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Abstract

Under treatment effect heterogeneity, an instrument identifies the instrument-

specific local average treatment effect (LATE). If a regression model is estimated

by the two-stage least squares (2SLS) using multiple instruments, then 2SLS is

consistent for a weighted average of different LATEs. In practice, a rejection

of the overidentifying restrictions test can indicate that there are more than

one LATE. What is often overlooked in the literature is that the postulated

moment condition evaluated at the 2SLS estimand does not hold unless those

LATEs are the same. If so, the conventional heteroskedasticity-robust variance

estimator would be inconsistent. However, 2SLS standard errors based on the

conventional variance estimator have been reported even when the overiden-

tifying restrictions test is rejected. I propose a consistent estimator for the

asymptotic variance of 2SLS by using the result of Hall and Inoue (2003) on

misspecified moment condition models. This can be used to correctly calculate

the standard errors regardless of whether there are more than one LATE or not.
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1 Introduction

Since the series of seminal papers by Imbens and Angrist (1994), Angrist and Imbens

(1995), and Angrist, Imbens, and Rubin (1996), the local average treatment effect

(LATE) has played an important role in providing useful guidance to many policy

questions. The key underlying assumption is treatment effect heterogeneity. Each

individual has a different causal effect of treatment on outcome. Assume a binary

treatment, Di, and an outcome variable Yi. Let Ydi denote the potential outcome of

individual i given treatment status Di = 1 or 0. Y1i and Y0i denote the response with

and without the treatment, respectively. The individual treatment effect is Y1i − Y0i
which is assumed to be heterogeneous, but we never observe both values at the same

time. Therefore, researchers focus on the average treatment effect (ATE), E[Y1i−Y0i].
However, unless the treatment status is randomly assigned, a naive estimate of ATE

is likely to be biased because of selection into treatment.

Instrumental variables can be used to overcome this endogeneity problem. If an

instrument Zi which is independent of Y1i and Y0i, and correlated with the treatment

Di is available, then ATE of those whose treatment status can be changed by the

instrument, thus the local ATE, can be identified. Assume Zi is binary and define

D1i and D0i be i’s treatment status when Zi = 1 and Zi = 0, respectively. The LATE

theorem of Imbens and Angrist (1994) shows that

Cov(Yi, Zi)

Cov(Di, Zi)
=

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
= E[Y1i − Y0i|D1i > D0i]. (1.1)

That is, the instrumental vaiables (IV) estimand (or the Wald estimand) is equal to

the ATE for a subpopulation such that D1i > D0i, which is called compliers. Those

who take the treatment regardless of the instrument status, D1i = D0i = 1, are

always-takers, and those who do not take the treatment anyway, D1i = D0i = 0, are

never-takers. We cannot identify ATE for always-takers and never-takers in general.

By the monotonicity assumption of Imbens and Angrist (1994), we exclude defiers

who behave in the opposite way with compliers, D1i = 0 and D0i = 1. Since the

compliers are specific to the instrument Zi, LATE is instrument-specific.1

The above setting can be generalized to multiple instruments. The two-stage

1Abadie (2002) shows that the marginal distributions of potential outcomes can be identified for
compliers. These marginal distributions are also instrument-specific.
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least squares (2SLS) estimator is commonly used to estimate the causal effect in such

cases. Without loss of generality, consider mutually exclusive binary instruments, Zj
i

for j = 1, ..., q. Let Dj
zi be i’s potential treatment status when Zj

i = z where z = 0, 1,

and j = 1, ..., q. Each instrument identifies a version of LATE because compliers

may differ for each Zj
i . It is well known that the 2SLS estimator using multiple

instruments is consistent for a weighted average of different LATEs. In other words,

the 2SLS estimand is a weighted average of treatment effects for instrument-specific

compliers (Angrist and Pischke, 2009; Kolesár, 2013):

ρa =

q∑
j=1

ξj · E[Y1i − Y0i|Dj
1i > Dj

0i],

where ξj is a nonnegative number and
∑

j ξj = 1. For example, Angrist and Evans

(1998) use twin births and same-sex sibships as instruments to estimate the effect of

family size on mother’s labor supply. The twins instrument identifies LATE of those

who had more children than they otherwise would have had because of twinning,

while the same-sex instrument identifies LATE of those whose fertility was affected

by their children’s sex mix. These two compliers need not be the same. Their result

shows that the 2SLS estimate using both instruments is a weighted average of two

IV estimates using one instrument at a time.

If the 2SLS estimand is a weighted average of more than one LATE, then the

commonly conducted overidentifying restrictions test (the J test, hereinafter) would

be rejected. What is less well known and often overlooked in the literature is that a

rejection of the J test implies that the postulated moment condition is likely to be

misspecified. If so, the conventional standard errors are no longer consistent regardless

of how small the differences among LATEs are.2 This fact has been neglected and

the standard errors have been routinely calculated even with small p values of the

J test, e.g. see Angrist and Krueger (1991), Angrist and Evans (1998) and Angrist,

Lavy, and Schlosser (2010), among others.

In this paper, I propose a consistent estimator for the asymptotic variance of

2SLS robust to multiple LATEs. The standard errors based on the proposed vari-

2The J test can also be rejected due to invalid instruments. Kitagawa (2014) proposed a speci-
fication test for instrument validity in this framework. The 2SLS estimand would change, and the
conventional standard errors would also be inconsistent if the instruments are invalid. I assume
that the validity is justified either by a statistical test such as Kitagawa (2014) or by an economic
reasoning.
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Sample size = 486,926 Columns
Independent variable (2) (4) (6) (8)

Years of education 0.0553 0.0948 0.0393 0.0779
C (0.0138) (0.0221) (0.0146) (0.0238)
MR (0.0166) (0.0277) (0.0175) (0.0308)

Race (1 = black) — — -0.2266 -0.1787
C (0.0185) (0.0298)
MR (0.0221) (0.0385)

SMSA (1 = center city) — — -0.1535 -0.1182
C (0.0136) (0.0219)
MR (0.0163) (0.0283)

Married (1 = married) — — 0.2442 0.2450
C (0.0025) (0.0025)
MR (0.0025) (0.0026)

9 Year-of-birth dummies Yes Yes Yes Yes
8 Region-of-residence dummies No No Yes Yes
Age — 0.1326 — 0.1215

C (0.0487) (0.0475)
MR (0.0530) (0.0527)

Age-squared — -0.0016 — -0.0015
C (0.0007) (0.0007)
MR (0.0008) (0.0008)

J test statistic (dof) 101.2 (29) 49.7 (27) 93.2 (29) 51.2 (27)
p-value [0.0000] [0.0049] [0.0000] [0.0033]
Number of instruments 40 40 51 51

Table 1: Comparison of the proposed multiple-LATEs-robust (MR) and the conven-
tional (C) standard errors—Replication of Table VI in Angrist and Krueger (1991)

ance estimator can be substantially different from the one based on the conventional

heteroskedasticity-robust standard errors even for a large sample size. Table 1 shows

a replication result of Table VI in Angrist and Krueger (1991). The authors use

quarter-of-birth as instruments to find a relationship between educational attainment

and compulsory school attendance law. Since they used a full set of quarter-of-birth

times year-of-birth interactions as instruments, the models are highly overidentified.

The p-values of the J test are below any reasonable significance level. If we rule out

the possibility of invalid instruments, then the rejection of the J test implies that

there are more than one LATE and the conventional standard errors are no longer

correct. The numbers in parentheses are standard errors, and those in bold are ones

based on the proposed multiple-LATEs-robust variance estimator.
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Using 2SLS with multiple instruments has been very popular. Stephens and

Yang (2014) reexamine the relationship between compulsory education and returns

to schooling. Siminski and Ville (2011) use Australian data to see long-run mortality

effects of Vietnam-era army service. In health economics, 2SLS is used in Evans and

Lien (2005), Evans and Garthwaite (2012), and Doyle Jr (2008). From a theoret-

ical point of view, two recent papers cover similar topics with this paper. Kolesár

(2013) shows that under treatment effect heterogeneity the 2SLS estimand is a con-

vex combination of LATEs while the limited information maximum likelihood (LIML)

estimand may not. Angrist and Fernandez-Val (2013) propose an estimand for new

subpopulations by reweighting covariate-specific LATEs. However, neither of the two

papers considers correct variance estimation.

In the next section, I show by example that the postulated moment condition

is misspecified when there are more than one LATE. The asymptotic distribution

of 2SLS estimators in such a case is derived, and a consistent variance estimator

is proposed. Section 3 presents simulation results that show p-values of the J test

are negatively correlated with the difference between the proposed multiple-LATEs-

robust and the conventional standard errors. Section 4 concludes. The proofs of

propositions are collected in Appendix.

2 Moment condition for 2SLS

Commonly used IV and 2SLS estimators can be derived from the corresponding mo-

ment conditions. Consider a linear model

Yi = α0 + ρ0Di + εi ≡ X′iβ0 + εi, (2.1)

where Xi = (1, Di)
′ and β0 = (α0, ρ0)

′. Since Di is endogeneous, β0 cannot be

consistently estimated by OLS. If an instrument vector Zi = (1, Z1
i , Z

2
i , ..., Z

q
i )′ such

that E[Ziεi] = 0 exists, then β0 can be consistently estimated by the 2SLS estimator

β̂ = (X′Z(Z′Z)−1Z′X)−1X′Z(Z′Z)−1Z′Y, (2.2)

where X ≡ (X′1, · · · ,X′n)′ is an n × 2 matrix, Z ≡ (Z′1, · · · ,Z′n)′ is an n × (q + 1)

matrix3, and Y ≡ (Y1, ..., Yn)′ is an n × 1 vector. The 2SLS estimator is a special

3Note that a constant is included in the instrument vector.
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case of a GMM estimator using (n−1Z′Z)
−1

as a weight matrix based on the moment

condition

0 = E[Ziεi] = E[Zi(Yi − α0 − ρ0Di)]. (2.3)

When (2.3) holds at a unique parameter vector β0 = (α0, ρ0), the moment condition

is correctly specified. The model is overidentified if the dimension of the moment

condition is greater than that of the parameter vector and just-identified when they

are equal. For example, if Z1
i is the only instrument available, the model is just-

identified and the solution is given by

α0 = E[Yi]− ρ0 · E[Di], (2.4)

ρ0 =
Cov(Yi, Z

1
i )

Cov(Di, Z1
i )

= E[Y1i − Y0i|D1
1i > D1

0i].

Thus, LATE with respect to Z1
i is identified, and can be consistently estimated by

the IV estimator.

However, when multiple instruments are used so that the model is overidentified,

the postulated moment condition becomes problematic because it restricts all the

instrument-specific LATEs to be identical by construction. If those LATEs are dif-

ferent, then there may be no parameter that satisfies (2.3) simultaneously even if the

instruments are valid. To see this, suppose that there are two instruments, Z1
i and

Z2
i . The moment condition is

0 = E[Yi − α0 − ρ0Di] = E[Z1
i (Yi − α0 − ρ0Di)] = E[Z2

i (Yi − α0 − ρ0Di)]. (2.5)

Solving the first equation for α0, substituting it into the second and third equations,

and solving them for ρ0, we have

ρ0 =
Cov(Yi, Z

1
i )

Cov(Di, Z1
i )

=
Cov(Yi, Z

2
i )

Cov(Di, Z2
i )
. (2.6)

But this implies that the two LATEs are the same, which is not true in general. Thus,

(2.6) does not hold and the moment condition does not have a solution that satisfies

the three equations simultaneously.

In general, if the moment condition does not hold for all possible values of pa-

rameter in the parameter space, the model is misspecified. In our case, the model is

misspecified due to heterogeneous treatment effects across different complier groups
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although all the instruments are valid. The J test is commonly used in practice to

test whether the moment condition is correctly specified or not, which implies a ho-

mogeneous treatment effect in this framework. It is not surprising that researchers

often face a significant J test statistic when multiple instruments are used because

even a small difference in LATEs across complier groups will result in a rejection of

the J test asymptotically.

Although it is well known that 2SLS with multiple instruments estimates a weighted

average of different LATEs and a rejection of the J test can be merely due to hetero-

geneity of treatment effects, the consequence of misspecification on the asymptotic

variance of 2SLS has been overlooked in the literature. This is surprising because the

conventional heteroskedasticity-robust variance estimator would be inconsistent for

the true asymptotic variance of 2SLS if the underlying moment condition is misspec-

ified.

The above argument can be generalized to models with covariates, and situations

where instruments or a treatment variable can take multiple values, or even be con-

tinuous. In such cases, the 2SLS estimand changes. Formulas and interpretations are

given in Theorems 2 and 3 of Angrist and Imbens (1995), and Theorem 1 of Kolesár

(2013). Despite the changes in interpretations of the 2SLS estimand, the fact that the

postulated moment condition is misspecified does not change. The following proposi-

tion shows that the asymptotic distribution of 2SLS estimators when there are more

than one LATE in a general setting.

Proposition 1. Let (Yi,Xi,Zi)
n
i=1 be an iid sample, where Xi = (W′

i, Di)
′, Zi =

(W′
i, Z

1
i , · · · , Z

q
i )′, and Wi be a vector of covariates including a constant. Suppose

that the model is given by Yi = W′
iγ+Diρ+εi ≡ Xiβ+εi where β ≡ (γ ′, ρ)′, and the

2SLS estimator (2.2) is used for estimation. Let βa = (γa
′, ρa)

′ be the 2SLS estimand

where γa satisfies E[Yi] = E[Wi]
′ · γa + E[Di] · ρa and ρa is a linear combination of

different LATEs. Let ei ≡ Yi −X′iβa. The asymptotic distribution of 2SLS is

√
n(β̂ − βa)

d→ N(0, H−1ΩH−1),

where H = E[XiZ
′
i] (E[ZiZ

′
i])
−1E[ZiX

′
i], Ω = E[ψiψ

′
i], and

ψi = E[XiZ
′
i](E[ZiZ

′
i])
−1 (Ziei − E[Ziei]) + (XiZ

′
i − E[XiZ

′
i])(E[ZiZ

′
i])
−1E[Ziei]

+E[XiZ
′
i](E[ZiZ

′
i])
−1 (E[ZiZ

′
i]− ZiZ

′
i) (E[ZiZ

′
i])
−1
E[Ziei].
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The next proposition proposes a consistent estimator for the asymptotic variance

matrix of 2SLS robust to multiple-LATEs.

Proposition 2. A multiple-LATEs-robust asymptotic variance estimator for 2SLS is

given by

Σ̂MR = n ·
(
X′Z (Z′Z)

−1
Z′X

)−1(∑
i

ψ̂iψ̂
′
i

)(
X′Z (Z′Z)

−1
Z′X

)−1
(2.7)

where

ψ̂i =
1

n
X′Z

(
1

n
Z′Z

)−1(
Ziêi −

1

n
Z′ê

)
(2.8)

+

(
XiZ

′
i −

1

n
X′Z

)(
1

n
Z′Z

)−1
1

n
Z′ê

+
1

n
X′Z

(
1

n
Z′Z

)−1(
1

n
Z′Z− ZiZ

′
i

)(
1

n
Z′Z

)−1
1

n
Z′ê,

êi = Yi −X′iβ̂, and ê = (ê1, ê2, ..., ên)′.

The formula of Σ̂MR is different from that of the conventional heteroskedasticity-

robust variance estimator:

Σ̂C = n ·
(
X′Z (Z′Z)

−1
Z′X

)−1(∑
i

ZiZ
′
iê

2
i

)(
X′Z (Z′Z)

−1
Z′X

)−1
. (2.9)

Under treatment effect homogeneity, both Σ̂MR and Σ̂C converge in probability to

the same limit, but they are generally different in finite sample. Σ̂MR is consistent

for the true asymptotic variance matrix regardless of whether the postulated moment

condition is misspecified or not, and thus can be used when there is one or more than

one LATE. In contrast, Σ̂C is consistent only if the underlying LATEs are the same.

This is also true for the standard errors based on Σ̂MR and Σ̂C .

Remark 1 (Relation to existing studies) When there is a single endogenous vari-

able without covariates, Proposition 1 coincides with the result in the proof of The-

orem 3 of Imbens and Angrist (1994) when the first stage is known but needs to be

estimated.4 Intuituvely, this is because Imbens and Angrist do not use the assump-

4There are typos in the proof of Theorem 3 of Imbens and Angrist (1994). Their matrix ∆ shoud
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tion of E[Ziεi] = 0 in deriving their asymptotic distribution. Even in such cases,

however, econometric softwares do not estimate their asymptotic variance, resulting

in wrong standard errors. Angrist and Imbens (1995) and Kolesár (2013) show that

the 2SLS estimand is a weighted average of LATEs and provide interpretations, but

neither of them derives the asymptotic distribution of 2SLS. Thus, Proposition 1 com-

plements their results. Hall and Inoue (2003) present the asymptotic distribution of

GMM estimators under misspecification. Specifically, Proposition 1 is a special case

of their Theorem 2 in the context of treatment effect heterogeneity. Thus, there is

little surprise in terms of a proof technique. The marginal contribution of this paper

is to show that 2SLS using multiple instruments under treatment effect heterogeneity

is a special case of misspecified GMM so that the analysis of its asymptotic behavior

can be significantly simplified.

Remark 2 (Invalid Instruments) The multiple-LATEs-robust variance estimator

Σ̂MR is also robust to invalid instruments, i.e., instruments correlated with the error

term. Consider a linear model Yi = X′iβ0 + εi where Xi is a (k + p) × 1 vector

of regressors. Among k + p regressors, p are endogeneous, i.e. E[Xiεi] 6= 0. If a

k + q vector of instruments Zi is available such that E[Ziεi] = 0 and q ≥ p, then β0

can be consistently estimated by 2SLS or GMM. If any of the instruments is invalid,

then E[Ziεi] 6= 0 and β0 may not be consistently estimated. Instead, a pseudo-

true value that minimizes the corresponding GMM criterion is estimated.5 Since the

moment condition does not hold, the model is misspecified. There are two types

of misspecification: (i) fixed or global misspecification such that E[Ziεi] = δ where

δ is a constant vector containing at least one non-zero component, and (ii) local

misspecification such that E[Ziεi] = n−rδ for some r > 0. A particular choice of r =

1/2 has beeen used to analyse the asymptotic behavior of 2SLS estimators with invalid

instruments by Hahn and Hausman (2005), Bravo (2010), Berkowitz, Caner, and

Fang (2008, 2012), Otsu (2011), Guggenberger (2012), and DiTraglia (2013). Under

either fixed or local misspecification, Σ̂MR in Proposition 2 is consistent for the true

asymptotic variance. However, the conventional variance estimator Σ̂C is inconsistent

under fixed misspecification. Under local misspecification, Σ̂C is consistent but the

rate of convergence is negatively affected.

read ∆ =

 E[ψ(Z,D, θ) · ψ(Z,D, θ)′] E[ε · ψ(Z,D, θ)] E[g(Z) · ε · ψ(Z,D, θ)]
E[ε · ψ(Z,D, θ)]′ E[ε2] E[g(Z) · ε2]

E[g(Z) · ε · ψ(Z,D, θ)]′ E[g(Z) · ε2] E[g2(Z) · ε2]

.

5The 2SLS estimand βa in Proposition 1 is an example of such pseudo-true values.
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Remark 3 (Bootstrap) Bootstrapping can be used to get more accurate t tests and

confidence intervals (CI’s) based on β̂, in terms of having smaller errors in the rejection

probabilities or coverage probabilities. This is called asymptotic refinements of the

bootstrap. Since the model is overidentified and possibly misspecified, and 2SLS is a

special case of GMM, the misspecification-robust bootstrap for GMM of Lee (2014)

can be used. In contrast, the conventional bootstrap methods for overidentified GMM

of Hall and Horowitz (1996), Brown and Newey (2002), and Andrews (2002) assume

correctly specified moment conditions, in this case, treatment effect homogeneity.

Therefore, they achieve neither asymptotic refinements nor consistency. Suppose one

wants to test H0 : βm = βa,m or to construct a CI for βa,m where βa,m is the mth

element of βa. The misspecification-robust bootstrap critical values for t tests and

CI’s are calculated from the simulated distribution of the bootstrap t statistic

T ∗n =
β̂∗m − β̂m√
Σ̂∗MR,m/n

where β̂∗m and β̂m are the mth elements of β̂∗ and β̂, respectively, Σ̂∗MR,m is the mth

diagonal element of Σ̂∗
MR, and β̂∗ and Σ̂∗

MR are the bootstrap versions of β̂ and

Σ̂MR based on the same formula using the bootstrap sample rather than the original

sample.

3 Simulation

A random coefficient model with two mutually exclusive instruments is considered for

simulation. First, a single binary instrument Z0
i is randomly generated. Next, {ui}ni=1

are generated from the uniform distribution U [0, 1] and individual compliance types

with respect to Z0
i are assigned: An individual i is a never-taker if 0 ≤ ui < 0.2,

a complier if 0.2 ≤ ui < 0.8, and an always-taker if 0.8 ≤ ui ≤ 1. Treatment

status is determined accordingly. Then, Z0
i is decomposed into two mutually exclusive

instruments randomly, Z1
i and Z2

i , such that Z1
i + Z2

i = Z0
i . Thus, in this setting,

always-takers and never-takers are common to both instruments, but compliers for

Z0
i is decomposed into three subgroups: Common compliers for both Z1

i and Z2
i ,

compliers for Z1
i only, and compliers for Z2

i only.
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n 100 1,000 10,000

mean(ρ̂) 1.8926 1.9213 1.9235
s.d.(ρ̂) 1.1770 0.3618 0.1140

mean(s.e.Σ̂MR
) 1.1699 0.3607 0.1137

mean(s.e.Σ̂C
) 1.1188 0.3485 0.1100

reject J test at 5% 32.6% 99.8% 100%

Table 2: The standard deviation and standard errors of ρ̂ when the 2SLS estimand
is a weighted average of different LATEs

The potential outomes with and without treatment are generated as

Y0i ∼ N(0, 32), Y1i = Y0i + ρi. (3.1)

Without loss of generality, ρi is assumed to be identical within each subgroup. Let

ρi = 4 if i is an always-taker, ρi = 1 if i is a never-taker, ρi = 2 if i is a common

complier, ρi = 3 if i is a complier for Z1
i only, and ρi = 1 if i is a complier for Z2

i only.

LATEs for Z1
i and Z2

i are weighted averages of 2 and 3, and 2 and 1, respectively. Note

that the values of ρi for always-takers and never-takers do not matter in calculating

LATE. The 2SLS estimand ρa is a weighted average of the two LATEs. Thus, the

postulated moment condition is misspecified.

Table 2 shows the mean and the standard deviation of the 2SLS estimator, the

mean of multiple-LATEs-robust/conventional standard errors, and the rejection prob-

ability of the J test at 5% for different sample sizes. The number of Monte Carlo

repetitions is 10,000. The result shows that the conventional standard error based on

Σ̂C underestimates the standard deviation for any sample size n. In contrast, the pro-

posed multiple-LATEs-robust standard error estimates the standard deviation more

accurately. The mean of ρ̂ is slightly less than two, because the number of compliers

for Z2
i is larger than that for Z1

i in the simulation.

Figure 1 shows a negative relationship between the p-values of the J test and the

percentage difference between the two standard errors s.e.Σ̂MR
and s.e.Σ̂C

. When

n = 100, it is quite possible that the J test does not reject the false null hypothesis

at a usual significance level. However, as the p-value gets smaller, it becomes more

likely that the two s.e.’s are different. Since only Σ̂MR is consistent for the true

asymptotic variance when there are multiple LATEs, it is recommended to report
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s.e.Σ̂MR
especially when the p-value is small. Since the J test is consistent, the p-

values become more concentrated around 0 as n increases. Around zero p-values, the

difference of the two s.e.’s can be substantial.

4 Conclusion

Estimating a weighted average of LATEs with multiple instruments using 2SLS is

a common practice for applied researchers. The resulting inferences and confidence

intervals are often justified when estimated LATEs are similar and the overidentify-

ing restrictions test does not reject the assumed model. However, when researchers

face a rejection of the overidentifying restrictions test, there has been no guidance

on how to proceed. Routinely reported standard errors generated by econometric

softwares are likely to be incorrect because they do not take into account possible

misspecification of the postulated moment condition model. This paper provided a

solution to such dilemmas. The proposed variance estimator for 2SLS is consistent

for the true asymptotic variance regardless of whether there are multiple LATEs or

not. In addition, this estimator is robust to invalid instruments, and can be used for

bootstrapping to achieve asymptotic refinements.

A Appendix: Proofs of Propositions

Proposition 1

Proof. Let e ≡ (e1, ..., en)′ be an n × 1 vector where ei ≡ Yi −X′iβa. Evaluated at

βa, the moment condition does not hold:

E[Zi(Yi −X′iβa)] ≡ E[Ziei] 6= 0, (A.1)

if there are more than one LATE. This can be shown by the following argument.

For simplicity, assume that we have two instruments, Z1
i and Z2

i , such that each in-

strument satisfies regularity conditions for identifying the instrument-specific LATE.

Let ρj be the LATE with respect to Zj
i and βj ≡ (γj′ , ρj)′ be the parameter vec-

tor for j = 1, 2. By assumption, β1 6= β2. If we use each instrument at a time,

E[Z1
i (Yi−X′iβ

1)] = E[Z2
i (Yi−X′iβ

2)] = 0. Now assume E[Zi(Yi−X′iβa)] = 0 holds.

Then E[Z1
i (Yi − X′iβa)] = E[Z2

i (Yi − X′iβa)] = 0, but this implies βa = β1 = β2.

12



This contradicts to the assumption. Thus, (A.1) holds.

From the first-order condition of GMM, we substitute Xβa + e for Y, rearrange

terms, and multiply
√
n to have

√
n(β̂ − βa) = (X′Z(Z′Z)−1Z′X)−1X′Z(Z′Z)−1

√
nZ′e, (A.2)

=

(
1

n
X′Z

(
1

n
Z′Z

)−1
1

n
Z′X

)−1
×{

1

n
X′Z

(
1

n
Z′Z

)−1√
n

(
1

n
Z′e− E[Ziei]

)
+
√
n

(
1

n
X′Z− E[XiZ

′
i]

)(
1

n
Z′Z

)−1
E[Ziei]

+ E[XiZ
′
i]
√
n

((
1

n
Z′Z

)−1
− (E[ZiZ

′
i])
−1

)
E[Ziei]

}
.

The second equality holds because the population first-order condition of GMM holds

regardless of misspecification, i.e., 0 = E[XiZ
′
i]E[ZiZi]

−1E[Ziei]. The expression

(A.2) is different from the standard one because E[Ziei] 6= 0. As a result, the asymp-

totic variance matrix of
√
n(β̂−βa) includes additional terms, which are assumed to

be zero in the standard asymptotic variance matrix of 2SLS. We use the fact that(
1

n
Z′Z

)−1
− E[ZiZ

′
i]
−1 = (E[ZiZ

′
i])
−1
(
E[ZiZ

′
i]−

1

n
Z′Z

)(
1

n
Z′Z

)−1
, (A.3)

and take the limit of the right-hand-side of (A.2). By the weak law of large numbers

(WLLN), the continuous mapping theorem (CMT), and the central limit theorem

(CLT),
√
n(β̂ − βa)

d→ H−1 ·N(0,Ω). (A.4)

Q.E.D.

Proposition 2

Proof. Since β̂ is consistent for βa, by WLLN and CMT, n−1
∑

i ψ̂iψ̂
′
i is consistent

for Ω. By using WLLN and CMT again, Σ̂MR is consistent for H−1ΩH−1. Q.E.D.
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Figure 1: Relationship between p-values of the J test and percentage difference be-
tween two standard errors, s.e.Σ̂MR

and s.e.Σ̂C
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