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Abstract

This paper introduces the concept of a Forecast Combination Equilibrium
to model boundedly rational agents who combine a menu of different forecasts
using insights from the forecasting literature to mimic the behavior of actual fore-
casters. The equilibrium concept is consistent with rational expectations under
certain conditions, while also permitting multiple, distinct, self-fulfilling equi-
libria, many of which are stable under least squares learning. The equilibrium
concept is applied to a simple Lucas-type monetary model where agents engage
in constant gain learning. The combination of multiple equilibria and learning
is sufficient to replicate some key features of inflation data, such as time-varying
volatility and periodic bouts of high inflation or deflation in a model that expe-
riences only i.i.d. random shocks.
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1 Introduction

A key feature of modern macroeconomic models is the forward-looking agent who
makes current period decisions based on expectations of the future. The standard
modeling assumption for agents’ expectations is of course rational expectations (RE),
which assumes that agents understand the true structure of the model and use this
knowledge to form model consistent expectations. However, the actual experience of
econometricians, policymakers, firms, and consumers of forming expectations involves
significant model uncertainty, where there exists many suitable models to forecast any
variable of interest.

The model uncertainty problem is reflected at the professional forecasting and pol-
icy levels by the common use of combined forecasts for decision making that aggregate
many different forecasts together. Prominent examples of these forecasts include the
Federal Reserve’s Green Book consensus forecasts, the Survey of Professional Forecast-
ers, or the Blue Chip Economic Indicators consensus forecasts.1 The model uncertainty
problem is observed at the individual level in laboratory experiments where people
are asked to form forecasts in a controlled environment. For example, Anufriev and
Hommes (2012a, b) show that experimental data on forecasting asset prices in a labo-
ratory can be explained by participants coordinating on a set of heuristic forecasting
rules and then switching among those rules over time. Surveys of the experimental
Learning-to-Forecast literature are found in Hommes (2011) and Hommes (2013). The
model uncertainty problem is also widely studied in the forecasting literature.

The forecasting literature typically proposes two solutions to overcome model un-
certainty. Either a fitness criterion can be adopted to distinguish and select among
the forecasts or a strategy can be employed to combine the forecasts. The forecast
combination solution is often found to be the most effective. The solution allows a
forecaster to capture important information from many different forecasts while lower-
ing the risk of choosing a poor forecast. The seminal paper demonstrating the efficacy
of forecast combination is Bates and Granger (1969), who showed that weighted aver-
ages of competing forecasting methods consistently outperforms any of the individual
forecasts considered. Surveys of the literature are found in Clemen (1989), Granger
(1989), Timmermann (2006), and Wallis (2011).

Despite the dominance of forecast combination in the forecasting literature, theo-
retical models that have studied agents with model uncertainty overwhelmingly model
agents that select, rather than combine forecasts. A brief list of examples are Brock
and Hommes (1997 and 1998), Chiarella and He (2003), Branch and Evans (2006,
2007, and 2011), Branch and McGough (2008 and 2010), Brock, Hommes, and Wa-
gener (2009), Gibbs (2012), and Anfriev et al (2013). The agents in these models select
forecast rules by a process called Dynamic Predictor Selection (DPS), where agents use
a fitness measure to distinguish and select among the rules.

This paper proposes a simple framework to model boundedly rational agents who
face model uncertainty and employ forecast combination strategies, instead of model
selection, to mimic the forecasting behavior of actual professional forecasters. One
explanation for the preference in the literature for model selection, rather than com-

1See Robertson (2000) for a detailed description of common central bank forecasting practices.
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bination, is that from an aggregative perspective the two strategies appear to be the
same. The aggregate expectation in both cases is a linear combination of the menu of
forecast rules. Therefore, it would be natural to conclude that there is nothing to gain
by explicitly exploring forecast combination. However, I demonstrate that this per-
ception is not true. Forecast combination with endogenously determined weights that
depend on past information can introduce new stationary equilibria and qualitatively
different dynamics than what is observed under DPS.

There is currently only one study that has considered agents using some form of
forecast combination. Evans, Honkapohja, Sargent, and Williams (2013) explore the
case of agents using Bayesian model averaging in a forward-looking model to determine
the long run model selection outcome when agents contemplate slight deviations to the
RE forecast.2 They find that with a certain probability a simulated economy can
converge to a non-rational equilibrium in the long-run. They, however, do not address
the dynamics that may arise in response to model uncertainty or compare outcomes to
the dynamics predictor selection literature.

1.1 Equilibrium Concept

I introduce the concept of a Forecast Combination Equilibrium (FCE), which posits
that a continuum of identical agents possesses a menu of different forecast rules. The
agents create combined forecasts using a weighted sum of all the forecasts generated
by the rules in each period. The concept is an extension of the Restricted Perception
Equilibrium concept used to study dynamic optimizing agents that possess limited
information as in Sargent (2001), Evans and Honkapohja (2001), Branch (2004), and
McGough (2006).

The menu of forecast rules the agents consider consists of different underparameter-
izations of the true data generating process. The use of underparameterized forecast
rules mimics the standard practices in the forecasting literature, where parsimony is
key to creating efficient forecasts. The use of parsimonious models avoids data overfit-
ting that can lead to a substantial loss in out-of-sample forecasting accuracy.3 The use
of a menu of parsimonious forecasts is also the standard approach used in the Dynamic
Predictor Selection literature.

The Forecast Combination Equilibrium concept is developed in a general reduced
form macroeconomic model. The FCE concept is shown to have a unique equilibrium
under broad assumptions if agents combine the forecasts using exogenously determined
weights that do not evolve or respond to past data. The equilibrium concept, how-
ever, permits multiple equilibria when agents use past information to optimally choose
combination weights to minimize expected squared forecast error. The set of possible
equilibria may also include an FCE that is observationally equivalent to the rational
expectations equilibrium (REE) under certain conditions. I call this FCE the Funda-
mental FCE.

2The paper is referred to as Evans et al (2013) for the remainder of the paper.
3Empirical examples of the efficacy of using parsimonious forecasts from the forecasting literature

are Atkeson and Ohanian (2001), Stock and Watson (2004), and Ang, Bekaert, and Wei (2007).
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The equilibrium concept is applied to a Lucas-type monetary model to study the
properties of the FCEs under least squares learning. The application shows that there
exist multiple E-stable equilibria, where the number and stability of the equilibria are
dependent on the policy parameters of the models. In addition, when there exists a
Fundamental FCE, the stability of this equilibrium directly relates to the existence of
multiple equilibria. If the Fundamental FCE is stable, then it is the unique equilibrium.
However, if the Fundamental FCE is unstable, then there exist multiple equilibria of
which many are stable. Therefore, although the Fundamental FCE is an equilibrium
of the economy under certain conditions, it is not the equilibrium outcome obtained in
the presence of multiple equilibria.

I also use the Lucas-type monetary model example to compare the dynamics gen-
erated under FCE to the dynamics generated by DPS. DPS is shown by Branch and
Evans (2007) to produce endogenous volatility, which is consistent with the volatility
observed in actual inflation data. I show that endogenous weight forecast combina-
tion, combined with constant gain learning, can replicate their results, while adding
endogenous breaks to trend inflation. The endogenous breaks to trend inflation resem-
ble bouts of fast rising inflation or deflation, which are not present under DPS. These
two sources of endogenous time-variation are sufficient to replicate some key properties
of U.S. inflation dynamics in a simple model that is subject only to i.i.d. shocks.

The remainder of the paper proceeds as follows. Section 2 develops the equilibrium
concept in a general reduced form macro model. Section 3 explores the existence
of multiple equilibria in a Lucas-type monetary model and employs E-stability as a
selection criterion for the equilibria. Section 4 compares the dynamics generated by
forecast combination in the Lucas-type monetary model to DPS and to actual inflation.
Section 5 concludes.

2 A General Framework

In this section I develop the equilibrium concept in a reduced form macroeconomic
model that has a unique REE. I explore issues of existence and uniqueness and describe
conditions under which the equilibrium concept can nest the REE of the model under
study.

2.1 The Reduced Form Economy

The model I consider is a reduced form economy described by a self-referential stochas-
tic process driven by a vector of exogenous shocks. The model takes the following form,

yt = µ+ αEt−1yt + ζ ′xt−1 + wt, (1)

where yt is a scalar, xt−1 is a n × 1 vector of exogenous and observable shocks that
follows a stationary process with zero mean, and wt is white noise. The model presented
is the reduced form version of two well-known macroeconomic models depending on
the value of α. For α < 0 the model is the reduced form of the Cobweb model of Muth
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(1961), while for 0 < α < 1 it is the reduced form of a Lucas-type aggregate supply
model of Lucas (1973). The model has a unique REE, which can be written as

yt = (1− α)−1Ω′zt−1 + wt, (2)

where Ω = (µ, ζ ′)′ and zt−1 = (1, x′t−1)′.

2.2 Misspecified Models

Instead of rational expectations, the agents in the economy are assumed to have un-
certainty over the correct specification of the data generating process for yt. The
agents consider k different underparameterized laws of motion for the economy that
each omit one or more of the exogenous observables in zt−1. For the general case it is
assumed that the agents’ information set contains all of zt−1.

4 Let the k ≥ 2 possible
underparameterized laws of motion or forecast rules be denoted as

ŷi,t = φ′iuizt−1 (3)

for i = 1, 2, ...k, where ui is an mi × n + 1 selector matrix that picks out the included
exogenous variables for each rule, and φi is an mi × 1 vector of parameter beliefs.5

I adopt the term “parameter beliefs” for the φi’s to denote that they represent the
agents’ perception of how uizt−1 relates to yt and the terms “expectation” or “forecast”
to denote the implied value of yt given by ŷi,t. Agents treat each considered forecast
rule as if it described the true data generating process and form parameter beliefs
{φi}ki=1 as optimal linear projections of yt on uizt−1. This implies that each φi satisfies
the following orthogonality condition:

Euizt−1(yt − φ′iuizt−1) = 0. (4)

The consideration of a list of misspecified models is a familiar setup in the DPS
literature. The standard way to proceed at this point is to assume that agents choose
a fitness criteria, such as past mean squared forecast error, and select a single rule to
make a forecast. I deviate from this structure and instead assume that the agents follow
standard practices in the forecast combination literature to create a single prediction
by employing a weighted sum of all the individual forecast rules:

E∗t−1yt =
k∑
i=1

γiφ
′
iuizt−1, (5)

4This assumption is not crucial for most of the analysis and the agents’ information set could
contain only a portion of zt−1.

5The mi’s correspond to the number of parameters included in each forecast rule so that mi ≤ n
for all i. The mi × n+ 1 selector matrices are n+ 1× n+ 1 identity matrices with rows that do not
correspond to included exogenous variables deleted. An example is given in the appendix. Similar
notation is used in Branch and Evans (2006).
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where γi ∈ R is the weight given to ith forecast rule and E∗t−1 denotes a combined
expectation. The model is then closed by specifying how agents choose weights.

2.3 Combination Weights

I consider two ways to choose weights. The first is to simply assume exogenous weights
that do not change with the evolution of the economy. This case is a catchall that
nests all possible forecast combination strategies, since in a stationary equilibrium any
endogenously chosen weights are fixed. The case also nests one of the most common
and effective ways to create a combined forecast, which is to take a simple average
of the forecasts. The simple average acts as a hedge against model uncertainty by
remaining agnostic about the best forecast rule and placing equal weight on each rule.
The strategy is often a key part of any discussion of forecast combination because it is
routinely found to outperform more theoretically justified combination strategies. This
finding is often referred to as the forecast combination puzzle.6

The principle case I consider is an endogenous weight case where agents pick weights
to minimize the expected squared forecast error of the combined forecast:

min
{Γ}

E[(yt − Γ′Yt)
2], (6)

where Yt = (ŷ1,t, ... , ŷk,t)
′ and Γ = (γi, ..., γk)

′. I refer to this case as the optimal
weights case. The optimal weights case is similar to the weights proposed in Bates and
Granger (1969) and Granger and Ramanathan (1984) for use in the actual empirical
practice of forecasting and represents a common objective function considered in the
literature.

Optimal weights of course is not the only optimal combination strategy considered
in the forecasting literature. An attractive alternative to optimal weights is Bayesian
model averaging. However, Evans et al (2013) show that the Bayesian case is largely
intractable and requires simulations for most of the analysis. The optimal weights
considered here in contrast allows for analytic solutions and provides intuition that
may apply to other weighting strategies. In fact, many of the key results for optimal
weights rely on the specification of the forecast rules and the underlying economic
model and not the combination strategy. Therefore, the intuition behind many of the
results presented in this paper may apply to other backward-looking weighting schemes.

It is also important to reiterate that the optimal weights are not always optimal
in practice. It is a common finding that optimal weights underperforms relative to
equal weights due to imprecision in estimating the weights as shown by Smith and
Wallis (2009) or by Yang (2004), which is essentially the forecast combination puzzle
mentioned previously. However, the strategy has been widely used throughout the fore-
casting literature and in many circumstances performs well. Alternative combination
strategies or objective functions represent an interesting topic for future research.

6See Hendry and Clements (2004) for a more detailed discussion of the forecast combination puzzle.
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2.4 Exogenous Weights

A combined forecast with exogenous weights (γi, ... , γk)
′ = Γ ∈ Rk takes the form of

equation (5). The combined forecast functions as a perceived law of motion (PLM) for
the economy. The PLM can be substituted in for Et−1yt in equation (1) to yield the
actual law of motion (ALM) for economy

yt = (Ω′ + α

k∑
i=1

γiφ
′
iui)zt−1 + wt. (7)

The ALM describes the actual evolution of yt, given agents’ parameter beliefs {φi}ki=1.
Substituting the ALM into equation (4) and simplifying yields the equilibrium condition
for the parameter beliefs for each of the considered forecast rules

φi = [(1− αγi)uiΣzu
′
i]
−1(uiΣzΩ + α

∑
j 6=i

γjuiΣzu
′
jφj) (8)

where Ezt−1z
′
t−1 = Σz.

Definition 1: An Exogenous Weight Forecast Combination Equilibrium (EW-FCE)
is a set of parameter beliefs {φ∗i }ki=1 and weights Γ that satisfies the system of equations
given by (8) for all i.

In equilibrium, the ALM of the economy and the i parameter beliefs can be written
as

yt = D′zt−1 + wt and φi = (uiΣzu
′
i)
−1uiΣzD.

this implies that an EW-FCE must satisfy

D′ = Ω′ + α
k∑
i=1

γiD
′Σzu

′
i(uiΣzu

′
i)
−1ui. (9)

Remark 1: There exists a unique Exogenous Weight Forecast Combination Equilib-
rium if and only if ∆(Γ) is invertible, where

∆(Γ) = I − α
k∑
i=1

γiΣzu
′
i(uiΣzu

′
i)
−1ui

and I is n+ 1× n+ 1.

The same condition given in Remark 1 is derived by Branch and Evans (2006) to
show the existence of a Restricted Perceptions Equilibrium in a model with heteroge-
neous agents. They show that the condition of Remark 1 is always met if Γ is in the
unit simplex and α is sufficiently small. Under these assumptions, ∆(Γ) is a diagonal
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dominant matrix and has a non-zero determinant. Thus, for the aforementioned special
case of equal weights, there always exists an α small enough such that an EW-FCE
exists.

Remark 2: There exist multiple equilibria if α
∑k

i=1 γi = 1.

This remark is due to the fact that each individual forecast rule has at least an intercept
belief in common. The common intercept beliefs become completely self-confirming
when α

∑k
i=1 γi = 1 because any belief is perfectly reflected in the realizations of the

data generating process.

The EW-FCE definition also nests an equilibrium that is observationally equivalent
to the REE of the model. This FCE is of particular interest because it represents
the conditions under which the REE predictions are robust to the boundedly rational
behavior proposed in this paper. I call this equilibrium the Fundamental FCE.

Definition 2: A Fundamental FCE is an FCE that is observationally equivalent to
the REE given by equation (2).

A Fundamental FCE will exist assuming the following three conditions:

A1: µ = 0.

A2: The exogenous observables are uncorrelated, i.e. Σz is a diagonal matrix.

A3: Each forecast rule uses a mutually exclusive set of the exogenous observable
shocks, which implies

k∑
i=1

u′iui =

[
ω 0
0 I

]
,

where 0 ≤ ω ≤ k and I is n× n identity matrix.

Proposition 1: Assume A1, A2, A3, Γ = (1, ... , 1)′, and α 6= 1
ω

, then there exists
a unique EW-FCE given by φ∗i = (1− α)−1uiΩ for all i = 1, ..., k which is the Funda-
mental FCE.

The three conditions are motivated by standard practices in either the macroeconomic
theory literature or the forecasting literature, and importantly, do not place restriction
on the number of forecast rules agents may consider. The A1 condition is equivalent
to redefining the reduced form model in terms of deviations from steady state. The A2
condition eliminates the possibility of omitted variable bias in the equilibrium beliefs
for the menu of considered forecast rules by requiring that all the exogenous shocks are
uncorrelated. The A3 condition imposes that each forecast rule draws upon a disjoint
information set from all other forecast rules. This condition is akin to assuming that
all forecast rules are non-encompassing, where an encompassed forecast is a forecast
that includes no new information with respect to the other forecasts rules considered.
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It is often recommended that only non-encompassed forecasts be included in combined
forecasts (see Harvey and Newbold (2000)).

The 0 ≤ ω ≤ k condition of A3 implies that each forecast rules does not need
to include an intercept belief in its specifications since A1 already assumes that the
process is mean zero. However, it is standard to always include an intercept and it will
be useful in the next section to define a strengthened version of A3.

A3s: Each forecast rule includes an intercept and employs a mutually exclusive set of
the exogenous observable shocks, which implies

k∑
i=1

u′iui =

[
k 0
0 I

]
,

where I is n× n identity matrix.

2.5 Optimal Weights

The first order condition for the optimal Γ from the minimization problem given by
(6) can be expressed as an orthogonality condition similar to the one given for agents’
beliefs,

EYt(yt − Γ′Yt) = 0. (10)

The orthogonality condition and the ALM given by (7) define a system of equations
for the optimal weights as a function of the agents’ parameter beliefs {φi}ki=1, where
the equation for the ith weight is

γi = [(1− α)φ′iuiΣzu
′
iφi]

−1(φ′iuiΣz(Ω + (α− 1)
∑
j 6=i

γju
′
jφj)). (11)

Definition 3: An Optimal Weight Forecast Combination Equilibrium (OW-FCE) is
set of parameter beliefs {φ∗i }ki=1 and vector of weights Γ∗ that solves the system of
equations given by (8) and (11) for all i.

The equilibrium in this case is defined by a system of polynomial equations, which
may have many real solutions. The degree of the system of polynomial equations can
grow with the number of forecast rules considered and with respect to the specification
of the rules.7 Therefore, in the general case, there is often not an algebraically tractable
solution. However, the solution is tractable in one special case of interest. The special
case is the one that permits the Fundamental FCE.

Proposition 2: Assume A1, A2, and A3, then parameter beliefs φ∗i = (1− α)−1uiΩ
for all i = 1, ..., k and combination weights Γ∗ = (1, ... , 1)′ constitute a Fundamental

7See Sturmfels (2002) for further explanation on the complexity of systems of polynomial equations
and applications to economic problems.
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OW-FCE.

For tractability it is also necessary to assume:

A4: Ω′u′iuiΣzu
′
iuiΩ = C for all i = 1, ..., k, where C is a constant scalar.

This assumption has no real economic interpretation and again is only imposed to
simplify the derivation of the multiple equilibria result. The existence of multiple
equilibria is shown to be robust to this assumption and assumptions A1 and A2 in the
application of the equilibrium concept in Section 3.2.1.

Proposition 3: Assume A1, A2, A3s, A4, and 1
k
< α < 1, then there exist multiple

OW-FCE.

Proof: From Proposition 2 it immediately follows that there exists at least one OW-
FCE: the Fundamental FCE. Therefore, to prove the proposition I show the existence
of other distinct equilibria under the same conditions.

The multiplicity of equilibria in this case is driven by the intercept beliefs. We
know from Remark 2 that any intercept belief is self-confirming if α

∑k
i=1 γi = 1.

Therefore, to consider this case, write the equilibrium parameter beliefs as φ∗i =
{(ai, (1−αγi)−1ζ1, ..., (1−αγi)−1ζm)′ | m < n} for i = 1, .., k, where ai is free variable.
These beliefs are obtained using equation (8) and applying assumptions A1, A2, and
A3s.

The equilibrium condition for the ith optimal weight is then given by

γi = [(1− α)φ′iuiΣzu
′
iφi]

−1(φ′iuiΣz(Ω + (α− 1)
∑
j 6=i

γju
′
jφj)).

Substituting the equilibrium parameter beliefs {φ∗i }ki=1 into the condition and rearrang-
ing yields

γi(1− α)Ψ = Ξ + (α− 1)
∑
j 6=i

Λj,

where without loss of generality

Ψ = φ′iuiΣzu
′
iφi = a2

i + (1− αγi)−2(ζ2
1σ

2
1 + ...+ ζ2

mi
σ2
mi

)

Ξ = φ′iuiΣzΩ = (1− αγi)−1(ζ2
1σ

2
1 + ...+ ζ2

mi
σ2
mi

)

Λj = γjaiaj.

Now imposing ai = aj for all i and j, α
∑k

i=1 γi = 1, and A4 it follows that the
equilibrium condition for γi simplifies further to

a2 =
αC(1− γi)

(1− α)(1− αγi)2
.
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One possible set of equilibrium optimal weights are thus given by

γi =
C + 2a2(α− 1)±

√
C (C − 4a2(α− 1)2)

2a2(α− 1)α
.

Finally, picking either solution for γi, substituting it into α
∑k

i=1 γi = 1 for all i, and
solving the equation for a yields

a = ±
√
k
√
C(1− kα)

(k − 1)
√
α− 1

. (12)

The solutions for a are real and non-zero if 1
k
< α < 1. Therefore, there exist multiple

distinct OW-FCEs if 1
k
< α < 1. �

There are three interesting takeaways from Proposition 3 and the OW-FCE case. The
first is that the Fundamental OW-FCE coexists with other non-fundamental equilibria.
Therefore, the economy may obtain equilibria that depart from the rational predictions
of the model even when the Fundamental FCE is a possible outcome. The second is
that the range of parameter values for which multiple equilibria exist is dependent
on the number of forecast rules considered. As the number of forecast rules consid-
ered increases, the range of the parameter space for which there is a unique OW-FCE
shrinks.8 This implies that multiple equilibria can arise in any parameterization of the
model with positive feedback as long as agents consider enough different forecast rules.
And finally, the multiplicity result does not rely on agents holding some type of flawed
belief. For example, none of the beliefs that parameterize the forecasts rules exhibit
omitted variable bias due to assumption A2. And there is no bias present in any of
the individual forecasts or in the combined forecast by definition of the equilibrium.9

Thus, although the agents are boundedly rational, the multiple equilibria result does
not require agents to entertain beliefs that an econometrician could readily fault.10

3 Multiple Equilibria and Expectational Stability

in a Simple Example

I apply the FCE concept in this section to a simple Lucas-type monetary model to
provide examples of the equilibria and to study the stability of the equilibria under
least squares learning. The model I consider follows Branch and Evans (2007). The
economy is described by an aggregate supply equation (AS), an aggregate demand
equation (AD),

AS : yt = ξ(pt − E∗t−1pt) + ρ′1xt (13)

AD : yt = mt − pt + ρ′2xt + vt, (14)

8See equation (12) in the proof of Proposition 3.
9The existence of these biases also do not rule out the existence of multiple equilibria.

10A remaining restriction that an econometrician may want to impose is that the weights sum to
one. This case is considered in Section 3.2.1.
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and a monetary policy rule (MP) given by

MP : mt = pt−1 + ρ′3xt + ηt. (15)

The variables pt and mt are logs of the price level and money supply receptively, yt is
the log deviation of output from a deterministic trend, xt is a 2 × 1 vector of serially
correlated shocks, and vt and ηt are i.i.d. white noise. The shocks follow a stationary
VAR(1) process

xt = Bxt−1 + εt. (16)

Inflation in the economy is defined as πt = pt − pt−1.

Imposing the inflation definition and combining equations (13), (14), and (15) yields
an expectation augmented Phillips curve in the familiar reduced form:

πt = αE∗t−1πt + ζ ′xt−1 + wt, (17)

where α = ξ
1+ξ

, ψ =
(ρ′2+ρ′3−ρ′1)

1+ξ
, ζ ′ = ψB and wt = ψεt + ηt+vt

1+ξ
. The agents consider all

non-trivial underparameterizations of the Phillips curve as forecast rules:

π̂1,t = a1 + b1x1,t−1

π̂2,t = a2 + b2x2,t−1.

The agents are assumed to create optimal combined forecasts that minimize the ex-
pected squared forecast error.

3.1 Expectational Stability

A natural assumption in this boundedly rational environment is that agents form their
expectations using recursive least squares learning. Following Evans and Honkapohja
(2001), least squares learning replaces the parameter and weight beliefs, (φ′1, φ

′
2,Γ

′),
with estimated beliefs, (φ̂′1,t, φ̂

′
2,t, Γ̂

′
t), that are updated recursively using past data.

In the example proposed, the agents’ recursively estimates three regressions: two
regressions to estimate the coefficients of π̂1,t and π̂2,t and a third to estimate Γ. The
estimation can be written jointly and recursively as

Θt = Θt−1 + κtR
−1
t−1zt−1(yt − z′t−1Θt−1)

Rt = Rt−1 + κt(zt−1z
′
t−1 −Rt−1), (18)

where the first equations governs the evolution of the belief and weight coefficients
Θt = (φ̂′1,t, φ̂

′
2,t, Γ̂

′
t)
′, the second equation is the estimated second moments matrix,

and κt is the gain sequence that governs the weight given to new observations. The
recursive form uses a block matrix structure to estimate all coefficients simultaneously,
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where yt = (πt πt πt)
′, the regressors are stacked into the matrix

zt =

 u1zt 0 0
0 u2zt 0
0 0 Πt+1

 , (19)

and Πt = (π̂1,t, π̂2,t)
′. The equilibrium conditions of an OW-FCE are equivalent to

the least squares criterion and thus the fixed points of (18) correspond to the possible
OW-FCEs of the model.

The convergence to a given OW-FCE from nearby initial beliefs can be determined
by appealing to the E-stability principle. The E-stability principle states that the
stability of a fixed point of the stochastic recursive algorithm (18) is determined by the
stability of an associated differential equation in notional time

Θ̇ = T (Θ)−Θ,

where Θ̇ is given by rearranging equations (8) and (11), the equilibrium conditions for
an OW-FCE. The function T (Θ) is known as the T-map.11

The E-stability of a fixed point of the model under study is usually dependent on
the value of α, the feedback parameter on expectations. The standard result in the
literature is that if agents consider a single correctly specified PLM, then the resulting
fixed point is the REE and it is E-stable provided that α < 1.12

3.2 Existence and Stability

To show the existence and E-stability of multiple equilibria in the Lucas-monetary
model, I first consider the case that permits the Fundamental OW-FCE by assuming
A1, A2, and A3. The T-map for optimal weights in this case is given by

T


a1

b1

a2

b2

γ1

γ2

 =



α(a1γ1 + a2γ2)
αγ1b1 + ζ1

α(a1γ1 + a2γ2)
αγ2b2 + ζ2

a21αγ1+a1a2γ2(α−1)+b1σ2
1(b1αγ1+ζ1)

a21+b21σ
2
1

a22αγ2+a1a2γ1(α−1)+b2σ2
2(b2αγ2+ζ2)

a22+b22σ
2
2


. (20)

The mapping is non-linear and has seven distinct fixed points. The algebraic rep-
resentations of the solutions, however, are immense and are impractical to list here.
Therefore, I use a bifurcation argument to show existence and E-stability for a subset
of the equilibria.

Proposition 3 says that multiple equilibria will arise in this model when α > 1/2.

11The derivation of the T-map is given in the appendix. Guse (2008) shows that the technical
conditions for the stochastic recursive algorithm theorems that underpin the E-stability principle are
satisfied for the block recursive least squares algorithm.

12See Evans and Honkapohja (2001) for a complete analysis and discussion of this result.
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This conditions also identifies the point at which the Fundamental OW-FCE fixed point
of the differential equation

Θ̇ = T (Θ)−Θ (21)

experiences a bifurcation, when α is treated as the bifurcation parameter. By charac-
terizing the type of bifurcation that occurs at this point, the number of equilibria and
the E-stability of those equilibria can be determined.

Lemma 1: The Fundamental OW-FCE steady state of the dynamic system given by
(20) and (21) experiences a supercritical pitchfork bifurcation at α = 1/2.

A supercritical pitchfork bifurcation occurs when a fixed point switches stability from
stable to unstable and two new stable equilibria come into existence.

Proposition 4: For the economy under study (17) represented by (20)

1. There exist at least three OW-FCEs for 1
2
< α < 1.

2. The Fundamental OW-FCE is E-stable for α < 1
2

3. At least two non-fundamental OW-FCE are E-stable for some 1
2
< α < 1.

Proposition 4 shows that although the Fundamental OW-FCE is a possible equi-
librium, it is not the equilibrium the economy will achieve under learning when 1

2
<

α < 1.13 The economy instead will obtain other non-fundamental equilibria that are
distinct from the RE predictions of the model.

Figure 1 illustrates the full set of OW-FCEs using a pseudo-bifurcation diagram. The
diagram is “pseudo” because it illustrates consequences of the bifurcation that occur
in multiple dimensions in a two-dimensional picture by utilizing the implied forecast of
the equilibrium beliefs. The diagram is constructed numerically by calculating the full
set of OW-FCEs for a given value of α and then plotting the implied forecasts of the
equilibrium beliefs for a fixed realization of xt. The parameter values for the diagram
are ζ1 = .9, ζ2 = −.9, Extx

′
t = I, and x̂t−1 = (1, 1)′.14 E-stability is indicated by the

solid lines in the figure.

Figure 1 shows that the Fundamental FCE is the unique equilibrium for α < 1
2
.

Then at α = 1
2
, the predicted pitchfork bifurcation occurs and two new equilibrium

come into existence. A second bifurcation occurs at α = 3
4

and results in a total of
seven OW-FCEs.

13Evans et al (2013) also find that α = 1
2 is the boundary for non-rational equilibria to exist in their

simulations.
14The range of the figures includes negative values of α to illustrate the Cobweb case for the reduced

form model as well as the Lucas-type aggregate supply case of interest. Note that there is a unique
OW-FCE if the model exhibits negative feedback. An example in the literature of the Cobweb case is
Branch and Evans (2006).
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α

EFCEt−1 [yt|x̂t−1]

Figure 1: Pseudo-bifurcation diagram of the associated differential equation (20). E-stability is indi-
cated by the solid lines. Parameter values are given in the text.

3.2.1 Exploration and Robustness

The key to multiple equilibria in OW-FCEs is retaining the non-linearity in the weights.
Any modification that retains the non-linearity will produce multiple OW-FCEs that
follow a similar pattern to the one depicted in Figure 1, where there exists a single
stable equilibrium for small and negative α and multiple stable equilibria for larger
α < 1.

Figure 2 provides three pseudo-bifurcations examples to illustrate the claim. The
first two plots show that the existence and stability results extend to cases where the
Fundamental OW-FCE assumptions are not met. The first plot shows the equilibria
and stability results when there is non-zero covariance between the elements of xt
(σ12 = .1), while the second plot shows the equilibria and stability results when there
is a non-zero intercept (µ = 1).15

The third plot in Figure 2 depicts the case where the optimal weights are restricted
to sum to one. This case is of particular interest because this restriction is often im-
posed in the forecasting literature. The restricted optimal weights imply the following
orthogonality conditions

E(π̂1,t − π̂2,t)[(πt − π̂2,t)− γ1(π̂1,t − π̂2,t)] = 0. (22)

The conditions follows directly from solving the constrained version of equation (6).

15The two assumptions violate A2 and A1, respectively.

14



α

EFCE
t−1 [yt|x̂t−1]I

α

EFCE
t−1 [yt|x̂t−1]II

α

EFCE
t−1 [yt|x̂t−1]III

Figure 2: Pseudo-bifurcation diagrams of the associated differential equation (20). The first diagram
(I) depicts the bifurcation for a model with a positive covariance between the exogenous shocks
(σ12 = .1). The second (II) diagram depicts the bifurcation of a model with a positive intercept
(µ = 1). The third diagram (III) depicts the bifurcation of a model with the restriction that the
combination weights sum to one. The parameter values are the same as those used in Figure 1.
E-stability is indicated by the solid lines.

The T-map under this assumption and assumptions A1, A2, and A3 is given by

T


a1

b1

a2

b2

γ1

 =


α(a2 + γ1(a1 − a2))

αγ1b1 + ζ1

α(a2 + γ1(a1 − a2))
α(1− γ1)b2 + ζ2

(a1−a2)(a1αγ1+a2(α(1−γ1)−1)+b1σ2
1(b1αγ1+ζ1)+b2σ2

2(b2(1+α(γ1−1))−ζ2)

(a1−a2)2+b21σ
2
1+b22σ

2
2

 . (23)

The T-map again defines a system of polynomial equations with multiple solutions.
However, the multiple equilibria in this case are different than in the unrestricted case
because every equilibria shares a common intercept belief. This is due to the fact that
α(γ1 + γ2) = 1 cannot be satisfies in this case except trivially when α = 1. Figure 2
shows that the stability results in this case are analogous to those in the unrestricted
case. There exists a unique E-stable equilibrium for small or negative α and multiple
E-stable equilibrium for some positive 0 < ᾱ < 1.

The onset of multiple equilibria in the unrestricted and restricted cases also depends
on the parameter ζ as well as α. The ζ vector, as shown in equation (17), is partly a
function of the monetary policy rule parameters. Therefore, the number and stability
of equilibria in the model is a function of policy. Figure 3 plots pseudo-bifurcation
diagrams for the model with ζ1 as the bifurcation parameter and α fixed at 0.9. The
remainder of the parameter values are the same as in Figure 1. The diagrams illustrates
that the number of equilibria and E-stability of the equilibria change as ζ is varied
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ζ1

EFCE
t−1 [yt|x̂t−1]I

ζ1

EFCE
t−1 [yt|x̂t−1]II

Figure 3: Pseudo-bifurcation diagrams of the associated differential equation (20). The first diagram
(I) depicts the bifurcation for the unrestricted weights case. The second (II) diagram depicts the
bifurcation for the case where the weights are restricted to sum to one. E-stability is indicated by the
solid lines.

indicating that policy plays a role in determining whether there exists a unique stable
equilibrium among the set of non-rational or non-Fundamental FCEs.

3.3 Discussion and Extensions

The economic explanation for the pattern of a unique equilibria bifurcating into multi-
ple stable equilibria as α increases lies in the positive feedback of expectations. When
α is positive and close to one, all beliefs have a self-fulfilling quality. The data always
moves in the same direction as the beliefs. The movement of the data towards the
beliefs is subsequently reinforced by the optimal weights, which allows for some beliefs
to become completely self-fulfilling.

The agents in this process are in some sense subject to a perverse form of the Lucas
Critique. The reduced form correlations in the data that are used to calculate the
optimal weights are a function of the forecasting strategy. However, unlike the Lucas
Critique, where changes in policy alter the reduced form correlations and invalidate
policy choices, the choice of optimal weights may reinforce the correlations. The re-
inforcement then prevents agents from detecting that their forecasts deviate from the
fundamentals because their beliefs are consistent with past data.

There is nothing unique to the model studied in this paper with respect to the
positive feedback necessary to generate the multiple equilibria and stability results.
In fact, it is commonly found that the equilibria and E-stability results of learning
models in simple settings carry over to richer, more realistic settings. Therefore, it is
likely that any linear rational expectations model with a learnable REE will also have
multiple, E-stable equilibria under forecast combination when there exists significant
positive feedback.

4 Real-time Application and Comparison to DPS

One of the primary contributions of DPS and the learning and expectations literature
is to show how expectation driven fluctuations can capture features of actual labo-
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ratory and real world economic data that are not explained by standard RE models.
This section illustrates that optimal forecast combination with constant gain learning
continues this tradition. The distinct dynamics observed replicate features of actual
economic data that are not captured by either the RE or the DPS assumptions.

4.1 Constant Gain Learning

Optimal weight forecast combination is implemented by assuming that the agents esti-
mate the parameters of their forecast rules and the optimal combination weights in real
time using constant gain learning. Constant gain learning replaces the usual κt = t−1

in the recursive least squares algorithm (18) with a constant 0 < κ̄ < 1. A constant
gain places more weight on the most recent observations. The stability of the model
under constant gain learning for a sufficiently small gain is still governed by the E-
stability conditions.16 The main difference, however, is that the convergence is now
in terms of a distribution of beliefs centered at the equilibrium. Small shocks in the
model, therefore, may occasionally push expectations from the basin of attraction of
one stable OW-FCE to another.17

Constant gain learning is argued by Sargent (2001), Orphanides and Williams (2005
and 2006), and Branch and Evans (2006b and 2007), to be an appropriate learning
strategy when agents are concerned about structural breaks. In addition, the use of
constant gain learning is found to be a route to interesting dynamics in Lucas-type
monetary models in the case of model misspecification (Cho, Williams, and Sargent
(2002), McGough (2006)) and Dynamic Predictor Selection (Branch and Evans (2007))
and is thus the natural assumption to employ.

4.2 Comparison to Dynamic Predictor Selection

This section compares forecast combination to dynamic predictor selection to show that
there are important qualitative and theoretical differences between the two approaches.
Dynamic predictor selection was first introduced by Brock and Hommes (1997) and
posits that there exist heterogeneous agents who select among a menu of forecast rules
by evaluating a fitness criteria. Based on the fitness criteria each agent chooses a single
forecast rule to follow in each period. Heterogeneity is imposed by assuming that there
is stochastic component to the agents’ choices.

Branch and Evans (2007) apply the dynamic predictor selection framework to the
model described by equation (17) by assuming that agent consider Πt = (π̂1,t, π̂2,t)

′ as
a menu of forecast rules and that they use past mean squared forecast error (MSFE)
as the fitness criteria. The agents tracks the MSFE of each model recursively using the

16See Evans and Honkapohja (2001) for a thorough treatment of this result.
17I do not simulate the decreasing gain case because the E-stability analysis fully characterizes the

limiting dynamics. Given a set of initial conditions in a neighborhood of any of the E-stable OW-
FCEs, the learning algorithm will converge asymptotically with probability one to the OW-FCE in
that neighborhood.
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following equation:

MSFEi,t = MSFEi,t−1 + λ((πt − π̂i,t)2 −MSFEi,t−1) (24)

for i = 1, 2, where λ is the gain parameter. The proportion of agents who choose each
model based on this fitness criterion is determined by

ni,t =
exp(−βMSFEi,t−1)∑k
i=1 exp(−βMSFEi,t−1)

, (25)

where ni,t is the proportion of agents who choose the ith model and β is a parameter
that governs the relative speed at which agents abandon an underperforming forecast
rule. The aggregate expectation of agents is a linear combination of the π̂i,t’s with the
ni,t’s as the weights

E∗t−1πt =
k∑
i=1

ni,tπ̂i,t. (26)

The equilibrium concept in this framework is a Misspecification Equilibrium (ME),
which was first introduced by Branch and Evans (2006). An ME is characterized by the
same condition given by Remark 1, plus a fixed point in the proportion of agents that
choose each rule given by equation (25). Branch and Evans (2007) show that there are
three possible MEs in this model: two MEs where all agents choose the same forecast
rules and a third where some fraction of agents chooses each rule. Analytic E-stability
results are not available for these equilibria, but they report that, in simulations, the
two homogeneous equilibria are stable under learning.

4.2.1 Theoretical Comparisons

The aggregate expectation under DPS may appear to be the same as under forecast
combination, however, the weights under DPS reflect population proportions. This
assumption rules out negative weights and weights larger than one, which can prevent
agents from optimally responding to the observed misspecifications in the menu of
forecast rules they possess.18 The omission of potentially useful information observed

18To formally illustrate this argument, I present the derivation of optimal weights given by Tim-
mermann (2006) who considers forecasting a mean zero process with two unbiased forecast rules.
Ignoring time, the two forecast rules’ errors can be written as fe1 = π − π̂1 and fe2 = π − π̂2, where
fe1 ∼ (0, σ2

1), fe2 ∼ (0, σ2
2), σ12 = ρ12σ1σ2, and ρ12 is the correlation of the forecast errors. The

combined forecast error is given by fec = γ1fe1 + (1− γ1)fe2, which implies

σ2
c (γ1) = γ21σ

2
1 + (1− γ1)2σ2

2 + 2γ1(1− γ1)σ12. (27)

Minimizing equation (27) with respect to γ1 yields the optimal weight

γ∗1 =
σ2
2 − σ12

σ2
1 + σ2

2 − 2σ12
. (28)

It is simple to show that σ2
c (γ∗1) ≤ min(σ2

1 , σ
2
2) and that in general the optimal weights need not be

convex if ρ12 > σ2/σ1.
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in the data is also built into the selection assumption of DPS. The requirement that
agents select a single rule means that agents disregard information about the future
state of the economy simply due to small differences in the fitness criteria. Therefore,
in some sense, the forecast combination assumption is a more individually rational
response to model uncertainty than DPS.

Another distinction is that the optimal combination weights are completely data
driven, whereas the weights in the DPS model are only partially data driven. The
intensity of choice parameter β plays a large role in determining the weights and their
transitions over time. This parameter is completely exogenous and has no real world
analogue. There is no equivalent parameter under optimal weight forecast combination.
The relative weights are chosen endogenously and in a way that is consistent with
practices prescribed by the forecasting literature.

A final distinction between the two approaches is that in the endogenous weight
case the equilibrium outcomes are largely disjoint. This is due to the fact that the
ME concept requires Remark 1 to hold in equilibrium, while Remark 2, the violation
of Remark 1, was integral in the existence of multiple equilibria in the OW-FCE case.
Therefore, despite the similar aggregate structures, the models in many cases will
produce distinct equilibrium predictions.

4.2.2 Real-time Learning Comparison

The main dynamic feature of DPS in the Lucas monetary model is endogenous time-
varying volatility. The volatility is generated by the fact that there are two E-stable
equilibria that each have distinct output and inflation volatilities in aggregate. The
economy transitions occasionally from one stable equilibrium to another due to the
random shocks in the model under constant gain learning, which causes the volatility
of the aggregate time series to change over time.

Optimal weights forecast combination imparts a similar dynamic structure to the
economy. There exist multiple E-stable equilibria that each imparts a different level
of volatility to output and inflation. The model under constant gain learning will,
like DPS, periodically transition from one stable equilibria to another and generate
time-varying volatility. However, forecast combination exhibits an additional real-
time feature that is not present under DPS. Under forecast combination there are
also endogenous changes to the mean of output and inflation that occur due to off
equilibrium paths.

To illustrate, compare, and contrast these dynamics I simulate the economy under
two version of optimal weights forecast combination (OW-FC) and DPS. The two
versions of OW-FC are the standard case considered in the paper and the restricted
case, where the weights must sum to one. The differences in the simulations can thus be
characterized by their respective restrictions of the combination weights. The OW-FC
case has no restrictions, the restricted OW-FC case has weights restricted to one, and
the DPS case has weights restricted to the unit simplex. The simulations are shown in
Figure 4.

The first column of Figure 4 shows the time path of intercept beliefs and time path

19



of inflation. The second column shows the time path of the endogenous weights and
denotes the major transitions between equilibria with gray bars. The parameters for
the simulations are given in the figure caption. The parameters values chosen satisfy
assumptions A1, A2, and A3 and imply the existence of four stable OW-FCEs in the
unrestricted OW-FC case and two stable equilibria in remaining cases. In addition,
the shocks in all simulation are i.i.d. and the same sequence of shocks is used in
each simulation. The use of the same shocks across the three simulations allows the
dynamics generated by expectations to be easily discernible from those caused by the
i.i.d. shocks themselves.

The graphs illustrate the following properties:

1. Time-varying volatility: Each simulation shows clear evidence of time-varying
volatility. The magnitude of the volatility, however, differs between the cases.
The OW-FC cases exhibit about twice the magnitude of fluctuations as in the
DPS case. The source of the time-varying volatility is shown in the graphs of
the combination weights. The changes in volatility coincide with the transitions
between and fluctuation around stable equilibria.

2. Breaks in trend inflation: The unrestricted OW-FC case exhibit dramatic breaks
to the trend of inflation over time with significant bouts of both deflation and
inflation. The gray bars on the right-hand-side graph highlight each time a large
break to trend inflation occurs. From the highlighted sections we can see that
the changes to the trend occur when both weights are close to one. The breaks
are thus occurring when beliefs are pushed into the neighborhood of the unstable
Fundamental FCE. Both weights near one act to increase the positive feedback
of the model. The increase in positive feedback pushes beliefs temporarily far
away from any stable equilibrium of the model.

The equilibrium predictions of the three cases can for long periods of time remain
very close. Figure 5 illustrates this by plotting the time path of the intercept beliefs
for the three cases in a simulation with the same parameter values employed in Figure
4. The intercept beliefs drive the trend dynamics of inflation in the model. In this
simulation, the intercept beliefs track each other closely for the first 600 periods before
significant breaks occur to the OW-FC beliefs. The breaks once again occur in the
standard OW-FC case when both weights are close to one. The breaks in the restricted
case also occur due to a similar mechanism as the unrestricted case whenever the lone
estimated weight is significantly larger than one in magnitude.

An optimal weight that is larger than one in magnitude reinforces any erroneous
beliefs of a positive intercept that may exist due to random shocks. These beliefs
are over time reflected in the agents’ estimates of the intercepts through revisions in
beliefs. The positive feedback of the model makes these beliefs temporarily self-fulfilling
causing the dramatic spikes in inflation or deflation observed in the figures. The DPS
weights by contrast are constrained to the unit simplex, which rules out these kinds of
self-fulfilling off-equilibrium paths.
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Figure 4: Simulated paths of inflation when agents use optimal weights forecast combination, restricted
optimal weights forecast combination, and dynamics predictor selection. The parameter values for the
simulations are α = 0.9, ζ = (.5, .75)′, E[xtx

′
t] ∼ N(0, 0.1I), wt ∼ N(0, 0.25), and a gain of κ = 0.08.

The remaining parameters for DPS are β = 50 and λ = 0.35. The first column shows the path of
inflation and agents beliefs at. The second column shows the optimal combination weights and the
DPS population weights. The gray bars indicate breaks to trend inflation in the OW-FC case and
significant transitions between stable equilibria in the restricted OW-FC and DPS cases.
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Figure 5: Simulated time path of the intercept beliefs ai,t. The parameters used for the simulation
are the same as in Figure 4.

4.2.3 Actual Inflation Comparison

This section compares simulations of the model under OW-FC and DPS to the GDP
Deflator measure of U.S. inflation. The comparison to inflation is meant to establish
why the dynamics generated under optimal weight forecast combination are economi-
cally relevant by qualitatively matching model implied dynamics to actual dynamics.
The exercise, however, is not meant to be a formal calibration exercise.

Branch and Evans (2007) show that DPS in the Lucas monetary model can generate
time-varying volatility in simulated inflation that is qualitatively similar to the observed
volatility in actual U.S. inflation. Optimal weight forecast combination can replicate
this finding as well as generate an additional important feature of U.S. inflation. The
empirical features of interest in this exercise are those highlighted in Stock and Watson
(2007). Stock and Watson note that U.S. inflation is well described by a parsimonious
unobserved components stochastic volatility model (UC-SV) that allows for changing
volatility in both permanent and transient shocks. They model the inflation process as

πt = τt + ηt, where ηt = ση,tζη,t

τt = τt−1 + εt, where εt = σε,tζε,t

lnσ2
η,t = lnσ2

η,t−1 + ψη,t

lnσ2
ε,t = lnσ2

ε,t−1 + ψε,t,

where ζt = (ζη,t, ζε,t) is i.i.d. N(0, I2), ψt = (ψη,t, ψε,t) is i.i.d. N(0, 0.2I2), and ζt and
ψt are independently distributed. They note that there is significant time variation in
both the permanent and transient shocks to inflation over time. The OW-FC concept
can capture both of these features in the simple Lucas-type monetary model with i.i.d.
shocks.

Figure 6 shows the UC-SV estimates for actual inflation and simulated inflation.
The parameter values for the simulations are the same as in Figure 4, except with a
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change to the gain parameter. I follow Branch and Evans (2006b) and set the gain
to κ̄ = 0.0115 to calibrate the rate at which agents respond to new information to
be consistent with actual forecasting behavior at a monthly frequency.19 This allows
the speed at which agents respond to shocks to be plausible for the comparison. The
economy is simulated for 795 periods. The 795 periods are then aggregated by simple
averaging to 265 periods to mimic the quarterly observations of the GDP Deflator.

The OW-FC simulation is chosen to include an endogenous break to trend inflation.20

The endogenous break to trend inflation generates shocks to the permanent component
of inflation that are qualitatively similar to what is observed in actual inflation. DPS,
by contrast, cannot generate similar large breaks to the trend inflation, which prevent it
from replicating the large swings in volatility observed in the permanent component of
inflation. Both OW-FC and DPS, however, are capable of replicating the time-varying
volatility of the transient component of inflation.

19Branch and Evans (2006b) find that κ̄ = 0.0345 is the most likely gain to explain the quar-
terly forecasts observed in the SPF. I have scaled the number to make it consistent with monthly
observations.

20The simulations each discard the first 15,000 initial periods. The simulated path presented is
a 795 period subsample taken from a larger simulation after the initial 15,000 periods to illustrate
common possible dynamics.
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Figure 6: Actual and simulated paths of inflation and the UC-SV model estimates of the stochastic trend τt, the standard deviation of the permanent shock
σε, and the standard deviation of the transient shock ση for inflation. Actual inflation is the U.S. GDP Deflator measure from 1947Q4 to 2013Q2. The
parameter values of the simulation are given in the text.
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5 Conclusion

This paper fills a gap in the literature on expectations and bounded rationality by ex-
ploring the equilibrium and dynamic consequences of homogeneous agents who employ
forecast combination techniques, rather than model selection, to form expectations due
to model uncertainty. The consequence of heterogeneous agents who face the model
uncertainty problem, but engage in model selection, has been well explored in the lit-
erature. This paper establishes that despite the similarities of the two approaches that
the forecast combination approach yields distinct equilibrium and dynamic predictions.

The Forecast Combination Equilibrium concept permits multiple equilibria when
agents are assumed to employ an optimal weights combination strategy. The number
and stability of the equilibria depend on the menu of forecast rules considered as
well as the policy parameters of the model. The concept is capable of generating
endogenous time-varying volatility and endogenous breaks to the trend of inflation
when agents estimate beliefs and optimal weights using constant gain learning in a
Lucas-type monetary model that only experiences i.i.d. random shocks. The dynamics
replicate key qualitative feature of U.S. inflation data illustrating the potential of the
concept to explain a range of economic phenomena.

6 Appendix

Selector Matrix Example: The selector matrices given by the ui’s are mi × n+ 1
matrices that can be thought of as identity matrices, which have the rows that do not
correspond to included exogenous variables deleted. As an example, consider the case
where zt−1 = (1, x1,t−1, x2,t−1, x3,t−1)′ and the misspecified model is given by

ŷ1,t = a1 + b1x1,t−1 + b3x3,t−1.

The model can be written as ŷ1,t = φ′1u1zt−1, where φi = (a1, b1, b3)′ and

u1 =

 1 0 0 0
0 1 0 0
0 0 0 1

 .

Derivation of T-map and associated differential equation for the OW-FCE:
The derivation follows Chapter 13 of Evans and Honkapohja (2001) and can be com-
puted by calculating

ER−1zt−1(yt − zt−1Θt−1).

The nesting of the equilibrium conditions (8) and (11) can be seen by multiplying the
zt−1 through the brackets to yield
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ER−1

 u1zt−1z
′
t−1Ω + α

∑2
i=1 γiu1zt−1z

′
t−1u

′
iφi − u1zt−1z

′
t−1u

′
1φ1

u2zt−1z
′
t−1Ω + α

∑2
i=1 γiu2zt−1z

′
t−1u

′
iφi − u2zt−1z

′
t−1u

′
2φ2

Ytz
′
t−1Ω + αYtΓ

′Yt − YtΓ′Yt


and then pushing through the expectations operator, rearranging terms, and factoring
out zt−1z

′
t−1 to arrive at

R−1Ezt−1z
′
t−1


(u1Σzu

′
1)−1(u1ΣzΩ + αγ2u1Σzu

′
2φ2) + (αγ1 − 1)φ1

(u2Σzu
′
2)−1(u2ΣzΩ + αγ1u2Σzu

′
1φ1) + (αγ2 − 1)φ2

(φ′1u1Σzu
′
1φ1)−1(φ′1u1Σz(Ω + (α− 1)γ2u2φ2)) + (α− 1)γ1

(φ′2u2Σzu
′
2φ2)−1(φ′2u2Σz(Ω + (α− 1)γ1u1φ1)) + (α− 1)γ2

 .

The associated differential equation of the system can then be written as

Θ̇ = R−1Ezz′(T (Θ)−Θ)

Ṙ = Ezz′ −R,

where since R−1Ezz′ = I at a fixed point, the appropriate equation to analyze a given
equilibrium is

Θ̇ = T (Θ)−Θ.

Proposition 1: To prove existence first note that by construction uiu
′
i = I, where I

is an mi ×mi identity matrix, and consider the following two lemmas:

Lemma 2: If Σz is diagonal (A2), then uiΣ
−1
z u′iuiΣzu

′
i = I

Proof: By assumption Σz is a diagonal matrix and by construction u′iui = Ψ is a
square diagonal matrix with only ones and zeros on the diagonal. Matrix multiplication
of diagonal matrices implies that Σ−1

z u′iuiΣz can be computed as

diag(σ−1
z,1, σ

−1
z,2, ..., σ

−1
z,k) ∗ diag(ψ1, ψ2, ..., ψk) ∗ diag(σz,1, σz,2, ..., σz,k)

= diag(σ−1
z,1ψ1σz,1, σ

−1
z,2ψ2σz,2, ..., σ

−1
z,kψkσz,k)

= diag(ψ1, ψ2, ..., ψk).

Therefore, uiΣ
−1
z u′iuiΣzu

′
i = uiΨu

′
i = uiu

′
iuiu

′
i = I. �

Lemma 3: If Σz is diagonal (A2), then (u1Σzu
′
i)
−1uiΣz = ui
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Proof: Suppose that (u1Σzu
′
i)
−1uiΣz = A, such that A 6= ui, then

uiΣz = uiΣzu
′
iA

ui = uiΣzu
′
iAΣ−1

z

uiu
′
i = uiΣzu

′
iAΣ−1

z u′i
I = uiΣzu

′
iAΣ−1

z u′i by construction

uiΣ
−1
z u′i = uiΣ

−1
z u′iuiΣzuiAΣ−1

z u′i
uiΣ

−1
z u′i = AΣ−1

z u′i by Lemma 2

vec(uiΣ
−1
z u′i) = vec(AΣ−1

z u′i)

vec(Σ−1
z )(ui ⊗ ui) = vec(Σ−1

z )(ui ⊗ A)

vec(Σ−1
z )(ui ⊗ (ui − A)) = 0

Thus, either ui = 0, or A = ui and a contradiction is established. �

Now consider the equation for the equilibrium parameter beliefs given by

φi = [(1− αγi)uiΣzu
′
i]
−1(uiΣzΩ + α

∑
j 6=i

γjuiΣzu
′
jφj)

using Lemmas 2 and 3 this can be simplified to

φi = (1− αγi)−1(uiΩ + α
∑
j 6=i

γjAi,jφj),

where uiu
′
j = Ai,j. Now assuming A1, A3, and α 6= 1

ω
, it follows that Ai,jφj = 0 for

all j in the above sum. To see this, recall that ui and uj may only share the first row
in common by A3. Therefore, everywhere Ai,j has a non-zero value corresponds to the
intercept parameter belief. However, due to A1 (µ = 0) and α 6= 1

ω
, the equilibrium

parameter belief must also be zero. Thus, (1 − α)−1uiΩ and Γ = (1, ..., 1)′ are the
unique EW-FCE.

Finally, to very that the EW-FCE is equivalent to the REE, substitute in the equi-
librium beliefs, weights, and A3 into the ALM

yt = (Ω′ + α
k∑
i=1

(1− α)−1Ω′u′iui)zt−1 + wt

yt = (Ω′ + α(1− α)−1Ω′
[
ω

I

]
)zt−1 + wt.

Now using A1 such that Ω = (0, ζ ′)′, it follows that the above expression simplifies to

yt = (1− α)−1Ω′zt−1 + wt.
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To show that proposed FCE is unique it must be the case that

∆(Γ∗) = I − α
k∑
i=1

Σzu
′
i(uiΣzu

′
i)
−1u′i

is invertible. Applying Lemma 3 it follows that

∆(Γ∗)Σz = (I − α
k∑
i=1

Σzu
′
i(uiΣzu

′
i)
−1u′i)Σz

∆(Γ∗)Σz = Σz − αΣz

k∑
i=1

u′iui

∆(Γ∗)Σz = Σz − αΣz

[
ω

In

]
∆(Γ∗) = (I − αA) ,

which is invertible as long as α 6= 1 and αω 6= 1. �

Proposition 2: From the proof of Proposition 1 it follows that

φi = (1− αγi)−1uiΩ

and that the beliefs are equivalent to the REE in aggregate. Substituting these beliefs
into the optimal weights condition yields

γi(1− α)(1− αγi)−1Ψ = Ξ + (α− 1)
∑
j 6=i

Λj,

where Ψ = Ω′u′iuiΣzu
′
iuiΩ, Ξ = Ω′u′iuiΣzΩ, and Λj = (1 − αγj)

−1γjΩ
′u′iuiΣzu

′
jujΩ.

Assuming A1 and α 6= 1∑k
i=1 γi

, it follows that intercept belief are zero, which implies

Λj = 0 for all j 6= i. Now noting that ΞΨ−1 = 1, it follows that

γi(1− α)(1− αγi)−1 = 1,

which implies the optimal weight is γi = 1. �

Lemma 1: The methods presented follow Wiggins (1990). A bifurcation may be
characterized by deriving an approximation to the center manifold of the dynamic
system. The dynamic behavior of the system on the center manifold determines the
dynamics in the larger system. To demonstrate the derivation of the center manifold,
consider the following dynamic system

ẋ = Dx x ∈ Rn.
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The system has n eigenvalues such that s + c + u = n, where s is the number of
eigenvalues with negative real parts, c is the number of eigenvalues with zero real
parts, and u is the number eigenvalues with positive real parts. Suppose that u = 0,
then the system can be written as

ẋ = Ax+ f(x, y, ε),

ẏ = By + g(x, y, ε), (x, y, ε) ∈ Rc × Rs × R,
ε̇ = 0, (29)

where

f(0, 0, 0) = 0, Df(0, 0, 0) = 0,

g(0, 0, 0) = 0 Dg(0, 0, 0) = 0,

A and B are diagonal matrices with the corresponding eigenvalues on the diagonal,
and ε ∈ R is the bifurcation parameter. Suppose that the system has a fixed point at
(0, 0, 0). The center manifold is defined locally as

W c
loc(0) = {(x, y, ε) ∈ Rc × Rs × R | y = h(x, ε), |x| < δ, |ε| < δ, h(0, 0) = 0, Dh(0, 0) = 0}.

The graph of h(x, ε) is invariant under the dynamics generated by the system, which
gives the following condition:

ẏ = Dxh(x, ε)ẋ+Dεh(x, ε)ε̇ = Bh(x, ε) + g(x, h(x, ε), ε). (30)

The equation can be used to approximate h(x, ε) to form f(x, h(x, ε), ε), which gives
the dynamics of the system on the center manifold and allows for a bifurcation to be
identified. The conditions for the existence of a supercritical pitchfork bifurcation at
(0,0,0) are

f(0, 0, 0) = 0 ∂f
∂x

(0, 0, 0) = 0 ∂f
∂ε

(0, 0, 0) = 0
∂2f
∂x2

(0, 0, 0) = 0 ∂2f
∂x∂ε

(0, 0, 0) 6= 0 ∂3f
∂x3

(0, 0, 0) < 0.

To apply the center manifold reduction technique to the T-map given by equation
(21) and (20) it must be put into the normal form of (29). This is done by translating
the fixed point ai = 0, bi = ζi/(1 − α), and γi = 1 for i = 1, 2 to lie at the origin
and finding a linear transformation V to put the eigenvalues of the system into the
matrices A and B. Let the translated fixed point at the origin be represented by Θ∗.
Then calculating (DT − I)|Θ∗ , the Jacobian of the T-map at the fixed point, let V be
a linear transformation such that

V −1(DT − I|Θ∗)V =

(
A 0
0 B

)

29



where A is a zero matrix and B is a diagonal matrix with the stable eigenvalues on the
diagonal. The T-map in normal form is thus

u̇ = Au+ f(u, v, ε)

v̇ = Bv + g(u, v, ε)

ε̇ = 0

where f and g are the terms of order two and higher. Now that it is in normal form, the
center manifold can be approximated using a Taylor expansion by taking derivatives
of equation (30). The second order approximation of center manifold is

f(u, h(u, ε), ε) ≈ 2uε−
(

1
12
− i

6

)
u3

σ2
2ζ

2
2

−
(

1
6
− i

3

)
u3ε

σ2
2ζ

2
2

.

The above equations satisfy the conditions for the existence of a supercritical pitchfork
bifurcation. �

Proposition 4: The result follows directly from Lemma 1. The existence of a su-
percritical pitchfork bifurcation of the Fundamental OW-FCE steady state at α = 1

2

implies that steady state is stable under learning for α < 1
2

and that two new E-stable
equilibrium have come into existence.
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