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Abstract
Challenger demands a resource from Defender. In each period,

Challenger chooses whether to attack; if attacked, Defender chooses
whether to concede the resource forever. Each player might be com-
mitted to fighting until victory. Before conflict begins, Defender can
make finitely many offers; conflict begins if Challenger rejects all offers.
In equilibrium, all offers except the last are unacceptable. Negotiation
cannot eliminate conflict because a larger offer makes conflict increas-
ingly attractive for Challenger. If negotiation fails, prolonged conflict
can happen in equilibrium, even when uncertainty is vanishingly small.
We provide comparative statics regarding the probability and length of
conflict.
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1 Introduction

Violent conflicts are long, costly, and often impossible to avoid. The latter
fact is particularly puzzling: why do negotiations fail to prevent conflict even
when compromise solutions are available, commitment is possible, and conflict
is likely to be long and painful?1 One solution to this puzzle is to argue that
political leaders are irrational. For one, this view sits uneasily with the idea
that by and large leaders are rational; for another, it fails to generate any
useful predictions and policy prescriptions.

We build a model of conflict to show that this can last several periods even
if no party benefits from it. Our model is built on the concept of intimidation:
repeatedly inflicting losses on one’s opponent to scare him that further losses
will be incurred unless a concession is made. For example, terrorists carry out
attacks to raise the specter of further attacks until and unless their demands
are met; similarly, workers go on strike to raise the fear of further strikes.2 We
model this as a game of two-sided incomplete information between Challenger
and Defender. Our results are driven by reputation—with an arbitrarily small
probability either party to the dispute is a tough type, who does not experience
the disutility of conflict. Slight irrationality is magnified by equilibrium play
into a significant force that protracts conflict.

We show that this same idea of intimidation also explains why negotiations
fail: even if Defender can make offers to Challenger before conflict begins, equi-
librium offers are always rejected with positive probability. The basic intuition
is that, short of conceding everything, Defender cannot make offers that Chal-
lenger cannot refuse: a better offer affords Challenger a better chance to signal
her toughness and trigger conflict on terms that are to her advantage. More-
over, our model also explains the phenomenon of brinkmanship in negotiations:
conflict is averted only at the last minute, if at all, even when there are mul-
tiple chances of making an offer that would avert conflict. In particular, this
means that the Coase conjecture fails in our setting, as discussed later.

1In a seminal paper, Fearon (1995) poses this as a “central puzzle” that rationalist
explanations fail to solve.

2The analogy between strikes and wars dates back at least to Waltz (1979, p. 114).
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Part I of this paper explains protracted conflicts. We model conflict as a
repeated game with two-sided incomplete information. A resource that yields
flow utility is currently in Defender’s possession. There are infinitely many
periods. In each period until the end of conflict, Challenger and Defender
play a two-stage extensive-form game. In the first stage, Challenger decides
whether or not to attack. In the second stage, Defender decides whether or
not to concede the resource to Challenger’s demand. Each player is privately
informed about his or her type—tough or normal. A tough Challenger is able
and committed to attack costlessly until Defender concedes; a normal Chal-
lenger incurs a cost in each period she attacks and maximizes the discounted
sum of future utilities. A tough Defender never concedes as he does not incur
the cost of conflict; a normal Defender suffers a loss from each attack and
maximizes the discounted sum of future utilities. We find conditions under
which long conflicts can occur even when irrationality becomes vanishingly
small, i.e. both players are normal with probability arbitrarily close to 1.

In Part II we enrich the model with pre-conflict negotiations: Defender can
make a sequence of offers in the form of a fraction of the contested resource.
If Challenger accepts an offer, she immediately gets the promised share of the
resource, Defender enjoys the rest, and conflict is averted. Conflict begins if
Challenger rejects all offers. One might imagine that conflict is not avoided
because of Defender’s fear of revealing his type. We show that this intuition is
incomplete because even if offers do not reveal Defender’s type, the opportunity
to make an offer is a double-edged sword for him. On one hand, offers that
have a higher probability of being accepted increase the utility of Defender.
Indeed, if beliefs were held fixed both before and after the offer, Defender could
completely avoid conflict with the normal Challenger by offering slightly more
than her expected value of entering conflict. On the other hand, if such an
offer were made and accepted with certainty in equilibrium, Challenger would
prefer to reject it to signal that she is tough, forcing Defender to concede as
soon as conflict began. This detrimental effect of more generous offers rules out
the possibility that negotiations succeed for sure. In equilibrium, Defender’s
optimal offer is accepted with probability strictly between 0 and 1. Thus,
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negotiations can mitigate but not avert conflict.
When Defender has multiple chances to make offers, in equilibrium he

makes only unacceptable offers (in the sense that no Challenger would ever
accept them) until his very last chance, when he makes exactly the same offer
he makes when he has a single chance. Thus, long negotiations resolve in
brinkmanship: the parties make no progress towards a peaceful solution up
until the last opportunity before conflict begins.

The policy message is that although negotiations might fail to avoid con-
flict, these are not a waste of time. Both Challenger and Defender benefit from
the opportunity to negotiate, as does any third party interested in mitigating
conflict: if negotiations succeed, then conflict is avoided; if they fail, conflict
is deemed to be shorter. However, when a deadline for making offers exists,
multiple rounds of negotiations do not help to avert conflict any more than a
single round.

In Part III we use our model to make a variety of comparative predictions
regarding the likelihood and length of the conflict. We divide them into two
groups. Suppose that a conflict is in progress, i.e. Challenger has attacked
at least once and Defender has not conceded yet. The first set of predictions
pertain to what happens next. A longer conflict is to be expected if either Chal-
lenger or Defender value the resource more, the costs of fighting are smaller,
or players are more patient. Most importantly, only these parameters affect
the probability that the conflict continues.

Our second set of predictions answer two questions: (i) what is the proba-
bility of a first attack? (ii) if Challenger attacks, what is the probability that
the Defender concedes before any further attack? To answer these questions,
we introduce a notion of what it means for one player to be more commit-
ted than the other. In equilibrium, when Challenger is more committed, she
attacks for sure. Conversely, when Defender is at least as committed as Chal-
lenger, then Challenger mixes between conceding and attacking. In Section 10
we show how these predictions help explain some stylized facts about terrorist
conflicts and workers’ strikes.
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Related Literature

Our main contribution is to identify the interaction between negotiations and
conflict. The underlying model is one of reputation à la Kreps and Wilson
(1982) and Milgrom and Roberts (1982)—a player with private information
about his type mimics a commitment type so as to guarantee himself high pay-
offs.3 Formally, we model post-negotiations conflict as a costly war of attrition
with incomplete information.4 We believe our framework to be particularly
well-suited to the study of long and costly conflicts. To appreciate why, let
us first compare our model to the closely related ones in Ponsatì and Sàkovics
(1995) and Abreu and Gul (2000). Both study related continuous-time mod-
els of the war of attrition with two-sided incomplete information;5 the latter
shows that as the time interval between offers goes to zero all equilibria of the
discrete-time game converge to the unique equilibrium in continuous time.

Our model differs in ways that make it more natural for our motivating
examples. First, a key feature of these models is that concession can be de-
layed for a very brief time, making ‘each’ delay virtually costless. This hardly
catches the case of terrorist conflicts where the decision not to concede to the
terrorists might trigger a new, potentially devastating attack. The sequential
structure of our model with significant costs captures this aspect. Second,
time discounting is the only cost of waiting in these model, while ours accom-

3A commitment type is, quite naturally, wedded to a particular strategy, such as never
conceding.

4The genesis of the extensive literature on the war of attrition is Maynard-Smith (1974).
Hendricks et al. (1988) study a complete-information war of attrition. Kornhauser et
al. (1989) apply reputational techniques to a war of attrition in discrete time, with com-
mitted types conceding with a constant probability in each period; the main goal is a set
of conditions under which the less patient player concedes immediately. In Ordover and
Rubinstein (1986) two players fight a war of attrition with a given finite deadline. Only one
player privately knows who will ‘win’ if the game doesn’t end by the deadline. Either the
uninformed player concedes at the start or players remain indifferent between conceding and
persisting. Hörner and Sahuguet (2010) model a war of attrition with two-sided asymmetric
information about the valuation of the good to each player. The distinguishing feature is
that both players can signal their types by sinking costly bids. Conflict never goes beyond
two periods.

5The latter studies a bargaining model where players are, or pretend to be, irrationally
committed to mutually incompatible demands.
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modates an explicit cost of fighting, which is necessary to force concessions in
our model because the resource is initially held by one party, as is often the
case in economic and political applications. In doing so, we permit flow costs
and benefits. Since delaying a concession carries the risk of further losses,
the normal Defender strictly prefers to concede if he believes Challenger to be
tough with sufficient probability, no matter what he expects a normal Chal-
lenger to do next. A similar statement holds for the normal Challenger. In this
sense, our model of conflict is closest to a model of entry deterrence with two-
sided incomplete information that Kreps and Wilson (1982) touch on, without
deriving the equilibrium rigorously.6

These models identify sufficient conditions under which conflict resolves
almost immediately as irrationality disappears.7 Thus, comparative statics on
the length and probability of conflict are highly sensitive to the prior proba-
bility of irrationality. Our model allows us to identify conditions that permit
prolonged conflict in equilibrium even when the prior irrationality vanishes.
These conditions are useful in understanding extended conflict.

The literature on bargaining under incomplete information can be traced
back to Chatterjee and Samuelson (1983). Fudenberg, Levine, and Tirole
(1985) and Gul, Sonnenschein and Wilson (1986) present dynamic models
where a monopolist makes repeated offers to a buyer with unknown valuation.
The main result is a verification of the Coase conjecture: as offers become
frequent, the monopolist immediately offers a price that is acceptable to the
lowest valuation buyer.8 Our brinkmanship result, however, says that in our
setup increasing the number of offers does not change the probability that
negotiations succeed. Inefficiency is independent of the number of potential
offers.

More broadly, we share our interest in the length of conflicts with a num-

6In Chatterjee and Samuelson (1988) both a buyer and a seller have private information
and alternately make offers. Although flow utilities are absent, the qualitative features are
shared: the soft type mimics the hard type initially. Uniqueness does not hold in their richer
setting.

7See Fearon (2013) for a brief review of why most bargaining models fail to match the
observation that conflicts are usually long.

8Cho (1990) extends the above results to two-sided incomplete information.

5



ber of papers in the political science literature, for example Powell (2004)
and Fearon (2013), who study conflict as a problem of bargaining with pri-
vate information (about the likelihood of winning the conflict at each period).
Powell (1996) presents an alternating offer game where players can impose
a settlement at a cost players have private information about; when parties
become too pessimistic they take the outside option of conflict. In Brito and
Intriligator (1985), and the closely related Sobel and Takahashi (1983), the un-
informed party uses active conflict to screen among various types of informed
parties, who wish to appear stronger than they really are in order to secure
a better bargain. Sanchez-Pages (2009a) shows the converse—the informed
party uses ‘limited conflict’ to convey credible information to an uninformed
party about the eventual outcome of rejecting agreements and triggering ‘ab-
solute conflict’; this makes the latter more amenable to agreements even if he
were optimistic enough initially to render agreements infeasible. Similarly, in
Heifetz and Segev (2005) a party delays making an acceptable offer to credi-
bly signal its true stand, and escalation makes resolution more attractive. See
Baliga and Sjöström (2013) and Sanchez-Pages (2009b) for a highly integrated
view of the above literature and more.

Lapan and Sandler (1988) model terrorism as a repeated game between
players who are irrational with some probability. In their model, absent a
concession, the probability of being a commitment type jumps up to an arbi-
trary and exogenously given quantity. Hodler and Rohner (2012) make this
endogenous, but they have only two periods; this in turn means that they
predict attacks only when the probability of the terrorist being tough is very
large. Our model endogenously determines both the termination of the war of
attrition and the evolution of beliefs about the degree of irrationality of one’s
opponent, and shows that prolonged conflict is compatible with very small
degrees of irrationality.

An immediate implication of our results is that Defender wants to be per-
ceived as tough. Schelling (1956, 1960, 1966) and Crawford (1982) developed
the idea that bargaining parties can benefit if they convince their opponent
that they are committed to their threat—hence the argument that govern-
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ments should appear committed to hawkish positions when facing a terrorist
threat. Yet, the advantage of showing commitment should not be overstated:
once conflict begins, the expected payoff for (normal) Defender is independent
of his probability of being tough. To see this, notice that the entire advantage
of being perceived as tough comes from the fact that this induces a normal
Challenger to attack with very low probability. But if the Challenger attacks
nonetheless, then Defender must update his beliefs to assign a very high prob-
ability to Challenger being tough.

Our idea of intimidation is also related to Silverman (2004), a random-
matching model where violence is instrumental in deterring future violence
against oneself. If the fraction of agents who directly gain from violence is
sufficiently large, then other agents can also engage in it to acquire a reputation
for toughness. Yared (2009) considers a defender with private knowledge of
his cost of conceding the flow resource in each period; in equilibrium the
challenger attacks with positive probability when no concession is made, so
that the defender has an incentive to concede often enough. Since costs are
drawn independently across periods, there is no reputation at play, unlike our
model.

Part I

Conflict
Our model of conflict presents what happens if negotiation fails.

2 Setup

There are infinitely many periods t ∈ N and two players—Challenger (she)
and Defender (he). Until conflict ends, a two-stage sequential game is played
in each period:

Stage 1. Challenger chooses whether to fight (attack) or concede;
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Stage 2. Defender chooses whether to fight or concede.

A contested resource is initially in Defender’s possession. If Defender has not
conceded yet, he enjoys a rent d > 0 from the resource in the current period; if
he concedes, Challenger enjoys a rent c > 0 in the current period and in each
subsequent period. In particular, periods after concession do not involve any
actions, only flow rents, as concession prevents all future attacks.

Each player can be of two types—tough or normal. Challenger is tough
with probability µ0 > 0; Defender is tough with probability π0 > 0. Normal
Challenger pays a cost A > 0 in each period she attacks; normal Defender
suffers a loss L > 0 from each attack. Notice that Defender suffers the loss even
if he concedes the resource immediately after the attack. Normal Challenger
and Defender maximize the sum of future utilities discounted by factors δC > 0
and δD > 0 respectively.

Tough Challenger and Defender have no costs associated with attacks.
Tough Challenger attacks until Defender concedes. Tough Defender never
concedes.

We make a parametric assumption to restrict attention to interesting cases.
The first part of Assumption 1 says that the loss from one attack in the
next period exceeds the flow utility of the contested resource in the current
period. The second part says that the cost of attacking is strictly less than
the discounted value of getting the contested resource forever, starting from
the current period. It immediately follows from this that Challenger strictly
prefers to attack if she knows that one attack will result in Defender conceding
immediately.

Assumption 1. δDL > d; A < c
(
1− δC

)−1
.

Note that if Assumption 1 fails, then either Challenger never attacks or
Defender never concedes.

Our solution concept is perfect Bayesian equilibrium (henceforth equilib-
rium), since subgame-perfection does not have bite in such models of incom-
plete information.
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2.1 Strategies and Beliefs

At each period t, in stage 1 the state of the game is the vector (µt−1, πt−1),
where µt−1 is Defender’s belief that Challenger is tough, and πt−1 is Chal-
lenger’s beliefs that Defender is tough. In stage 2, the state vector is (µt, πt−1),
where Defender’s belief about Challenger’s type has been updated from µt−1

to µt in light of Challenger’s action at stage 1.
A (behavior) strategy9 for Challenger is a sequence of mappings σCt :

[0, 1]2 → [0, 1], t ∈ N, where σCt (µt−1, πt−1) is the probability that the nor-
mal type of Challenger concedes (does not attack) in period t as a function
of the public beliefs. A strategy for Defender is a sequence of mappings
σDt : [0, 1]2 → [0, 1], one for each t ∈ N, where σDt (µt, πt−1) is the proba-
bility with which Defender concedes in period t when the public beliefs are µt
and πt−1.10

Since tough players never concede, the average conditional probabilities of
concession by Challenger and Defender respectively are obtained by multiply-
ing the probability of the normal type by the probability that the (respective)
normal type concedes:

σ̄Ct (µt−1, πt−1) = (1− µt−1)σCt (µt−1, πt−1) ; (1)

σ̄Dt (µt, πt−1) = (1− πt−1)σDt (µt, πt−1) .

Obviously, µt = 0 at any history where Challenger concedes. If Challenger has
not conceded until period t, the updated belief µt that Challenger is tough is
derived by Bayes’ rule from µt−1 and σCt :

µt = µt−1

1− σ̄Ct (µt−1, πt−1) . (2)

9Writing the strategies as a function of public beliefs is without loss of generality. To see
this point, notice that normally a strategy is defined on histories. However, in our setting,
as soon as one party concedes, the game is over. Therefore, our formulation is the general
one, where a strategy at t is a function of t and all possible histories after which the game
is still being played.

10Note that Challenger’s action in period t depends on the beliefs at the end of period
t − 1, as is standard. In contrast, Defender observes Challenger’s move at t, updates her
belief about Challenger’s type to µt, and only then chooses an action.
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Similarly, if Defender has refused to concede throughout we have

πt = πt−1

1− σ̄Dt (µt, πt−1) , (3)

with πt = 0 if Defender concedes at t.

3 Threshold Beliefs

An instance of our model is given by prior beliefs (µ0 and π0), costs (A and L),
flows of utility (c and d) and discount factors (δCand δD). In this section we
derive some conditions that all equilibria must satisfy. This greatly simplifies
our model as an instance of it will be given by only the prior beliefs and two
threshold beliefs, µ̄ and π̄.

Clearly, each player concedes if he or she believes the other to be tough
with probability 1. Since payoffs are continuous in beliefs, if Defender believes
Challenger to be tough with sufficiently high probability, then Defender will
concede immediately, even if he knows that normal Challenger will never attack
again. Similarly, if Challenger believes Defender to be tough with sufficiently
high probability, then Challenger will concede immediately, even if she knows
that normal Defender will concede with certainty in response to a further
attack. The following lemma shows that optimal strategies have this threshold
form.

Lemma 1 (Threshold beliefs). Let µ̄ and π̄ be given by

µ̄ := 1
δD

[
1 +

(
1− δD

) L
d

]−1
, and (4)

π̄ := 1−
(
1− δC

) A
c
. (5)

In any equilibrium,

(i) if normal Defender concedes after a single attack, then normal Challenger
strictly prefers to attack if πt < π̄, is just indifferent at π̄, and strictly
prefers not to attack otherwise;
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(ii) if normal Challenger concedes after Defender does not concede once, then
Defender strictly prefers not to concede if µt < µ̄, is just indifferent at
µ̄, and strictly prefers to concede otherwise.

Proof. In Appendix.

We shall use the fact that µ̄ and π̄ are not functions of priors µ0 and π0.
These thresholds depend in a very natural way on the discount factors of the
players. To illustrate, π̄ → 1 as Challenger becomes more patient (δC → 1),
i.e. Challenger concedes only if Defender is almost certainly tough. Similarly, a
very patient Defender concedes only if Challenger is almost certainly tough.11

For simplicity, we make the following genericity assumption, which rules
out a negligible set (of zero Lebesgue measure) of priors but gives us unique-
ness.

Assumption 2. The quantities ln π̄/ ln π0 and ln µ̄/ lnµ0 are not integers.

4 Equilibrium in the Game of Conflict

Our conflict game has a unique equilibrium. Depending on parameter values it
is one of two mutually exclusive types. Both types have similar qualitative fea-
tures, analogous to those in continuous-time wars of attrition. Propositions 1
and 2 stated below and proved in Appendix B.4 fully characterize the unique
equilibrium.

First, solely from parameters we can compute a finite number of periods
during which normal players fight with strictly positive probability. Beliefs
during this phase are always below their respective thresholds. Thereafter,
beliefs cross the thresholds and normal players concede.12 This maximum
duration of conflict between normal players is given by the conflict order.

11As δC , δD → 1, i.e. as the interval between periods becomes smaller, our model gets
closer to the continuous-time models in Ponsatì and Sàkovics (1996) and Abreu and Gul
(2000). In the limit, if δC/δD → 0, then (normal) Challenger never attacks; if δD/δC → 0,
Challenger attacks with probability 1 in period 1, and (normal) Defender concedes imme-
diately.

12Conflict continues forever if and only if both players are tough.
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Definition 1. A conflict is of order n if n is the largest non-negative integer
such that µ0 < µ̄n and π0 < π̄n.

Note that the order is 0 if either µ̄ < µ0 < 1 or π̄ < π0 < 1; otherwise it is
non-zero. We assume that the conflict order is at least 1.13

Second, we determine which type of equilibria prevails. This depends on
the relative commitment of Challenger and Defender.

Definition 2. In a conflict of order n, Challenger is more committed if µ̄n+1 <

µ0 < µ̄n and π0 < π̄n+1; Defender is at least as committed if µ0 < µ̄n and
π̄n+1 < π0 < π̄n.

Proposition 1. If Challenger is more committed, normal players play the
following strategies in the unique equilibrium:
(i) in period 1, Challenger attacks with probability 1 and Defender concedes
with probability

1− π0

π̄n
1− π̄n
1− π0

; (6)

(ii) subsequently, Challenger and Defender concede with probabilities 1−µ̄
1−µt and

1−π̄
1−πt respectively until period n + 1, Stage 1, and concede with probability 1
thereafter .

Proposition 2. If Defender is at least as committed, normal players play the
following strategies in the unique equilibrium
(i) in period 1, Challenger concedes with probability

1− µ0

µ̄n
1− µ̄n
1− µ0

; (7)

(ii) subsequently, Challenger and Defender concede with probabilities 1−µ̄
1−µt and

1−π̄
1−πt respectively until period n, and concede with probability 1 thereafter.

The key difference between the two cases is that when Challenger is more
committed, she attacks with probability 1 at the start, whereas she strictly
mixes when Defender is at least as committed.

13Otherwise the game ends immediately as one prior is above its threshold belief.
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The following results follow immediately from the probabilities of conces-
sion above.
Remark 1. If Challenger is more committed than Defender, then normal Chal-
lenger’s expected payoff is

uC :=
(

1− π0

π̄n

)
c

1− δC − A (8)

and normal Defender’s expected payoff is −L. The unconditional probability
of an attack in period t ∈ [2, n+ 1] is given by

Pr (attack at t) = π0

π̄n
µ̄t−1π̄t−2.

Remark 2. If Defender is at least as committed as Challenger, then normal
Challenger’s expected payoff is 0 and normal Defender’s expected payoff is

uD :=
(

1− µ0

µ̄n

)
d

1− δD −
µ0

µ̄n
L. (9)

The unconditional probability of an attack in period t ∈ [1, n+ 1] is given by

Pr (attack at t) = µ0

µ̄n
(µ̄π̄)t−1 .

4.1 Deriving the Unique Equilibrium

We now present a few lemmas that identify necessary conditions for equilib-
rium and thereby pin down a unique one in the game of conflict. Uniqueness
permits comparative statics and facilitates the study of pre-conflict negotia-
tions without grappling with equilibrium selection.

4.1.1 No Tough Play

We first ask if a normal player ever mimics the tough type.

Lemma 2. In any equilibrium, normal types of both players concede with
strictly positive probability in all periods, except possibly Challenger in period
1.
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Proof. In Appendix.

We provide a simple intuition. If Challenger does not concede for sev-
eral periods, this would force an immediate concession by Defender because
Defender knows that (i) he will concede with positive probability at some fu-
ture time t and that (ii) Challenger will not concede before then. The second
fact means that at time t Defender’s value of conflict is not larger than the
value of conceding (otherwise he would not concede). The first fact implies
that Defender should concede now with probability 1, as protracting conflict
until t will only add costs for him. Should we conclude then that Defender
concedes immediately because Challenger would not do so in the future? Of
course not—if Defender deviates, Challenger would believe he is tough with
probability 1 and concede immediately. Thus, in equilibrium both Challenger
and Defender must always concede with positive probability (except possibly
Challenger in period 1).

4.1.2 Mixing Throughout

Suppose that Challenger is indifferent between conceding at t and t+ 1. The
former gives zero utility, whereas the latter requires Challenger to pay the cost
of attack but also gives her some chance of getting everything starting from
time t, in case Defender concedes at t. Hence indifference requires

0 = σ̄D (µt, πt−1) c

1− δC − A

which implies σ̄D (µt, πt−1) = 1− π̄. Similarly, suppose Defender is indifferent
between conceding at t and t+1. The former gives zero further utility, whereas
the latter requires Defender to pay the cost of an attack if Challenger attacks
again at t+ 1, but also gives Defender a rent at t and some chance of getting
the same rent in all future periods, in case Challenger concedes at t+1. Hence
indifference requires

0 = d+ σ̄C (µt, πt)
δD

1− δD d−
[
1− σ̄C (µt, πt)

]
δDL
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which gives σ̄C (µt, πt) = 1 − µ̄. These indifference conditions lead to the
lemma below.

Lemma 3. If normal Challenger is indifferent between conceding at times t
and t+1, then normal Defender’s equilibrium concession probability and public
beliefs about Defender’s type are

σ̃D (πt−1) := 1− π̄
1− πt−1

and πt = πt−1

π̄
(10)

respectively. Similarly, if normal Defender is indifferent between conceding at
times t and t+1, then normal Challenger’s probability of conceding and public
beliefs about Challenger’s type are

σ̃C (µt) := 1− µ̄
1− µt

and µt+1 = µt
µ̄
. (11)

Remark 3. Challenger’s mixing probability at t = 1 need not equal σ̃C ; De-
fender’s mixing at t = 1 can be different from σ̃D only if Challenger strictly
prefers to attack at t = 1.

Combining Lemmas 2 and 3, in equilibrium both players concede with
the probabilities in Lemma 3 above, except possibly at t = 1. Beliefs evolve
according to Lemma 3, except possibly at t = 1 and until they hit µ̄ or π̄.

4.1.3 Crossing the Thresholds

If players mix between conceding and fighting, public beliefs that they are
tough increase with every act of fighting. Conflict ends for sure only when a
threshold is crossed. Lemma 4 says that when an equilibrium belief crosses its
threshold, the other belief is exactly equal to its own threshold.

Lemma 4. In equilibrium (i) πt < π̄ and µt+1 < µ̄ implies πt+1 ≤ π̄ ; (ii)
µt < µ̄ and πt < π̄ implies µt+1 ≤ µ̄.

Proof. In Appendix.
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(a) Challenger is more committed, n = 2
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Def. wins

Chall. wins
π0

π1 = π0
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(b) Defender is more committed, n = 3

Figure 1: How Beliefs Evolve

The intuition is simple and has much in common with the classic logic of
reputation. Suppose that case (i) is true. By Lemma 1, if Defender knows
that fighting once will move the game into his region of victory (Challenger’s
belief about Defender is above its threshold); then he will fight with probabil-
ity 1, thereby violating Lemma 2. In other words, this affords Defender too
much opportunity to modify the beliefs of Challenger to his own advantage.
The implication is that when normal types finish conceding, one reputation is
exactly at its threshold, i.e. either πn = π̄ or µn = µ̄.

4.1.4 The First Period

What do our previous results imply about period 1’s probability of attack?
By Lemma 3, from period 2 onwards beliefs must grow by a factor µ̄−1 and
π̄−1, respectively. The solid line in Figure 1a depicts the equilibrium evolu-
tion of beliefs in a conflict of order 2 with Challenger more committed than
Defender. The dashed line represents the evolution of beliefs if it is common
knowledge that both Defender and Challenger play the strategies in lemma 3
from period 1 onwards. In this case, π1 < π̄ and µ2 > µ̄, violating Lemma 4.
In equilibrium, Defender must concede with sufficiently large probability in
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period 1 so as to level the playing field with Challenger and guarantee π2 = π̄.
Since Defender is conceding with a higher probability than what would make
Challenger indifferent, in period 1 Challenger strictly prefers to attack.

Remark 4. If Challenger is more committed than Defender, in period 1 Chal-
lenger attacks with probability 1 and Defender concedes with probability
1− π0/π̄

n > 1− π̄.

Figure 1b depicts the equilibrium evolution of beliefs in a conflict of order
3 with Defender at least as committed. Now Challenger must concede with
sufficiently high probability in period 1 so as to level the playing field with
Defender and guarantee µn = µ̄.

Remark 5. If Defender is at least as committed as Challenger, in period 1
Challenger attacks with probability µ0/µ̄

n.

5 Two Limits

5.1 Vanishingly Small Uncertainty

We explore the limit of our model as uncertainty about players’ types becomes
vanishes small. Our main interest is in determining conditions under which
conflict can continue even when both parties are very likely to be normal.
From the previous sections, a conflict (game) is completely characterized by
the prior probabilities of being tough and the thresholds, (µ0, π0, µ̄, π̄), which
is in (0, 1)4 . Fixing (µ̄, π̄) ∈ (0, 1)2, we can define a sequence of conflict games
{Γk} by varying the prior (µ̃k, π̃k); let the order of Γk be denoted by n (k).
We consider sequences that converge to complete information, i.e. (µ̃k, π̃k)→
(0, 0). Obviously, n (k)→∞ along such sequences.

For such a sequence of conflicts converging towards rationality, the follow-
ing definition ensures that no player is infinitely more committed (see Defini-
tion 2) than the other.
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Definition 3. A sequence of conflicts {Γk} is equipoised if

lim
k→∞

µ̃k/µ̄
n(k)

µ̃k/µ̄n(k) + π̃k/π̄n(k) ∈ (0, 1) .

Define the ratio Zk := {π̃k/µ̃k} / {µ̄/π̄}n(k). Henceforth we consider se-
quences along which the limit exists in the extended reals. The condition
above may equivalently be stated as requiring that Zk converges to a strictly
positive real number, rather than limiting to 0 or infinity. Results below estab-
lish that equipoised sequences feature a non-vanishing probability of prolonged
conflict even as we limit to complete information.

Proposition 3 considers a sequence of conflicts such that Defender is at
least as committed as Challenger.

Proposition 3. If the sequence {Γk} of conflict games is equipoised and the
Defender is at least as committed for all k ∈ N, lim infk Pr (attack at t) > 0
for all t ∈ N.

Proof. In Appendix.

As an example, consider a symmetric conflict of order n with µ̄ = π̄ and
equal priors. As uncertainty vanishes, the order of conflict grows. Along the
natural sequence µ̃k = π̃k, conflict happens at any period t with probability at
least µ̄ (µ̄π̄)t−1. Notice that the probability of conflict diminishes to zero with
t; we are interested above in how it behaves as k goes to infinity.

We now consider a sequence of conflicts such that Challenger is more com-
mitted than Defender.

Proposition 4. If the sequence {Γk} of conflict games is equipoised and Chal-
lenger is more committed for all k ∈ N, lim infk Pr (attack at t) > 0 for all
t ∈ N.

Proof. In Appendix.

It is easy to see that when the equipoise condition fails, i.e. the limit is
either 0 or 1, one of the two players must concede with probability approaching
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unity. If we are in the case where Challenger is more committed, then this
means that the first attack by Challenger (which happens with certainty) leads
to almost certain concession. If we are in the case where Defender is more
committed, this means that Challenger will trigger conflict with a vanishing
small probability.

Abreu and Gul (2000) show a result which might appear to be in contra-
diction with ours. They consider a model which is identical to ours in the limit
as the interval between periods goes to 0 or, equivalently, δC , δD → 1. Notice
that as δC , δD → 1, then µ̄, π̄ → 1. Their result is that in any sequence of such
limit-conflicts with

lim
k→∞

π̃k
µ̃k + π̃k

∈ (0, 1)

and approaches complete information, the limit probability of conflict after
the first instant is 0. They call such sequences balanced.

In the limit as δC , δD → 1, balance and equipoise coincide. Nonetheless,
for any strictly positive interval between periods, all equipoised sequences are
not balanced unless µ̄ = π̄. Thus, studying our discrete model before taking
the continuous-time limit allows us to exploit the thresholds µ̄ and π̄ and
understand under which conditions conflict protracts.

Notice that if a sequence is not balanced it may or may not be equipoised.
Consider a sequence which is not balanced because the Defender is much more
likely to be rational: π̃k/µ̃k → 0. If the thresholds are such that µ̄ < π̄, then
Zk goes to zero, because both factors go to zero (recall that n(k) becomes
infinitely large). On the other hand if µ̄ > π̄ , the two factors in Zk go to zero
and infinity respectively. Then we have to look at the rate at which π̃k/µ̃k is
going to zero. It seems intuitive that if it goes to zero fast enough, conflict will
be brief (with Defender very likely to concede after the first attack); equipoise
identifies precisely what is not fast enough.14 The conclusion of the above is
that our equipoise condition refines the balance condition in Abreu and Gul,
and is necessary and sufficient for a non-vanishing probability of extended

14For example, it may be checked that with µ̄ = 1/2 and π̄ = 1/3, conflict vanishes
along the sequence (µ̃k, π̃k) = (1/k, 1/k2) for k ≥ 2, whereas it survives along the sequence
(µ̃k, π̃k) = (1/k, 1/k3/2) for k ≥ 2.
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conflict even with vanishingly small uncertainty.

5.2 Continuous-time Limit

For analytical simplicity, we study the limit of our discrete game of conflict,
i.e. we allow the time interval between periods to vanish. Time is non-negative
and ∆ is the interval between periods. Normal players discount time at the
rate r such that δ = e−r∆. When we refer to ‘limit equilibrium’ it should be
understood as the limit of the unique equilibria in discrete-time games as the
time between successive periods of the war vanishes. This essentially allows
us to differentiate.

Lemma 5. In the limit equilibrium, when Challenger is more committed than
Defender, then Defender concedes at time t = 0 with total probability

PD = 1− π0µ
−σD/σC
0 > 0, where σD ≡ A

c/r
, σC ≡ L− d

d/r
.

Proof. In Appendix.

Part II

Negotiation

6 A Model of Negotiation

Our model predicts protracted conflict. Since conflict is wasteful, the normal
Defender should prefer to sacrifice a positive fraction of the resources to avoid
conflict. This begs a number of questions. Can negotiations avoid conflict?
Who benefits from the possibility of negotiations? To answer these questions
we extend the basic model of conflict to allow for negotiations before conflict.

There is a given deadline T ≥ 0 and K points of time t1, . . . , tK in [0, T )
at which Defender can offer a fraction of the resource to Challenger. After
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each offer, Challenger decides whether to accept or reject an offer immediately
thereafter.15 If all offers are rejected, the conflict game presented in Part I
is played out starting at time T . In other words, Challenger can first initi-
ate conflict at time T . This captures the real-life gap between breakdown of
negotiations and the initiation of hostilities.16 Our model makes a very natu-
ral distinction between the negotiation and conflict phases—the former allows
compromises, but the latter is all-or-nothing because the tough type of each
player demands everything.

At t = 0, Challenger privately observes her type, while Defender does not
know either type. Defender will privately learn his own type at t = T if he
is attacked. For example, in the context of terrorism, by facing attacks the
government learns whether the public is willing and able to brave it. Since
Defender does not possess private information, negotiation failure does not
arise from his fear of revealing her type by making an offer. In Section 9
we discuss some alternative models, such as one where the privately informed
agent makes offers.

Conditional on being tough, Defender’s payoff is calculated as for the nor-
mal type but with L = 0 (although a tough Defender could for the purposes
of Section 2 be thought of as a Defender with loss strictly less than d/δD,
we simplify calculations by assuming that the tough type has a zero cost of
fighting).

We focus on the case in which Challenger is (relatively) more committed
than Defender. In this case, Challenger gets a strictly positive utility from
conflict at the given priors; therefore, if no offer is made, at t = T Challenger
strictly prefers to attack. If all offers are rejected, Defender believes Challenger
to be tough with probability µT ≥ µ0. So Challenger will initiate conflict and
Defender will concede with mass probability PD given by Lemma 5, with µ0

replaced by µT .

15‘Immediately’ signifies that Challenger can start enjoying the resources from the time
of the offer if she accepts it; this is merely to simplify calculations by eliminating discounting
between the time of the offer being made and decided on.

16At the national and international levels T could be a significant length of time. We see
no difficulty in allowing T to be random, but no significant gain in insight either.
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7 Why Negotiation Fails (K = 1)

To illustrate the failure of negotiations in a transparent way, we begin with the
simplest scenario: Defender can make a single offer at time t = 0. Defender’s
problem is to choose the optimal offer. Defender’s utility from making an
offer x will depend on the strategy of Challenger. If offer x is accepted by
the normal type with probability α (x),17 the total probability of acceptance
is β (x) = (1− µ0)α (x). Defender’s total utility, as measured from date 0, as
a function of his offer x is then given by

V D
0 (x, β (x) ;µ0, π0) = β (x) (1− x) d

r
+

+ (1− β (x))
{
π0
d

r
+ (1− π0)

(
1− e−rT

) d
r

}
.

The first term is clearly the payoff from the portion of the resource that stays
with Defender; the second represents the expected payoff in case the offer is
rejected: if Defender is tough, his continuation payoff (from time 0) will be
d/r; if Defender is normal, we know that his continuation payoff will be the
same as if he were to concede immediately at time T , i.e.

(
1− e−rT

)
d/r.

Challenger’s decision depends on the comparison between the offer x and
the alternative of conflict. The value of the offer x to Challenger is xc/r; the
value of conflict is, of course, PDce−rT/r, where PD has been defined earlier
and is increasing in the updated belief µT = µ0/ (1− β (x)).

Thus, the opportunity to make an offer is a double-edged sword for De-
fender, with one advantageous and one detrimental side. The advantageous
effect is clear—offers that have a higher probability of being accepted increase
the utility of Defender. Indeed if beliefs were held fixed both before and after
the offers, Defender could completely avoid conflict with the normal Challenger
by offering (slightly above) her expected value of entering conflict. But this
means that Defender would concede at T if the initial offer were to be rejected.

17We can simply assume that tough Challenger doesn’t accept anything short of the
whole resource, but we can get this property for free because, as we shall see, Defender will
never make an offer that would be large enough to be accepted by tough Challenger.
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This is the detrimental effect of making better offers—because they are more
likely to be accepted, bigger offers when rejected move beliefs further against
Defender in the conflict phase. It is not a priori clear if the negative effect
outweighs the positive effect. The following proposition says that (i) the ad-
vantageous effect always dominates at the low end, while (ii) the detrimental
effect always dominates at the high end, resulting in the normal Challenger
strictly mixing between accepting and rejecting the equilibrium offer.

Proposition 5. The optimal offer has an acceptance probability β∗ ∈ (0, 1− µ0)
independent of T ≥ 0.

Proof. In Appendix.

As it becomes more likely that the offer will be accepted, the endogenous
outside option interacts with the offer (via the type) to produce a ‘cat-chasing-
its-tail effect’: the value of rejecting the offer rises fast relative to the gain from
accepting it and manages to stay ahead of the offer itself. Thus, negotiations
can mitigate but not preempt conflict. Surprisingly enough, this holds regard-
less of the (absolute or relative) probabilities of being committed, as long as
Challenger is relatively more committed. Informal discourse often suggests
that we should surrender when the battle for reputations is skewed; our model
shows that the undesirability of a bigger µ0 is not enough that Defender should
concede everything

The next proposition answers a very natural question that comes up often
in discussions of conflict: should we negotiate? More formally, we compare two
possible models—the first model is the one presented in this section; whereas
the second affords no opportunity of making an offer at time 0 (so that nothing
happens until Challenger attacks at time T and trigger conflict). It shows
that negotiation benefits Defender, which is unsurprising since Defender can
always make a zero offer. More importantly, both types of Challenger get a
higher utility in the first model than in the second. Since β∗ > 0, Challenger
gets the same utility from accepting and rejecting the offer. Rejecting raises
the probability of Challenger being committed, raises the probability of mass
acceptance by Defender at t = T , and therefore gives the Challenger a higher
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utility. This is formally stated below. The extra opportunity to signal is
thus valuable for both types of Challengers—it gives the tough type an extra
opportunity to demonstrate toughness and raise her payoff; the normal type
gets an extra opportunity to mimic the tough type without paying for an
attack. Thus negotiation is Pareto optimal (for any fixed T ).

Proposition 6. Let u∗Cn, u∗Ct, u∗D denote the utilities at time 0 of the normal
Challenger, the tough Challenger, and the Defender in the unique equilibrium
of the game in which there is no chance to make an offer. Let u∗Cn (β∗),
u∗Ct (β∗), u∗D (β∗) denote the equilibrium utilities in the game in which the
only offer is accepted with probability β∗. Then

u∗Cn (β∗) > u∗Cn, u∗Ct (β∗) > u∗Ct, u∗D (β∗) > u∗D.

Proof. See discussion above the proposition.

8 Brinkmanship (K > 1)

We now turn to the more general case with multiple rounds of offers in the
interval [0, T ). It seems plausible that Defender might be able to progressively
‘screen’, i.e. take out a portion of normal types at each round, lowering the
probability of conflict, which could conceivably go to 0 as the number of rounds
increases. While our single-offer model is a priori restrictive, we now show that
this is not in fact the case: our results are robust to an arbitrary number of
offers in the time interval [0, T ]. All offers except the one in the last period will
be unacceptable; if negotiation succeeds it will do so on the brink of conflict.
Thus brinkmanship emerges quite naturally from the model, driven by the
same forces that could trigger conflict.

Let the posterior probability of the tough type at the beginning of round
k be µk. A strategy of Defender comprises finitely many functions xk for k =
0, 1, . . . , K, mapping from [0, 1] to [0, 1] such that the kth offer is xk (µk). Let
(βk | k = 0, 1, . . . , K) be the corresponding ‘acceptance probability’ mappings
from [0, 1] to [0, 1]; the offer made in round k ∈ {0, 1, . . . , K} is accepted with
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probability βk (µk). The strategy of Challenger decides the probability with
which an offer is accepted in each round; we omit the notation for this.

Proposition 7. All equilibria must satisfy the following for any prior µ0:

β∗0 = . . . = β∗K−1 = 0 < β∗K = β∗.

Proof. In Appendix.
For intuition assume that K = 2. First, note that even if there is early

acceptance with positive probability, Defender will always make an offer at
the last step that has positive probability of being accepted; this follows from
Proposition 5. If an early offer is accepted with positive probability, early
rejection raises the probability that Challenger is tough; this in turn raises the
share that Defender offers later. Second, all Challengers get the same utility
in equilibrium since she must be indifferent between accepting early and late.
This simply means that Defender buys out a bigger proportion of normal types
at a higher cost than is optimal in the model with only a single offer to make.
Recall that the utility of the defender depends only on what proportion of
normal types enter the conflict and what it costs to buy out the proportion
that leaves. Therefore Defender buys out too big a proportion at too high a
cost.

This brinkmanship result explains why negotiations in the shadow of con-
flict sometimes make no progress until the very last chance. An instructive
anecdote comes from the negotiations of the Treaty of Porthsmouth in the
Russo-Japanese War (1904–1905). Negotiations for the treaty, which subse-
quently gained President Theodore Roosevelt the Peace Nobel Prize, were held
while Russia brought further troops to Manchuria, a move that would have
given Russia an advantage in case of conflict. For the whole length of the
negotiations, the Japanese delegation demanded the southern part of the is-
land of Sakhalin and war reparations. Only upon the arrival of further four
Russian divisions, at what was conceivably their last chance to negotiate, did
the Japanese drop their claim for reparations and avert conflict.18

18See Stanton (2010).
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9 Extensions

This section discusses possible extensions of our model. We shall assume that
we are in the ‘Challenger wins’ case, i.e. absent a change in beliefs Challenger
strictly prefers to attack.

Extension 1. One-sided private information with two-sided offers.
Our main model allows Defender to make offers, but does not allow Challenger
to make demands. What happens if we allow rounds à la Stahl and Rubinstein?
Just for the sake of maintaining consistency with the timing within rounds of
the conflict game, Challenger first makes a demand, to which the Defender
responds; if the response is a rejection, Defender makes a counteroffer. An
acceptance as before ends the game with the accepted split of resources.

Results could depend on how the tough type behaves during negotiations.
A reasonable interpretation of irrationality within the bounds of our conflict
game is that the tough type never demands anything less than the whole pie.
Assume that there is a single round. By demanding less than everything,
the normal Challenger immediately reveals her rationality. Since our model
is skewed towards Defender in terms of the initial allocation of resources, this
would simply lead to Defender never offering anything to Challenger.19 It is
now easy to see that a multi-round version of this would be the same as the
model with one-sided offers and multiple rounds.

Extension 2. Two-sided private information with one-sided offer.
Suppose that Defender makes a single offer, but with knowledge of own type.
Unlike the previous cases, the offer will move beliefs about his type since the
tough type never makes any offer.20 Since any positive offer reveals normalcy,
the only offer that would be accepted by Challenger is the discounted value
of the entire pie. Defender’s problem is to then compare his utility when he

19It can be formally proved that in the limiting equilibrium of the conflict game the party
who reveals rationality effectively ends up accepting the offer of the other player.

20This is a consequence of our assumption that there is no cost of fighting for the tough
type.
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makes this offer and the utility when he offers zero.

Part III

Applications and Conclusion

10 Comparative Statics and Applications

We provide some comparative statics regarding the length of conflict, condi-
tional on (i) a first attack, and (ii) a first non-concession by Defender. This is
well-defined thanks to our proof of uniqueness.

We first show that the maximum length of a conflict depends on the ab-
solute likelihood that Challenger and Defender are tough. That is, on the
conflict order n. If Challenger is more likely to be tough, then there is still
an attack with positive probability in period n + 1. Otherwise, attacks must
end with period n. Thus, our model predicts that conflicts between players
believed to be tough last for fewer periods.

Corollary 1. Unless both players are tough, the maximum length of a conflict
is determined by the conflict order n. If Challenger is more committed, there
is never an attack after period n + 1. If Defender is at least as committed,
there is never an attack after period n.

Remark. Recall that as uncertainty vanishes, the order of conflict and its max-
imum length tend to infinity.

Conditional on the conflict continuing after period 1, the probability that
it lasts until t ≤ n is independent of which player is more committed or how
much the players are likely to be tough. Between period 2 and n, the survival
probability of the conflict depends only on the threshold values µ̄ and π̄, which
do not depend on the priors µ0 and π0. Thus, two sets of conflicts, one with a
large and one with small order n, are empirically indistinguishable from period
2 until period n+ 1. Indeed, in each period t ≤ n, the probability of a further
attack is fixed at µ̄.
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Figure 2: Probability of First Attack

Corollary 2. Conditional on there being a conflict at the end of period 1, the
probability of an attack in period t ∈ [2, n] is

µ̄t−1π̄t−2.

Remark. In each period t ∈ [2, n] , if the conflict has not yet ended, Challenger
attacks with constant probability µ̄.

The following comparative statics follows from the previous corollary and
the definition of µ̄ and π̄.

Corollary 3. Conditional on there being a conflict at time t > 1, the probabil-
ity of an attack in period t′ > t is increasing in c, d, δC and δD, and decreasing
in A and L.

We now turn to the question of when a conflict is more likely to begin,
i.e. there is a first attack. Figure 2 depicts the total probability of first attack
as a function of µ0 for two different values of π0, π′0 ∈ (π̄h+1, π̄h) and π′′0 ∈
(π̄l+1, π̄l). In both cases, the probability of first attack is strictly increasing
for low values of µ0 and equals 1 for higher values.

Corollary 4. Fix the likelihood π0 that Defender is tough. The probability
that Challenger begins to attack is increasing in the likelihood of Challenger
being tough µ0. It is strictly increasing if and only if Defender is at least as
committed as Challenger.
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For Defender, an image of toughness can pay: if Defender is at least as
committed as Challenger, then the probability of a conflict is strictly less than
1. In this case, the probability of a conflict is µ0/µ̄

n, where n is the largest
natural number such that π0 ≤ π̄n. Thus, if π0 increases, the probability of
conflict decreases. Figure 2 depicts the total probability of first attack as a
function of µ0 for n = h (blue line) and n = l < h (red line). Increasing π0

from π′0 to π′′0 > π′0 moves the line representing the probability of first attack
to the right.

Corollary 5. Let Defender be at least as committed as Challenger. Then, the
probability that Challenger begins to attack is decreasing in π0.

The advantage of being perceived as tough should not be overstated. Recall
that after the first attack, the expected payoff for Defender is −L, indepen-
dently of π0. Indeed, in equilibrium, Defender is indifferent between conceding
and resisting whenever he plays.

10.1 Terrorism

Terrorist conflicts can last from a few months to many decades. A common
distinction in the literature is the one between religious and secular terrorism.
Religious terrorist groups are believed to be fiercely committed to an ultimate
goal to the exclusion of compromise. For example, Taheri (1987) notes that a
key difference between Islamic and secular terrorism is that the first “is clearly
conceived and committed as a form of Holy War which can only end when
total victory has been achieved” (p. 7) (see also Hoffman, 1995). With this
imterpretation, our model predicts that religious terrorist groups are more
likely to start conflict, but that such conflicts will be of shorter duration when
they start.

Figure 3 depicts the number of attacks by year-quarter for four major ter-
rorist groups from 1970 to 2012.21 All four terrorist groups are ultimately

21Our calculations on data from National Consortium for the Study of Terrorism
and Responses to Terrorism (START), 2012, Global Terrorism Database [globalterroris-
mdb_1012dist]. Retrieved from http://www.start.umd.edu/gtd.

29



0
10

20
30

N
um

be
r 

of
 A

tta
ck

s

1970q1 1980q1 1990q1 2000q1 2010q1
Quarters

Hamas

0
2

4
6

8
10

N
um

be
r 

of
 A

tta
ck

s

1970q1 1980q1 1990q1 2000q1 2010q1
Quarters

LeT

0
20

40
60

80
10

0
N

um
be

r 
of

 A
tta

ck
s

1970q1 1980q1 1990q1 2000q1 2010q1
Quarters

IRA

0
20

40
60

80
N

um
be

r 
of

 A
tta

ck
s

1970q1 1980q1 1990q1 2000q1 2010q1
Quarters

ETA

Figure 3: Number of Attacks by Quarter of Major Terrorist Groups

motivated by a separatist goal. Hamas and Lashkar-e-Taiba (LeT) are Islamic
terrorist groups originating respectively in Palestine and Afghanistan (active
in Pakistan and India). The (Provisional) Irish Republican Army (IRA) and
Basque Fatherland and Freedom (ETA) are separatist military groups respec-
tively in Ireland and the Basque Country in Spain and France. The pattern of
conflicts is consitent with our model. Both religious groups, Hamas and LeT,
show short burst of conflicts followed by periods of little or no activity. The
time-series of Hamas’s attacks, in particular, shows clearly three brief periods
of conflict corresponding to the First Intifada (from Hamas foundation in 1988
to 1993), the Second Intifada (September 2001 to 2005) and the conflict cul-
minated with the Gaza War (June 2006 to January 2009). In stark contrast,
both secular groups, the IRA and ETA, show no such a pattern. The Troubles
in Ireland and the UK which begun in 1969 lasted almost uninterrupted un-
til the late 90s, when the Good Friday Agreements were signed (April 1998).
Similarly, ETA’s attacks continued uninterrupted from the assassination of of
Admiral Luis Carrero Blanco (Franco’s chosen successor) in 1973 to the Spirit
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of Ermua massive demonstrations against ETA in 1997. A second conflict
started with a car bomb on January 21, 2000.

10.2 Workers’ Unions and Macroeconomic Conditions

When workers go on strikes, they effectively incur a cost for themselves and
impose a cost on their employers. The implicit threat to the employers is that
the working conditions are so poor that the workers would lose their current
salary rather than continuing to work. The committed type workers are there-
fore those who effectively have a sufficiently good outside option—typically,
another employment. On the other hand, employers deny a concession to sig-
nal that they are unable to raise pay without jeopardizing the future of their
firms. A committed employer is thus one who prefers losing human capital to
raising pay.

The relevant stylized empirical facts are that strikes (i) are more likely
in good economic times, and (ii) longer in bad economic times (Kennan and
Wilson, 1990). Both facts agree with the predictions of our model.

In a typical business cycle, in good times, workers are more likely to have a
good outside option—µ0 is larger—and businesses are more likely to be able to
raise pay—π0 is smaller. Thus, our model predicts that strikes are more likely
in good economic times (Challenger is relatively more likely to be committed)
than in bad times. Furthermore, the cost of a strike is greater (at least for the
businesses) in good economic times, i.e. L is greater in good economic times.
Thus, our model predicts longer strikes in bad times than in good ones.

11 Conclusion

We provide a framework to make sensible predictions about both the onset
and progression of wars of intimidation, where a challenger repeatedly attacks
to convince the defender that more attacks will come if the latter doesn’t
concede. The model is built on small probabilities with which each player could
be a type that faces no cost of fighting, and therefore persists with conflict
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until the opponent concedes. Our model identifies conditions for prolonged
conflicts even as the uncertainty about the players’ types is arbitrarily small.
Our comparative static predictions find support in applications of interest in
economics and political science.

Wars of intimidation begin when negotiations fail. Our model allows us to
uncover a novel reason for why this happens: offers that have a higher proba-
bility of being accepted also increase the incentive for the aggressor to initiate
conflict. Thus, negotiations can mitigate but not prevent conflict. This result
should not be seen as a claim that negotiations are useless: a neutral observer
who seeks to reduce conflict will gain from bringing the parties to the negotia-
tion table. If negotiations succeed, then conflict is avoided; if they fail, conflict
will be shorter. On the other hand, our brinkmanship result shows that there
is little point in insisting on multiple rounds of negotiations. If acceptable
offers are to be made, they will only be made at the last opportunity to avert
conflict. In a sense, neutral observers should take advantage of any ultimatum
imposed by the parties, rather than pressuring them to have softer deadlines.
Our model ties together three key elements of conflict—brinkmanship, failed
negotiations, and extended conflict—with the thread of intimidation and rep-
utation.
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A Omitted Proofs

A.1 Proofs of Section 5.1

Proof of Proposition 3

Proof. Defender is at least as committed as Challenger is: π̃k
π̄n(k) ∈ (π̄, 1). Thus,

lim inf π̃k
π̄n(k) ≥ π̄. By Proposition 2, for any k ∈ N, the equilibrium probability

of attack at time t ∈ N is given by

Pr (attack at t) = (µ̄π̄)t−1 µ̃k
µ̄n(k) , for all t ∈ [1, n (k)].

∴ lim inf Pr (attack at t) = (µ̄π̄)t−1 lim inf µ̃k
µ̄n(k)

≥ (µ̄π̄)t−1 lim µ̃k/µ̄
n(k)

π̃k/π̄n(k) lim inf π̃k
π̄n(k) > 0, for all t ∈ N,

where the last passage follows from noticing that lim µ̃k/µ̄
n(k)

π̃k/π̄n(k) > 0 for all
equipoised sequences.

Proof of Proposition 4

Proof. Challenger is more committed: µ̃k
µ̄n(k) ∈ (µ̄, 1). Thus lim inf µ̃k

µ̄n(k) ≥ µ̄.
By Proposition 1, for any k ∈ N, the equilibrium probability of attack at time
t ∈ N is given by

Pr (attack at t) = µ̄t−1π̄t−2 π̃k
π̄n(k) , for all t ∈ [2, n (k) + 1].
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∴ lim inf Pr (attack at t) = µ̄t−1π̄t−2 lim inf π̃k
π̄n(k)

≥ µ̄t−1π̄t−2 lim π̃k/π̄
n(k)

µ̃k/µ̄n(k) lim inf µ̃k
µ̄n(k) > 0, for all t ≥ 2,

where the last step follows from noticing that lim π̃k/π̄
n(k)

µ̃k/µ̄n(k) > 0 for all equipoised
sequences.

A.2 Proof of Lemma 5

Proof. By definition of conflict order, when Challenger is relatively more com-
mitted, then n ≈ ln (µ0) / ln (µ̄).

By Proposition 1, upon observing an attack, Defender concedes with total
probability

π0

π̄n
≈ π0µ

− ln π̄
ln µ̄

0 .

Using Lemma 1,
ln π̄
ln µ̄ = ln [1− (1− δ)A/c]

ln [δ (1 + (1− δ)L/d)] .

Replacing δ with e−r∆, differentiating with respect to ∆, and taking the limit
as ∆ goes to 0 we get

lim
∆↓0

ln π̄
ln µ̄ = Ar/c

r (L− d) /c = σD

σC
,

and therefore
PD = 1− π0

π̄n
= 1− π0µ

−σ
D

σC

0 . (12)

It is worth noticing that σD and σC are the constant hazard rate of concession
of Defender and Challenger in the limit case when ∆ ↓ 0 (Appendix B.5 fully
derives the concession strategies).
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A.3 Proofs of Section 7

Proof of Proposition 5

Proof. Let α (x) be the probability of normal Challenger accepting and β (x) :=
(1− µ0) β (x). If Challenger is indifferent,

x = e−rT

1− π0

(
µ0

1− β

)−σD/σC . (13)

Let γ := 1− e−rT . Defender’s problem is to make the optimal offer, subject to
constraint (13):

β∗ := arg max
β∈[0,1−µ0]

V D
0 (x (β) , β;µ0, π0) .

Therefore β∗ solves

max V (β) = β (1− x) + (1− β) {π0 + (1− π0) γ} , (14)

with x as function of β from (13) above. Differentiating (14) and noting that
everything other than β and x are parameters,

dV (β)
dβ

= γ + π0 (1− γ)
(

µ0

1− β

)−σD/σC (
1− β

1− β
σD

σC

)
− {π0 + (1− π0)γ}

= π0 (1− γ)


(

µ0

1− β

)−σD/σC (
1− β

1− β
σD

σC

)
− 1

 . (15)

We first show that it is always optimal to make an offer large enough that
Challenger will accept the offer with non-zero probability:

dV (β)
dβ

∣∣∣∣∣
β=0

= π0 (1− γ)µ−σ
D/σC

0 > 0, (16)

since µ0 < 1. Now,

dV (β)
dβ

∣∣∣∣∣
β=1−µ0

= −π0 (1− γ) 1− µ0

µ0

σD

σC
< 0, (17)
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i.e. it is suboptimal to completely avoid conflict with the normal Challenger.
To establish uniqueness, note that the acceptance probability β∗ corre-

sponding to an optimal offer satisfies

1− β∗

1− β∗
σD

σC
=
(

µ0

1− β∗

)σD/σC
. (18)

The left hand side is strictly decreasing in β∗; hence the acceptance probability
is unique. Denote by B the unique function satisfying equation (18). It is easy
to see from equation (13) that when the offer increases so does the acceptance
probability (until it hits 1−µ0 when x = e−rT (1− π0)). Therefore the optimal
offer is also unique.

A.4 Proofs of Section 8

Proof of Proposition 7

Proof. We prove this by induction on the number of rounds. Let K = 2
henceforth.

The optimal offer at each state and each history is (i) Markovian, i.e. it
depends only on beliefs about the type of Challenger; and (ii) deterministic. If
B is the function such that β∗ = B (µ0) is the unique solution to the equation
(18), then it is clear that B is increasing in µ0 (strictly increasing unless it has
hit 1), and so is the posterior probability µ0/ [1−B (µ0)].

Take any candidate equilibrium of the 2-offer game with the equilibrium
acceptance functions (β0, β1). Clearly, sequential rationality requires that
β1 (µ1) = B (µ1). If possible, let β̄0 := B (µ0) > 0. Then the updated be-
lief is µ1 = µ0/

(
1− β̄0

)
> µ0. The probability of acceptance in the second

round is β̄1 = B (µ1). The total probability (summed over rounds and types)
that conflict will not start is then given by β̄ = β0 +(1− β0) β1. The posterior
at the end of round 2 is

µ2 = µ1

1− β1
= µ0

(1− β0) (1− β1) = µ0

1− β̄
.
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By the above and equation (13), the sequentially rational offer in round 2 is

x̄ = e−r∆1,2

1− π0

(
µ0

1− β̄

)−σD/σC (19)

where ∆1,2 ≥ 0 is the time interval between the first and the second offer.
Incentive compatibility of the normal Challenger then requires that accep-

tance in any round give the same utility to Challenger in terms of round 2
shares. This, together with the fact that

(
x̄, β̄

)
satisfies (19), means that the

utility of Defender is the utility of a game in which he takes out a mass β̄ of
Challengers (at a cost of x̄ per unit mass); this is denoted by V D

0

(
x̄, β̄;µ0, π0

)
).

Let (x∗ (B (µ0)) , B (µ0)) be the optimal pair when we have a single round with
the prior µ0. Since x̄ > x∗ and β̄ > β∗, it follows that

V D
0

(
x̄, β̄;µ0, π0

)
< V D

0 (x∗, β∗;µ0, π0) .

If Defender deviates in round 1 from β0 and chooses β′0 (µ0) = 0 instead, it
would have been sequentially rational to make the optimal offer x∗ in round 2
and have it accepted with probability β∗. From the above we see that if two
offers are accepted with positive probability in any equilibrium β∗, it is better
to deviate and offer 0 at the first instant, so that the first offer is rejected.
Hence there is no such equilibrium: the only possibility is β∗1 = . . . = β∗K−1 =
0.

B For Online Publication

B.1 Proof of Lemma 1

Proof. Challenger’s payoff from choosing σCt+1 (µt+1, πt) = 0, i.e. attacking
for sure at t + 1, is maximum if after an attack at t + 1 the normal type of
Defender concedes for sure, and if Challenger concedes at t + 2 if Defender
does not concede at t+ 1. Note that when Defender concedes in period t+ 1,
Challenger gets a flow payoff of c from the resource starting with the current
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period. When Defender is the commitment type, he doesn’t concede at t + 1
and Challenger gets none of the resource because she concedes at t+ 2. Hence
Challenger’s maximum payoff from attacking at t+ 1 is

− (1− δC)A+ (1− πt)c+ πt · 0. (20)

Expression (20) is zero at π̄, and negative above it. This proves part (i).
For part (ii) note that σDt+1 (µt, πt) = 1 implies that if Defender does not

concede in period t + 1 then Challenger must put probability 1 on the tough
type, i.e. πt = 1 and hence will find it optimal to concede at t + 2 by step
(i) above. Then the payoff of attacking is given by (20) and the payoff of
conceding is 0; hence π̄ is again the point of indifference.

Part (iii) follows from a similar argument to part (i).

B.2 Proof of Lemma 2

Proof. The concession sequence 〈κi〉 i∈N of any strategy profile is a sequence
in [0, 1], where each odd (even) term is the probability that Challenger (re-
spectively, Defender) concedes at that time conditional on no player having
conceded yet. A concession sequence arising from an equilibrium profile is
called an equilibrium concession sequence.

Lemma 2 then says that in any equilibrium concession sequence, all terms
(except possibly the first) must be strictly positive.

Step 1. The proof is based on the key idea that if the string (κi, 0, κi+2)
appears in an equilibrium concession sequence and κi+2 > 0, then κi = 1: if
the opponent is not conceding in the interim the value of concession can only
go down because the positive cost to fighting strictly exceeds the flow utility
derived from the resource; therefore concession should have been strictly better
at the step before.

Step 2. We now show that, along any concession sequence, adjacent terms
cannot be 0. Let κi = 0 = κi+1; if κi+2 > 0, it would contradict Step 1.
Induction implies that if two adjacent terms of the concession sequence are 0,
all subsequent terms are 0 too. But since there is a positive probability of the

41



tough type, it cannot be an equilibrium to never concede, knowing that your
opponent will not. Therefore, no equilibrium concession sequence contains
adjacent 0s.

Step 3. Suppose κi = 0 for some i > 1. By Step 2, we must have κi+1 > 0;
from Step 1 it means that κi−1 = 1. If the player who is supposed to concede
with probability 1 does not do so, his/her reputation immediately jumps to 1
and the normal opponent must concede immediately thereafter, i.e. κi = 1—a
contradiction!

B.3 Proof of Lemma 4

Proof. Suppose not. Let πt < π̄, µt+1 < µ̄ but πt+1 > π̄. Lemma 1 implies that
normal Challenger will concede with probability 1 at time t + 2 if Defender
does not concede at t + 1. So if Defender does not concede at time t + 1 he
gets a continuation payoff of d from t+ 2 onwards if Challenger is the normal
type; since Challenger is normal with probability 1 − µt+1, Defender’s payoff
from t+ 1 (the current period) onwards is

(
1− δD

)
(d− L) + δD

[
(1− µt+1) d+ µt+1

(
−L

(
1− δD

)
+ 0 · δD

)]
.

Defender strictly prefers to not concede if the above exceeds the payoff−
(
1− δD

)
L

from conceding immediately at t+ 1:

(
1− δD

)
d+ δD

[
(1− µt+1) d− µt+1L

(
1− δD

)]
> 0. (21)

Inequality (21) reduces to µt+1 < µ̄, which is true by assumption. There-
fore Defender strictly prefers to fight at t + 1, i.e. σDt+1 (µt+1, πt) = 0—which
contradicts Lemma 2, implying that πt < π̄ and µt+1 < µ̄ cannot lead to
πt+1 > π̄.

Let µt < µ̄ and πt < π̄, but µt+1 > µ̄. By a similar logic Challenger strictly
prefers to fight at t+ 1 if

−
(
1− δC

)
A+ (1− πt) c+ πt · 0 > 0.
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The net utility for Challenger to fight at period t is −A and with probability
1−πt Defender will concede and Challenger will get c forever. The expression
above reduces to πt < π̄. So Challenger strictly prefers to fight at t + 1,
i.e. σCt+1 (µt, πt) = 0—which contradicts Lemma 2.

B.4 Propositions 1 and 2

We begin with a preliminary result: the next lemma shows that along the
equilibrium path, provided no one concedes, both reputations grow according
to equations (2) and (3) from period 2 onwards until a time t when either
µt = µ̄ or πt = π̄.

Lemma 6. For any period t ≥ 2, if πt−1 ≤ π̄ and µt ≤ µ̄, then Challenger
plays σ̃C (µt) and Defender plays σ̃D (πt−1).

Proof. We show the result for Defender. The result for Challenger follows a
symmetric argument.

Proceed by contradiction. If σDt (πt) 6= σ̃D (πt), by Lemma 3, Challenger is
not indifferent at either t or at t + 1. There are two possibilities. First, she
strictly prefers to concede. But then Defender would concede with probability
0 in the previous period, contradicting Lemma 2. Second, she strictly prefers
to fight. But then by Lemma 2 she is Challenger in period 0 and t = 1 < 2.

The lemma above is useful in proving Propositions 1 and 2, which apply,
respectively, to the cases where Challenger is more committed than Defender
and where Defender is at least as committed as Challenger.

Proof of Proposition 1

Proof. Existence. We first show that the stategies σ∗ defined in Proposition 1
constitute an equilibrium. From Lemma 3 it is clear that after the first move
by Challenger in period 1 players are indifferent and therefore willing to mix.
Since normal players concede in σ∗ once the thresholds are crossed, this is
consistent with Lemmas 1. Since Defender concedes with a larger probability
than σ̃D in the first period, Lemma 3 implies that Challenger strictly prefers

43



to fight at t = 1. Also note that by Bayes’ rule the equilibrium belief about
Challenger’s type after non-concession at t = 1 is given by µ̄n.

Uniqueness. If µ0 ≥ µ̄, then Lemma 1 implies that the above is the only
equilibrium; similarly for the case π0 ≥ π̄. Therefore let (µ0, π0) < (µ̄, π̄), so
that n ≥ 1. If normal types follow σ̃C , σ̃D defined in equations (11) and (10)
up to and including time n, there will be a jump since π0/π̄

n > π̄; but jumps
are ruled out by Lemma 4. By Lemmas 3 and 6, the only freedom we have is
in choosing different strategies for t = 1.

By contradiction, suppose that Challenger concedes with positive proba-
bility in period 1. This implies she expects Defender to concede with proba-
bility at least σ̃D. But this implies that there is m ≤ n such that beliefs are
(µm+1, πm) with µm+1 > µ̄ and πm < π̄, contradicting Lemma 4.

Last, since Challenger cannot concede with probability less than 0, we have
that µn+1 > µ̄. Thus, by Lemma 4, Defender must concede in period 1 with
probability exactly σD∗t .

Proof of Proposition 2

Proof. Existence. As before, it can be checked that Lemmas 1 and 3 imply
that the above is an equilibrium. In particular, σC∗1 and Bayes’ rule imply that
the equilibrium belief about Challenger’s type after non-concession at t = 1 is
given by µ̄n.

Uniqueness. If µ0 ≥ µ̄, then Lemma 1 implies that the above is the only
equilibrium; similarly for the case π0 ≥ π̄. Therefore let (µ0, π0) < (µ̄, π̄), so
that n ≥ 1. If normal types follow σ̃C , σ̃D defined in equations (11) and (10)
up to and including time n, there will be a jump since π0/π̄

n > π̄; but jumps
are ruled out by Lemma 4. By Lemmas 3 and 6, the only freedom we have is
in choosing different strategies for t = 1.

Case 1: σC1 < σC∗1 . Suppose that σC1 < σC∗1 . The inequality σC1 < σC∗1 implies
that Challenger’s reputation increases at a slower rate such that µn < µ̄.
If σD1 < σ̃D1 , then Challenger prefers to concede immediately (σC1 = 1)
since Challenger is just indifferent at σ̃D; this contradiction implies that
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σD1 ≥ σ̃D, which in turn gives π1 ≥ π0/π̄ and therefore πn > π̄ i.e.
there exists m ≤ n such that belief profile is (µm, πm) with µm < µ̄

and πm > π̄, contradicting Lemma 4. Therefore, σC1 ≥ σC∗1 is the only
possibility in equilibrium.

Case 2: σC1 > σC∗1 . Suppose that σC1 > σC∗1 . Now µ1 > µ0/µ̄, µ2 > µ0/µ̄
2,

etc. Since Proposition 1 implies that Defender’s reputation is growing
as the same rate 1/π̄ it follows from the Definition 2 and µ̄n+1 < µ0 that
µn > µ̄, i.e. a jump occurs by time n. Therefore, σC1 ≤ σC∗1 is the only
possibility in equilibrium.

Last, since Challenger must be indifferent at t = 0 to play σC∗1 , then σD1 =
σ̃D = σD∗1 .

B.5 Unique Equilibrium of the Continuous-time Con-
flict Game

We can directly derive the unique equilibrium of the continuous-time game,
which turns out to be the limit of equilibria in our discrete-time games. The
following equilibrium properties follow from known results for continuous-time
wars of attrition (see, for example, Abreu and Gul, 2000):

• until the normal type has conceded with probability 1, the normal type
is indifferent between conceding at t and t+ ∆, except at t = 0;

– at most one player can have a mass probability of concession at
time 0;

– each cumulative concession distribution is continuous for all t > 0;

– normal types of both players must finish conceding at the same
time.

We now derive the equilibrium concession rates.22

22Strictly speaking, the derivations are heuristic because we use a discrete-time approx-
imation, but the formal derivation for continuous variables can be easily supplied by dif-
ferentiating integrals that represent utilities. We prefer to adopt this approach because it
lends itself to interpretation readily.
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Challenger’s Decision If Challenger is indifferent between conceding at t
and t+ ∆ for∆ > 0, the total cost of delaying concession equals the total gain
from delay. The cost is A∆ (flow A for a length ∆) that is committed to at
time t; the gain is the discounted value of the resource, which is earned only
if the opponent surrenders in the interim:

A∆
(
1− σD (t) ∆

)
= e−r∆σD (t) ∆c

r
,

which, canceling common factors and letting ∆ go to zero, yields the following
constant hazard rate of concession for D:

σD (t) = σD = ArC

c
= A

c/r
for t > 0. (22)

Defender’s Decision If the normal type of Defender can choose between
conceding at t and t+ ∆, indifference requires:

L∆
(
1− σC (t) ∆

)
− d∆ = e−r

D∆σC (t) ∆ d

rD
.

The term in brackets is the net cost of waiting. This includes the gross cost
L∆(1 − σC(t)∆), stemming from loss at the rate L that incurred is only if
Challenger does not concede in the interim; recall that Challenger concedes
with probability σC (t) ∆ over this interval. To derive the net cost, the sure
benefit d∆ from delaying concession and enjoying the resource from t to t+ ∆
must be deducted from the gross cost.

Collecting higher order terms in ∆ together,

(1 + r∆ +O(∆))
(
L∆− L∆σC (t))∆− d∆

)
= σC (t) ∆d

r
.

Simplifying and taking limits as ∆→ 0,

σC (t) = σC = L− d
d/r

for t > 0. (23)

Equations (22) and (23) show how to interpret the exponent of µ0 in the
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expression (12) for the limiting probability that D concedes after the first
attack.
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