a justifiable identification scheme, the underlying structural VAR

provides us standard and powerful tools of impulse response analysis, forecast error variance

decomposition, and counterfactual analysis for the sake of understanding the importance of

mismatch at the aggregate level in shaping unemployment fluctuations. In addition, under

the framework of a TVP-VAR model, I can capture changes in the transmission mechanism

of structural shocks, if any, which is not done in the aforementioned empirical literature.

Based on the framework developed above, I analyze unemployment fluctuations in the

United States between 1967:Q3 and 2013:Q2, especially focusing on the Great Recession.

The evidence suggests that mismatch (evaluated by the aggregate matching efficiency shock)

plays a minor role in determining the dynamics of unemployment. Instead, aggregate shocks

explain well above 80% of the variation in the unemployment rate over the sample periods.

My finding in this paper is consistent with the finding by Sahin et al. (2012) that mismatch

at the industry and occupation level at most accounts for one third of the total increase

2A vivid example is the rise and fall of Detroit in United States over the past century.
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in the unemployment rate, while geographical mismatch plays a trivial role. Additionally,

Barnichon and Figura (2010) and Herz and Van Rens (2011) also conclude that mismatch

contributes little to movements in unemployment.

To address the controversy between Delong (2010) and Kocherlakota (2010), counterfac-

tual analyses are conducted for the Great Recession era by setting the structural factors to

their conditional means, i.e. set both the matching efficiency shock and labor supply shock

in the Great Recession to zero. The simulations do not support Kocherlakota’s hypothe-

sis that mismatch should be blamed for the sluggish recovery in the labor market as the

simulated paths of unemployment rate track closely the actual rate. My counterfacuals are

a sharp contrast to the findings by Sahin et al. (2012) and Barnichon and Figura (2010).

In particular, Sahin et al. (2012) argue that mismatch across industries and occupations

adds 0.75 percentage points and 1.5 percentage points in the unemployment rate during

2006-2009, respectively. Meanwhile, Barnichon and Figura (2010) suggest that mismatch

adds in 1.5 percentage points to the unemployment rate in 2009. The striking differences

may lie in the nature of aggregate matching efficiency treated in the models. Sahin et al.

(2012) and Barnichon and Figura (2010) treat aggregate matching efficiency as an exogenous

shock, while I endogenize aggregate matching efficiency and allow it to respond to aggregate

shocks. As evident from my findings, I argue that, by treating aggregate matching efficiency

exogenously, the analyses in Sahin et al. (2012) and Barnichon and Figura (2010) mistakenly

attribute part of the contribution of aggregate shocks to mismatch, which exaggerates the

importance of mismatch in determining the unemployment fluctuations.

In relation to the previous literature, my study implements an original approach that

involves modeling at the aggregate level to gauge the role of mismatch, departing from

the other approaches that rely on disaggregated data. Sahin et al. (2012) investigate the

importance of mismatch, which is defined as the deviation of actual unemployment from the

optimal unemployment derived from the social planner’s problem under costless between-

sector mobility, using disaggregated data at the industry, occupation, and metropolitan

levels. Barnichon and Figura (2010) decompose the movements in the Beveridge curve

into three parts driven by labor demand, labor supply, and matching efficiency in order to

understand the determinants of unemployment rate, whereas Herz and Van Rens (2011)

develop a simple model of a segmented labor market with search frictions within segments.

In terms of endogenizing aggregate matching efficiency, my approach to endogenization using

a TVP-VAR model is related to empirical studies by Barnichon and Figura (2014) and Davis

et al. (2013), who generalize the standard matching function along different lines. Barnichon

and Figura (2014) focus on the roles of composition of the unemployment pool and dispersion

in labor market conditions, while Davis et al. (2013) incorporate a measure of recruiting
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intensity (per vacancy). My work is also related to Garin et al. (2013) and Sedlacek (2014),

both of which explore in general equilibrium models. Garin et al. (2013) develop a two-island

general equilibrium model of labor reallocation, in the spirit of Lucas and Prescott (1974),

with each island subjected to a common aggregate productivity shock and an island-specific

productivity shock that triggers reallocation of workers between islands and affects the level

of mismatch in the economy. Sedlacek (2014) endogenizes the matching efficiency via firing

costs and endogenous separation driven by firms’ hiring standards in a general equilibrium

model.

The rest of the paper is organized as follows. Section 2 provides the motivation and details

of my proposed empirical method for assessing the role of aggregate matching efficiency

(mismatch at aggregate level) in driving unemployment. Section 3 describes the data source,

priors, and Markov Chain Monte Carlo estimation. Section 4 discusses my empirical findings

in detail. Section 5 concludes.

2 Modeling Strategy

In this section, I describe in detail the empirical methods employed in this paper to under-

stand movements in aggregate matching efficiency and its impact on other macroeconomic

variables, especially the unemployment rate.. In the first step, the standard matching func-

tion (in logs), as surveyed in Petrongolo and Pissarides (2001), is estimated using two-stage

least squares. Aggregate matching efficiency is defined by the residuals from the regression

related to the matching function that reflects the fundamental ability of matching an exist-

ing vacancy with a searching worker. This ability, i.e. aggregate matching efficiency, is not

necessarily exogenous. Endogeneity of aggregate matching efficiency may stem from cyclical

movements in search intensity and reallocations of workers driven by unequal elasticities

of sectoral productivities to aggregate shocks in the spirit of Abraham and Katz (1986).

In the second step, I endogenize the matching efficiency by considering a time-varying pa-

rameter vector autoregression (TVP-VAR) model with stochastic volatility. Identifying the

fundamental matching efficiency shock that is orthogonal to aggregate shocks via timing

restrictions allows me to investigate the importance of mismatch in determining the fluctua-

tions in unemployment over time. The two steps are discussed in more detail in the following

subsections.
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2.1 Construction of Aggregate Matching Efficiency

The matching function is built to associate the new hires with the vacancies posted and the

stock of searching workers.3 The advantage of the matching function lies in its simplicity in

accommodating frictions from various sources without modeling them explicitly. The flow

of new hires Ht is modeled with a standard Cobb-Douglas matching function with constant

returns to scale:

Ht = em+νtUα
t V

1−α
t , (1)

where m is a constant capturing the average aggregate ability of matching a vacancy with

a searching worker, α the constant elasticity of unemployment, Ut the number of searching

workers, Vt the stock of vacancies, and νt is a shifter that moves the aggregate ability of

matching and is allowed to be driven by aggregate structural shocks. I define νt as aggregate

matching efficiency capturing variation in the flow of new hires that can not be explained

by the labor market tightness, i.e. the vacancy-unemployment ratio Vt/Ut, alone. Then, I

rewrite Equation (1) as

ln ft = m+ (1− α) ln
vt
ut

+ νt, (2)

where ft = Ht

Ut
is the job-finding rate, vt = Vt

Lt
the vacancy rate, ut = Ut

Lt
the unemployment

rate, and Lt defines the level of the labor force.

The time series of job-finding rate allowing for elastic labor participation is constructed

following Shimer (2012) using the Current Population Survey (CPS) Basic Monthly Data at

the National Bureau of Economic Research (NBER).4 The Composite Help-Wanted Index

constructed by Regis Barnichon (2010) serves as the proxy for vacancies posted. The level

of the labor force and the unemployment rate are downloaded from the FRED database

maintained by the St. Louis Fed at http://research.stlouisfed.org/fred2/. All of the data are

quarterly and run from 1967:Q3 to 2013:Q2.

To obtain aggregate matching efficiency νt, I regress ln ft on ln vt
ut

and a constant. Then

the residuals record the history of νt. Before estimation, I conduct the Hausman test for

ln vt
ut

using the lagged vacancy rate and unemployment rate as instruments. The test suggests

that ln vt
ut

is endogenous implying that aggregate matching efficiency νt is correlated with the

labor market tightness, which is affected by exogenous disturbances over the business cycle.

This evidence suggests the importance of endogenizing aggregate matching efficiency for

assessing the impact of mismatch properly, as movements in aggregate matching efficiency

3Since I allow nonparticipation in this paper, searching workers are referred to the people who are able
and willing to work but fail to be matched with a vacancy. Meanwhile, the universe of non-employed agents
consists of searching workers and individuals who are outside the labor force.

4The data from June 1967 to December 1975 were tabulated by Joe Ritter and made available by Hoyt
Bleakley.
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can originate from its intrinsic shock and aggregate structural shocks that shift demand and

supply as well. Hence, I estimate the regression with two-stage least squares using the lagged

vacancy rate and unemployment rate as instruments.

Figure 1 plots the history of aggregate matching efficiency between 1967:Q3 and 2013:Q2.

Aggregate matching efficiency clearly displays cyclical fluctuations and typically lags busi-

ness cycles, which is consistent with the finding by Barnichon and Figura (2014). Specifically,

aggregate matching efficiency starts to decline at the end of recessions or the beginning of

expansions, while it rebounds in the later stage of expansions or shortly before the onset of

recessions. Meanwhile, the pattern of aggregate matching efficiency during the Great Re-

cession and its aftermath, except its deeper and faster slump at the onset of the recession,

is not dramatically different from previous recessions. At first sight, the lagged responses of

aggregate matching efficiency may look puzzling. Nevertheless, given the aggregate numbers

of vacancies and searching workers, the redistribution of workers from low productivity in-

dustries to high productivity industries or moving from a slack local labor market to a tight

one, as discussed in Garin et al. (2013) and Sahin et al. (2012), generally takes time to reach

the new equilibrium because of the training costs and moving costs involved. During the

process of adjustment, aggregate matching efficiency first falls and then recovers thereafter.

Another possible source of the lagged behavior is the variation in search intensity over busi-

ness cycles. Normally, searching workers are losing confidence in succeeding to get a job and

their search intensity may decline gradually as an unemployment spell lasts longer which

is standard in a recession. By contrast, they are confident that they will be matched with

a vacancy and search harder in a boom. Aggregate matching efficiency can stay at a high

level even in the early stage of recessions and keep low until the middle of expansions, as

long as the typical responses of search intensity lag aggregate shocks. Figure 2 displays the

time series of the level of discouraged workers between 1994:Q1 and 2013:Q2 obtained from

FRED with Series ID: LNU05026645. Although the data only cover the most recent two

recessions, the number of discouraged workers generally climbs substantially during the re-

cessions and the early stage of expansions and drops drastically only when a boom is clearly

confirmed. It is arguably convincing that an apparent increase (decrease) in the number of

discouraged workers signals a general decline (rise) in search intensity. At the same time,

other things equal, search intensity positively comoves with aggregate matching efficiency.

Therefore, the observed pattern of discouraged workers implies that movements in search

intensity lag aggregate shocks, which at least partially results in the mildly procyclical but

lagged behaviors of aggregate matching efficiency.

As evident from the Hausman test on the labor market tightness and cyclical fluctuations

of the estimated aggregate matching efficiency, it is crucial to endogenize aggregate matching
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Figure 1: The quarterly aggregate matching efficiency (in blue) in logs between 1967:Q3 and
2013:Q2. Shaded bars indicate NBER recession dates.

efficiency for the sake of properly assessing the role of mismatch in shaping the dynamics of

unemployment. Furthermore, observing the predeterminacy of aggregate matching efficiency,

it is natural to identify the intrinsic matching efficiency shock using a standard timing

restrictions. Both of the exercises are illustrated in Section 2.2.

2.2 Understanding the Endogeneity of Aggregate Matching Effi-

ciency and Its Role

2.2.1 Motivation and Background

A rapidly growing literature studies the source of mismatch, equivalently matching efficiency,

and its implications for the labor market fluctuations. Among others, Barnichon and Figura

(2014) and Davis et al. (2013) generalize the standard matching function along different lines.

Barnichon and Figura (2014) take into account composition of the unemployment pool and

dispersion in labor market conditions as determinants of matching efficiency, although their

importance is sensitive to the level of disaggregation. Davis et al. (2013) find job-filling

rates vary with industries and can be accounted for by a generalized matching function

incorporating recruiting intensity (per vacancy). As to research under the general equilibrium

framework, see Garin et al. (2013) and Sedlacek (2014). Garin et al. (2013) develop a two-

island general equilibrium model of labor reallocation, in the spirit of Lucas and Prescott
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Figure 2: The level (in thousands) of quarterly discouraged workers (in blue) between 1994:Q1 and
2013:Q2. Shaded bars indicate NBER recession dates.

(1974), with each island subjected to a common aggregate productivity shock and an island-

specific shock that triggers reallocation of workers between islands and affects the level of

mismatch in the economy. Sedlacek (2014) endogenizes the matching efficiency via firing

costs and endogenous separation driven by firms’ hiring standards, which captures almost

half of the variation of the estimated matching efficiency in his paper.

My empirical analysis adopts the framework of vector autoregression (VAR) with aggre-

gate data that departs significantly from the existing approaches that rely on disaggregated

data in the empirical literature on matching efficiency. The works of Barnichon and Figura

(2014), Davis et al. (2013), and many others investigate mismatch and its influences by

dividing the labor market into numerous sectors according to certain characteristics - indus-

tries, geography and occupations, etc.. Relying on corresponding disaggregated data, they

can only evaluate the impact of mismatch for one specific reason at a time. Furthermore,

their conclusions are sensitive to the level of disaggregation. If the sources of mismatch are

truly orthogonal, the one-at-a-time exercise delivers the correct effects of each type of mis-

match. However, such orthogonality is questionable. For example, if a geographical location

is dominated by one industry, a persistent shrinkage in that industry clearly generates enor-

mous local long-term unemployment, thereby inducing a slump in local matching efficiency

due to mismatch of skills and lower search intensity. This sectoral shrinkage also lowers

average household incomes that brings down local house prices drastically. The unemployed
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houseowners may be unwilling to sell their houses at a nominal loss and move to another

place with greater job opportunities, a phenomenon referred to as the “house-locking” effect,

see Valletta (2013). The “house-locking” effect reduces the geographic mobility and amplifies

mismatch at the industry level. Thus, the one-at-a-time strategy can be misleading on mea-

suring impact of any specific type of mismatch. By contrast, considering matching efficiency

at the aggregate level allows me to take the interactions of different types of mismatch into

account and is immune to the sensitivity of disaggregation by construction.

In addition, a vector autoregressive model is a natural statistical device for endogenizing

aggregate matching efficiency. In a VAR model, aggregate matching efficiency is allowed

to respond to its own intrinsic structural shock as well as aggregate structural shocks sug-

gested by its cyclical behaviors in Figure 1 and the hypothesis in the spirit of Abraham

and Katz (1986) that mismatch can rise from sectoral unequal sensitivities to the common

aggregate shocks. With the time series of unemployment rate and an estimated aggregate

matching efficiency in the VAR model, it can shed light on the contribution of mismatch

to unemployment fluctuations under an appropriate identification scheme via the standard

impulse response analysis, forecast error variance decomposition, and counterfactural anal-

ysis.5 Therefore, a careful and appropriate extraction of the intrinsic (aggregate) matching

efficiency shock is the key to our empirical analysis.

For my analysis, the estimated aggregate matching efficiency (AME) νt, the labor force

participation rate (LFPR) lt, the unemployment rate ut, and the inflation rate πt are included

in the VAR model. The inclusion of unemployment and inflation captures aggregate shocks,

whereas the labor force participation rate captures a shock to labor supply. The labor

force participation, unemployment, and inflation, all of which follow aggregate shocks at no

lag or at least a shorter lag than aggregate matching efficiency, ought to adjust ahead of

aggregate matching efficiency. Hence, I order the estimated aggregate matching efficiency

first in the VAR model and identify the matching efficiency shock by the standard recursive

scheme. Based on the identified structural VAR, I am able to determine the competing roles

of different structural shocks in shaping the dynamics of unemployment.

Last but not least, the VAR model allows for stochastic volatility and time-varying pa-

rameters for which stationarity is imposed in each period of time.6 It is well known that

the United States suffered from highly volatile unemployment and inflation in the 1970s and

5One may worry about the measurement error derived from the estimation of aggregate matching ef-
ficiency. However, parameters in the structural Equation (2) are quite precisely estimated. For example,
the elasticity of unemployment in the matching function α is estimated at 0.42 with a very small standard
deviation of 0.03. Under the definition of aggregate matching efficiency as the residuals from the standard
aggregate matching function, measurement error should not be an issue then.

6This modeling strategy has been widely applied to monetary VAR models, see Cogley et al. (2010) and
Primiceri (2005) among others.
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early 1980s, and enjoyed stabilized macroeconomic aggregates since the middle of 1980s, at

least to the onset of the recent credit crisis in 2007. This stabilization is dubbed the “Great

Moderation” and motivates the inclusion of stochastic volatility in my model to allow for

stochastic volatility in the endogenous variables. Furthermore, the transmission mechanism

of the structural shocks may have changed, for example it is widely noted that recoveries in

the labor market after the three most recent recessions have been slower compared to previ-

ous recessions, a phenomenon known as a “jobless recovery”. Changes in the transmission

mechanism, if present, are easily accounted for by time-varying parameters in the model.

Finally, stationarity imposed on the parameters in each period of time stems from the stance

that one can never expect explosive matching efficiency, labor participation, unemployment

or inflation given a well-defined structure of the economy.

2.2.2 The Time-Varying Parameter Vector Autoregressive (TVP-VAR) Model

The reduced-form TVP-VAR model of order p can be cast in the following form:

yt = X ′tθt + µt, µt ∼ iid. N(0,Ωt)

X ′t = In ⊗
[
1, y′t−1, · · · , y′t−p

]
,

where “ ⊗ ” denotes the Kronecker product, yt is an n × 1 vector including the current

observations of endogenous variables, Xt is an m×n matrix including intercepts and lagged

variables, θt stacks time-varying reduced-form VAR coefficients and Ωt is the time-varying

variance-covariance matrix of the error term µt, for t = 1, 2, · · · , T . In this paper, yt contains

four endogenous variables, so n = 4 and m = 36 because I set p = 2 in order to keep the

dimension of parameter space manageable.

As discussed in the previous subsection on the identification of the matching efficiency

shock, in my benchmark model, yt = [νt, lt, ut, πt]
′ where νt denotes the (aggregate) matching

efficiency estimated in Section 2.1, lt the labor force participation rate, ut the unemployment

rate, and πt is the inflation rate. The order of endogenous variables reflects my identifica-

tion assumption that the matching efficiency only responds to the labor supply shock and

aggregate shocks with at least one-period lag. In addition, the LFPR adjusts to the match-

ing efficiency shock and the labor supply shock instantaneously, but responds to aggregate

shocks with at least one-period lag.

It is well understood that the order of endogenous variables matters for structural in-

terpretations. However, my results are remarkably robust to the orders of [νt, lt, πt, ut]
′,

[νt, ut, πt, lt]
′ and [νt, πt, ut, lt]

′, i.e. orderings by interchanging unemployment and inflation

within the block of aggregate shocks and/or swapping the LFPR and the block of aggre-
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gate shocks. Furthermore, although I do not intend to identify aggregate shocks explicitly

under the recursive identification scheme, the structural shocks to unemployment and infla-

tion resemble the aggregate demand and supply shocks, respectively, under the above four

specifications. Their behaviors can be seen from the impulse response analysis conducted in

Section 4, which shows that the structural shock to unemployment pushes unemployment

and inflation in opposite directions, whereas responses of unemployment and inflation to the

structural shock to inflation have the same sign.7

Technically, structural shocks are recovered via a Cholesky decomposition of the variance-

covariance matrix of the reduced-form error terms as follows:

AtΩtA
′
t = ΣtΣ

′
t, A−1t εt = µt, εt = Σtεt, εt ∼ iid.N(0, I4),

At =


1 0 0 0

a21,t 1 0 0

a31,t a32,t 1 0

a41,t a42,t a43,t 1


4×4

, Σt =


σ11,t 0 0 0

0 σ22,t 0 0

0 0 σ33,t 0

0 0 0 σ44,t


4×4

,

where εt = [ενt, εlt, εut, επt]
′, with the four elements representing the matching efficiency

shock, the labor supply shock, the structural shock to unemployment and the structural

shock to inflation, respectively. Then, the reduced-form time-varying VAR model can be

rewritten as

yt = X ′tθt + A−1t εt, (3)

X ′t = I4 ⊗
[
1, y′t−1, y

′
t−2
]
, εt ∼ iid.N(0,ΣtΣ

′
t).

The time-varying parameters θt follows a parsimonious driftless random walk as

θt = θt−1 + ξt, ξt ∼ iid. N(0, Q), (4)

where Q is positive definite.

In terms of the variance-covariance matrix for the VAR errors, let αt be a vector collecting

7Trivariate models without the LFPR are also studied in the early stage of this project. However, the
trivariate models convey a “matching efficiency puzzle”, i.e. a positive matching efficiency shock rises the
unemployment rate instead of suppressing it. This counterintuitive implication may indicate an omitted
variable problem. Suppose a positive labor supply shock hits the economy, this implies more household
members participating in the labor force and signals an ongoing higher general search intensity. Absent
the LFPR from the model, the positive labor supply shock would be translated into an increase in the
matching efficiency. If the new entrants brought about by the positive labor supply shock are just marginal
workers who are low-skilled, they may not be absorbed by the economy even in a boom, thereby remaining
unemployed and increasing the unemployment rate. Thus, a positive matching efficiency shock may generate
a puzzling response of an increase in unemployment rate in the trivariate models that do not include the
LFPR.
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the non-diagonal and non-zero elements in At and σt be a vector collecting the diagonal

elements in Σt. Then the evolution of elements in αt and σt is as follows:

αt = αt−1 + ηt, ηt ∼ iid. N(0, S), (5)

lnσt = lnσt−1 + ζt, ζt ∼ iid. N(0,W ), (6)

where S,W are positive definite and S =

 S1 0 0

0 S2 0

0 0 S3

 is block diagonal with each block

corresponding to parameters in different equations.

I assume that all of the innovation blocks in the dynamic system are uncorrelated con-

temporaneously and at all lags and leads—i.e., they are jointly normally distributed with

the following variance-covariance matrix V :

V = V ar



εt

ξt

ηt

ζt


 =


I4 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W

 .

3 Model Estimation

As discussed above, I study the role of mismatch in the United States by using a two-stage

modeling strategy. In the first stage, aggregate matching efficiency is derived as in Section

2.1. This section discusses the data source and how the TVP-VAR model can be estimated

in the second stage.

In particular, the TVP-VAR model incorporates the estimated aggregate matching effi-

ciency νt, the LFPR lt, the unemployment rate ut, and the inflation rate πt. The LFPR lt is

the seasonally adjusted Civilian Labor Force Participation Rate (Series ID: CIVPART), and

ut denotes seasonally adjusted civilian unemployment rate of all workers over 16 (Series ID:

UNRATE). The inflation rate is measured by the GDP deflator (continuously compounded

annual rate of change, Series ID: CIVPART). All of the data series were downloaded from

FRED managed by Federal Reserve Bank of St. Louis at http://research.stlouisfed.org/fred2/.

The series are quarterly (averaged from monthly data) and the sample period runs from

1967:Q3 to 2013:Q2.

Estimation of parameters for this model are based on Markov Chain Monte Carlo (MCMC)

methods and Bayesian inference. Priors for state vectors and hyperparameters are calibrated

from a training sample which consists of the first six years of the sample periods (26 quar-
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ters, 1967:Q3-1973:Q4).8 Specifically, a time-invariant VAR model is estimated to produce

point estimates, θ̂0, for the conditional mean parameters and their corresponding variances,

V (θ̂0). Estimates, Ω̂0, of the variance-covariance matrix for the VAR errors are obtained as

well and α̂0, σ̂0 are derived from decomposing Ω̂0. The variance, V (α̂0), of α̂0 is obtained by

simulation from a Wishart distribution with scatter matrix Ω̂0 and degree of freedom set to

24. I set the variance of ln(σ̂0) to 10I3 which is large in log-scale, implying a small weight is

put on the prior. As for the hyperparameters Q, S, W , the priors are inverse-Wishart dis-

tributions. In order to put as little weight as possible on prior beliefs, the degree of freedom

corresponding to each inverse-Wishart distribution is set to the minimum plausible value

dim(Q) + 1 = 37, dim(S1) + 1 = 2, dim(S2) + 1 = 3, dim(S3) = 4 and dim(W ) + 1 = 5,

respectively.

In summary, the priors are as follows:

θ0 ∼ N(θ̂0, 4V (θ̂0)),

α0 ∼ N(α̂0, 4V (α̂0)),

lnσ0 ∼ N(ln σ̂0, 10I3),

Q ∼ IW(24k2QV (θ̂0), 37),

S1 ∼ IW(2k2SV (α̂1,0), 2),

S2 ∼ IW(3k2SV (α̂2,0), 3),

S3 ∼ IW(4k2SV (α̂3,0), 4),

W ∼ IW(5k2QI3, 5),

where kQ = kW = 0.01, kS = 0.1, and α̂1,0, α̂2,0, α̂3,0 correspond to each block of α̂0.
9

Posteriors of the parameters and hyperparameters are obtained via a Metropolis-within-

Gibbs sampler. Except for the rejection sampling procedure for imposing stationarity on θt,

the sampler follows Primiceri (2005) and its recent correction by Del Negro and Primiceri

(2013) closely in that it adapts methods in Carter and Kohn (1994) and Kim et al. (1998) to

draw state vectors θt, αt and lnσt from three Gaussian linear state-space systems separately.

In terms of the rejection sampling, once the unrestricted θT = (θ1, θ2, · · · , θT ) are drawn

from the unconditional posterior, I evaluate the vector autoregressive roots related to θT in

each period of time and reject the whole draw of θT if there is any root lying inside the unit

circle, as proposed by Cogley and Sargent (2005).10

8The training sample is chosen to accord with the typical durations of business cycles and sidestep the
abnormal era of stagflation since the late 1970s.

9See Primiceri (2005) for a full discussion of the reasons behind these values of kQ, kS , kW .
10The acceptance rate of posterior draws is about 10%.
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I consider 70, 000 draws from the posterior sampler, discarding the first 10, 000 draws

known as the “burn-in” period, to allow for convergence to the ergodic distribution. Ev-

ery 20th draw is saved from the remaining 60, 000 draws to economize the storage space.

Therefore, Bayesian inferences are carried out based on 3, 000 draws from the posterior dis-

tribution. Convergence diagnostics are conducted by inspecting sample ACFs for parameter

draws. See the detailed MCMC algorithm and the convergence diagnostics in the technical

appendix.

4 Empirical Results

Lilien (1982) and Abramham and Katz (1986) sparked a long-lasting debate on the impor-

tance of mismatch in the labor market in shaping the unemployment fluctuations in the

United States, especially when the unemployment is at an unusually high level and reverses

sluggishly to lower values. Understanding the determinants of unemployment is crucial for

designing appropriate policy response to the slack labor market. If mismatch resulting from

any reason dominates the unemployment fluctuations, it would not help even if the monetary

policy becomes much more accommodative because the unemployment would be structural

in the sense that it needs to be fixed by longer-term reallocation of workers. By contrast, if

aggregate shocks explain the bulk of variation in unemployment, the central bank’s counter-

cyclical policy may be able to address the worst effects of a recession on the unemployment

rate.

The TVP-SVAR model developed in this paper provides a powerful tool for analyzing the

relative importance of structural shocks, i.e. the impulse response analysis, forecast error

variance decomposition and counterfactual analysis. The above three exercises in my analysis

are carried out by assuming that VAR parameters remain constant at their current values

as time goes forward—i.e., in each period of time, a time-invariant VAR model is assumed

based on the time-varying parameter estimates for that period.11 Evidence obtained from

the above three tools are reported in the following Sections 4.1-4.3.

4.1 Impulse Response Analysis

The impulse response analysis indicates the magnitude and persistence of responses of en-

dogenous variables to each structural shock. Hence, it gives us a clear visual impression

of how the (aggregate) matching efficiency shock affects key macro aggregates, something

11This “local-to-date” assumption is common in the literature on bounded rationality and learning, see the
“anticipated-utility” model in Kreps (1998), and is implemented in Cogley and Sargent (2005) and Cogley
et al. (2010) as well, among many other studies using time-varying parameter models.
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that cannot be properly done in the current literature using disaggregated data. Figures 3

and 4 plot the responses of unemployment and inflation to the unitary structural shocks at

selected dates, respectively. Our framework allows the transmission mechanism of structural

shocks to change with the time-varying parameters. Therefore, it is interesting to find out

how the transmission mechanism evolves over time and if the evolution is nonlinear to re-

cessions and normal times. To do this, I select 1981:Q3, 1990:Q4, 2001:Q3 and 2008:Q4 as

the representative dates of the four most recent recessions and also take down representative

dates—1984:Q2, 1996:Q1, 2006:Q1 and 2010:Q1 for their corresponding follow-up expan-

sions.12 Then, impulse responses of unemployment and inflation to four structural shocks

are evaluated for these selected dates.

Three findings stand out. First, it can be seen from Figures 3 and 4 that the structural

shock to unemployment pushes unemployment and inflation in opposite directions, while

responses of unemployment and inflation to the structural shock to inflation have the same

sign. Hence, the structural shock to unemployment behaves like a demand shock, whereas

the structural shock to inflation resembles a supply shock. Second, the impulse responses

of unemployment and inflation track each other well over time and across different phases

of business cycles, except for the transmissions of the matching efficiency shock and the

labor supply shock to unemployment fluctuations, as depicted in Figure 3. This evidence

suggests that changes in the transmission mechanism happen in a highly structured way.13

Generally speaking, except for the counterintuitive positive response of unemployment to

a unitary increase in the matching efficiency shock in the early 1980s, the positive effect

of the matching efficiency shock has strengthened since the 1990s. Likewise, the sign of

the response of unemployment to a positive labor supply shock has been reversed from

positive to negative since the 1990s. The negative response becomes sharper since the 1990s

and has somewhat weakened following the Great Recession in the late 2007. Finally, the

evidence of nonlinearity in the impulse responses with respect to the phase of business

cycles is weak. As discussed in the above, there is basically no difference in the responses

of inflation to any structural shock over time. The only possible sources of a nonlinear

transmission mechanism lie in the impact of the matching efficiency shock and the labor

12The results are qualitatively and quantitatively robust to parameters at single dates and parameters
averaged over an internal of dates in recessions and expansions.

13Liu and Morley (2014) study a trivariate monetary VAR under the mixture innovation framework and
find that the transmission of monetary policy shock to unemployment is stable over time. However, the
response of inflation to monetary policy shock has weakened a lot since the Great Moderation. Figures 3
and 4 do not contradict these findings. Note that the monetary policy shock can be interpreted as one
source of a demand shock. In Figures 3 and 4, the responses of unemployment to the structural shock to
unemployment over time are almost identical, while the response of inflation to the same shock does decline
a bit (about 0.1 percentage points) since the 2000s. Structured changes in time-varying parameters are also
documented in Cogley and Sargent (2005).
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Figure 3: Posterior medians of responses of unemployment to unitary structural shocks at selected
dates. Recessions (solid lines): 1981:Q3, 1990:Q4, 2001:Q3 and 2008:Q4; Normal times (asterisked
lines): 1984:Q2, 1996:Q1, 2006:Q1 and 2010:Q1. The responses during a recession and its follow-up
expansion are labeled in the same color.
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Figure 4: Posterior medians of responses of inflation to unitary structural shocks at selected dates.
Recessions (solid lines): 1981:Q3, 1990:Q4, 2001:Q3 and 2008:Q4; Normal times (asterisked lines):
1984:Q2, 1996:Q1, 2006:Q1 and 2010:Q1. The responses during a recession and its follow-up ex-
pansion are labeled in the same color.
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supply shock on the unemployment. However, the evidence here is mixed. For example, the

negative responses of unemployment to a positive unitary matching efficiency shock in the

1990 and 2001 recessions are smaller than their counterparts in the follow-up expansions.

Nevertheless, the response of unemployment in 2008 recession is somewhat larger than its

counterpart in the 2010 expansion. Similarly, in terms of the transmission of labor supply

shock, the response of unemployment in the 1990s with respect to business cycle phases is

clearly at odds with that of the 2000s. Thus, the evolution of the impulse responses reflects

the consequences of variation in the underlined structural parameters over time rather than

nonlinearity with respect to phases of business cycles.

4.2 Forecast Error Variance Decomposition

In order to understand the determinants of unemployment fluctuations, it is not enough to

merely look at the impulse responses. Besides the transmission mechanism, the variances of

structural shocks also play a key role in shaping the dynamics of unemployment. Taking the

matching efficiency shock as an example, a unitary increase in log points in the matching

efficiency shock is huge and far above the standard error of matching efficiency of 0.089 in log

points. However, the matching efficiency shock only leads to a peak decline in unemployment

of 0.3 percentage points in 2008:Q4. Hence, the impact of matching efficiency shock may

not be as large as it may seem at first sight.

The forecast error variance decomposition results complement the impulse response anal-

ysis. Following the “local-to-state” assumption on the VAR parameters, I evaluate the fore-

cast error decomposition in each period of time. Figures 5 and 6 report the time-varying

contributions of each structural shock at the horizons of 4 and 20 quarters ahead, respec-

tively.14 Figure 5 reveals that for a one-year-ahead forecast of the unemployment rate, the

structural shock to unemployment almost explains almost all of the forecast error. Con-

versely, it implies that the other three structural shocks, including the matching efficiency

shock, are trivial. At the longer horizon of 20 quarters ahead, in Figure 6, the structural

shock to unemployment still dominates in the unemployment fluctuations. However, its con-

tribution decreases from well above 90% to around 75% of the variation in the unemployment

rate observed from the posterior medians. Contributions of the other three structural shocks

roughly preserve constant patterns no matter whether the horizon is one year ahead or 5

years ahead. The matching efficiency shock generally makes a much larger contribution to

variation in the unemployment rate before the 2000s than after. Its contribution peaks in

the 1980s at about 14% and 17% and reduces to approximately 1% and 5% at the horizons

14The forecast error variance decomposition at the infinite horizon ahead is similar to the results at the
horizon of 20 quarters ahead.
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Figure 5: Forecast error variance decomposition of unemployment (in percentage points) at the
horizon of 4 quarters ahead between 1967:Q3 and 2013:Q2. Posterior median is in red solid lines.
The dashed lines indicate 68% equal-tailed credible intervals.
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Figure 6: Forecast error variance decomposition of unemployment (in percentage points) at the
horizon of 20 quarters ahead between 1967:Q3 and 2013:Q2. Posterior medians are in red solid
lines. The dashed lines indicate 68% equal-tailed credible intervals.
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of 4 and 20 quarters, respectively. Meanwhile, the contributions of labor supply shock peak

at about 8% of the forecast error in the unemployment rate one year and 5 years ahead. In

terms of the structural shock to inflation, its contribution peaks in the late 1970s and starts

to decline with the Great Moderation. In particular, for the 5 years ahead forecasting, the

structural shock to inflation can explain 10% of the variation in the forecasted unemployment

rate before 1982 and around 7% of the fluctuations afterwards.

In summary, aggregate shocks dominate in terms of driving fluctuations in unemployment

between 1967:Q3 and 2013:Q2 for the United States. That is to say, unemployment of the

United States in this sample period is mainly driven by aggregate demand and supply rather

than mismatch in any sense. The evidence provides possible grounds for countercyclical

policy interventions to smooth the pain of a recession. The evidence also provides some

hints about how to fight the sluggish recovery in the labor market after the Great Recession.

4.3 Counterfactual Analysis: the Great Recession

My findings in terms of the forecast error variance decomposition of unemployment is con-

sistent with the vast empirical literature on mismatch during the Great Recession using

disaggregated data. Sahin et al. (2012) argue that mismatch at the industry and occupa-

tion level at most accounts for one third of the total increase in the unemployment rate,

while geographical mismatch plays a trivial role. In addition, mismatch across industries

and occupations adds 0.75 percentage points and 1.5 percentage points in the unemploy-

ment rate during 2006-2009, respectively. Barnichon and Figura (2010) draw the conclusion

that mismatch contributes little to unemployment. In fact, labor demand dominates the

determination of cyclical unemployment, whereas labor supply explains all of the secular

trend in unemployment since 1976. They find that mismatch adds in 1.5 percentage points

to the unemployment rate in 2009. Herz and Van Rens (2011) develop a simple model of a

segmented labor market with search frictions within segments and also find no support for

dominance of mismatch in unemployment fluctuations.

However, as I have discussed above, one must be very careful when dealing with the

disaggregated data since the sources of mismatch may not be orthogonal. Additionally, the

matching efficiency in Sahin et al. (2012), Barnichon and Figura (2010), Herz and Van Rens

(2011), and many others is exogenous. If the variation in matching efficiency is actually partly

attributed to aggregate shocks, the impact of mismatch would be exaggerated. Observing

the cyclical behavior of the estimated aggregate matching efficiency in Figure 1, there is a

clear signal of endogeneity for matching efficiency. This can be also seen in Figure 7, which

reveals the determinants of aggregate matching efficiency according to my model. Generally,
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the aggregate shocks explain 20-40% of the variation in aggregate matching efficiency over

time. This evidence casts serious doubts on counterfactural analysis conducted by simply

setting matching efficiency to its pre-crisis level in order to assess its implications for the

Great Recession in which matching efficiency is treated exogenous.

Figure 8 plots the histories of structural shocks. It is clear that the economy suffers

from negative shocks in aggregate matching efficiency, labor supply, and aggregate demand

since the onset of the credit crisis in 2007. The controversy between Delong (2010) and

Kocherlakota (2010) lies in that whether structural factors, i.e. the matching efficiency shock

and labor supply shock in my model, account for the bulk of unemployment fluctuations

during the Great Recession. To address this issue, I conduct three counterfactual exercises:

I simulate paths of the unemployment rate from 2008:Q2 to 2013:Q2 given “local-to-date”

parameters and other structural shocks by (1) setting the matching efficiency shock to zero;

(2) setting the labor supply shock to zero; (3) setting both the matching efficiency shock

and labor supply shock to zero. Hence, the simulated paths of unemployment rate reflect

the hypothetical scenarios in which the structural factors return to their conditional means

in the absence of negative shocks to matching efficiency and labor supply.

Figure 9 displays the simulated unemployment rates. The simulated paths of unemploy-

ment rate in all of the three exercises track the actual rate closely. This clearly rejects the

hypothesis that it was exacerbated structural factors driving the slump in unemployment

during the Great Recession. Instead, I can draw a conclusion that aggregate shocks account

for the slump and recovery in the labor market, supporting Delong’s argument. My finding is

in sharp contrast to the evidence suggested by Sahin et al. (2012) and Barnichon and Figura

(2010). They find significantly larger add-ins to the unemployment rate during the Great

Recession. This can be ascribed to the exogeneity of matching efficiency in their models,

where the variation in matching efficiency driven by other structural shocks are mistakenly

attributed to matching efficiency shock. To echo the discussion in Section 2, this counter-

factual analysis provides evidence appealing to endogenizing the matching efficiency for the

sake of properly measuring the impact of variation in matching efficiency.

5 Conclusion

In this paper, I developed an original two-stage approach to assessing the impact of match-

ing efficiency (equivalently, mismatch) at the aggregate level on unemployment fluctuations.

Specifically, in the first stage, aggregate matching efficiency is estimated from the standard

Cobb-Douglas matching function. In the second stage, aggregate matching efficiency is in-

corporated in a TVP-VAR model with the labor force participation rate, the unemployment
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Figure 7: Forecast error variance decomposition of matching efficiency (in percentage points) at
the horizon of 20 quarters ahead between 1967:Q3 and 2013:Q2. Posterior medians are in red solid
lines. The dashed lines indicate 68% equal-tailed credible intervals.
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Figure 8: Posterior medians of the histories of structural shocks between 1967:Q3 and 2013:Q2.

25



2008 2009 2010 2011 2012 2013 2014
5

6

7

8

9

10

11

 

 

68% CI
Simulated
68% CI
Actual

(a) Matching efficiency shock

2008 2009 2010 2011 2012 2013 2014
5

6

7

8

9

10

11

 

 

68% CI
Simulated
68% CI
Actual

(b) Labor supply shock

2008 2009 2010 2011 2012 2013 2014
5

6

7

8

9

10

11

 

 

68% CI
Simulated
68% CI
Actual

(c) Matching efficiency & Labor supply shocks

Figure 9: Simulated paths of unemployment rate between 2008:Q2 and 2013:Q2. (a) Matching
efficiency shock set to zero; (b) Labor supply shock set to zero; (c) Both matching efficiency shock
and labor supply shock set to zero. Actual rate is in green. Simulated rates are in red. The
posterior median in red is reported with the 68% equal-tailed credible intervals in dashed lines.
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rate, and inflation. In contrast to the existing literature studying disaggregated data, deal-

ing with mismatch at the aggregate level sidesteps the problematic implicit assumption of

orthogonality of sources of mismatch at disaggregated levels (industrial, occupational, geo-

graphical, etc.), which is a questionable assumption. Observing that the estimated aggregate

matching efficiency lags business cycles, I identify the (aggregate) matching efficiency shock

using timing restrictions, i.e. the standard recursive scheme, by ordering aggregate matching

efficiency first in the TVP-SVAR model.

Under the identified structural VAR model, with the help of impulse response analysis

and forecast error variance decomposition, I find that aggregate shocks rather than aggregate

matching efficiency shock dominate unemployment fluctuations in the United States from

1967:Q3 to 2013:Q2. Based on the counterfactual analysis during the Great Recession, the

conclusion can be drawn that the surge in the unemployment rate as consequences of the

recent credit crisis in 2007-2009 was not structural in the sense that the slump in the labor

market appears to have been mainly driven by a shortfall in the aggregate demand rather

than by structural factors.
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Appendix A. Simulating p(θT , αT , σT , Q, S,W |yT )
0. State-space models
Model One:

yt = X ′tθt + A−1t εt, (A.1)

θt = θt−1 + ξt. (A.2)

Model Two:

ŷt = Dtαt + Σtεt, (A.3)

αt = αt−1 + ηt, (A.4)

where Dt =


0 0 0 0 0 0

−ŷ1,t 0 0 0 0 0

0 −ŷ1,t −ŷ2,t 0 0 0

0 0 0 −ŷ1,t −ŷ2,t −ŷ3,t

.

Model Three:

y∗∗t = 2ht + et, (A.5)

ht = ht−1 + ζt, (A.6)

where y∗∗t = [y∗∗1t , y
∗∗
2t , y

∗∗
3t , y

∗∗
4t ]
′, y∗∗t = ln[(y∗t )

2 + c], y∗t = At(yt − X ′tθt), c = 0.001 and

et = [e1t, e2t, e3t, e4t]
′ in which ejt, j = 1, 2, 3, 4 are log-chi-square distributed.

1. Drawing unrestricted reduced VAR parameters θT

Conditional on yT , αT , σT , Q, S,W , the state vector θT can be drawn from the state-space

model A.1 and A.2 by Gibbs sampling developed in Carter and Kohn (1994). Denote the

unrestricted posterior density of θT by pU(θT |αT , σT , Q, S,W, yT ), then

pU(θT |αT , σT , Q, S,W, yT )

= pU(θT |αT , σT , Q, yT )

= pU(θT |αT , σT , Q, yT )
T−1∏
t=1

pU(θt|θt+1, y
t, αT , σT , Q),
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where

θt | θt+1, y
t, αT , σT , Q ∼ N(θt|t+1, Pt|t+1),

θt|t+1 = E(θt|θt+1, y
t, αT , σT , Q),

Pt|t+1 = V ar(θt|θt+1, y
t, αT , σT , Q).

The last recursion of forward Kalman filter gives θT |T and PT |T from which θT can be sim-

ulated. Then θt|t+1 and Pt|t+1, t = 1, 2, · · · , T − 1, are obtained by backward recursions

from θT |T and PT |T . From N(θt|t+1, Pt|t+1), I are able to simulate the smoothed estimates of

θt, t = 1, 2, · · · , T − 1. Please see the details of Gibbs sampling in Appendix B.

2. Rejection sampling: drawing stationary reduced VAR parame-
ters θT

To sample from the target posterior density, p(θT |αT , σT , Q, S,W, yT ), of stationary θT , I

evaluate roots of the VAR polynomials associated with the unrestricted θT simulated from

pU(θT |αT , σT , Q, S,W, yT ) in each period of time and discard the whole draw θT if there is

any root lying inside the unit circle at any date.

3. Drawing hyperparameter Q

Since I assume the prior of Q is the inverse-Wishart distribution IW(Q, νQ), hence Q−1 is

governed by Wishart distribution as:

Q−1 ∼ W(Q−1, νQ).

Then, the posterior for Q−1 conditional on other blocks is Wishart as well:

Q−1|yT , θT , αT , σT , S,W ∼ W(Q
−1
, νQ),

where

Q
−1

=

[
Q−1 +

T∑
t=1

(θt+1 − θt)(θt+1 − θt)′
]−1

and νQ = νQ + T.

4. Drawing covariances αT

Reconsider the Gaussian linear state-space model A.3 and A.4 under the assumption of block-

diagonal S. Since ŷ1,t is determined by exogenous identity shock ε1t and σ11,t, thus conditional

on other blocks, ŷ1,t is predetermined in ŷ2,t’s equation. So are ŷ1,t and ŷ2,t predetermined in
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ŷ3,t’s equation. Likewise, ŷ1,t, ŷ2,t and ŷ3,t are predetermined in ŷ4,t’s equation. Therefore, αt

can be obtained by applying Kalman filter and the backward recursion equation by equation.

Let αt = [α1,t, α2,t, α3,t]
′, where α1,t = α21,t, α2,t = [α31,t, α32,t]

′ and α3,t = [α41,t, α42,t, α43,t]
′

are corresponding to different blocks in S, then the smoothed estimate of αt is derived from

αi,t | αi,t+1, y
t, θT , Si, σ

T ∼ N(αi,t|t+1,Λi,t|t+1),

αi,t|t+1 = E(αi,t|αi,t+1, y
t, θT , Si, σ

T ),

Λi,t|t+1 = V ar(αi,t|αi,t+1, y
t, θT , Si, σ

T ), i = 1, 2, 3.

5. Drawing hyperparameter S

Recall that I separate S into three blocks S1, S2 and S3 each governed by inverse-Wishart

distribution IW(Sj, νSj
), j = 1, 2, 3. Equivalently, S−1j ∼W(Sj

−1, νSj
), j = 1, 2, 3. Thus, the

conditional posterior for Sj, j = 1, 2, 3, are as follows:

S−1j |yT , θT , αT , σT , Q,W ∼ W(S
−1
j , νSj

),

where

S
−1
j =

[
S−1j +

T∑
t=1

(αj,t+1 − αj,t)(αj,t+1 − αj,t)′
]−1

and νSj
= νSj

+ T.

6. Drawing stochastic volatility σT

The stochastic volatility σT are drawn from the non-Gaussian linear state-space model A.5

and A.6 based on a mixture of seven normals approximation a la Kim et al. (1998) with

component probabilities ql, means ml − 1.2704 and variances v2l , l = 1, 2, · · · , 7. Please

see the constants {ql,ml, v
2
l } chosen for matching a number of moments of the log(χ2(1))

distribution in Kim et al. (1998). Note that y∗∗it and y∗∗jt are independent of one another for

i 6= j, hence, eit is independent of ejt as well. Thus, it allows us to employ the same mixture

of normals to approximate any element in et.

Define the state-indicator matrix sT = [s1, s2, · · · , sT ]′, st = [s1t, s2t, s3t]
′, sjt ∈ {1, 2, · · · , 7},

j = 1, 2, 3 and t = 1, 2, · · · , T , showing in each period of time which member of the mixture

of normals is used for each element of et. Then, sT can be updated as in Kim et al. (1998)

for each sjt independently from the discrete density

Pr(sjt = l|y∗∗jt , hjt) ∝ qlfN(y∗∗jt |2hjt +ml − 1.2704, v2l ), j = 1, 2, 3, l = 1, 2, · · · , 7,
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where fN(·) stands for the normal density.

Conditional on other blocks, after determining the members of the mixture of normals

used for approximation for et, the system obtained is a Gaussian linear state-space model in

which ht can be easily drawn based on the standard Kalman filtering and backward recursions

as in previous steps. Specifically, smoothed estimates of ht can be drawn recursively from

ht | ht+1, y
t, θT , αT ,W, sT ∼ N(ht|t+1, Ht|t+1),

ht|t+1 = E(ht|ht+1, y
t, θT , αT ,W, sT ),

Ht|t+1 = V ar(ht|ht+1, y
t, θT , αT ,W, sT ).

Finally, the smoothed estimate of σt can be recovered by transform σt = exp{0.5ht}.

7. Drawing hyperparameter W

Note that W ∼ IW(W, vW ), i.e. W−1 ∼ W(W−1, vW ), where W(·, ·) and IW(·, ·) stand for

Wishart distribution and inverse-Wishart distribution, respectively. Hence, the posterior for

W−1 conditional on other blocks reads:

W−1|yT , θT , αT , σT , Q, S ∼ W(W
−1
, vW ),

where

W
−1

=

[
W−1 +

T∑
t=1

(ht+1 − ht)(ht+1 − ht)′
]−1

and νW = νW + T.
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Appendix B. Gibbs Sampling for State-Space
Models

I cast the Gaussian linear state-space models considered in this paper into the following

state-space form:

Measurement equation: yt = Ftβt + ut,

State equation: βt = βt−1 + vt,

where [
ut

vt

]
∼ iid. N

([
ut

vt

]
,

[
Rt 0

0 Q

])
.

Define

βt|s = E(βt|ys, F s, Rs, Q),

Pt|s = V ar(βt|ys, F s, Rs, Q).

Given the mean and variance of the initial state, β0|0 and P0|0, the forward Kalman filter

yields:

βt|t−1 = βt−1|t−1,

Pt|t−1 = Pt−1|t−1 +Q,

κt = Pt|t−1F
′
t(FtPt|t−1F

′
t +Rt)

−1,

βt|t = βt|t−1 + κt(yt − Ftβt|t−1),

Pt|t = Pt|t−1 − κtFtPt|t−1.

After obtaining βT |T and PT |T , I draw βT from N(βT |T , PT |T ). Then the draw of βT and

the output derived from the above forward Kalman filter are used for backward recursion as

follows:

βt|t+1 = βt|t + Pt|tP
−1
t+1|t(βt+1 − βt|t),

Pt|t+1 = Pt|t − Pt|tP−1t+1|tPt|t,

which provide βT−1|T and PT−1|T that are used to generate βT−1. Likewise, βT−2, βT−3,

· · · , β1 are drawn from N(βT−2|T−1, PT−2|T−1), N(βT−3|T−2, PT−3|T−2), · · · , N(β1|2, P1|2), re-

spectively.
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Appendix C. Convergence Diagnostics
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Figure 10: 20th-Order Autocorrelations for Parameter Draws. From left to right, conditional mean
parameters θt from 1-5688, covariances αt from 5689-6636, variances σt from 6637-7268 and hyper-
parameters Q,S,W from 7269-8616, where t = 1, 2, · · · , T and j = 1, 2, · · · , 6.
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