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Abstract

A challenger wants a resource initially held by a defender, who can negotiate a

settlement by offering to share the resource; if this fails, conflict ensues. We propose

a dynamic non-cooperative game in which negotiation and conflict influence each ot-

her. During conflict each player could be a tough type for whom fighting is costless;

therefore non-concession intimidates the opponent into conceding. We derive how

the probabilities of being tough, relative discount factors, and the time until conflict

all determine the likelihood of conflict and its length. Several policy relevant lessons

emerge. An offer made by a defender unaware of his own type fails with some proba-

bility if the threat of conflict is imminent, but succeeds for sure if the threat of conflict

is distant and the defender is more patient than the challenger. Instead, if the offer

is made by a privately informed and more patient defender, negotiation fails com-

pletely. Finally, allowing multiple offers is no more effective---a serious offer is made

only on the brink of conflict. Conflict can be prolonged even if the probability of the

tough type is arbitrarily small.
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1 Introduction

Violent conflicts are long, costly, and often impossible to avoid. The latter fact is par-
ticularly puzzling: why do negotiations fail to prevent conflict even when compromise
solutions are available, commitment is possible, and conflict is likely to be long and pain-
ful?1 Recent work sees uncertainty about the eventual outcome (or costs) of conflict as
its fundamental cause. These analyses show that the expected outcome of conflict de-
termines bargaining positions in negotiations (e.g. Esteban and Sàkovics, 2008; Powell,
2004). However, informal discussion also suggests that actions during negotiations affect
the expected outcome of conflict, as one party’s tough bargaining position intimidates her
opponent. We present a model where negotiation and conflict are interlinked. Our uni-
fied framework captures several empirical regularities of armed conflics and sheds light
on when and why negotiations more likely fail, whether multi-round negotiations lower
the chance of eventual conflict, and why conflict can last even though no party gains from
it.

Our model has two players, Challenger (she) and Defender (he), each of whom wants
a resource that yields flow utility. Defender, who initially holds the resource, can try to
negotiate peace by offering a share to Challenger. If the offer is rejected, then Challenger
has the option to repeatedly attack Defender and convince him to concede the resource.
Our model of conflict is built on the concept of intimidation: repeatedly inflicting losses
on one’s opponent to scare him that further losses will be incurred unless a concession
is made. For example, terrorists carry out attacks to raise the specter of further attacks
until and unless their demands are met; similarly, workers go on strike to raise the fear
of further strikes.2 However attacking could be coslty too. What allows room for intimi-
dation to function is that conflict is a game of two-sided incomplete information—with
an arbitrarily small probability either party to the dispute is a tough type, who does not
experience the disutility of conflict. This small uncertainty is magnified by equilibrium
play into a significant force that protracts conflict.

The same idea of intimidation also explains why negotiations fail: even if Defender
can make offers to Challenger before conflict begins, equilibrium offers are rejected with
positive probability by normal (i.e., not tough) Challenger. One might imagine that nego-
tiations fail because Defender is afraid to reveal his type. We show that this intuition is

1In a seminal paper, Fearon (1995) poses this as a “central puzzle” that rationalist explanations fail to
solve (see also Reiter, 2003). The key word ‘rationalist’ rules out explanations where the parties to the
conflict are entirely or largely irrational.

2The analogy between strikes and wars dates back at least to Waltz (1979, p. 114).

1



incomplete by first looking at the case of Defender being uninfoirmed, in the sense of not
knowing his cost of pursuing conflict when he makes an offer. Even in this case where
offers do not reveal his type, the opportunity to make an offer is a double-edged sword
for Defender. On one hand, offers that have a higher probability of being accepted in-
crease the utility of Defender. Indeed, if beliefs were held fixed both before and after
the offer, Defender could completely avoid conflict with normal Challenger by offering
slightly more than her expected value of entering conflict. On the other hand, if such an
offer were made and accepted with certainty in equilibrium, Challenger would prefer to
reject it. Indeed, such a rejection would signal that Challenger is tough, thus intimidating
Defender into conceding as soon as conflict began. We characterize the sufficient and ne-
cessary conditions for the detrimental effect to dominate. Negotiations are more likely to
fail if Defender (Challenger) is more (less) patient, is less (more) likely to be tough, and
pays a lower (higher) cost pursuing conflict. Furthermore, if the time interval between ne-
gotiation and conflict is sufficiently small, conflict begins with strictly positive probability
independently of which player is more patient or more likely to be tough.

Let us now turn to multi-round negotiations. We show that in equilibrium all offers,
except the one made in the last round, must be unacceptable (no Challenger would ever
accept them). Indeed, suppose that before the last round Defender makes an offer that
normal Challenger accepts with positive probability. Then Challenger strictly prefers to
reject it, as this signals she is tough, thus intimidating Defender into making an even
more generous offer in the last round. In other words, offers that could be successful
(but weren’t) make subsequent offers more costly. Therefore, long negotiations resolve in
brinkmanship: the parties make no progress towards a peaceful solution up until the last
opportunity to negotiate. In particular, as discussed later, the Coase conjecture fails in our
setting.

Two broad policy messages emerge. First, both Challenger and Defender benefit from
the opportunity to negotiate in two ways, as does any third party interested in mitigating
conflict: if negotiation succeeds, then conflict is avoided; if it fails, conflict is deemed to be
shorter. Second, when a deadline for making offers exists, multiple rounds of negotiations
do not help to avert conflict any more than a single round.

We also study the case of the informed Defender, who knows his type at the time he
makes offers. We obtain clear-cut conditions under which we have conflict. The key
determinant is the ratios of the discount factors between the time of negotiation and the
time conflict begins. In contrast with the uninformed Defender case, when Defender is
informed about his type, negotiations fail with certainty whenever Challenger is slightly
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more patient than Defender.

We find that long conflicts can occur even when irrationality becomes vanishingly
small, i.e. both players are normal with probability arbitrarily close to 1. Our model shows
that conflict extends for a maximum number of periods n, which depends on the proba-
bility that the players are tough. When irrationality becomes vanishingly small, under
suitable conditions, n tends to infinity. We also explicitly derive the probability of sur-
vival of conflict for any period until n. Crucially, the probability that conflict extends to
the next period does not depend either on the probabilities that the players are tough or
on how long the conflict has been fought on. Thus, our model predicts that conflict is
non-duration dependent: the past duration of conflict does not predict its probability to
end. In contrast, Reiter (2003) notes that existing models of conflict based on informatio-
nal asymmetries fail to capture that conflict is in reality non-duration dependent, as these
asymmetries should fade in time.

We use our model to make a variety of comparative predictions regarding the like-
lihood and length of the conflict if negotiations fail. We divide them into two groups.
Suppose that a conflict is in progress, i.e. Challenger has attacked at least once and De-
fender has not conceded yet. The first set of predictions pertain to what happens next. A
longer conflict is to be expected if either Challenger or Defender value the resource more,
the costs of fighting are smaller, or players are more patient. Most importantly, only these
parameters affect the probability that the conflict continues.

Our second set of predictions answer two questions: (i) what is the probability of a first
attack? (ii) if Challenger attacks, what is the probability that the Defender concedes before
any further attack? To answer these questions, we introduce a notion of what it means for
one player to be more committed than the other. In equilibrium, when Challenger is more
committed, she attacks for sure. Conversely, when Defender is at least as committed as
Challenger, then Challenger mixes between conceding and attacking. Later we show how
these predictions help explain some stylized facts about the determinants of interstate war
duration, terrorist conflicts, and workers’ strikes.

Related Literature

Our main contribution is a simple model that captures the interaction between negotia-
tion and conflict. Fearon (1995) and Powell (1996) study non-cooperative bargaining in
the shadow of conflict, treating war as a game-ending move.3 Powell (2004) and Fearon

3Esteban and Sàkovics (2008) consider a similar scenario in a cooperative setting.
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(2013) focus on alternating phases of bargaining and conflict where each conflict phase
leads to the collapse of one party with an exogenously given probability. In contrast, we
model conflict as a costly war of attrition driven by reputation à la Kreps and Wilson (1982)
and Milgrom and Roberts (1982).4 Thus, in our model violent conflict terminates endo-
genously with probabilities that are determined in equilibrium, rather than exogenously
as in the above models. Among other things, this captures the fact that conflicts last lon-
ger when more is at stake. Ponsatì and Sàkovics (1995) and Abreu and Gul (2000) study
continuous-time wars of attrition under incomplete information.5 Our model of conflict
uses these insights, but modifies the model to allow for discrete delays, sequential moves,
and flow costs and benefits, as these are all natural features in many applications.6 We
also derive conditions under which prolonged conflict arises even when the prior proba-
bility of irrationality vanishes.7 Additionally, we introduce the possibility of negotiation,
which is not costly like conflict and can effect compromise outcomes rather than only
extreme ones; this allows us to study how negotiation and conflict influence each other.

Lapan and Sandler (1988) model terrorism as a repeated game between players who
are irrational with some probability. In their model, absent a concession, the probability
of being a commitment type jumps up to an arbitrary and exogenously given quantity.
Hodler and Rohner (2012) make this endogenous, but they have only two periods; this
in turn means that they predict attacks only when the probability of the terrorist being
tough is very large. Our model endogenously determines both the termination of the war
of attrition and the evolution of beliefs about the degree of irrationality of one’s opponent,
and shows that prolonged conflict is compatible with very small degrees of irrationality.

4The genesis of the extensive literature on the war of attrition is Maynard-Smith (1974). Hendricks et
al. (1988) study a complete-information war of attrition. Kornhauser et al. (1989) apply reputational techniques
to a war of attrition in discrete time, with committed types conceding with a constant probability in each
period; the main goal is a set of conditions under which the less patient player concedes immediately. In
Ordover and Rubinstein (1986) two players fight a war of attrition with a given finite deadline; only one
player privately knows who will ‘win’ if the game doesn’t end by the deadline; either the uninformed
player concedes at the start or players remain indifferent between conceding and persisting. Hörner and
Sahuguet (2010) model a war of attrition with two-sided asymmetric information about the valuation of the
good to each player; when both players can signal their types by sinking costly bids, conflict never goes
beyond two periods.

5The latter studies a bargaining model where players are, or pretend to be, irrationally committed to
mutually incompatible demands. It also shows that as the time interval between offers goes to zero all
equilibria of the discrete-time game converge to the unique equilibrium in continuous time.

6The conflict part of our model is also similar to the entry deterence model that Kreps and Wilson (1982)
touches on, without deriving the equilibrium rigorously. In Chatterjee and Samuelson (1988) both a buyer
and a seller have private information and alternately make offers. Although flow utilities are absent, the
qualitative features are shared: the soft type mimics the hard type initially. Uniqueness does not hold in
their richer setting.

7See Fearon (2013) for a brief review of why most bargaining models fail to match the observation that
conflicts are usually long.
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We share our interest in the length of conflicts with a number of papers. In Brito
and Intriligator (1985), and the closely related Sobel and Takahashi (1983), the uninformed
party uses active conflict to screen among various types of informed parties, who wish
to appear stronger than they really are in order to secure a better bargain. Sanchez-Pages
(2009a) shows the converse—the informed party uses ‘limited conflict’ to convey credible
information to an uninformed party about the eventual outcome of rejecting agreements
and triggering ‘absolute conflict’; this makes the latter more amenable to agreements even
if he were optimistic enough initially to render agreements infeasible. Similarly, in Heifetz
and Segev (2005) a party delays making an acceptable offer to credibly signal its true
stand, and escalation makes resolution more attractive. See Baliga and Sjöström (2013)
and Sanchez-Pages (2009b) for a highly integrated view of the above literature and more.

The literature on bargaining under incomplete information can be traced back to Chat-
terjee and Samuelson (1983). Fudenberg, Levine, and Tirole (1985) and Gul, Sonnen-
schein, and Wilson (1986) present dynamic models where a monopolist makes repeated
offers to a buyer with unknown valuation. The main result is a verification of the Coase
conjecture: as offers become frequent, the monopolist immediately offers a price that is
acceptable to the lowest valuation buyer.8 This is not true in our setting. In fact, our brink-
manship result says that in our setup increasing the number of offers does not ensure that
negotiations succeed. Thus, inefficiency survives multiple offers, and is sometimes inde-
pendent of the exact number.

An immediate implication of our results is that Defender wants to be perceived as
tough. Schelling (1956, 1960, 1966) and Crawford (1982) developed the idea that bargai-
ning parties can benefit if they convince their opponent that they are committed to their
threat—hence the argument that governments should appear committed to hawkish po-
sitions when facing a terrorist threat. Yet, the advantage of showing commitment should
not be overstated: once conflict begins, the expected payoff for (normal) Defender is inde-
pendent of his probability of being tough. In fact, the entire advantage of being perceived
as tough comes from the ability to induce a normal Challenger to attack with very low
probability. But if the Challenger attacks nonetheless, then Defender must update his
beliefs to assign a very high probability to Challenger being tough.

Our idea of intimidation is also related to Silverman (2004), a random-matching model
where violence is instrumental in deterring future violence against oneself. If the fraction
of agents who directly gain from violence is sufficiently large, then other agents can also
engage in it to acquire a reputation for toughness. Yared (2009) considers a defender

8Cho (1990) extends the above results to two-sided incomplete information.
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with private knowledge of his cost of conceding the flow resource in each period; in
equilibrium the challenger attacks with positive probability when no concession is made,
so that the defender has an incentive to concede often enough. Since costs are drawn
independently across periods, there is no reputation at play, unlike our model.

2 Benchmark Model

In our benchmark model, the parties have a single chance to reach an agreement before
conflict begins. In Section 4 we discuss how our results generalize to multiple rounds of
negotiation.

Time is continuous and runs from −T to infinity, where T is a fixed positive number.
There are two players: Challenger and Defender. They contest a resource of size 1, which
is initially held by Defender. Holding the resource gives a flow rent d̃ to Defender and c̃

to Challenger.

The game played by Challenger and Defender is best described by dividing it into
two phases: negotiation and conflict. Negotiation runs from t = −T to t = 0; conflict runs
from t = 0 onward.

Negotiation At t = −T , Defender can offer a fraction x of the resources to Challen-
ger. Upon observing the offer, Challenger decides to accept or reject the current offer. If
Challenger accepts the offer, then the game ends and Challenger and Defender enjoy flow
rents xc̃ and (1− x) d̃ thereafter. Otherwise, Defender enjoys the entire resource until time
t = 0, when the game enters the conflict phase. Thus we interpret T as the time for which
Challenger has to wait in order to initiate conflict.9

Conflict In the conflict phase, the following two-stage game is played out at each t ∈
{0,∆, 2∆, . . . }, where ∆ > 0 is the length of each conflict period:

Stage 1: Challenger chooses whether to fight (attack) or concede;

Stage 2: Defender chooses whether to fight (resist) or concede.

As soon as one party concedes, the other party gets to enjoy the entire resource forever
afterwards; thus conflict is less flexible than negotiation.

9While T might often be stochastic, we do not see any gain in insight from assuming so.
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Types and payoffs Each player can be of two types—tough or normal. Challenger (De-
fender) is tough with strictly non-zero probability µ̂ (π̂). In each period in which Challen-
ger attacks, normal Challenger pays a cost at the rate Ã > 0 and normal Defender suffers
a loss at the rate L̃ > 0. Tough types have no cost of fighting and continue to do so until
the end of time.

We wish to disentangle Defender’s desire not to to reveal his type from his fear of of-
fering Challenger an opportunity to intimidate him into conceding. Therefore, we divide
the analysis in Section 4 in two cases:

Informed Defender Defender privately observes his type at the beginning of the negoti-
ation phase (at t = −T );

Uninformed Defender Defender privately observes his type only if and when conflict
begins (at t = 0).

Challenger privately observes her type at time t = −T throughout the analysis.

Challenger and Defender discount time at rate rC and rD, respectively. We denote the
total discounted value of benefits or costs incurred over the interval of length ∆ by the
same letter, but without the tilde, i.e. c, d, A, and L are the present discounted values over
∆ of c̃, d̃, Ã, and L̃. The discounting between successive periods is given by δi = e−ri∆,
i = C,D.

We make a parametric assumption to restrict attention to interesting cases. The first
part of Assumption 1 says that the loss from one attack in the next period exceeds the
flow utility of the contested resource in the current period. The second part says that
the cost of attacking is strictly less than the discounted value of getting the contested
resource forever, starting from the current period. It immediately follows from this that
Challenger strictly prefers to attack if she knows that one attack will result in Defender
conceding immediately. Note that if Assumption 1 fails, then either normal Challenger
never attacks or normal Defender never concedes.

Assumption 1 (A1). δDL > d; A < c
(
1− δC

)−1
.

Our solution concept is perfect Bayesian equilibrium (henceforth equilibrium).

Some remarks on the modelling choices A remark is in order on the two alternative
assumptions about information. The first covers a situation where Defender becomes
aware of his ability to persist in fighting only when he is involved in conflict (this could
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be because Challenger’s ability to hurt Defender may be unclear). In any case, Defender is
aware of his type when conflict starts, because his strategy in the game of conflict depends
on his type. In particular this sheds some light on how the likelihood and size of offers
vary with the information possessed by parties.

Note that conflict ends the possibility of negotiation. As noted by Langlois and Lang-
lois (2009) the idea that negotiations are common during conflict is at odds with what
we know about states at war. For example, Pillar (1983) finds that in only nineteen of
one-hundred and forty two interstate wars parties negotiated during conflict and before
an armistice. Furthermore, once the solution to our game is presented it will be clear
that our predictions are not dramatically altered even if we were to allow the parties to
negotiate during successive periods of conflict.

2.1 Strategies and Public Beliefs

Notation. Period t of the conflict game lasts from calendar time (t− 1) ∆ to t∆; for con-
venience the subscript refers to the period rather than calendar time during our discus-
sion of conflict. At each period t of conflict, the complete history is summarized by the
vector of public beliefs. In stage 1, the state of the game is the vector (µt−1, πt−1), where
µt−1 is Defender’s belief that Challenger is tough, and πt−1 is Challenger’s beliefs that
Defender is tough. In stage 2, the state vector is (µt, πt−1), where Defender’s belief about
Challenger’s type has been updated from µt−1 to µt in light of Challenger’s action at stage
1.

Negotiation. In the negotiation phase, Defender’s strategy is an offer in [0, 1]. Normal
Challenger’s strategy maps from the current beliefs and the offer a probability of accep-
ting the offer in [0, 1].

Conflict. In the conflict phase, a (behavior) strategy for normal Challenger is a sequence
of mappings σCt : [0, 1]2 → [0, 1], t ∈ N, where σCt (µt−1, πt−1) is the probability that the
normal type of Challenger concedes (does not attack) in period t as a function of the public
beliefs. A strategy for Defender is a sequence of mappings σDt : [0, 1]2 → [0, 1], one for
each t ∈ N, where σDt (µt, πt−1) is the probability with which Defender concedes in period
t when the public beliefs are µt and πt−1.10 At this point it is natural to wonder why we

10Note that Challenger’s action in period t depends on the beliefs at the end of period t−1, as is standard.
In contrast, Defender observes Challenger’s move at t, updates her belief about Challenger’s type to µt, and
only then chooses an action.
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do not incorporate the history of offers that were made. Note that these offers must have
been turned down, for the game would have ended otherwise. Once the public beliefs
with which we start conflict have been pinned down we shall show that the equilibrium
is determined independently of the actual offers (except in as much as they influenced the
probabilities of acceptance and therefore the public belief about Challenger being tough).
Hence the notation above is without loss of generality.

Since tough players never concede, the average probabilities of concession by Challen-
ger and Defender respectively are obtained by multiplying the probability of the normal
type by the probability that the (respective) normal type concedes:

σ̄Ct (µt−1, πt−1) = (1− µt−1)σCt (µt−1, πt−1) ; (1)

σ̄Dt (µt, πt−1) = (1− πt−1)σDt (µt, πt−1) .

Obviously, µt = 0 at any history where Challenger concedes. If Challenger has not con-
ceded until period t, the updated belief µt that Challenger is tough is derived by Bayes’
rule from µt−1 and σCt :

µt = µt−1

1− σ̄Ct (µt−1, πt−1) . (2)

Similarly, if Defender has refused to concede throughout we have

πt = πt−1

1− σ̄Dt (µt, πt−1) , (3)

with πt = 0 if Defender concedes at t.

3 Equilibrium in the Game of Conflict

We solve the game backwards. Before we can solve for the optimal offer in the next
section, we must derive the equilibrium of the continuation conflict game, starting with
the priors µ0 and π0. We do so under an additional assumption, which rules out a negli-
gible set (of zero Lebesgue measure) of beliefs but gives us uniqueness.

Assumption 2 (A2). The quantities ln π̄/ ln π0 and ln µ̄/ lnµ0 are not integers.

We first show that optimal strategies must necessarily be of a threshold form.
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3.1 Threshold Beliefs

Clearly, each player concedes if he or she believes the other to be tough with probability 1.
Since payoffs are continuous in beliefs, so are the optimal strategies. If Defender believes
Challenger to be tough with sufficiently high probability, then Defender will concede
immediately, even if he knows that normal Challenger will never attack again. Similarly,
if Challenger believes Defender to be tough with sufficiently high probability, then she
will concede immediately even if she knows that normal Defender will concede with
certainty in response to just one more attack. The following lemma finds these thresholds
exactly.

Lemma 1 (Threshold beliefs). Let µ̄ and π̄ be given by

µ̄ := 1
δD

[
1 +

(
1− δD

) L
d

]−1
, and (4)

π̄ := 1−
(
1− δC

) A
c
. (5)

In any equilibrium,

(i) assuming that normal Defender concedes after a single attack, normal Challenger strictly pre-
fers to attack if πt < π̄, is just indifferent at π̄, and strictly prefers not to attack otherwise;

(ii) assuming that normal Challenger concedes when Defender does not concede immediately, then
Defender strictly prefers not to concede if µt < µ̄, is just indifferent at µ̄, and strictly prefers
to concede otherwise.

Proof. All proofs are in Appendix.

Later we will use the fact that µ̄ and π̄ are not functions of priors µ0 and π0. These
thresholds depend in a very natural way on the discount factors of the players. To illus-
trate, π̄ → 1 as Challenger becomes more patient (δC → 1), i.e. Challenger concedes only
if Defender is almost certainly tough. Similarly, a very patient Defender concedes only if
Challenger is almost certainly tough.11

11As δC , δD → 1, i.e. as the interval between periods becomes smaller, our model gets closer to the
continuous-time models in Ponsatì and Sàkovics (1996) and Abreu and Gul (2000). In the limit, if δC/δD →
0, then (normal) Challenger never attacks; if δD/δC → 0, Challenger attacks with probability 1 in period 1,
and (normal) Defender concedes immediately.
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3.2 Order of Conflict and the Unique Equilibrium

Depending on parameter values the equilibrium is one of only two mutually exclusive
types. Both types have similar qualitative features, analogous to those in continuous-
time wars of attrition. First, solely from parameters we can compute a finite number of
periods, n, during which normal types of players mimic the corresponding tough type
with strictly positive probability. Second, after conflict continues for n periods, normal
types concede. Thus conflict goes beyond n periods (indeed, forever) if and only if both
players are actually drawn to be the corresponding tough types. We call n the order of the
conflict.

The order of conflict n naturally relates to the prior beliefs that the players are tough.
When both players are believed to be normal with very high probability, then conflict is of
high order. Conversely, if at least one player is believed to be tough with high probability,
then conflict is of low order. Thus a conflict with low order can be thought of as a conflict
between players who are initially believed to be highly committed to fight until ultimate
victory.

Definition 1. A conflict is of order n ∈ N∪{0} if n is the largest non-negative integer such
that µ0 < µ̄n and π0 < π̄n, where the conflict game starts with beliefs (µ0, π0) and µ̄ and π̄

are the thresholds.

Note that the conflict order is 0 if either µ̄ < µ0 < 1 or π̄ < π0 < 1; otherwise the order
is non-zero. In the remaining of the analysis we focus on the case when the conflict order
is at least 1; otherwise one of the two players concedes immediately in period 1.

We define the relative commitment of Challenger and Defender as follows; this deter-
mines which of the two types of equilibria prevail.

Definition 2. In a conflict of order n, Challenger is more committed if µ̄n+1 < µ0 < µ̄n and
π0 < π̄n+1; Defender is at least as committed if µ0 < µ̄n and π̄n+1 < π0 < π̄n.

Propositions 1 and 2 characterize the unique equilibrium of the conflict phase.

Proposition 1. If A1 and A2 are satisfied and Challenger is more committed, in the unique equi-
librium

1. in period 1, Challenger attacks with probability 1 and Defender concedes with probability

1− π0

π̄n
1− π̄n
1− π0

; (6)
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2. subsequently Challenger and Defender concede with probabilities 1−µ̄
1−µt and 1−π̄

1−πt respectively
as long as both beliefs are below the respective thresholds, and then concede with probability
1 when the corresponding thresholds are crossed.

Proposition 2. If A1 and A2 are satisfied and Defender is at least as committed, in the unique
equilibrium is given by

1. in period 1, Challenger concedes with probability

1− µ0

µ̄n
1− µ̄n
1− µ0

; (7)

2. subsequently Challenger and Defender concede with probabilities 1−µ̄
1−µt and 1−π̄

1−πt respectively
as long as both beliefs are below the respective thresholds, and then concede with probability
1 when the corresponding thresholds are crossed.

We give the full proof of propositions 1 and 2 and further details about its intuition
in Appendix A.2. Here we offer only the basic thrust behind its logic necessary to under-
stand how negotiation and conflict are linked.

First, from period 1, stage 2 onward, both players concede with positive probability.
The fact that normal players are expected to concede with positive probability is what
fuels intimidation. Upon observing an attack, Defender must conclude that Challenger
is more likely to be tough than he previously believed. Similarly, when Defender does
not concede, Challenger must conclude that Defender is more tough than she previously
believed.

Second, as each attack from Challenger and each non-concession from Defender in-
crease the public belief that the players are tough, as conflict continues these beliefs get
closer and closer to the threshold beliefs µ̄ and π̄. Once these thresholds are passed, con-
flict must end.12 Therefore, the order of conflict n is naturally linked to the maximum
number of periods for which conflict protracts.

Third, one key difference between the two cases in propositions 1 and 2 is that when
Challenger is more committed, she attacks with probability 1 at the start, whereas she

12Lemma 4 in Appendix A.2 shows that says that if both beliefs are strictly below their threshold, no
belief leaps over the corresponding threshold at the next step without touching the corresponding threshold
exactly. Intuitively, if Defender knows at time t that fighting once will move πt above its threshold, then
he will fight with probability 1. But if he fights with probability 1, then πt = πt+1. The implication is that
when normal types finish conceding at time n, one reputation is exactly at its threshold, i.e. either πn = π̄
or µn = µ̄.
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mixes when Defender is at least as committed as Challenger. That is, when Challenger is
perceived to be more likely to be tough, her expected equilibrium payoff from conflict is
greater.

Remark 1. If Challenger is more committed than Defender, then normal Challenger’s ex-
pected payoff is

uC :=
(

1− π0

π̄n

)
c

1− δC − A (8)

and normal Defender’s expected payoff is−L. The unconditional probability of an attack
in period t ∈ [2, n] is given by

Pr (attack at t) = π0

π̄n
µ̄t−1π̄t−2.

Remark 2. If Defender is at least as committed as Challenger, then normal Challenger’s
expected payoff is 0 and normal Defender’s expected payoff is

uD :=
(

1− µ0

µ̄n

)
d

1− δD −
µ0

µ̄n
L. (9)

The unconditional probability of an attack in period t ∈ [1, n+ 1] is given by

Pr (attack at t) = µ0

µ̄n
(µ̄π̄)t−1 .

3.3 Vanishingly Small Uncertainty

We explore the limit of our model as uncertainty about players’ types becomes small. Our
main interest is in determining conditions under which conflict can continue even when
both parties are very likely to be normal.

An Example. Consider a symmetric conflict of order n with µ̄ = π̄ and equal priors. As
uncertainty vanishes, the order of conflict grows. The following proposition says that in
the limit as µ0 = π0 → 0, conflict extends to any period t ∈ N with probability at least
µ̄ (µ̄π̄)t−1. To give a sense of the magnitude of this lower bound, suppose that a period is
a week and the per-week rent from the resource equals .8 of the loss from a single attack.
For a per-week discount factor δD = .99, our result says that we should expect the conflict
to extend for an entire year with probability at least .78.

13



Limit Result. From the previous sections, a conflict (game) is completely characterized
by the prior probabilities of being tough and the thresholds, (µ0, π0, µ̄, π̄), which is in
(0, 1)4 . Fixing (µ̄, π̄) ∈ (0, 1)2, we can define a sequence of conflict games {Γk} by varying
the prior (µ̃k, π̃k). Let the order of Γk be denoted by n (k). We consider sequences that
converge to complete information, i.e. (µ̃k, π̃k)→ (0, 0). Obviously, n (k)→∞ along such
sequences.

For such a sequence of conflicts converging towards rationality, the following defini-
tion ensures that no player is infinitely more committed (see Definition 2) than the other.

Definition 3. A sequence of conflicts {Γk} is equipoised if

lim
k→∞

µ̃k/µ̄
n(k)

µ̃k/µ̄n(k) + π̃k/π̄n(k) ∈ (0, 1) .

Proposition 3 considers a sequence of conflicts such that Defender is at least as com-
mitted as Challenger. It says that as uncertainty becomes small, the probability that con-
flict survives until t is strictly positive for all t ∈ N.

Proposition 3. Let {Γk} be an equipoised sequence of conflict games, if either

1. Defender is at least as committed for all k ∈ N, or

2. Challenger is more committed for all k ∈ N,

then lim infk Pr (attack at t) > 0 for all t ∈ N.

Proof. In Appendix.

4 Why Negotiation Fails to Eliminate Conflict

We now turn to negotiation and show why in our model conflict might not be avoided
even if Defender and Challenger can commit to a peaceful division of the resource. An
important feature of our model is that conflict and negotiation are linked: when choosing
an action during negotiations, each player knows that her action will affect her oppo-
nent’s belief that she is tough. In turn, this belief determines the expected payoff from
conflict, affecting the relative appeal of negotiating peace.

Recall that the conflict game can have one of two types of equilibria; in this section we
focus on the more interesting type where Challenger has a strictly positive utility from
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attacking given the prior beliefs µ̂ and π̂, i.e., Challenger is more committed at the prior
µ0 = µ̂ and π0 = π̂. We are interested in the case where opportunities to terminate con-
flict (via concession) arise very frequently; in other words, the gap ∆ between successive
periods is small. Our main focus is on the probability that conflict begins, i.e., that no
peaceful division of the resource is agreed upon by time t = 0.

4.1 Uninformed Defender

We begin our analysis of negotiation with the case of an uninformed Defender; this is
the appropriate assumption when Defender needs conflict to start before he can assess
the real cost of an attack. Thus Defender’s offer does not signal his type. In this case,
the probability with which conflict begins depends on the discount factors of the two
players, relative to the cost parameters of the game. In fact, when Defender is (weakly)
more patient than Challenger (rD ≤ rC) negotiations fail and conflict begins with strictly
positive probability. This is also the case whenever the interval between negotiations and
conflict is sufficiently small.

Proposition 4. When Defender is uninformed, if

(
e−(rD−rC)T − 1

)
rD

rC
<

π̂

1− π̂
1− µ̂
µ̂

Ã/c̃(
L̃− d̃

)
/d̃
, (10)

then, for ∆ sufficiently small, conflict begins in equilibrium with strictly positive probability even
if both Defender and Challenger are normal.

There are two cases of particular interest in which condition (10) holds. First, when
Defender and Challenger are equally patient, the left-hand side of (10) is zero, and there-
fore (10) holds for all T . Second, irrespective of who is more patient, (10) holds whenever
T is sufficiently small. Therefore, negotiations can fail if the threat of conflict is imminent.

To explain the intuition behind our main result, suppose that an offer x ∈ [0, 1] by De-
fender is accepted by normal Challenger with probability α (x). Then, the total probability
of acceptance13 is β (x) = (1− µ̂)α (x). An offer is a double-edged sword for Defender.
On one hand, a larger offer increases Challenger’s incentive to avoid conflict. If this were
to be the whole story, then Defender could offer to Challenger exactly Challenger’s ex-
pected value of conflict and avoid conflict completely. But, on the other hand, there is

13We can simply assume that tough Challenger doesn’t accept anything short of the whole resource, but
we can get this property for free because, as we shall see, Defender will never make an offer that would be
large enough to be accepted by tough Challenger.
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also a detrimental side to a larger offer: following a rejection, Defender’s belief that Chal-
lenger is tough increases to µ0 = µ̂/ (1− β (x)), which is increasing in β (x). Therefore,
offers that Challenger accepts with higher probability raise the belief that Challenger is
tough further if rejected, thereby increasing Challenger’s expected payoff from conflict.

With this in mind, it is then easy to see why negotiation might fail to avoid conflict. If
Defender were to make an offer that normal Challenger would surely accept, a rejection
would convince Defender that Challenger was tough for sure. But this implies that the
normal Challenger strictly prefers to refuse, as her refusal intimidates Defender into con-
ceding—unless, that is, Defender offers her the discounted value of the whole resource.

For the special case in which Defender discounts time at the same rate as Challenger,
we can derive a closed-form expression for the probability with which the optimal of-
fer is accepted in the limiting case of arbitrarily frequent offers (∆ ↓ 0). Let ρi := e−r

iT

denote the total discounting from the offer to the start of conflict (from −T to 0). Chal-
lenger compares the offer with the payoff of triggering conflict, which itself depends on
the offer. If Challenger accepts the offer x with probability β (x), she gets xc̃/rC from
accepting, whereas rejecting x raises the probability of the tough type of Challenger to
µ0 = µ̂/ (1− β (x)). Therefore the value of conflict is given by

ρCPD (µ0, π0) c̃

rC
= ρCPD

(
µ̂

1− β , π0

)
c̃

rC
, (11)

where the probability PD (µ0, π0) with which Defender concedes as soon as conflict be-
gins is given by the limit as ∆ ↓ 0 of the expression in Proposition 1, Part 1 (proved in
Appendix (A.4))

PD (µ0, π0) = 1− π0µ
−σD/σC
0 > 0, where σD ≡ Ã

c̃/rC
, σC ≡ L̃− d̃

d̃/rD
. (12)

Defender’s expected discounted share of the resource, as measured from date −T , as a
function of his offer x and the total acceptance probability β, is

V (x) := β (1− x) + (1− β)
{
π̂ + (1− π̂)

(
1− ρD

)}
,

while his actual discounted utility is V (x) d̃
rD

. The first term is theDefender’s portion of
the resource after an offer is accepted; the second represents the expected share in case
the offer is rejected—the tough type gets the entire share (from time−T ); the normal type
gets the entire resource until the start of conflict and then concedes immediately.
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Defender’s problem is

max
x∈[0,1]

V (x) s.t. x ≤ ρC

1− π̂
(

µ̂

1− β

)−(σD/σC)
 ,

with the additional restriction that β = 0 if the inequality is strict. The constraint says
that x must be less or equal to Challenger’s discounted utility of rejecting an offer that
is accepted with probability β, obtained by substituting (12) into (11). Clearly, Defender
will never offer a larger share than this. If the constraint is slack, then from Challenger’s
perspective accepting the offer must be worse than pursuing conflict, and therefore β = 0.

Let us now focus on the analytically convenient case of equal discounting. Substitu-
ting for x in terms of β and letting ρC = ρD = ρ, we obtain

dV (β)
dβ

= π0ρ


(

µ̂

1− β

)−σD/σC (
1− β

1− β
σD

σC

)
− 1

 . (13)

Equating (13) to zero gives the first-order condition satisfied by the acceptance probability
β∗ of an optimal offer. As dV (β) /dβ is strictly decreasing in β, the acceptance probability
is unique. This proves the following proposition.

Proposition 5. Let the uninformed Defender discount time at the same rate as Challenger. As
∆ ↓ 0, the optimal offer is accepted with probability β∗ ∈ (0, 1) such that

1− β∗

1− β∗
σD

σC
=
(

µ̂

1− β∗

)σD/σC
. (14)

With this in mind, it is now easier to interpret the condition in Proposition 4. First, we
note that unequal discounting introduces an additional factor. If negotiation succeeds,
it switches consumption from Defender to Challenger. Switching consumption to the
less patient player is efficient. Therefore, when Challenger is less patient, the chances
for a mutually advantageous agreement are greater. On the contrary, when Challenger is
more patient, there is a loss in efficiency in moving consumption to her, and therefore less
room for a mutually advantageous agreement.Second, if Defender is sufficiently unlikely
to be tough (small π̂) and Challenger is sufficiently likely to be tough (large µ̂), conflict
is so favorable to Challenger and so unfavorable to Defender that Defender prefers to
concede the whole discounted value of the resource and conflict is avoided. Finally, when
conflict is more costly for Challenger (higher Ã and smaller L̃), Challenger is relatively
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more interested in avoiding conflict and it is therefore easier for Defender to make an
offer that normal Challenger will accept.

4.2 Informed Defender

We now study the alternative informational assumption where Defender makes the offer
with knowledge of his own type. We use the following fact throughout this part: the
tough type of Defender must offer 0, since he has no benefit whatsoever from negotiating
a settlement. Thus, by making an offer, normal Defender also signals his type. We now
show that this signal is strong enough that there is no scope for negotiation whenever
Challenger is more patient than Defender. When Challenger is much less patient, it is
worthwhile for normal Defender to separate fully from the tough type and resolve the
dispute for sure.

Proposition 6. When Defender is informed, the equilibrium in the limit model is one of three
types depending on relative discounting and the probability of the Challenger being tough.

1. if and only if ρC ≤ µ̂ρD, then there is a separating equilibrium where conflict between
normal types is averted;

2. if and only if µ̂ρD < ρC < ρD, then there is a semi-separating equilibrium in which the nor-
mal Defender mixes between mimicking the tough type and revealing himself, and conflict
between normal types begins with strictly positive probability;

3. if and only if ρD ≤ ρC , then both types pool on the zero offer and conflict begins with
probability 1.

Notice that separation cannot happen when players are comparably patient (i.e., com-
plete separation occurs only if ρC ≤ µ̂ρD < ρD). Therefore, the failure of negotiations
under equal discounting is robust to different discount factors.

Conflict can be avoided for sure here when Challenger is sufficiently less patient than
Defender. Intuitively, when Challenger is very impatient, she is willing to accept small
offers even if she were to know that Defender is normal for sure; in addition negotiation
improves efficiency by switching consumption to the more patient player. Therefore,
normal Defender has less incentive to conceal his type and makes an offer that normal
Challenger accepts with probability 1. But if Challenger is sufficiently patient, normal
Defender knows that if he were to reveal his type, Challenger would accept only very
large offers. Therefore, normal Defender has an incentive to mimic his tough type and
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offer x = 0. Therefore, conflict begins with positive probability even if both Challenger
and Defender are normal. Indeed when Challenger is more patient than Defender, conflict
begins for sure. Unless ρC < µ̂ρD, normal Defender cannot gain from the possibility of
negotiations.

A further insight arises from the comparison of the informed and uninformed Defen-
der cases:when ρC is slightly larger thanρD, Defender does not make an acceptable offer if
it is known that he knows his type privately, whereas he makes an acceptable offer when
he is known to be uninformed.

5 Brinkmanship (Multiple Offers)

In the previous section, we established why a single round of negotiations fails to avoid
conflict. But with multiple rounds, Defender could potentially ‘screen’ Challenger, i.e.,
take out a proportion of normal types at each round, lowering the probability of conflict,
which could conceivably go to 0 as the number of rounds increases. We now show that
this is not in fact the case: our results on the failure of negotiation are robust to an arbitrary
number of offers.

There are K times t1, . . . , tK , such that −T = t1 < . . . < tK < 0, at each of which
Defender can offer any fraction of the resource to Challenger. The conflict phase is trig-
gered at time 0 if all K offers are rejected. We focus on the case of equal discounting and
uninformed Defender.

Notice that Defender can always afford the same expected payoff he would get if there
was only one round of negotiations. In fact, he can choose to make offers that no Chal-
lenger would accept until the K-th round, and then make the same offer he would make
if there was only one round. Therefore, the question is whether Defender can do better
than this by making an acceptable offer before the K-th and last round of negotiation.
Proposition 7 says that the answer to this question is negative and that in equilibrium
offers are accepted only on the brink of conflict.

Proposition 7. Let β∗k , k = 1, . . . , K be the equilibrium probability that Challenger accepts the
offer in round k and β∗ be the equilibrium probability that Challenger accepts if there is only one
round of negotiation. All equilibria must satisfy

β∗1 = . . . = β∗K−1 = 0 < β∗K = β∗.

Once again, the intuition behind our brinkmanship result lies in the ability of Challen-
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ger to intimidate Defender—in this case, into making larger offers in the future. In fact,
once the last round of negotiation is reached, the continuation game is akin to the game
considered in the previous section. By Proposition 4, Point 1, Defender will always make
an offer that has positive probability of being accepted. But the size of this offer is incre-
asing in Defender’s belief that Challenger is tough. In fact, when Defender believes that
Challenger is more likely to be tough, then Challenger’s expected payoff from conflict is
greater and she accepts only larger offers.

Suppose then that in an earlier round Defender makes an offer that Challenger accepts
with positive probability. By rejecting this offer, Challenger raises Defender’s belief that
she is tough, intimidating her into making a larger offer in RoundK. In particular, this of-
fer will have to be larger than the one that Defender would optimally make if he had only
one chance to negotiate. In turn, this also means that the earlier offer must be large. In
fact, Challenger must be indifferent between accepting the first or the second offer. Thus,
the cost for Defender of buying Challenger’s agreement is the same in the two periods
and it is greater than the cost it pays when there is only one round of negotiation. From
Defender’s perspective, this is the same as making a single larger offer, which increases
both the chances of peace and the cost of it. But since β∗ optimally solves the tradeoff
between increasing chances of peace and increasing cost of reaching an agreement, then
making multiple acceptable offers lowers Defender’s utility.

This brinkmanship result provides one explanation for negotiation in the shadow of
conflict not making no progress until the very last chance. An instructive anecdote co-
mes from the negotiations leading up to the Treaty of Porthsmouth in the Russo-Japanese
War (1904–1905); this subsequently gained President Theodore Roosevelt the Peace No-
bel Prize. Negotiations for the treaty were held while Russia brought further troops to
Manchuria, a move that would have given Russia an advantage in case of conflict. Fre-
drik (2010) notes how the Japanese delegation demanded the southern part of the island
of Sakhalin and war reparations throughout the negotiations. Only upon the arrival of
further four Russian divisions, at what was conceivably their last chance to do so, did the
Japanese drop their claim for reparations and avert conflict.

6 Comparative Statics and Applications

Conflict Duration. We provide some comparative statics regarding the length of con-
flict, conditional on (i) a first attack, and (ii) a first non-concession by Defender. We first
show that the maximum length of a conflict depends on the absolute likelihood that Chal-
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lenger and Defender are tough. Thus, our model predicts that conflicts between players
believed to be tough last for fewer periods.

Corollary 1. Unless both players are tough, the maximum length of a conflict is determined by
the conflict order n. If Challenger is more committed, there is never an attack after period n+ 1. If
Defender is at least as committed, there is never an attack after period n.

Remark. Recall that as uncertainty vanishes, the order of conflict n and its maximum
length tend to infinity.

Conditional on the conflict continuing after period 1, the probability that it lasts until
t ≤ n is independent of which player is more committed or how much the players are
likely to be tough. Between period 2 and n, the survival probability of the conflict depends
only on the threshold values µ̄ and π̄, which do not depend on the priors µ0 and π0. Thus,
until period t = n is reached, conflict is non-duration dependent.

Corollary 2. In each period t : 2 ≤ t ≤ n, if conflict has not yet ended, Challenger attacks with
constant probability µ̄ and Defender does not concede with constant probability π̄. Therefore, if
conflict has not yet ended by the end of period t, the probability that conflict will not end by the
end of period t′ : t < t′ ≤ n is (µ̄π̄)t

′−t.

Thus, after period 1, the probability that conflict ends at time t > 1 follows a geometric
distribution with Bernoulli probability 1 − µ̄π̄ until t = n + 1. We wish to interpret our
model as a small deviation from full rationality, i.e. µ0 and π0 are small and therefore n
is large. As n grows large, the distribution of conflict length beyond period 1 follows a
geometric distribution with mean (1− µ̄π̄)−1. Therefore, from an empirical perspective,
for sufficiently small µ0 and π0, conflict is non-duration dependent.

Although the probability that conflict extends to the next period does not depend
on time, it nonetheless depend in intuitive ways on other primitives of the model. The
following comparative statics follows from the previous corollary and the definition of
µ̄ and π̄. For µ0 and π0 sufficiently large such that conflict length is approximated by
a geometric distribution, the same comparative statics apply to the expected length of
conflict.

Corollary 3. Conditional on there being a conflict at time t > 1, the probability of an attack in
period t′ > t is increasing in the value of the resource (c and d) and the players patience (δC and
δD); it is decreasing in the cost of fighting (A and L).

Prediction 1. Conflict is non-duration dependent. Conflict duration is determined by the
military capabilities of the parties and the value of the resource at stake: it decreases
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Figure 1: Probability of First Attack

with the cost of fighting and increases with the value of the resource. Only if the
parties are tough with sufficiently large probability, then conflict duration is sensi-
tive to these probabilities: it decreases with the probability that at least one party is
tough.

Probability of Conflict. We now turn to the question of when a conflict is more likely
to begin, i.e. there is a first attack. Figure 1 depicts the total probability of first attack as
a function of µ0 for two different values of π0, π′0 ∈ (π̄h+1, π̄h) and π′′0 ∈ (π̄l+1, π̄l). In both
cases, the probability of first attack is strictly increasing for low values of µ0 and equals 1
for higher values.

Corollary 4. Fix the likelihood π0 that Defender is tough. The probability that Challenger begins
to attack is increasing in the likelihood of Challenger being tough µ0. It is strictly increasing if
and only if Defender is at least as committed as Challenger.

For Defender, an image of toughness can pay: if Defender is at least as committed
as Challenger, then the probability of a conflict is strictly less than 1. In this case, the
probability of a conflict is µ0/µ̄

n, where n is the largest natural number such that π0 ≤
π̄n. Thus, if π0 increases, the probability of conflict decreases. Figure 1 depicts the total
probability of first attack as a function of µ0 for n = h (blue line) and n = l < h (red line).
Increasing π0 from π′0 to π′′0 > π′0 moves the line representing the probability of first attack
to the right.

Corollary 5. Let Defender be at least as committed as Challenger. Then, the probability that
Challenger begins to attack is decreasing in π0.

The advantage of being perceived as tough should not be overstated. Recall that after
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the first attack, the expected payoff for Defender is −L, independently of π0. Indeed, in
equilibrium, Defender is indifferent between conceding and resisting whenever he plays.

Prediction 2. The probability that a conflict begins depends on the relative probability
that the parties are tough. In particular, if Challenger is more committed than De-
fender, then a greater difference between the probabilities of being tough increases
the probability that conflict begins.

6.1 Democracy and War

One of the few empirical regularities about conflict is that pairs of democracies are less
likely to fight each other.14 Prediction 2 suggests that conflict begins when there is greater
unbalance between the parties’ probability of being tough. We argue that democratic
leaders are kept in check by their citizens and that therefore democracies tend to have
similar probabilities of being tough or irrational. On the contrary, autocrats of the like
of Kim Jung-un are known for their unpredictable behavior. Thus, a pair of autocracies
or one democracy and one autocracy are more likely to have unbalanced probabilities of
being tough and are therefore more likely to engage in conflict.

The evidence concerning the effect of democracy on the duration of conflict is ambi-
guous. Bennet and Stam (2009), Langlois and Langlois (2009), and Henderson and Bayer
(2013) find that the relation between democracy and conflict duration is not significant
once the military capabilities of the parties and the physical characteristics of conflict
(common boundaries, terrain, etc.) are taken into account. Prediction 1 suggests that that
the probability of continuation of conflict depends indeed only on the costs and benefits
of war, and only to a lesser extent on the probability of being tough. Thus, in our model
as in the real world, physical and technological characteristics matter more than political
ones.

6.2 Terrorism

Terrorist conflicts can last from a few months to many decades. A common distinction in
the literature is the one between religious and secular terrorism. Religious terrorist groups
are believed to be fiercely committed to an ultimate goal to the exclusion of compromise.
For example, Taheri (1987) notes that a key difference between Islamic and secular terro-
rism is that the first “is clearly conceived and committed as a form of Holy War which

14See Bueno de Mesquita and Smith (2012) for a survey.
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Figure 2: Number of Attacks by Quarter of Major Terrorist Groups

can only end when total victory has been achieved” (p. 7) (see also Hoffman, 1995). With
this interpretation, predictions 1 and 2 say that religious terrorist groups are more likely
to start conflict, but that such conflicts will be of shorter duration when they start.

Figure 2 depicts the number of attacks by year-quarter for four major terrorist groups
from 1970 to 2012.15 All four terrorist groups are ultimately motivated by a separatist
goal. Hamas and Lashkar-e-Taiba (LeT) are Islamic terrorist groups originating respecti-
vely in Palestine and Afghanistan (active in Pakistan and India). The (Provisional) Irish
Republican Army (IRA) and Basque Fatherland and Freedom (ETA) are separatist mili-
tary groups respectively in Ireland and the Basque Country in Spain and France. The
pattern of conflicts is consitent with our model. Both religious groups, Hamas and LeT,
show short burst of conflicts followed by periods of little or no activity. The time-series of
Hamas’s attacks, in particular, shows clearly three brief periods of conflict corresponding
to the First Intifada (from Hamas foundation in 1988 to 1993), the Second Intifada (Sep-
tember 2001 to 2005) and the conflict culminated with the Gaza War (June 2006 to January

15Our calculations on data from National Consortium for the Study of Terrorism and Responses
to Terrorism (START), 2012, Global Terrorism Database [globalterrorismdb_1012dist]. Retrieved from
http://www.start.umd.edu/gtd.
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2009). In stark contrast, both secular groups, the IRA and ETA, show no such a pattern.
The Troubles in Ireland and the UK which begun in 1969 lasted almost uninterrupted
until the late 90s, when the Good Friday Agreements were signed (April 1998). Similarly,
ETA’s attacks continued uninterrupted from the assassination of of Admiral Luis Carrero
Blanco (Franco’s chosen successor) in 1973 to the Spirit of Ermua massive demonstrations
against ETA in 1997. A second conflict started with a car bomb on January 21, 2000.

6.3 Workers’ Unions and Macroeconomic Conditions

When workers go on strikes, they effectively incur a cost for themselves and impose a cost
on their employers. The implicit threat to the employers is that the working conditions are
so poor that the workers would lose their current salary rather than continuing to work.
The committed type workers are therefore those who effectively have a sufficiently good
outside option—typically, another employment. On the other hand, employers deny a
concession to signal that they are unable to raise pay without jeopardizing the future
of their firms. A committed employer is thus one who prefers losing human capital to
raising pay.

The relevant stylized empirical facts are that strikes (i) are more likely in good econo-
mic times, and (ii) longer in bad economic times (Kennan and Wilson, 1990). Both facts
agree with the predictions of our model.

In a typical business cycle, in good times, workers are more likely to have a good
outside option—µ0 is larger—and businesses are more likely to be able to raise pay—π0

is smaller. Thus, our model predicts that strikes are more likely in good economic times
(Challenger is relatively more likely to be committed) than in bad times. Furthermore,
the cost of a strike is greater (at least for the businesses) in good economic times, i.e. L
is greater in good economic times. Thus, our model predicts longer strikes in bad times
than in good ones.

7 Conclusion

We provide a framework to make sensible predictions about ‘wars of intimidation’, where
a challenger repeatedly attacks to convince the defender that more attacks will come if the
latter doesn’t concede. The model is built on slight probabilities that each player could be
a type that faces no cost of fighting, and persists with conflict until the opponent concedes.
Our model predicts prolonged conflicts even when uncertainty about the players’ type
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is arbitrarily small. Our comparative static predictions find support in applications of
interest in economics and political science.

Wars of intimidation begin when negotiations fail. Our model allows us to uncover a
novel reason for why this happens: offers that have a higher probability of being accepted
also increase the incentive for the aggressor to initiate conflict. Thus, negotiations can mi-
tigate but not prevent conflict. This result should not be seen as a claim that negotiations
are useless: a neutral observer who seeks to reduce conflict will gain from bringing the
parties to the negotiation table. If negotiations succeed, then conflict is avoided; if they
fail, conflict will be shorter. On the other hand, our brinkmanship result shows that there
is little point in insisting on multiple rounds of negotiations. If acceptable offers are to be
made, they will only be made at the last opportunity to avert conflict. In a sense, neutral
observers should take advantage of any ultimatum imposed by the parties, rather than
pressuring them to have softer deadlines.
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A Omitted Proofs

A.1 Proof of Lemma 1

Proof. Challenger’s payoff from choosing σCt+1 (µt+1, πt) = 0, i.e. attacking for sure at t+ 1,
is maximum if after an attack at t + 1 the normal type of Defender concedes for sure, and
if Challenger concedes at t + 2 if Defender does not concede at t + 1. Note that when
Defender concedes in period t + 1, Challenger gets a flow payoff of c from the resource
starting with the current period. When Defender is the commitment type, he doesn’t
concede at t + 1 and Challenger gets none of the resource because she concedes at t + 2.
Hence Challenger’s maximum payoff from attacking at t+ 1 is

− (1− δC)A+ (1− πt)c+ πt · 0. (15)
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Expression (15) is zero at π̄, and negative above it. This proves part (i).

For part (ii) note that σDt+1 (µt, πt) = 1 implies that if Defender does not concede in
period t + 1 then Challenger must put probability 1 on the tough type, i.e. πt = 1 and
hence will find it optimal to concede at t+2 by step (i) above. Then the payoff of attacking
is given by (15) and the payoff of conceding is 0; hence π̄ is again the point of indifference.

Part (iii) follows from a similar argument to part (i).

A.2 Equilibrium in the Game of Conflict (Propositions 1 and 2)

We now present a few lemmas that identify necessary conditions for equilibrium and
thereby pin down the unique one in the game of conflict.

We first ask if a normal player ever mimics the tough type. Lemma 2 says that only
Challenger in period 1 can mimic the tough type (i.e. attack) with probability 1.

Lemma 2. In any equilibrium, normal types of both players concede with strictly positive proba-
bility in all periods, except possibly Challenger in period 1.

Proof. The concession sequence 〈κi〉 i∈N of any strategy profile is a sequence in [0, 1], where
each odd (even) term is the probability that Challenger (respectively, Defender) concedes
at that time conditional on no player having conceded yet. A concession sequence arising
from an equilibrium profile is called an equilibrium concession sequence.

Lemma 2 then says that in any equilibrium concession sequence, all terms (except
possibly the first) must be strictly positive.

Step 1. The proof is based on the key idea that if the string (κi, 0, κi+2) appears in an
equilibrium concession sequence and κi+2 > 0, then κi = 1: if the opponent is not conce-
ding in the interim the value of concession can only go down because the positive cost to
fighting strictly exceeds the flow utility derived from the resource; therefore concession
should have been strictly better at the step before.

Step 2. We now show that, along any concession sequence, adjacent terms cannot be
0. Let κi = 0 = κi+1; if κi+2 > 0, it would contradict Step 1. Induction implies that if
two adjacent terms of the concession sequence are 0, all subsequent terms are 0 too. But
since there is a positive probability of the tough type, it cannot be an equilibrium to never
concede, knowing that your opponent will not. Therefore, no equilibrium concession
sequence contains adjacent 0s.

Step 3. Suppose κi = 0 for some i > 1. By Step 2, we must have κi+1 > 0; from Step 1 it
means that κi−1 = 1. If the player who is supposed to concede with probability 1 does not

30



do so, his/her reputation immediately jumps to 1 and the normal opponent must concede
immediately thereafter, i.e. κi = 1—a contradiction!

Lemma 3 characterizes the players’ strategies if they are indifferent for two consecu-
tive periods.

Lemma 3. If Challenger is indifferent between conceding at times t and t+ 1 in any equilibrium,
then Defender’s equilibrium concession probability and the public beliefs about him are

σ̃D (πt−1) := 1− π̄
1− πt−1

; and πt = πt−1

π̄
(16)

respectively. Similarly, if Defender is indifferent between conceding at times t and t + 1 in any
equilibrium, then Challenger’s probability of conceding and the public beliefs about her type are

σ̃C (µt) := 1− µ̄
1− µt

, and µt+1 = µt
µ̄
. (17)

Proof. Challenger is indifferent if and only if V C
t (µt−1, πt−1) = 0, which is the payoff of

Challenger from conceding. Suppose that Challenger is indifferent for two consecutive
periods: V C

t (µt−1, πt−1) = V C
t+1 (µt, πt) = 0. By Lemma 2, σCt+1 (µt, πt) 6= 1. Therefore

σ̄Dt (µt, πt−1) = 1− π̄.

This corresponds to a strategy for Defender such that σDt (µt, πt−1) = σ̃D(πt−1) in (16) if
πt−1 ≤ π̄.

Defender is indifferent if and only if V D
t (µt, πt−1) = −L, the payoff Defender gets if

he concedes.16 Suppose that Defender is indifferent for two consecutive periods (or is
indifferent at time t and concedes at time t + 1): V D

t+1 (µt+1, πt) = −L = V D
t (µt, πt−1). By

Lemma 2, σDt (µt, πt−1) 6= 1. Therefore

σ̄Ct+1 (µt, πt) = 1− µ̄.

This corresponds to a strategy for Challenger such that σCt+1 (µt, πt) = σ̃C(µt) in (17) if
µt ≤ µ̄.

Remark 3. Challenger’s mixing probability at t = 1 need not equal σ̃C ; Defender’s mixing
at t = 1 can be different from σ̃D only if Challenger strictly prefers to attack at t = 1.

16This payoff is not 0 but −L for the same reason that the term −L appears in equation (??)—when it is
Defender’s turn to decide if he wants to concede or prolong the fight, Challenger has already attacked and
the loss will be experienced by Defender in the current period regardless of his choice of move.
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Combining Lemmas 2 and 3, in equilibrium both players concede with the probabi-
lities in Lemma 3 above, except possibly at t = 1. Beliefs evolve according to the above
lemma, except possibly at t = 1 and until they hit µ̄ or π̄.

Conflict continues as long as no player has conceded. If players mix, then beliefs about
their type increase until a threshold is crossed.

Lemma 4 says that if both beliefs are strictly below their threshold, no belief leaps
over the corresponding threshold at the next step without touching the corresponding
threshold exactly.

Lemma 4. In equilibrium (i) πt < π̄ and µt+1 < µ̄ implies πt+1 ≤ π̄ ; (ii) µt < µ̄ and πt < π̄

implies µt+1 ≤ µ̄.

Proof. Suppose not. Let πt < π̄, µt+1 < µ̄ but πt+1 > π̄. Lemma 1 implies that normal
Challenger will concede with probability 1 at time t + 2 if Defender does not concede
at t + 1. So if Defender does not concede at time t + 1 he gets a continuation payoff of
d from t + 2 onwards if Challenger is the normal type; since Challenger is normal with
probability 1− µt+1, Defender’s payoff from t+ 1 (the current period) onwards is

(
1− δD

)
(d− L) + δD

[
(1− µt+1) d+ µt+1

(
−L

(
1− δD

)
+ 0 · δD

)]
.

Defender strictly prefers to not concede if the above exceeds the payoff−
(
1− δD

)
L from

conceding immediately at t+ 1:

(
1− δD

)
d+ δD

[
(1− µt+1) d− µt+1L

(
1− δD

)]
> 0. (18)

Inequality (18) reduces to µt+1 < µ̄, which is true by assumption. Therefore Defender
strictly prefers to fight at t + 1, i.e. σDt+1 (µt+1, πt) = 0—which contradicts Lemma 2, im-
plying that πt < π̄ and µt+1 < µ̄ cannot lead to πt+1 > π̄.

Let µt < µ̄ and πt < π̄, but µt+1 > µ̄. By a similar logic Challenger strictly prefers to
fight at t+ 1 if

−
(
1− δC

)
A+ (1− πt) c+ πt · 0 > 0.

The net utility for Challenger to fight at period t is−A and with probability 1−πt Defender
will concede and Challenger will get c forever. The expression above reduces to πt < π̄. So
Challenger strictly prefers to fight at t+ 1, i.e. σCt+1 (µt, πt) = 0—which contradicts Lemma
2.

What do our previous results imply about period 1’s probability of attack? By Lemma

32



(0,0) (1,0)

(0,1) (1,1)

π2 = π̄
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π1 = π̄2

µ0 = µ1

Figure 3: How Beliefs Evolve

3, from period 2 onward beliefs must grow by a factor µ̄−1 and π̄−1, respectively. The solid
line in Figure 3 depicts the equilibrium evolution of beliefs in a conflict of order 2 with
Challenger more committed than Defender. The dashed line represents the evolution of
beliefs if it is common knowledge that both Defender and Challenger play the strategies
in lemma 3 from period 1 onward. In this case, π1 < π̄ and µ2 > µ̄, violating Lemma 4.
In equilibrium, Defender must concede with sufficiently large probability in period 1 so
as to ‘level the playing field’ with Challenger and guarantee π2 = π̄. Since Defender is
conceding with a higher probability than what would make Challenger indifferent, in
period 1 Challenger strictly prefers to attack.

Remark 4. If Challenger is more committed than Defender, in period 1 Challenger attacks
with probability 1 and Defender concedes with probability 1− π0/π̄

n > 1− π̄.

A similar logic applies to the case when Defender is at least as committed as Challen-
ger. In this case, Challenger must concede with sufficiently high probability in period 1
so as to ‘level the playing field’ with Defender and guarantee µn = µ̄.

Remark 5. If Defender is at least as committed as Challenger, in period 1 Challenger attacks
with probability µ0/µ̄

n.

The next lemma shows that along the equilibrium path, provided no one concedes,
both reputations grow according to equations (2) and (3) from period 2 onwards until a
time t when either µt = µ̄ or πt = π̄.
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Lemma 5. For any period t ≥ 2, if πt−1 ≤ π̄ and µt ≤ µ̄, then Challenger plays σ̃C (µt) and
Defender plays σ̃D (πt−1).

Proof. We show the result for Defender. The result for Challenger follows a symmetric
argument.

Proceed by contradiction. If σDt (πt) 6= σ̃D (πt), by Lemma 3, Challenger is not indiffe-
rent at either t or at t+ 1. There are two possibilities. First, she strictly prefers to concede.
But then Defender would concede with probability 0 in the previous period, contradicting
Lemma 2. Second, she strictly prefers to fight. But then by Lemma 2 she is Challenger in
period 0 and t = 1 < 2.

The lemma above is useful in proving Propositions 1 and 2, which apply, respectively,
to the cases where Challenger is more committed than Defender and where Defender is
at least as committed as Challenger.

A.2.1 Proof of Proposition 1

Proof. Existence. We first show that the stategies σ∗ defined in Proposition 1 constitute an
equilibrium. From Lemma 3 it is clear that after the first move by Challenger in period 1
players are indifferent and therefore willing to mix. Since normal players concede in σ∗

once the thresholds are crossed, this is consistent with Lemmas 1. Since Defender conce-
des with a larger probability than σ̃D in the first period, Lemma 3 implies that Challenger
strictly prefers to fight at t = 1. Also note that by Bayes’ rule the equilibrium belief about
Challenger’s type after non-concession at t = 1 is given by µ̄n.

Uniqueness. If µ0 ≥ µ̄, then Lemma 1 implies that the above is the only equilibrium;
similarly for the case π0 ≥ π̄. Therefore let (µ0, π0) < (µ̄, π̄), so that n ≥ 1. If normal types
follow σ̃C , σ̃D defined in equations (17) and (16) up to and including time n, there will be
a jump since π0/π̄

n > π̄; but jumps are ruled out by Lemma 4. By Lemmas 3 and 5, the
only freedom we have is in choosing different strategies for t = 1.

By contradiction, suppose that Challenger concedes with positive probability in pe-
riod 1. This implies she expects Defender to concede with probability at least σ̃D. But this
implies that there is m ≤ n such that beliefs are (µm+1, πm) with µm+1 > µ̄ and πm < π̄,
contradicting Lemma 4.

Last, since Challenger cannot concede with probability less than 0, we have that µn+1 >

µ̄. Thus, by Lemma 4, Defender must concede in period 1 with probability exactly σD∗t .
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A.2.2 Proof of Proposition 2

Proof. Existence. As before, it can be checked that Lemmas 1 and 3 imply that the above is
an equilibrium. In particular, σC∗1 and Bayes’ rule imply that the equilibrium belief about
Challenger’s type after non-concession at t = 1 is given by µ̄n.

Uniqueness. If µ0 ≥ µ̄, then Lemma 1 implies that the above is the only equilibrium;
similarly for the case π0 ≥ π̄. Therefore let (µ0, π0) < (µ̄, π̄), so that n ≥ 1. If normal types
follow σ̃C , σ̃D defined in equations (17) and (16) up to and including time n, there will be
a jump since π0/π̄

n > π̄; but jumps are ruled out by Lemma 4. By Lemmas 3 and 5, the
only freedom we have is in choosing different strategies for t = 1.

Case 1: σC1 < σC∗1 . Suppose that σC1 < σC∗1 . The inequality σC1 < σC∗1 implies that Chal-
lenger’s reputation increases at a slower rate such that µn < µ̄. If σD1 < σ̃D1 , then
Challenger prefers to concede immediately (σC1 = 1) since Challenger is just indiffe-
rent at σ̃D; this contradiction implies that σD1 ≥ σ̃D, which in turn gives π1 ≥ π0/π̄

and therefore πn > π̄ i.e. there exists m ≤ n such that belief profile is (µm, πm)
with µm < µ̄ and πm > π̄, contradicting Lemma 4. Therefore, σC1 ≥ σC∗1 is the only
possibility in equilibrium.

Case 2: σC1 > σC∗1 . Suppose that σC1 > σC∗1 . Now µ1 > µ0/µ̄, µ2 > µ0/µ̄
2, etc. Since Proposi-

tion 1 implies that Defender’s reputation is growing as the same rate 1/π̄ it follows
from the Definition 2 and µ̄n+1 < µ0 that µn > µ̄, i.e. a jump occurs by time n.
Therefore, σC1 ≤ σC∗1 is the only possibility in equilibrium.

Last, since Challenger must be indifferent at t = 0 to play σC∗1 , then σD1 = σ̃D = σD∗1 .

A.3 Proof of Proposition 3

Proof. Part 1. Defender is at least as committed as Challenger is: π̃k
π̄n(k) ∈ (π̄, 1). Thus,

lim inf π̃k
π̄n(k) ≥ π̄. By Proposition 2, for any k ∈ N, the equilibrium probability of attack at

time t ∈ N is given by

Pr (attack at t) = (µ̄π̄)t−1 µ̃k
µ̄n(k) , for all t ∈ [1, n (k)].
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∴ lim inf Pr (attack at t) = (µ̄π̄)t−1 lim inf µ̃k
µ̄n(k)

≥ (µ̄π̄)t−1 lim µ̃k/µ̄
n(k)

π̃k/π̄n(k) lim inf π̃k
π̄n(k) > 0, for all t ∈ N,

where the last passage follows from noticing that lim µ̃k/µ̄
n(k)

π̃k/π̄n(k) > 0 for all equipoised se-
quences.

Part 2. Challenger is more committed: µ̃k
µ̄n(k) ∈ (µ̄, 1). Thus lim inf µ̃k

µ̄n(k) ≥ µ̄. By Pro-
position 1, for any k ∈ N, the equilibrium probability of attack at time t ∈ N is given
by

Pr (attack at t) = µ̄t−1π̄t−2 π̃k
π̄n(k) , for all t ∈ [2, n (k) + 1].

∴ lim inf Pr (attack at t) = µ̄t−1π̄t−2 lim inf π̃k
π̄n(k)

≥ µ̄t−1π̄t−2 lim π̃k/π̄
n(k)

µ̃k/µ̄n(k) lim inf µ̃k
µ̄n(k) > 0, for all t ≥ 2,

where the last step follows from noticing that lim π̃k/π̄
n(k)

µ̃k/µ̄n(k) > 0 for all equipoised sequences.

A.4 Proofs of Section 4

Proof of (11)

Proof. From the definition of order of conflict, when Challenger is relatively more com-
mitted, then

n ≈ lnµ0

ln µ̄ .

From Proposition 1, upon observing an attack, Defender concedes with total probability

π0

π̄n
≈ π0µ

− ln π̄
ln µ̄

0 .

Using Lemma 1,

ln π̄
ln µ̄ =

ln
[
1−

(
1− δC

)
A/c

]
ln [δD (1 + (1− δD)L/d)] .
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Replacing δ with e−r∆, differentiating with respect to ∆, and taking the limit as ∆ goes to
0 we get

lim
∆↓0

ln π̄
ln µ̄ = ÃrC/c̃

rD
(
L̃− d̃

)
/d̃

= σD

σC
,

and therefore

PD = 1− π0

π̄n
= 1− π0µ

−σ
D

σC

0

which concludes the proof. It is worth noticing that σD and σC are the constant hazard
rate of concession of Defender and Challenger in the limit case when ∆ ↓ 0.

Proof of Proposition 4

Proof. We first prove the proposition for the continuous-time case (∆→ 0). We then show
that the solution to the model with discrete but frequent enough opportunistic to concede
is the same as the solution of the continuous-time case.

Let α (x) be the probability with which an offer x ∈ [0, 1] by Defender is accepted by
normal Challenger. Then, the total probability of acceptance is β (x) = (1− µ̂)α (x). Let
ρi := e−r

iT denote the total discounting from the offer to the start of conflict (from−T to 0).
Challenger compares the offer with the payoff of triggering conflict, which itself depends
on the offer. If Challenger accepts the offer x with probability β (x), she gets xc̃/rC from
accepting, whereas rejecting x raises the probability of the tough type of Challenger to
µ0 = µ̂/ (1− β (x)). Therefore the value of conflict is given by

ρCPD (µ0, π0) c̃

rC
= ρCPD

(
µ̂

1− β , π0

)
c̃

rC
, (19)

where the probability PD (µ0, π0) with which Defender concedes as soon as conflict begins
in the limit as ∆ ↓ 0 is given by (11). Therefore, Defender’s expected discounted share
of the resource, as measured from date −T , as a function of his offer x and the total
acceptance probability β, is

V (x) := β (1− x) d̃

rD
+ (1− β)

{
π̂
d̃

rD
+ (1− π̂)

(
1− ρD

) d̃

rD

}
.

Defender’s problem is to choose the offer share x to get the maximum discounted utility
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V (x) d̃
rD

subject to Challenger wanting to accept the offer:

max
x∈[0,1]

V (x)

s.t. x ≤ ρC

1− π̂
(

µ̂

1− β

)−(σD/σC)
 (20)

where β = 0 if the inequality is strict (because an offer that is worse than the outside
option of conflict would not be accepted by Challenger with strictly positive probability).

Assuming that β > 0, so that the constraint holds as an equality, we can substitute for
x in terms of β and take the total derivative of V with respect to β:

dV

dβ
= −x (β)− β dx

dβ
+ ρD (1− π̂) ,

where
dx

dβ
= ρC π̂

(
µ̂

1− β

)−(σD/σC) 1
1− β ·

σD

σC
.

Substituting,

dV

dβ
= −ρC+ ρC π̂

(
µ̂

1− β

)−(σD/σC) (
1− β

1− β
σD

σC

)
+ ρD (1− π̂) ,

= −ρC+ ρC π̂

(
µ̂

1− β

)−(σD/σC) (
1− β

1− β
σD

σC

)
+ ρC (1− π̂) +

(
ρD − ρC

)
(1− π̂) .

Let V e denote the function V in the special case when both discount factors are ρC . We
then have:

dV e (β)
dβ

= π̂ρC


(

µ̂

1− β

)−σD/σC (
1− β

1− β
σD

σC

)
− 1

 .
We know that

dV e

dβ

∣∣∣∣∣
β=0

= π̂ρC
{
µ̂−σ

D/σC − 1
}
> 0, (21)

dV e

dβ

∣∣∣∣∣
β=1−µ̂

= −π̂ρC
(

1− µ̂
µ̂

σD

σC

)
< 0. (22)

Therefore:
dV

dβ
= dV e

dβ
+
(
ρD − ρC

)
(1− π̂) . (23)

Notice that dV/dβ is decreasing in β. Therefore, normal Challenger accepts the equili-
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brium offer is with probability less than 1 (β < 1− µ̂) if

dV

dβ

∣∣∣∣∣
β=1−µ̂

< 0.

Substituting (21) into (23) and rearranging terms we have

dV

dβ

∣∣∣∣∣
β=1−µ̂

< 0 ⇐⇒
(
e−(rD−rC)T − 1

)
rD

rC
<

π̂

1− π̂
1− µ̂
µ̂

σD

σC

where
σD

σC
= Ã/c̃(

L̃− d̃
)
/d̃
.

This proves the first statement of the proposition. The second statement follows immedi-
ately from noticing that

lim
T→0

(
e−(rD−rC)T − 1

)
rD

rC
= 0 < π̂

1− π̂
1− µ̂
µ̂

σD

σC
.

We now show that that the solution to the model with discrete but frequent enough
opportunities to concede is the same as the solution to the continuous-time model. Let
V (x, β, δ) denote the total discounted (to time −T ) utility of the uninformed Defender
when his offer of x is then accepted with probability β, and the length of time that elapses
between successive opportunities to concede should conflict start:

V (x, β,∆) := β (1− x) + (1− β)
(
1− ρD + π̂ρD

)
− (1− β)

(
1− δD

)
. (24)

Defender’s problem is

(P) max V (x, β,∆) s.t. (x, β) ∈ F (∆) , (25)

;where F : [0, 1] → [0, 1 − µ0] × [0, 1] is the set of feasible pairs of (β, x). A value of ∆
determines δi = e−r

i∆, which in turn determines the threshold µ̄ and π̄ according to (4)
and (5), which in turn determines the order of conflict n (∆) as

µ̂/ (1− β)
µ̄n(∆)−1 < µ̄ ≤ µ̂/ (1− β)

µ̄n(∆) . (26)

This value of n (∆) in turn determines the probability PD with which Defender concedes
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at the start is given by (see (11))

1− π̂

π̄n(∆)+1 ≤ PD (∆, β) ≤ 1− π̂

π̄n(∆) (27)

if the inequality defining n holds as an equality, and as

PD (∆, β) = 1− π̂

π̄n(∆) ; (28)

each value of PD determines a unique value of the offer x (∆, β) that leaves Challenger
indifferent between accepting and rejecting the offer:

PD (∆, β) · c̃
rC
− Ã

1−
(
1− e−rC∆

)
rC

= er
cT · x (∆, β) c̃

rC
. (29)

We assert that F is a compact-valued correspondence continuous at ∆ = 0. The image of
∆ under F can be written as a correspondence φ : β � φ(β) where φ (β) is a singleton
given by (28) if (∆, β) satisfies A2, and is otherwise a closed interval given by (27). Fix
any β. Suppose

(
∆k
)
k≥1 is any sequence decreasing to 0; let

(
β, xk

)
k be a sequence of

points in F
(
∆k
)
. Then from the construction of PD we see that

PD (∆, β)→ PD (0, β) ,

which using (29) implies that xk → x. In other words, (β, x) ∈ F (0). Since φ is uniformly
bounded this means that if

(
βk, xk

)
k is a sequence of points in F

(
∆k
)

converging to (β, x)
then we have (β, x) ∈ F (0). Therefore, F is upper hemicontinuous.

Suppose (β, x) ∈ F (0) and
(
∆k
)
k≥1 is any sequence decreasing to 0. Then pick any

sequence
(
βk, xk

)
k such that βk = β for all k and

(
β, xk

)
∈ F

(
∆k
)
. By construction the

bounds in (27) and the expression in (28) reduce to PD (0, β) as ∆k → 0. Thus it must be
the case that PD

(
∆k, β

)
→ PD (0, β), and therefore, by the continuity of (29), we have

xk → x; hence F is lower hemicontinuous.

The function V is jointly continuous in the variables (x, β) and the parameter ∆. Since
F is both upper hemicontinuous and lower hemicontinuout, which implies that F is con-
tinuous at ∆ = 0, the maximum theorem immediately implies that the optimal solutions
are upper hemicontinuous at ∆. In other words, all optimal solutions at a sufficiently
small ∆ are very close to the set of solutions at 0.

Proof of Proposition 6
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Proof. Let xt and xn denote the equilibrium offers of the two types. We know that xt = 0
in any equilibrium. If normal Defender offers any amount other than 0 he reveals his
type and therefore Challenger will accept only such offers whose discounted value is no
less than waiting until time 0 to attack and then extracting an immediate concession. The
smallest share that would be accepted by Challenger is the discounted value of the entire
pie:

xmin
n

c̃

r
= ρC

c̃

r
⇒ xn ≥ xmin

n = ρC .

The normal Defender’s value from conflict, as a function of the probability q with which
normal Challenger attacks after receiving a zero offer, is

UD (q) :=
(
1− ρD

)
· 1 + ρD {µ̂ · 0 + (1− µ̂) · (1− q)} ,

where the probability q naturally depends on the equilibrium under consideration.

In the separating equilibrium, xn ≥ xmin
n = ρ, xt = 0, and therefore q = 0 by Bayes’

rule (only tough Defender offers zero). So the normal Defender’s incentive compatibility
condition is

1− xn ≥ UD (0) =⇒ xn ≤ ρDµ̂.

In the pooling equilibrium, q = 1 since the prior is unchanged. Normal Defender does
not deviate and offer xmin

n if

1− xmin
n ≤ UD (1) =⇒ ρC ≥ ρD.

In the semi-pooling equilibrium, Defender is indifferent if

1 =
(
1− ρD

)
· 1 + ρD {µ̂ · 0 + (1− µ̂) · (1− q)}

and hence

µ̂+ (1− µ̂) q = ρC

ρD
.

A value of q satisfying the above exists if and only if ρC/ρD lies in [µ̂, 1]. If q > 0 then
it must be the case that the normal type of Defender mimics the tough type (by offering
zero) with a high enough probability that the posterior after a zero offer still makes it
profitable for Challenger to attack.
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A.5 Proofs of Section 5

Proof of Proposition 7

Proof. Let the posterior probability of the tough type at the end of round k be µ̂k. A stra-
tegy of Defender comprises finitely many functions xk for k = 0, 1, . . . , K, mapping from
[0, 1] to [0, 1] such that the kth offer is xk (µ̂k−1). Let (βk | k = 0, 1, . . . , K) be the corre-
sponding ‘acceptance probability’ mappings from [0, 1] to [0, 1]; the offer made in round
k ∈ {0, 1, . . . , K} is accepted with probability βk (µ̂k−1). The strategy of Challenger de-
cides which offer to accept and with what probability, one for each round; we omit the
notation for this.

We prove this by induction on the number of rounds. Let K = 2 henceforth. The
optimal offer at each state and each history is (i) Markovian, i.e. it depends only on
beliefs about the type of Challenger; and (ii) deterministic. If B is the function such
that β∗ = B (µ̂) is the unique solution to the equation (14), then it is clear that B is in-
creasing in µ̂ (strictly increasing unless it has hit 1), and so is the posterior probability
µ̂/ (1−B (µ̂)). Take any candidate equilibrium of the 2-offer game with the equilibrium
acceptance functions (β1, β2). Clearly, sequential rationality requires that β2 (µ̂1) = B (µ̂1),
where µ̂1 is given by µ̂1 = µ̂/

(
1− β̄0

)
> µ̂. The total probability (summed over rounds

and types) that conflict will not start is then given by β̄ = β1 + (1− β1) β2. The posterior
at the end of round 2 is

µ0 = µ̂1

1− β2
= µ̂

(1− β1) (1− β2) = µ̂

1− β̄
.

By the above and equation (??), the sequentially rational offer in round 2 is

x̄ = e−r∆1,2

1− π̂
(

µ̂

1− β̄

)−σD/σC (30)

where ∆1,2 ≥ 0 is the time interval between the first and the second offer. Incentive com-
patibility of normal Challenger then requires that acceptance in any round give the same
utility to Challenger. This, together with the fact that

(
x̄, β̄

)
satisfies (30), means that the

utility of Defender is the utility of a game in which he takes out a mass β̄ of Challengers
(at a cost of x̄ per unit mass); this is denoted by V D

0

(
x̄, β̄; µ̂, π̂

)
. Let (x∗ (B (µ̂)) , B (µ̂))

be the optimal pair when we have a single round with the prior µ̂. Since x̄ > x∗ and

42



β̄ > B (µ̂), it follows that

V D
0

(
x̄, β̄; µ̂, π̂

)
< V D

0 (x∗ (B (µ̂)) , B (µ̂) ; µ̂, π̂) .

If Defender deviates in round 1 from β1 and chooses β′1 = 0 instead, it would have been
sequentially rational to make the optimal offer x∗ in round 2 and have it accepted with
probability β∗. Therefore, if two offers are accepted with positive probability in any equi-
librium, it is better to deviate and change the earlier offer to 0, so that the first offer is re-
jected. Hence there is no such equilibrium: the only possibility is β∗1 = . . . = β∗K−1 = 0.
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