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Abstract

A challenger wants a resource initially held by a defender, who can negotiate a

settlement by offering to share the resource. If challenger rejects, conflict ensues. Dur-

ing conflict each player could be a tough type for whom fighting is costless. Therefore

non-concession intimidates the opponent into conceding. Unlike in models where ne-

gotiations happen in the shadow of exogenously specified conflicts, the rejected offer

determines how conflict is played if negotiations fail. In turn, how players are ex-

pected to play during conflict determines their negotiating positions. In equilibrium,

negotiations always fail with positive probability, even if players face a high cost of

conflict. Allowing multiple offers leads to brinkmanship—the only acceptable offer is

the one made when conflict is imminent. If negotiations fail, conflict is prolonged and

non-duration dependent.

Keywords: Intimidation, reputation, terrorism, negotiation, brinkmanship, costly war-
of-attrition. JEL Classification Numbers: D74, D82.

∗Ghosh: School of Economics, Shanghai University of Finance and Economics, 777 Guoding Road, Shanghai, China 200433,
sghosh@mail.shufe.edu.cn. Gratton: School of Economics, UNSW Business School, UNSW Sydney, NSW 2052, Australia,
g.gratton@unsw.edu.au. Shen: School of International Business Administration, Shanghai University of Finance and Economics,
777 Guoding Road, Shanghai, China 200433, shencaixia@gmail.com. We are grateful to three anonymous referees, Masaki Aoyagi,
Gaurav Aryal, Laurent Bouton, Alessandra Casella, Micael Castanheira, Costas Cavounidis, Jimmy Chan, Pauline Grosjean, Anton
Kolotilin, Hongyi Li, Qingmin Liu, Youming Liu, Massimo Morelli, Santiago Oliveros, Juan Ortner, Carlos Pimienta, Ronny Razin,
Santiago Sanchez-Pages, Balázs Szentes, John Tang, and Adam Wong. We thank seminar participants at the Australian National Uni-
versity, Boston University, Columbia University, European University Institute, Georgetown University, University of Montreal, the
2014 ASSA Meetings, the 2014 Econometric Society Australasian Meetings, the 2013 Australasian Economic Theory Workshop, and
the 2014 SAET Conference. Barton Lee provided excellent research assistance.



1 Introduction

Interstate conflicts begin when negotiations end. But why do negotiations fail to prevent
conflict even when compromise solutions are available, commitment is possible, and con-
flict is likely to be long and painful?1 In the crisis bargaining literature, two parties nego-
tiate in the shadow of an exogenously given conflict (Esteban and Sàkovics, 2008; Fearon
1992; 1994; Özyurt, 2014; Powell, 2004; Sechser, 2010). If the parties’ costs of fighting the
conflict are private information, then each party has an incentive to misrepresent its real
cost so to build a “reputation.” This process leads to prolonged crises and, possibly, to
war. What drives the choices made during negotiations is the type of conflict the parties
expect, its expected length, and the probability of ultimate victory of each party.

However, how conflict unfolds (its length and the probability of ultimate victory of
each party) is also determined by past negotiations. In fact, by rejecting a generous ulti-
matum offer, one party may signal that its cost of fighting is low, which in turn makes its
opponent more cautious once the conflict begins. Therefore, generous offers may back-
fire. In this paper we show that this damning effect of generous offers weakens the ef-
fectiveness of negotiations: parties may deliberately make offers which are rejected by
their opponent with positive probability. For example, the Rambouillet Agreement of-
fered by NATO to Yugoslavia before the onset of the Kosovo War were described as “a
provocation, an excuse to start bombing”2 that “deliberately set the bar higher than the
Serbs could accept.”3

To understand this two-way feedback relation between negotiation and conflict, we
develop a model where negotiation and conflict are interlinked. In our model, Challenger
(she) and Defender (he) want a resource that yields flow utility. Defender, who initially
holds the resource, can try to negotiate peace by offering a share to Challenger. If all offers
are rejected, conflict begins and Challenger has the option to repeatedly attack Defender
to convince him to concede the resource. Our model of conflict draws from the litera-
ture on reputation building in bargaining (and war of attrition) (Abreu and Gul, 2000;
Chatterjee and Samuelson, 1988; Ponsatì and Sàkovics, 1995). It is built on the concept
of intimidation: repeatedly inflicting losses on one’s opponent to scare him that further
losses will be incurred unless a concession is made. But attacking could be costly too.
What allows room for intimidation to function is that, in our model, conflict is a game of

1In a seminal paper, Fearon (1995) poses this as a “central puzzle” that rationalist explanations fail to
solve (see also Reiter, 2003). The key word ‘rationalist’ rules out explanations where the parties to the
conflict are entirely or largely irrational.

2Henry Kissinger, Daily Telegraph, 28 June 1999.
3George Kenney, "Rolling Thunder: the Rerun," The Nation, 27 May 1999.
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two-sided incomplete information—with an arbitrarily small probability either party to
the dispute is tough—does not experience the disutility of conflict. This small uncertainty
is magnified by equilibrium play into a significant force that protracts conflict.

The same idea of intimidation also explains why negotiations may not succeed with
certainty: even if Defender can make offers to Challenger before conflict begins, equi-
librium offers are rejected with strictly positive probability by normal (i.e., not tough)
Challenger. One might imagine that negotiations fail because Defender is afraid to reveal
whether he is tough or normal. We show that this intuition is incomplete by focusing on
the case of Defender being uninformed, in the sense of not knowing his cost of pursuing
conflict when he makes an offer. Even in this case where offers do not reveal whether
Defender is tough or normal, the opportunity to make an offer is a double-edged sword
for Defender. On the one hand, higher offers are better for Defender because they have
a higher probability of being accepted. Indeed, if beliefs were held fixed both before and
after the negotiations, Defender could completely avoid conflict with normal Challenger
by offering slightly more than her expected value of entering conflict. On the other hand,
a generous offer that has a high probability of being accepted increases Challenger’s ex-
pected payoff from conflict. Therefore, instead of deterring conflict, more generous offers
encourage Challenger to seek conflict. We show that in equilibrium Defender always
makes an offer that is both accepted and rejected with strictly positive probability by nor-
mal Challenger. Therefore, conflict begins with positive probability even if Challenger
is normal. The key intuition can be best seen when considering an offer that Challenger
should accept with certainty. Challenger knows that, if she rejects this offer, Defender
would conclude that Challenger is tough for sure. Therefore, if conflict begins, Defender
would concede at the first opportunity.

This detrimental effect of generous offers is particularly evident when Defender has
multiple chances to make offers. In equilibrium, all offers, except the one made in the last
round, must be unacceptable (no Challenger would ever accept them). Indeed, suppose
that before the last round Defender makes an offer that normal Challenger accepts with
positive probability. Then Challenger strictly prefers to reject it, as this signals she is
tough, thus intimidating Defender into making an even more generous offer in the last
round. In other words, offers that could be successful (but weren’t) make subsequent
offers more costly. Therefore, long negotiations resolve in brinkmanship: the parties make
no progress towards a peaceful solution up until the last opportunity to negotiate.

This brinkmanship result provides an explanation for negotiation in the shadow of
conflict not making any progress until the very last chance. A possible example are the ne-
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gotiations leading up to the Treaty of Porthsmouth in the Russo-Japanese War (1904–1905)
(which subsequently gained President Theodore Roosevelt the Nobel Peace Prize). Ne-
gotiations for the treaty were held while Russia brought further troops to Manchuria, a
move that would have given Russia an advantage in case of conflict. Fredrik (2010) notes
how the Japanese delegation demanded the southern part of the island of Sakhalin and
war reparations throughout the negotiations. Only upon the arrival of further four Rus-
sian divisions, at what was conceivably their last chance to do so, did the Japanese drop
their claim for reparations and avert conflict.

While in our benchmark model negotiations can only happen before conflict begins,
in reality the parties to a conflict may wish to negotiate also once conflict has begun.
In Section 7 we allow Defender to make offers in any period (and therefore after being
informed about whether he is tough). We show that our main result holds even in this
variation of the model: negotiations fail to avoid conflict with certainty.

Our framework also allows us to explicitly derive the probability that conflict extends
to the next chance of attacking. Crucially, the probability that conflict extends to the next
period does not depend either on the probabilities that the players are tough or for how
long the conflict has already been fought. Thus, our model predicts that conflict is non-
duration dependent: the past duration of conflict does not predict its probability of end-
ing. From a theoretical perspective, our result that conflict is non-duration dependent is
equivalent to the constant concession rate in reputational models of bargaining (Abreu
and Gul, 2000) and international crises in the shadow of conflict (Özyurt, 2014). In our
model, armed conflict is itself a reputational game and therefore the parties capitulate
at a constant rate.4 Empirically, non-duration dependence characterizes both interstate
(Bennet and Stam, 1996) and civil (Collier, Hoeffler, and Soderbom, 2004) conflicts.

Our main contribution is to provide an integrated model of negotiation and conflict.
Without such a model it would be impossible to study the two-way feedback relation by
which negotiations affect conflict and conflict affects negotiations. Essentially, we connect
two literatures: the crisis bargaining literature and the bargaining and reputation litera-
ture. In the crisis bargaining literature, conflict is an exogenously given outside option for
the negotiating parties. Once conflict begins, the parties’ relative military strengths de-
termine the final outcome. This literature focuses on explaining why parties would delay
reaching a settlement and ultimately reach conflict with positive probability. Since Gul,
Sonnenschein, and Wilson (1986) clarified that private information alone cannot lead to

4In contrast, Reiter (2003) notes that most existing models of conflict based on informational asymme-
tries fail to capture that conflict is in reality non-duration dependent, as these asymmetries should fade in
time.
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delays in bargaining, a large literature has arisen. Fearon (1994) and Özyurt (2014) model
“audience costs”: further delays increase the cost of conceding to one’s opponent. There-
fore, delaying helps one commit to fighting. In our model, delay happens in spite of this
motive being absent. Furthermore, in contrast with our result, flexible or strategic types
in Özyurt (2014) always concede before war begins.

A different source of delay in bargaining is the one driven by reputation à la Kreps
and Wilson (1982) and Milgrom and Roberts (1982).5 Acharya and Grillo (2015) explicitly
model this reputational motive in a model of crisis bargaining with irrational types. The
option to engage in total war is never exercised in equilibrium, unlike in our model. Nev-
ertheless, the same reputational motives drive the conflict part of our model. An approach
similar to ours is the one by Lapan and Sandler (1988), who model terrorism as a repeated
game between players who are tough with some probability. In their model, absent a con-
cession, the public belief that a player is tough jumps up to an arbitrary and exogenously
given quantity. Hodler and Rohner (2012) make this endogenous, but they have only two
periods, which in turn means that they predict attacks only when the probability of the
terrorist being tough is very large. Our model endogenously determines both the termi-
nation of the war and the evolution of beliefs about the degree of irrationality of one’s
opponent, and shows that prolonged conflict is compatible with very small degrees of
irrationality.

Closer to us, Heifetz and Sagev (2005) study a model of negotiation during war. In
their model, conflict is already happening, but one of the players, the aggressor, can
choose to escalate—essentially increasing the flow cost of conflict. They show that there
exist conditions such that, restricting attention to separating equilibria, the aggressor
chooses to escalate. This is because, if escalation is more costly to the defender than
to the aggressor, escalation both shortens conflict and induces further negotiations more
in the aggressor’s favor. The choice to escalate is similar to our choice to go to conflict,
but in our model there is a unique equilibrium and the parties go to conflict with strictly
positive probability even if this decision limits their ability to negotiate further (and for
any relative cost of conflict for Challenger and Defender).

Our logic of brinkmanship shares a common feature with Sechser (2010) who shows
that if conflict is potentially repeated, a player may incur the cost of rejecting an offer to
avoid revealing its weakness in view of future negotiations. In Brito and Intriligator (1985)
time is needed to screen among various types of opponents; in Sánchez-Páges (2009) time
is needed to convey credible information to an uninformed party about the eventual out-

5Delay also arises in models with a non-common prior so that each player could be overly optimistic
about her chances of being selected as the proposer (Yildiz 2004; Bénabou and Tirole, 2009).
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come of rejecting agreements and triggering conflict. In contrast to these three papers,
in our model brinkmanship arises because the uninformed party chooses to avoid giving
the informed party a chance to signal she is tough.

Schelling (1956, 1960, 1966)6 first developed the idea that bargaining parties can ben-
efit if they convince their opponent that they are committed to their threat—hence the
argument that governments should appear committed to hawkish positions when fac-
ing a terrorist threat. But in our model, as well as in Abreu and Gul (2000) and Özyurt
(2014), once conflict begins, the expected payoff for (normal) Defender is independent of
his probability of being tough. In fact, the entire advantage of being perceived as tough
comes from the ability to induce a normal Challenger to attack with very low probability.
But if the Challenger attacks nonetheless, then Defender must update his beliefs to assign
a very high probability to Challenger being tough.

Our idea of intimidation is also related to Silverman (2004), a random-matching model
where violence is instrumental in deterring future violence against oneself. If the fraction
of agents who directly gain from violence is sufficiently large, then other agents can also
engage in it to acquire a reputation for toughness. Yared (2009) considers a defender
with private knowledge of his cost of conceding the flow resource in each period; in
equilibrium the challenger attacks with positive probability when no concession is made,
so that the defender has an incentive to concede often enough. Since costs are drawn
independently across periods, there is no reputation at play, unlike in our model.

2 Benchmark model

In our benchmark model, the parties have a single chance to reach an agreement before
conflict begins. In Section 5 we discuss how our results generalize to multiple rounds of
negotiation.

Time is continuous and indexed by τ ≥ 0. There are two players: Challenger and
Defender. Both players discount future payoffs with rate r > 0. They contest a resource,
which is initially held by Defender. Holding the resource gives a flow rent normalized to
1.

The game played by Challenger and Defender is best described by dividing it into two
phases: negotiation and conflict.

6See Crawford (1982) for a formal treatment of this idea.
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Negotiation. At time τ = 0, Defender can offer a fraction x of the resource to Challenger.
Upon observing the offer, Challenger decides to accept or reject the offer. If Challenger
accepts the offer, then the game ends and Challenger and Defender enjoy flow rents x
and (1− x), respectively, thereafter. Otherwise, the game immediately enters the conflict
phase.

Conflict. In the conflict phase, the following two-stage game is played out at each time
τt = (t− 1) ∆, t ∈ {1, 2, . . . }.

Stage 1: Challenger chooses whether to attack or concede;

Stage 2: Defender chooses whether to resist or concede.

We refer as the interval of time from τt to τt+1 as period t. Notice that there is no time
interval between the two stages.

As soon as one party concedes, the other party gets to enjoy the entire resource in that
period and forever afterwards; thus conflict is less flexible than negotiation.

Types and payoffs. Each player can be of two types: tough or normal. Challenger (De-
fender) is tough with non-zero probability πC (πD). Normal types dislike conflict in the
sense that in each period in which Challenger attacks, normal Challenger and Defender
suffer losses

LC ≡
(
1− e−r∆

)
`C , with `C > 0

LD ≡
(
1− e−r∆

)
`D, with `D > 0

respectively. Therefore, in any period in which neither Challenger nor Defender concede,
normal Challenger’s payoff is given by −LC , while normal Defender’s payoff is given by
V − LD, where

V ≡ 1− e−r∆

is the value of holding the resource for one period. As soon as Defender (Challenger)
concedes, Challenger (Defender) enjoys a payoff equal to V from that period onward.
Notice that the cost of the attack is suffered by both players whenever Challenger attacks:
if Challenger attacks and Defender concedes, normal Challenger’s payoff is V − LC and
normal Defender’s payoff is −LD.
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Instead, both tough Challenger and tough Defender suffer no loss from conflict. Tough
Challenger does not accept any offer short of x = 1 and attacks until Defender concedes.
Tough Defender never makes an offer greater than x = 0 and never concedes.

Challenger privately observes her type at the beginning of the game. Our aim is to
show that negotiation fail even if Defender has no incentive to conceal his type. There-
fore, in our benchmark model we assume that Defender privately observes his type only
if and when conflict begins. While we do this because it better illustrates the logic be-
hind our main results, we also note that this may be a realistic assumption in many con-
flicts. For example, when Challenger attacks using new technologies that have yet to be
proven, both players may be uncertain about Challenger’s ability to overcome Defender’s
defenses and cause him harm. In a different example, Defender may be a democratic
government who does not know a priori whether the electorate will be able to withstand
Challenger’s attacks. In both cases, Defender will be able to evaluate the losses caused by
Challenger’s first attack and therefore discover his type at the beginning of period 1. The
timing at which players privately observe their types is common knowledge.

Obviously, if LC is too large, then normal Challenger would never carry out an attack,
even if Defender concedes for sure in period 1. Also, if LD is too small, then normal
Defender would never concede, even if Challenger attacks for sure at every period t =
1, 2, . . . . We are interested in those cases in which it is at least conceivable for normal
Challenger to attack or normal Defender to concede. Therefore, we restrict our attention
to those conflicts in which LC is sufficiently small and LD is sufficiently large.

Assumption 1. Let δ ≡ e−r∆ be the discount factor between periods. We assume δLD > V ;
LC < V (1− δ)−1.

Our solution concept is perfect Bayesian equilibrium (henceforth equilibrium). In what
follows we derive the entire equilibrium of the game when attacks are frequent, i.e., when
∆ is sufficiently small. Nonetheless, we show the complete solution of the conflict phase
for any ∆ > 0, as this allows us to derive precise comparative statics on the probability
that conflict ends in any period t.

2.1 Strategies and public beliefs

At each period t of conflict, the complete history is summarized by the vector of pub-
lic beliefs. In stage 1, the state of the game is the vector

(
πCt−1, π

D
t−1

)
, where πCt−1 is De-

fender’s belief that Challenger is tough, and πDt−1 is Challenger’s beliefs that Defender
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is tough. In stage 2, the state vector is
(
πCt , π

D
t−1

)
, where Defender’s belief about Chal-

lenger’s type has been updated from πCt−1 to πCt in light of Challenger’s action at stage
1. Notice that

(
πC0 , π

D
0

)
, the public beliefs with which conflict begins, is not necessar-

ily equal to
(
πC , πD

)
. In fact, actions during negotiation may affect the post-negotiation

public belief πC0 that Challenger is tough.

Negotiation. In the negotiation phase, Defender’s strategy is an offer in [0, 1]. Normal
Challenger’s strategy maps from the current beliefs and the offer to a probability of ac-
cepting the offer in [0, 1].

Conflict. In the conflict phase, a (behavior) strategy for normal Challenger is a sequence
of mappings σCt : [0, 1]2 → [0, 1], t ∈ N, where σCt

(
πCt−1, π

D
t−1

)
is the probability that normal

Challenger concedes in period t as a function of the public beliefs. A strategy for normal
Defender is a sequence of mappings σDt : [0, 1]2 → [0, 1], one for each t ∈ N, where
σDt

(
πCt , π

D
t−1

)
is the probability that normal Defender concedes in period t as a function of

the public beliefs.7,8 Notice that σCt and σDt are conditional probabilities of concession. I.e.,
they are probabilities with which players concede in period t, conditional on no previous
concession.

Since tough players never concede, the average probabilities of concession by Chal-
lenger and Defender respectively are obtained by multiplying the probability of the nor-
mal type by the probability that the (respective) normal type concedes:

σ̄Ct
(
πCt−1, π

D
t−1

)
=

(
1− πCt−1

)
σCt

(
πCt−1, π

D
t−1

)
; (1)

σ̄Dt
(
πCt , π

D
t−1

)
=

(
1− πDt−1

)
σDt

(
πCt , π

D
t−1

)
.

Obviously, πCt = 0 at any history where Challenger has conceded. If Challenger does not
concede before or at period t, the updated belief πCt that Challenger is tough is recursively

7Note that Challenger’s action in period t depends on the beliefs at the end of period t−1, as is standard.
In contrast, Defender observes Challenger’s move at t, updates her belief about Challenger’s type to πCt ,
and only then chooses an action.

8We define the players’ strategies as functions of the current public beliefs instead of the entire history
of play. This is without loss of strategic flexibility. In particular, at any period t in which the players can
move, the history of play is (i) Defender made an offer x, (ii) Challenger rejected the offer, (iii) no player has
conceded in any period t′ < t. Thus, the only loss of information is given by the entity of the offer x. As we
shall show, at any period t, the optimal strategy for each player is uniquely pinned down by the expected
payoff of continuing the conflict, which in turn is uniquely determined by the current public beliefs. That
is, offers that were made during negotiations affect the players’ expected payoffs only because they change
the public belief that Challenger is tough if rejected.
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derived by Bayes’ rule from πCt−1 and σCt :

πCt = πCt−1
1− σ̄Ct (πCt−1, π

D
t−1) . (2)

Similarly, πDt = 0 at any history where Defender has conceded. If Defender does not
concede before or at period t, the updated belief πDt that Defender is tough is recursively
derived by Bayes’ rule from πDt−1 and σDt :

πDt = πDt−1
1− σ̄Dt (πCt , πDt−1) . (3)

3 Negotiation failure and conflict

In this section, we preview our main results. Before doing so, it is convenient to define
two threshold values. In our model, each normal player concedes if he or she believes the
enemy to be tough with probability 1. Since payoffs are continuous in beliefs, so are the
optimal strategies. Therefore, in any period t, if Defender believes Challenger to be tough
with sufficiently high probability, then he will concede immediately, even if he knows that
normal Challenger will concede in stage 1 of period t+ 1 (at her next chance to concede).
Similarly, if Challenger believes Defender to be tough with sufficiently high probability,
then she will prefer to concede immediately, even if she knows that normal Defender will
concede with certainty in stage 2 of period t itself (at his next chance to concede). The
following lemma finds these thresholds exactly.

Lemma 1 (Threshold beliefs). Let π̄C and π̄D be given by

π̄C := 1
δ

[
1 + LD

]−1
, and (4)

π̄D := 1− LC . (5)

In any equilibrium,

(i) Assume that normal Defender concedes immediately after Challenger attacks in period t +
1. Then normal Challenger strictly prefers to attack in period t + 1 if πDt < π̄D, is just
indifferent at π̄D, and strictly prefers to concede otherwise;

(ii) Assume that normal Challenger concedes in period t + 1. Then normal Defender strictly
prefers to resist in period t if πCt < π̄C , is just indifferent at π̄C , and strictly prefers to
concede otherwise.
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Proof. All proofs are in Appendix.

It is useful to notice that π̄C and π̄D do not depend on either the players’ beliefs or the
period t.

We can now describe our main results.

Negotiations fail. In the equilibrium, Defender makes an offer that is both accepted and
rejected by normal Challenger with strictly positive probability. Therefore, conflict begins
with probability strictly greater than πC , but strictly smaller than 1.

Even when negotiations fail, they are not without consequences. In fact, the strategies
played during negotiation affect the beliefs

(
πC0 , π

D
)

with which conflict begins, in turn
affecting how conflict is played. In particular, let β be the equilibrium probability that
negotiations succeed (i.e., the total probability that Challenger accepts the equilibrium
offer), then

πC0 = πC

1− β .

Therefore, a higher probability of success leads, in case of failure, to a higher belief that
Challenger is tough.

Conflict. After negotiations fail, conflict begins with post-negotiation beliefs
(
πC0 , π

D
)
.

In equilibrium, these beliefs are such that there exists n ∈ N with
(
π̄C
)n+1

≤ πC0 <
(
π̄C
)n

and πD <
(
π̄D
)n+1

. We call n the conflict horizon.

Definition 1. A conflict has horizon n if n is the largest non-negative integer such that
πC0 <

(
π̄C
)n

and πD <
(
π̄D
)n

.

Along the equilibrium path, in period 1 Challenger attacks with probability 1 and De-
fender resists this first attack with total (i.e., averaged over normal and tough Defender)
probability

πD

(π̄D)n .

From period 2 onward, Challenger attacks with probability π̄C and Defender resists with
probability π̄D, as long either πCt ≤ π̄C or πDt ≤ π̄D. Therefore, from period 2 and until
period n, public beliefs evolve in time according to

π
D
t = πD

t−1
π̄D ;

πCt = πC
t−1
π̄C .

(6)
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That is, after each attack, Defender updates his belief that Challenger is tough upwards.
Similarly, after each time Defender resists, Challenger updates her belief that Defender is
tough upwards. This process of intimidation terminates after n periods. Indeed, follow-
ing the law of motion in (6), after Challenger attacks in period n+1, πCn+1 > π̄C . Therefore,
in period n + 1, if Challanger attacks, Defender concedes with probability 1. Thereafter,
both normal types concede with probability 1. Thus conflict goes beyond n + 1 periods
(indeed, forever) if and only if both players are tough.

The horizon n naturally relates to the post-negotiation beliefs that the players are
tough (Abreu and Gul, 2000). When both players are believed to be normal with very high
probability, then conflict has a longer horizon, as it takes a long time to intimidate one’s
opponent. Conversely, if at least one player is believed to be tough with high probability,
then conflict has a shorter horizon, as few periods of conflict are sufficient to intimidate
one’s opponent.

We further note that the hazard rate of conflict—that is, the probability that conflict
ends in period t > 1, conditional on not having ended before—equals π̄C π̄D from period
2 to n. Since neither threshold depends on the public beliefs or on the period t, this implies
that conflict in our model is non-duration dependent.

In the following sections, we develop a more precise analysis of the equilibrium play
and offer some useful comparative statics. For ease of exposition, we proceed backwards,
beginning with a discussion of how conflict is played.

4 Equilibrium in conflict

Propositions 1 and 2 below characterize the unique equilibrium of the conflict phase, con-
ditional on the post-negotiation public beliefs

(
πC0 , π

D
0

)
=
(
πC0 , π

D
)
.9 We give a complete

characterization of the equilibrium for any ∆ > 0, but under an additional assumption.
We show in Appendix A.5 that when this assumption fails the set of equilibria can be iden-
tified using Propositions 1 and 2. As ∆ becomes small, the expected payoff of all these
equilibria converge to the expected payoff of the equilibrium in Proposition 1. Therefore,
as ∆ becomes small, this assumption plays no role in the determination of the expected
payoffs in the conflict game and the unique equilibrium of the whole model.

Assumption 2. The quantities ln πD/ ln π̄D and ln πC0 / ln π̄C are not integers.
9In a model where negotiations are not possible, conflict begins with public beliefs equal to the prior

beliefs
(
πC , πD

)
. Since in our model negotiations only affect the public belief that Challenger is tough, then

the post-negotiation belief πD0 equals πD.
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The continuation equilibrium once negotiations have failed is unique, but it can be
of one of two types, depending on the post-negotiation public beliefs πC0 and πD. More
precisely, what matters is how these beliefs compare to their respective thresholds π̄C and
π̄D. That is, what matters is whether Challenger or Defender are perceived to be more
or less tough, compared to what would be needed to induce the other player to concede
immediately. If πC0 is sufficiently closer to π̄C then πD is to π̄D (Proposition 1), then we say
that Challenger is more intimidating. Otherwise (Proposition 2), we say that Defender is
more intimidating. As we shall see, when negotiations fail, then conflict always begins
with Challenger being more intimidating. (Notice that Points 2 and 3 in Propositions 1
and 2 are identical.)

Proposition 1 (When Challenger is more intimidating than Defender.). Let
(
π̄C
)n+1

<

πC0 <
(
π̄C
)n

and πD <
(
π̄D
)n+1

for some n ∈ N. In the unique equilibrium

1. in period 1, Challenger attacks with probability 1 and Defender concedes with total proba-
bility

1− πD

(π̄D)n ; (7)

2. subsequently, as long as both πCt ≤ π̄C and πDt ≤ π̄D, Challenger and Defender concede
with total probabilities 1−π̄C and 1−π̄D respectively, and the public beliefs

(
πCt , π

D
t

)
evolve

according to (6);

3. once πDt > π̄D (πCt > π̄C), normal Challenger (Defender) concedes with probability 1.

Proposition 2 (When Defender is more intimidating than Challenger.). Let
(
π̄D
)n+1

<

πD <
(
π̄D
)n

and πC0 <
(
π̄C
)n

for some n ∈ N. In the unique equilibrium

1. in period 1, Challenger concedes with total probability

1− πC0
(π̄C)n ; (8)

2. subsequently, as long as both πCt ≤ π̄C and πDt ≤ π̄D, Challenger and Defender concede
with total probabilities 1−π̄C and 1−π̄D respectively, and the public beliefs

(
πCt , π

D
t

)
evolve

according to (6);

3. once πDt > π̄D (πCt > π̄C), normal Challenger (Defender) concedes with probability 1.
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We give the full proof of Propositions 1 and 2 and further details about its intuition
in Appendix A.2. Here we offer only the basic thrust behind its logic necessary to under-
stand how negotiation and conflict are linked.

First, from period 1, stage 2 onward, both players concede with strictly positive prob-
ability. Challenger’s (Defender’s) probability of concession is such that Defender (Chal-
lenger) is indifferent between conceding and resisting (attacking). The fact that nor-
mal players are expected to concede with positive probability is what fuels intimidation.
Upon observing an attack, Defender must conclude that Challenger is more likely to be
tough than he previously believed. Similarly, when Defender does not concede, Chal-
lenger must conclude that Defender is more tough than she previously believed. In par-
ticular, since the conditional probabilities of concession are constant from period 1, stage
2 onward, public beliefs move according to (6). As conflict continues, these beliefs get
closer and closer to the threshold beliefs π̄C and π̄D, eventually passing them after a finite
number of periods.

Second, once one of the public beliefs passes its threshold, conflict must end if at least
one of the players is normal. Lemma 4 in Appendix A.2 says that if both beliefs are strictly
below their threshold, no belief leaps over the corresponding threshold at the next step
without touching the corresponding threshold exactly. Intuitively, suppose that πCt−1 < π̄C

and that Challenger knows that attacking in period t will induce a public belief πCt above
the threshold π̄C . Then, by Lemma ,1, she will strictly prefer to attack unless πDt−1 = π̄D.
But if he attacks with probability 1, then πCt = πCt−1 < π̄C . The implication is that when
a normal player concedes with probability 1 for the first time, the public belief that he
or she is tough is exactly equal to its threshold value. In particular, when Challenger
is more intimidating, we have πDn = π̄D; when Defender is more intimidating, we have
πCn = π̄C . Thereafter, both normal players concede with probability 1. Therefore, the
horizon of conflict n is naturally linked to the maximum number of periods for which
conflict protracts between normal players.

Third, one key difference between the two cases in Propositions 1 and 2 is that when
Challenger is more intimidating, she attacks with probability 1 at the start, whereas she
mixes when Defender is more intimidating. That is, when Challenger is perceived to
be more likely to be tough, her expected equilibrium payoff from conflict is greater (see
Abreu and Gul, 2000; and Özyurt, 2014 for a continuous time version of this result).

Remark 1. If at the beginning of conflict Challenger is more intimidating than Defender,
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then normal Challenger’s expected payoff uC
(
πC0 , π

D
)

is given by

uC
(
πC0 , π

D
)

=
(

1− πD

(π̄D)n
)
− LC (9)

and normal Defender’s expected payoff is −LD. The unconditional probability of an at-
tack in period t ∈ {2, . . . , n} is given by

Pr (attack at t) = πD

(π̄D)n
(
π̄C
)t−1 (

π̄D
)t−2

.

Remark 2. If at the beginning of conflict Defender is more intimidating than Challenger,
then normal Challenger’s expected payoff is 0 and normal Defender’s expected payoff
uD

(
πC0 , π

D
)

is given by

uD
(
πC0 , π

D
)

=
(

1− πC0
(π̄C)n

)
− πC0

(π̄C)nL
D. (10)

The unconditional probability of an attack in period t ∈ {1, . . . , n+ 1} is given by

Pr (attack at t) = πC0
(π̄C)n

(
π̄C π̄D

)t−1
.

We now provide some comparative statics regarding the length of conflict and link
them to some empirical regularities.

As in Abreu and Gul (2000), the conflict horizon is finite and it is shorter when players
are believed to be tough with greater probability.

Corollary 1. Unless both players are tough, the maximum length of a conflict is determined by
the conflict horizon n. If Challenger is more intimidating, normal Challenger does not attack after
period n+ 1. If Defender is more intimidating, normal Challenger does not attack after period n.

The next result determines the probability that a conflict that has lasted until period t,
1 < t < n− 1 survives to period t + 1. This probability is independent of which player is
more intimidating, how much the players are likely to be tough, or the period t. That is,
the hazard rate of the conflict depends only on the threshold values π̄C and π̄D, which do
not depend on the priors πC0 and πD0 or on t. Thus, until period t = n is reached, conflict
is non-duration dependent.

Corollary 2. In each period t : 1 < t < n, if conflict has not yet ended, Challenger attacks with
constant probability π̄C and Defender resists with constant probability π̄D. Therefore, if conflict
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has not yet ended by the end of period t− 1, the probability that conflict will not end by the end of
period t equals π̄C π̄D.

The non-duration dependence of conflict is driven by the reputational nature of our
model of conflict. In fact, as we noted in the introduction, in models of bargaining with
reputation (e.g., Abreu and Gul, 2000; Özyurt, 2014), the conditional probability that bar-
gaining continues is constant in time. Notice that as πC0 and πD become small, n grows
and the length of conflict (conditional on there being a conflict at the end of period 1) is
therefore approximated by a geometric distribution with hazard rate π̄C π̄D.

Although the probability that conflict extends to the next period does not depend
on time, it nonetheless depend in intuitive ways on other primitives of the model, in
particular on the players’ cost of fighting. Thus conflict duration is determined by the
opponents’ military capabilities, rather than on their intimidation abilities.

Corollary 3. Conditional on there being a conflict at time t > 1, the probability of an attack in
period t′ > t is decreasing in the cost of fighting (LC and LD).

For πC0 and πD sufficiently small, such that conflict length is approximated by a geo-
metric distribution, the same comparative statics apply to the expected length of conflict.
Furthermore, our normalization of the value of the resource to 1 does not allow us to de-
rive explicit comparative statics with respect to it. Nonetheless, it is easy to show that if
the value of the resource is given by V ′, then the probability of an attack in period t′ is
increasing in V ′.

The evidence concerning the effect of institutional characteristics on the duration of
conflict is ambiguous. Bennet and Stam (2009), Langlois and Langlois (2009), and Hen-
derson and Bayer (2013) find that the relation between democracy and conflict duration is
not significant once the military capabilities of the parties and the physical characteristics
of conflict (common boundaries, terrain, etc.) are taken into account. Our results suggest
that that the probability of continuation of conflict depends indeed only on the costs and
benefits of war, and only to a lesser extent on the probability of being tough. Thus, in our
model as in the real world, physical and technological characteristics matter more than
political ones.

We now turn to the question of when an armed conflict is more likely to begin, i.e. there
is a first attack. The following corollary describes how this probability depends to the
public beliefs that the players are tough.

Corollary 4. Fix the likelihood πD that Defender is tough. The probability that Challenger begins
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to attack is increasing in the post-negotiation belief that Challenger is tough πC0 . It is strictly
increasing if and only if Defender is more intimidating than Challenger.

For Defender, an image of toughness can pay: if Defender is more intimidating than
Challenger, then the probability of a first attack is strictly less than 1. In this case, the
probability of a conflict is πC0 /

(
π̄C
)n

, where n is the largest natural number such that

πD ≤
(
π̄D
)n

. Thus, if πD increases, the probability of a first attack decreases.

Corollary 5. Let Defender be more intimidating than Challenger. Then, the probability that
Challenger begins to attack is decreasing in πD.

Nonetheless, the advantage of being perceived as tough should not be overstated.
After the first attack is carried out, Challenger levels the playing field with Defender and
the expected payoff for Defender is −LC , independently of πD. Indeed, in equilibrium,
Defender is indifferent between conceding and resisting whenever he plays.

One of the few empirical regularities about conflict is that pairs of democracies are less
likely to fight each other.10 Our results suggest that conflict begins when there is greater
imbalance between the parties’ probability of being tough. We argue that democratic
leaders are kept in check by their citizens and that therefore democracies tend to have
similar probabilities of being tough or irrational. On the contrary, autocrats of the like
of Kim Jung-un are known for their unpredictable behavior. Thus, a pair of autocracies
or one democracy and one autocracy are more likely to have unbalanced probabilities of
being tough and are therefore more likely to engage in conflict.

5 Why negotiations fail to eliminate conflict

We now turn to negotiations and show why in our model conflict may not be avoided
even if Defender and Challenger can commit to a peaceful division of the resource. An
important feature of our model is that conflict and negotiation are linked: when choosing
an action during negotiations, each player knows that her action will affect public beliefs
at the onset of conflict. In turn, these beliefs determine the expected payoff from conflict,
affecting the relative appeal of negotiating peace. In particular, it is useful to remember
that our analysis of the equilibrium of the conflict phase shows that conflict can be of two
types. First, by Remark 1, when at the beginning of conflict (and therefore after negotia-
tions have failed) public beliefs are such that

(
π̄C
)n+1

≤ πC0 <
(
π̄C
)n

and πD <
(
π̄D
)n+1

10See Bueno de Mesquita and Smith (2012) for a survey.
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for some n ∈ N, then Challenger’s expected payoff from conflict is strictly positive. We
labeled this situation as Challenger being more intimidating than Defender. Otherwise,
by Remark 2, Challenger’s expected payoff from conflict is 0.

We now show that in equilibrium Defender makes a strictly positive offer that normal
Challenger then rejects with strictly positive probability. Obviously, normal Challenger
would not reject a strictly positive offer unless her expected payoff from conflict is also
strictly positive. Therefore, in equilibrium rejecting an offer must induce a belief πC0 such
that Challenger is more intimidating than Defender.

Proposition 3. For ∆ sufficiently small, in equilibrium Defender makes an offer that is accepted
with strictly positive probability, but that normal Challenger rejects with strictly positive probabil-
ity. Therefore, the probability that negotiations fail to avoid conflict is strictly greater than 1−πC .
Furthermore, conflict always begins with Challenger being more intimidating than Defender, i.e.,
along the equilibrium path, there exists n such that

(
π̄C
)n+1

≤ πC0 <
(
π̄C
)n

and πD <
(
π̄D
)n+1

.

In Appendix A.3 we show that a continuity argument guarantees that this result holds
for any ∆ sufficiently small. We now give all the elements to prove this result in the limit
as ∆ goes to zero. We begin by highlighting the logic for why more generous offers
increase Challenger’s expected payoff from conflict.

When negotiations begin, Defender knows he has a chance to avoid conflict with nor-
mal Challenger for sure. Indeed, he could make to Challenger an offer so generous that
normal Challenger would not reject. Yet, this offer is very large. In fact, it is not sufficient
to offer Challenger the expected value of conflict given the initial public belief

(
πC , πD

)
.

To see this, suppose that Challenger is expected to accept that offer with probability 1. If
she then rejects, Defender would have to conclude that Challenger is tough for sure. Thus,
normal Defender would concede at the first occasion: stage 2, t = 1. But then Challenger
would strictly prefer to reject the offer unless it is at least equal to the expected payoff of
going to conflict against a Defender who is so intimidated that, if normal, would concede
at the first occasion:

(
1− πD

)
V − LC .

This logic can be easily extended to offers that are accepted with positive probability.
A more generous offer that is accepted with greater probability is a double-edged sword.
On the one hand, it increases the chances that conflict is avoided. On the other hand,
it fosters Challenger’s desire to reject, as a rejection boosts Challanger’s expected payoff
from conflict. To see this, let β (x) be the total probability that Challenger accepts the offer
x. That is, if normal challenger accepts with probability α (x), then β (x) =

(
1− πC

)
α (x).
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Then
πC0 = πC

1− β (x) . (11)

Therefore, an offer x that is accepted with a larger probability β (x) implies that, if it is
rejected, conflict begins with a higher public belief that Challenger is tough. It follows that
Defender is more likely to concede after the first attack. In particular, since the conflict
horizon n is decreasing in πC0 , the probability that Defender concedes in period 1,

1− πD

(π̄D)n

and normal Challenger’s expected payoff from conflict uC
(
πC0 , π

D
)

(see Remark 1) in-
crease with β (x).

As ∆ becomes small, we can make this key intuition more precise. Suppose first that
pre-negotiation beliefs are such that Challenger is more intimidating. Therefore, since
negotiations can only increase Defender’s belief that Challenger is tough, if negotiations
fail then conflict will also begin with Challenger being more intimidating then Defender.
Notice that

n ≈ ln πC0
ln π̄C .

Furthermore,

lim
∆↓0

(
− ln π̄D

ln π̄C

)
= lim

∆↓0

 ln
(
1−

(
1− e−r∆

)
`C
)

ln (e−r∆ [1 + (1− e−r∆) `D])


which, after using de L’Hôpital’s rule and taking the limit as ∆ ↓ 0, yields

lim
∆↓0

(
− ln π̄D

ln π̄C

)
= `C

1− `D < 0

where the last inequality follows from ln (a) < 0 for all a ∈ (0, 1) and π̄D, π̄C ∈ (0, 1).11

Then Defender concedes in period 1 with probability

1− πD

(π̄D)n ≈ 1− πD
(
πC0
) `C

1−`D ≡ PD
(
πC0 , π

D
)
.

Therefore, Challenger accepts offer x only if

x ≥ PD
(
πC0 , π

D
)
. (12)

11Alternatively, from Assumption 1.
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When choosing the offer, Defender maximizes his expected payoff, given by

UD = β (x) (1− x) + (1− β (x))πD.

Since this expression is greater than 0, evidently Defender prefers to make an offer that
tough Challenger would not accept (i.e., an offer less than 1). Yet, he may choose to make
an offer that normal Challenger would accept with positive probability. If so, then (12)
must hold, i.e., Defender maximizes UD subject to (12). Furthermore, there is no point for
Defender to offer more than what normal Challenger would accept anyway. Therefore,
(12) must hold with equality, giving

x = PD
(
πC0 , π

D
)
. (13)

This indifference condition for Challenger highlights one side of the logic behind our
main result: a higher offer corresponds to to a higher probability that Defender will con-
cede after the first attack.

Using (11) and (13), we can therefore write x as a function of β and, after substituting
this expression in Defender’s objective function we have the following first order condi-
tion:

dUD

dβ
= πD

(
πC

1− β

) `C

1−`D

− β dx
dβ
− πD = 0 (14)

where
dx

dβ
= −πD

(
πC

1− β

) `C

1−`D 1
1− β

`C

1− `D .

After substituting for dx/dβ, the first order condition in condition (14) yields

1
πD

dUD

dβ
=
(

πC

1− β

) `C

1−`D
(

1 + β

1− β
`C

1− `D

)
− 1 = 0. (15)

It is easy to show that dUD/dβ is strictly positive at β = 0, strictly negative at β = 1 −
πC , and UD is single-peaked in β ∈ (0, 1). Therefore, when before negotiations begin
Challenger is more intimidating, the equilibrium offer is both accepted and rejected with
strictly positive probability by normal Challenger.

We can now turn to the case when pre-negotiation beliefs are such that Defender is
more intimidating. That is, there exists m ∈ N such that

(
π̄D
)m+1

< πD <
(
π̄D
)m

and

πC0 <
(
π̄C
)m

. In this case Defender has one more possibility: making an offer so small,
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and accepted with such a small probability, that even if Challenger rejects it the resulting
post-negotiation beliefs still induce a conflict in which Defender is more intimidating.
That is, Defender can make an offer x which is accepted with probability β (x) such that

πC

1− β (x) = πC0 <
(
π̄C
)m

. (16)

We now show that this never happens in equilibrium.

To see why Defender does not make such a small offer in equilibrium, notice that
(16) implies β (x) < 1 − πC . Indeed, as we have argued before, if normal Challenger
accepts with certainty (β (x) = 1 − πC) then Defender would have to conclude that if
Challenger rejects she is tough with certainty (πC0 = 1). From the point of view of normal
Challenger, though, accepting such an offer gives a payoff of x > 0. Instead, rejecting it,
induces a conflict with Defender more intimidating than Challenger—an expected payoff
of 0. Therefore, normal Challenger would strictly prefer to accept this offer with certainty,
contradicting the hypothesis that β (x) < 1− πC .

Therefore, even if Defender is more intimidating before negotiations begin, after ne-
gotiations fail Challenger must be more intimidating. The optimal offer must then satisfy
the first order condition in (14).

6 Brinkmanship (multiple offers)

In the previous sections, we established why a single round of negotiations may fail to
avoid conflict. But with multiple rounds, Defender could potentially ‘screen’ Challenger,
i.e., take out a proportion of normal types at each round, lowering the probability of
conflict, which could conceivably go to 0 as the number of rounds increases. We now
show that this is not in fact the case: our results on the failure of negotiation are robust to
an arbitrary number of offers.

Suppose that there are K rounds of negotiations. At each round k = 1, . . . , K, De-
fender can offer any fraction of the resource to Challenger. The conflict phase is triggered
if all K offers are rejected.

Notice that Defender can always afford the same expected payoff he would get if there
was only one round of negotiations. In fact, he can choose to make offers that no Chal-
lenger would accept until the K-th round, and then make the same offer he would make
if there was only one round. Therefore, the question is whether Defender can do better
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than this by making an acceptable offer before the K-th and last round of negotiation.
Proposition 4 says that the answer to this question is negative and that in equilibrium
offers are accepted only on the brink of conflict.

Proposition 4. Let β∗k , k = 1, . . . , K be the equilibrium probability that Challenger accepts the
offer in round k and β∗ be the equilibrium probability that Challenger accepts if there is only one
round of negotiation. For ∆ sufficiently small, all equilibria must satisfy

β∗1 = . . . = β∗K−1 = 0 < β∗K = β∗.

The proof in Appendix A.4 explicitly allows for positive intervals of time between
rounds of negotiation. Therefore the result holds verbatim also when the different rounds
of negotiation are separated by time.

Once again, the intuition behind our brinkmanship result lies in the ability of Chal-
lenger to intimidate Defender—in this case, into making larger offers in the future. To
illustrate this intuition, we focus here on the simple case of K = 2. Let x∗ be the opti-
mal offer in our benchmark model. Notice that if an agreement is not reached in the first
round, then the continuation game is identical to our benchmark model. Yet, Defender’s
belief that Challenger is tough when round 2 comes along, may have been affected by
actions taken in round 1. Suppose that, in the first round, Defender makes an offer that
normal Challenger accepts with probability β′1 > 0. If Challenger rejects, then Defender’s
belief that Challenger is tough rises to

πC′ = πC

1− β′k
> πC .

But then, when round 2 comes along, Defender would make an offer larger than x∗. Since
Challenger must be indifferent between accepting the first and the second offer, then the
earlier offer too must be larger than x∗. Thus, the cost for Defender of buying Challenger’s
agreement is the same in the two rounds and it is greater than x∗, the cost it pays when
there is only one round of negotiation. Since we noted that Defender can always attain the
same expected payoff he would get if there was only one round of negotiations, making
an acceptable offer in round 1 is not optimal for him.
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7 Negotiating during conflict and informed Defender

Our benchmark model makes a stark distinction between before and after conflict begins.
Before conflict begins, the parties can negotiate a peace that involves sharing the resource
between them. After conflict begins, the parties can only concede the whole resource. As
noted by Langlois and Langlois (2009) negotiations during conflict between states are un-
common. For example, Pillar (1983) finds that in only nineteen of one-hundred and forty
two interstate wars parties negotiated during conflict and before an armistice. However,
there are situations in which negotiations may happen after conflict begins. We now dis-
cuss a variant of the model in which Defender can make any offer to share the resource to
Challenger in any period t ∈ {1, 2, . . . }. Since Defender learns his type once conflict be-
gins, this variant of the model also features offers from an informed Defender. The main
message is that neither the possibility of negotiating during conflict nor Defender being
informed at the time he makes an offer change our main result: initial negotiations fail
with strictly positive probability and the ensuing conflict is prolonged.

Consider a variation of our model in which, after the initial negotiation fails, the fol-
lowing three-stage game is played out at each time τt = (t− 1) ∆, t ∈ {1, 2, . . . }.

Stage 1: Challenger attacks with certainty unless she has previously accepted an offer;

Stage 2: Defender makes an offer xt ∈ [0, 1];

Stage 3: Challenger chooses whether to accept the offer.

Notice that we assume that Challenger’s decision to reject an offer and continue the con-
flict is taken at the end of each period, rather then at the beginning of the next.12 We
choose this option because it makes it easier to compare this model to our benchmark
case. There, after Challenger attacks, Defender can choose to concede the whole resource,
in which case the transfer happens immediately. Similarly here, after Challenger attacks,
Defender can choose to concede a fraction of the resource. If Challenger accepts, then the
transfer happens immediately.

Since Defender is informed about her type at the moment she makes an offer in period
t ≥ 1, then making a strictly positive offer reveals that he is normal. Here we focus on an
equilibrium in which, if at the end of period t Defender is publicly known to be normal,
then he concedes the whole resource in period t+ 1.13 In particular:

12The assumption that Challenger attacks with certainty after rejecting an offer is without loss of gener-
ality: accepting an offer strictly dominates rejecting the same offer and then concede in the next period.

13This may not be the unique equilibrium of the model. Nevertheless, in all equilibria (i) initial negotia-
tions fail and (ii) conflict protacts for multiple periods with strictly positive probability.
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(Initial) negotiations fail. In the equilibrium, Defender makes an The choice to escalate
is similar to our choice to go to conflict, but in our model the parties go to conflict with
strictly positive probability in the unique equilibrium, and even if this decision limits
their ability to negotiate further, and for any relative cost of conflict for Challenger and
Defenderoffer that is both accepted and rejected by normal Challenger with strictly pos-
itive probability. Therefore, conflict begins with probability strictly greater than πC , but
strictly smaller than 1.

Conflict. After negotiations fail, conflict begins with post-negotiation beliefs
(
πC0 , π

D
)
.

In equilibrium, these beliefs are such that Challenger strictly prefers to attack. From then
on, Defender mixes between offering nothing and xt = x = 1/π̄C as long as πCt−1 is less
than a threshold level πC∗ < 1 (see below). Normal challenger accepts the offer x is with
certainty and rejects the offer of nothing. If πCt−1 is greater than πC∗ but less than π̄C , then
Defender mixes between offering nothing and xt = 1. Once πCt−1 is greater than π̄C , if
Challanger attacks, Defender concedes with probability 1. Thereafter, both normal types
concede with probability 1.

The logic of the equilibrium play during conflict is akin to the one underlying our
results for our benchmark model. In equilibrium, in any period t ≥ 1 and as long as
πCt ≤ πC∗, normal Defender makes the offer x with a probability that makes normal Chal-
lenger indifferent between accepting and rejecting the offer. Similarly, if Defender offers
nothing, normal Challenger concedes with a probability that makes normal Defender in-
different between offering nothing and x. Along the equilibrium path, in any period in
which Defender does not make a positive offer, his reputation for being tough increases.
Similarly, after any period in which Challenger does not concede, her reputation for being
tough increases. While the whole process is similar to the one in our benchmark model,
the probability with which normal Challenger concedes is greater than in the benchmark
model. In fact, while the cost of attacking is the same in the two models, normal Chal-
lenger’s gains from forcing Defender to concede are now smaller, as in equilibrium De-
fender will only concede a fraction x to normal Challenger. Similarly, normal Defender
makes positive offers with higher probability than he would concede in the benchmark
model. In fact, while the cost of a further attack from Challenger is the same, the loss from
conceding to normal Challenger is smaller as Defender only needs to concede a fraction
x of the resource. Therefore, in this variation of the model, reputation grows faster and
conflict is on average shorter. This reinforces our general message that while negotiations
cannot avoid conflict for sure, they nonetheless make conflict shorter.
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We can determine x as follows. If Challenger rejects xt = x, then she can extract the
whole resource in period t + 1 at the cost of one attack. Therefore, the payoff of rejecting
xt = x equals δ

(
1− LC

)
.14 Therefore, the minimum offer xmin that would be accepted by

Challenger is given

xmin = δ
(
1− LC

)
xmin = δ

[
1− LC

]
= 1
π̄C

.

Obviously, Defender would not offer more than xmin and therefore x = xmin.

Furthermore, we can explicitly calculate πC∗, the minimum probability that Defender
puts on Challenger being tough before he decides that he is going to concede the entire re-
source, rather than get an agreement from the normal type at a slightly lower concession x
and then concede (to the tough type) if x isn’t enough. Let us denote by uD (τ) Defender’s
expected payoff along an equilibrium path where it takes exactly τ periods before normal
Defender concedes with certainty (so that absent a concession after τ periods the proba-
bility of Defender being tough reaches 1). The following two options are always open to
Defender. (i) uD (0) = 0 from conceding immediately; (ii) uD (1) from conceding in the
next period. The second option amounts to making an offer x that is accepted by normal
Challenger in the current period and leave tough Challenger to attack next period and
extract full concession:

uD (1) =
(
1− πCt

)
(1− x) + πCt

(
V − δLD

)
.

Therefore, uD (1) > uD (0) if and only if

πCt <
(1− x)

(1− x) + (δLD − V ) =: πC∗ < 1.

We can now turn to the question of why the original negotiations at time τ = 0 fail with
strictly positive probability. Defender’s expected payoff if negotiations fail is given by
the loss −LD of one period of conflict, exactly as in our benchmark model. Instead, Chal-
lenger’s expected payoff from conflict is now different. Yet, it still depends only on the
probability that Defender concedes (offers x) in period 1 and the value for Challenger of
such a concession (the present discounted value of a 1− x share of the resource).

In the limit as ∆ tends to 0, the offer x approaches 1. That is, as ∆ approaches 0, the

14Recall that V =
(
1− e−r∆

)
= 1− δ. Therefore δ

(
V

1−δ − L
C
)

= δ
(
1− LC

)
.
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equilibrium in this version of the model approaches the the equilibrium in our benchmark
model. Therefore, Challenger’s expected payoff from conflict also approaches its value in
our benchmark model. It follows that, in the limit as ∆ approaches 0, the equilibrium in
pre-conflict negotiations is identical to the one in our benchmark model. As for Propo-
sition 3, a continuity argument guarantees that this result holds for any ∆ sufficiently
small.

8 Discussion

We have seen how negotiations and conflict are linked by a two-way feedback. On the
one hand, when choosing how to negotiate, the parties to a dispute take into account how
they expect an eventual conflict to unfold. On the other hand, the way conflict unfolds is
also determined by how and why negotiations fail. In modeling this two-way feedback
between negotiations and conflict, we uncovered a novel reason for why negotiations
may fail to avoid conflict: offers that have a higher probability of being accepted also
increase the incentive for the aggressor to initiate conflict. Thus, negotiations can miti-
gate but not prevent conflict. This result should not be seen as a claim that negotiations
are useless: a neutral observer who seeks to reduce conflict will gain from bringing the
parties to the negotiation table. If negotiations succeed, then conflict is avoided; if they
fail, conflict will be shorter. In fact, in our model, the result of failed negotiations is to in-
crease the belief πC0 that Challenger is tough, and therefore decrease the conflict horizon
n. Furthermore, the ability to negotiate increases the expected payoff of both players.

One possible caveat of our approach is that we do not give to Defender a chance to
afford peace with a tough Challenger unless he offers the entire resource to Challenger.
In many realistic applications, even a committed Challenger would admit that before
conflict ensues she is willing to accept a smaller offerX < 1. Nevertheless, such a scenario
would not change the main insight from our model unless X is sufficiently small. In fact,
suppose that X >

(
1− πD

)
V . As we discussed in Section 5, an offer equal or greater

to
(
1− πD

)
V would convince normal Challenger to accept for sure. We can then see

whether Defender would prefer to strike a deal only with normal Challenger or with
both normal and tough Challenger. In this case, as ∆ ↓ 0, Defender’s expected payoff of
offering N equals

1
r

[(
1− πC

)
(1−N) + πCπD

]
where N = lim∆↓0

(
1− πD

)
V . Instead, Defender’s expected payoff of offering X equals
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(1−X) /r. Therefore, Defender prefers to strike a deal with only normal Challenger as
long as

X >
(
1− πC

)
N + πC

(
1− πD

)
.

From Section 5, we know that if Defender prefers to strike a deal with only normal Chal-
lenger, then it strictly prefers to make an offer that normal Challenger both accepts and
rejects with strictly positive probability.

In our model, we also do not allow Challenger to offer peace deals. But our key in-
sight about the failure of negotiations is also true if both Defender and Challenger can
make offers. In fact, if normal Defender accepts the equilibrium offer for sure, then post-
negotiation beliefs would be such that normal Challenger would never attack (that is,
πD0 = 1). But then normal Defender would strictly prefer to reject such an offer. Similarly,
consider a variant of the model in which there are K rounds of two-step negotiations.
At each stage, Challenger makes a demand first. If Defender accepts the offer, the game
ends; otherwise, Defender makes an offer. If Challenger accepts the offer, the game ends;
otherwise, the game moves to the next round of negotiations (or to conflict, if the last
round of negotiations has already been reached). If Challenger ever demands less than
unity, she reveals herself to be the normal type and, in the ensuing game, Defender has
no incentive to concede anything to her and Challenger would never attack. Thus Chal-
lenger will simply demand 1 at each round and Defender will refuse and offer zero until
the last round—our brinkmanship result.

Our brinkmanship result shows that there is little point in insisting on multiple rounds
of negotiations. If acceptable offers are to be made, they will only be made at the last op-
portunity to avert conflict. In a sense, neutral observers should take advantage of any ulti-
matum imposed by the parties, rather than pressuring them to have softer deadlines. An
interesting extension of our model would be to allow for there to be multiple commitment
types of Challenger, from softer ones that would accept all offers above a threshold less
than 1 to the toughest ones who would accept only x = 1. Even in this model, the forces
that lead to delay would be present, but an additional force would be at work—an unin-
formed Defender could potentially screen some of the softest types in the early rounds of
negotiations. Furthermore, the main insights from our model may still drive the analysis
if we were to allow softer types to strategically mimic the toughest ones.
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A Omitted proofs

A.1 Proof of Lemma 1

Proof. (i) Assume that normal Defender concedes immediately after Challenger attacks in
period t + 1. That is σDt+1

(
πCt+1, π

D
t

)
= 1. By Bayes’s rule, if Defender does not concede,

then πDt+1 = 1. Therefore, normal Challenger would concede at t + 2. Then the expected
payoff of attacking in period t+ 1 equals

(
1− πDt

) V

1− δ − L
C =

(
1− πDt

)
− LC .

Since not attacking yields a payoff of 0, Challenger strictly prefers to attack if πDt < π̄D, is
indifferent if πDt = π̄D, and strictly prefers to concede if πDt > π̄D.

(ii) Assume that normal Challenger concedes in period t + 1. That is, σt+1
(
πCt , π

D
t

)
=

1. By Bayes’s rule, if Challenger does not concede, then πCt+1 = 1. Therefore, normal
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Defender would concede at t+ 1. Then the expected payoff of resisting in period t equals

V + δ
[(

1− πCt
) V

1− δ − π
C
t L

D
]

= (1− δ) + δ
[(

1− πCt
)
− πCt LD

]
.

Since resisting yields a payoff of 0, Defender strictly prefers to resist if πCt < π̄C , is indif-
ferent if πCt = π̄C , and strictly prefers to concede if πCt > π̄C .

A.2 Equilibrium in the game of conflict (Propositions 1 and 2)

We now present a few lemmas that identify necessary conditions for equilibrium and
thereby pin down the unique one in the game of conflict.

We first ask if a normal player ever mimics the tough type. Lemma 2 says that only
Challenger in period 1 can mimic the tough type (i.e. attack) with probability 1.

Lemma 2. In any equilibrium, normal types of both players concede with strictly positive proba-
bility in all periods, except possibly Challenger in period 1.

Proof. The concession sequence 〈κi〉 i∈N of any strategy profile is a sequence in [0, 1], where
each odd (even) term is the probability that Challenger (respectively, Defender) concedes
at that time conditional on no player having conceded yet. A concession sequence arising
from an equilibrium profile is called an equilibrium concession sequence.

Lemma 2 then says that in any equilibrium concession sequence, all terms (except
possibly the first) must be strictly positive.

Step 1. The proof is based on the key idea that if the string (κi, 0, κi+2) appears in an
equilibrium concession sequence and κi+2 > 0, then κi = 1: if the opponent is not conced-
ing in the interim the value of concession can only go down because the positive cost to
fighting strictly exceeds the flow utility derived from the resource; therefore concession
should have been strictly better at the step before.

Step 2. We now show that, along any concession sequence, adjacent terms cannot be
0. Let κi = 0 = κi+1; if κi+2 > 0, it would contradict Step 1. Induction implies that if
two adjacent terms of the concession sequence are 0, all subsequent terms are 0 too. But
since there is a positive probability of the tough type, it cannot be an equilibrium to never
concede, knowing that your opponent will not. Therefore, no equilibrium concession
sequence contains adjacent 0’s.

Step 3. Suppose κi = 0 for some i > 1. By Step 2, we must have κi+1 > 0; from Step 1 it
means that κi−1 = 1. If the player who is supposed to concede with probability 1 does not
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do so, his/her reputation immediately jumps to 1 and the normal opponent must concede
immediately thereafter, i.e. κi = 1—a contradiction!

Lemma 3 characterizes the players’ strategies if they are indifferent for two consecu-
tive periods.

Lemma 3. If Challenger is indifferent between conceding at times t and t+ 1 in any equilibrium,
then normal Defender’s equilibrium concession probability and the public beliefs about him are

σ̃D
(
πDt−1

)
:= 1− π̄D

1− πDt−1
; and πDt = πDt−1

π̄D
(17)

respectively. Similarly, if Defender is indifferent between conceding at times t and t + 1 in any
equilibrium, then normal Challenger’s probability of conceding and the public beliefs about her
type are

σ̃C
(
πCt
)

:= 1− π̄C
1− πCt

, and πCt+1 = πCt
π̄C

. (18)

Proof. Challenger is indifferent if and only if V C
t

(
πCt−1, π

D
t−1

)
= 0, which is the payoff of

Challenger from conceding. Suppose that Challenger is indifferent for two consecutive
periods: V C

t

(
πCt−1, π

D
t−1

)
= V C

t+1

(
πCt , π

D
t

)
= 0. By Lemma 2, σCt+1

(
πCt , π

D
t

)
6= 1. Therefore

σ̄Dt
(
πCt , π

D
t−1

)
= 1− π̄D.

This corresponds to a strategy for Defender such that σDt
(
πCt , π

D
t−1

)
= σ̃D

(
πDt−1

)
in (17) if

πDt−1 ≤ π̄C .

Defender is indifferent if and only if V D
t

(
πCt , π

D
t−1

)
= −LD, the payoff Defender gets

if he concedes.15 Suppose that Defender is indifferent for two consecutive periods (or is
indifferent at time t and concedes at time t + 1): V D

t+1

(
πCt+1, π

D
t

)
= −LD = V D

t

(
πCt , π

D
t−1

)
.

By Lemma 2, σDt
(
πCt , π

D
t−1

)
6= 1. Therefore

σ̄Ct+1

(
πCt , π

D
t

)
= 1− π̄C .

This corresponds to a strategy for Challenger such that σCt+1

(
πCt , π

D
t

)
= σ̃C

(
π̄Ct
)

in (18) if
πCt ≤ π̄C .

15This payoff is not 0 but −LD because when it is Defender’s turn to decide if he wants to concede
or prolong the fight, Challenger has already attacked and the loss will be experienced by Defender in the
current period regardless of his choice of move.
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Remark 3. Challenger’s mixing probability at t = 1 need not equal σ̃C ; Defender’s mixing
at t = 1 can be different from σ̃D only if Challenger strictly prefers to attack at t = 1.

Combining Lemmas 2 and 3, in equilibrium both players concede with the probabil-
ities in Lemma 3 above, except possibly at t = 1. Beliefs evolve according to the above
lemma, except possibly at t = 1 and until they hit π̄C or π̄D.

Conflict continues as long as no player has conceded. If players mix, then beliefs about
their type increase until a threshold is crossed.

Lemma 4 says that if both beliefs are strictly below their threshold, no belief leaps
over the corresponding threshold at the next step without touching the corresponding
threshold exactly.

Lemma 4. In equilibrium (i) πDt < π̄D and πCt+1 < π̄C implies πDt+1 ≤ π̄D ; (ii) πCt < π̄C and
πDt < π̄D implies πCt+1 ≤ π̄D.

Proof. Suppose not. Let πDt < π̄D, πCt+1 < π̄C but πDt+1 > π̄D. Lemma 1 implies that normal
Challenger will concede with probability 1 at time t + 2 if Defender does not concede at
t + 1. So if Defender does not concede at time t + 1 he gets a continuation payoff of 1
from t + 2 onwards if Challenger is the normal type. Since Challenger is normal with
probability 1− πCt+1, Defender’s payoff from t+ 1 (the current period) onwards is

(1− δ)
(
V − LD

)
+ δ

[(
1− πCt+1

)
V − πCt+1L

D (1− δ)
]
.

Defender strictly prefers to not concede if the above exceeds the payoff − (1− δ)LD from
conceding immediately at t+ 1:

(1− δ)V + δ
[(

1− πCt+1

)
V − πCt+1L

D (1− δ)
]
> 0. (19)

Inequality (19) reduces to πCt+1 < π̄C , which is true by assumption. Therefore Defender
strictly prefers to fight at t + 1, i.e. σDt+1

(
πCt+1, π

D
t

)
= 0—which contradicts Lemma 2,

implying that πDt < π̄D and πCt+1 < π̄C cannot lead to πDt+1 > π̄D.

Now let πCt < π̄C and πDt < π̄D, but πCt+1 > π̄C . By a similar logic Challenger strictly
prefers to fight at t+ 1 if

− (1− δ)LC +
(
1− πDt

)
V > 0.

The expression above reduces to πDt < π̄D. So Challenger strictly prefers to fight at t + 1,
i.e. σCt+1

(
πCt , π

D
t

)
= 0—which contradicts Lemma 2.

What do our previous results imply about period 1’s probability of attack? By Lemma
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(0,0) (1,0)

(0,1) (1,1)

πD2 = π̄D

π̄C

Def. wins

Chall. wins

πD0

πD1 =
(
π̄D
)2

πC0 = πC1

Figure 1: How Beliefs Evolve

3, from period 2 onward beliefs must grow by a factor
(
π̄C
)−1

and
(
π̄D
)−1

, respectively.
The solid line in Figure 1 depicts the equilibrium evolution of beliefs in a conflict of hori-
zon 2 with Challenger more intimidating than Defender. The dashed line represents the
evolution of beliefs if it is common knowledge that both Defender and Challenger play
the strategies in Lemma 3 from period 1 onward. In this case, πD1 < π̄D and πC2 > π̄C ,
violating Lemma 4. In equilibrium, Defender must concede with sufficiently large proba-
bility in period 1 so as to ‘level the playing field’ with Challenger and guarantee πD2 = π̄D.
Since Defender is conceding with a higher probability than what would make Challenger
indifferent, in period 1 Challenger strictly prefers to attack.

Remark 4. If Challenger is more intimidating than Defender, in period 1 Challenger attacks
with probability 1 and Defender concedes with probability 1− πD/

(
π̄D
)n
> 1− π̄D.

A similar logic applies to the case when Defender is at least as committed as Chal-
lenger. In this case, Challenger must concede with sufficiently high probability in period
1 so as to ‘level the playing field’ with Defender and guarantee πCn = π̄C .

Remark 5. If Defender is more intimidating than Challenger, in period 1 Challenger attacks
with probability πC0 /

(
π̄C
)n

.

The next lemma shows that along the equilibrium path, provided no one concedes,
both reputations grow according to equations (2) and (3) from period 2 onwards until a
time t when either πCt = π̄C or πDt = π̄D.
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Lemma 5. For any period t ≥ 2, if πDt−1 ≤ π̄D and πCt ≤ π̄C , then Challenger plays σ̃C
(
πCt
)

and

Defender plays σ̃D
(
πDt−1

)
.

Proof. We show the result for Defender. The result for Challenger follows a symmetric
argument.

Proceed by contradiction. If σDt
(
πDt
)
6= σ̃D

(
πDt
)
, by Lemma 3, Challenger is not in-

different at either t or at t + 1. There are two possibilities. First, she strictly prefers to
concede. But then Defender would concede with probability 0 in the previous period,
contradicting Lemma 2. Second, she strictly prefers to fight. But then by Lemma 2 she is
Challenger in period 0 and t = 1 < 2.

The lemma above is useful in proving Propositions 1 and 2, which apply, respectively,
to the cases where Challenger is more committed than Defender and where Defender is
at least as committed as Challenger.

A.2.1 Proof of Proposition 1

Proof. Existence. We first show that the stategies σ∗ defined in Proposition 1 constitute an
equilibrium. From Lemma 3 it is clear that after the first move by Challenger in period 1
players are indifferent and therefore willing to mix. Since normal players concede in σ∗

once the thresholds are crossed, this is consistent with Lemma 1. Since Defender concedes
with a larger probability than σ̃D in the first period, Lemma 3 implies that Challenger
strictly prefers to fight at t = 1. Also note that by Bayes’ rule the equilibrium belief about
Challenger’s type after non-concession at t = 1 is given by

(
π̄C
)n

.

Uniqueness. If πC0 ≥ π̄C , then Lemma 1 implies that the above is the only equilibrium;
similarly for the case π0 ≥ π̄. Therefore let

(
πC0 , π

D
0

)
<
(
π̄C , π̄D

)
, so that n ≥ 1. If normal

types follow σ̃C , σ̃D defined in equations (18) and (17) up to and including time n, there
will be a jump since πC0 /

(
π̄C
)n
> π̄C ; but jumps are ruled out by Lemma 4. By Lemmas 3

and 5, the only freedom we have is in choosing different strategies for t = 1.

By contradiction, suppose that Challenger concedes with positive probability in pe-
riod 1. This implies she expects Defender to concede with probability at least σ̃D. But this
implies that there is m ≤ n such that beliefs are

(
πCm+1, π

D
m

)
with πCm+1 > π̄C and πDm < π̄D,

contradicting Lemma 4.

Last, since Challenger cannot concede with probability less than 0, we have that πCn+1 >

π̄C . Thus, by Lemma 4, Defender must concede in period 1 with probability exactly σD∗t .
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A.2.2 Proof of Proposition 2

Proof. Existence. Lemmas 1 and 3 imply that the above is an equilibrium. In particular,
σC∗1 and Bayes’s rule imply that the equilibrium belief about Challenger’s type after non-
concession at t = 1 is given by

(
π̄C
)n

.

Uniqueness. If πC0 ≥ π̄C , then Lemma 1 implies that the above is the only equilibrium;
similarly for the case πD0 ≥ π̄D. Therefore let

(
πC0 , π

D
0

)
<
(
π̄C , π̄D

)
, so that n ≥ 1. If normal

types follow σ̃C , σ̃D defined in equations (18) and (17) up to and including time n, there
will be a jump since πD0 /

(
π̄D
)n
> π̄D; but jumps are ruled out by Lemma 4. By Lemmas 3

and 5, the only freedom we have is in choosing different strategies for t = 1.

Case 1: σC1 < σC∗1 . Suppose that σC1 < σC∗1 . The inequality σC1 < σC∗1 implies that Chal-
lenger’s reputation increases at a slower rate such that πCn < π̄C . If σD1 < σ̃D1 , then
Challenger prefers to concede immediately (σC1 = 1) since Challenger is just indiffer-
ent at σ̃D; this contradiction implies that σD1 ≥ σ̃D, which in turn gives πD1 ≥ πD0 /π̄

D

and therefore πDn > π̄D i.e. there exists m ≤ n such that belief profile is
(
πCm, π

D
m

)
with πCm < π̄C and πDm > π̄D, contradicting Lemma 4. Therefore, σC1 ≥ σC∗1 is the only
possibility in equilibrium.

Case 2: σC1 > σC∗1 . Suppose that σC1 > σC∗1 . Now πC1 > πC0 /π̄
C , πC2 > πC0 /

(
π̄C
)2

, etc. Since
Proposition 1 implies that Defender’s reputation is growing as the same rate 1/π̄D

it follows from the Defender being more intimidating and
(
π̄C
)n+1

< πC0 that πCn >

π̄C , i.e., a jump occurs by time n. Therefore, σC1 ≤ σC∗1 is the only possibility in
equilibrium.

Last, since Challenger must be indifferent at t = 0 to play σC∗1 , then σD1 = σ̃D = σD∗1 .

A.3 Proof of Proposition 3

Proof. We now show that that the solution to the game with discrete (i.e. ∆ > 0) but
frequent enough opportunities to concede approaches the solution of the limiting model
in the body of the paper. Let UD

∆ (x, β) denote the utility of the uninformed Defender
when his offer of x is accepted with probability β:

UD
∆ (x, β) := β (1− x) + (1− β)

{
πD −

(
1− πD

)
`D
(
1− e−r∆

)}
. (20)
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Defender’s problem is

P∆ : max UD
∆ (x, β) s.t. (x, β) ∈ F (∆) , (21)

where F : [0, 1]→ [0, 1]×
[
0, 1− πC0

]
gives the set of feasible pairs of (β, x) at ∆. A value of

∆ determines δ = e−r∆ and thus the thresholds π̄C and π̄D according to (4) and (5), which
in turn determine the conflict horizon n (∆) as

πC/ (1− β)
(π̄C)n(∆)−1 < π̄C ≤ πC/ (1− β)

(π̄C)n(∆) . (22)

This value of n (∆) in turn determines the probability PD (∆, β) with which Defender
concedes at the start. PD is given by

1− πD

(π̄D)n(∆)+1 ≤ PD (∆, β) ≤ 1− πD

(π̄D)n(∆) (23)

if the inequality in (22) holds as an equality, and it is given by

PD (∆, β) = 1− πD

(π̄D)n(∆) (24)

if both inequalities in (22) are strict.

Each value of PD determines a unique value of the offer x (∆, β) that leaves Challenger
indifferent between accepting and rejecting the offer, which is given by the following
indifference condition:

PD (∆, β)− `C
(
1− e−r∆

)
= x (∆, β) . (25)

We assert that F is a compact-valued correspondence continuous at ∆ = 0. The image of
∆ under F can be written as a correspondence φ : β � φ (β) where φ (β) is a singleton
given by (24) if (∆, β) satisfies Assumption 2, and is otherwise a closed interval given
by (23). Fix any β. Suppose

(
∆k
)
k≥1 is any sequence decreasing to 0; let

(
β, xk

)
k be a

sequence of points in F
(
∆k
)
. Then from the construction of PD we see that

PD (∆, β)→ PD (0, β) ,

which using (25) implies that xk → x. In other words, (β, x) ∈ F (0). Since φ is uniformly
bounded this means that if

(
βk, xk

)
k is a sequence of points in F

(
∆k
)

converging to (β, x)
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then we have (β, x) ∈ F (0). Therefore, F is upper hemicontinuous.

Suppose (β, x) ∈ F (0) and
(
∆k
)
k≥1 is any sequence decreasing to 0. Then pick any

sequence
(
βk, xk

)
k such that βk = β for all k and

(
β, xk

)
∈ F

(
∆k
)
. By construction the

bounds in (23) and the expression in (24) reduce to PD (0, β) as ∆k → 0. Thus it must be
the case that PD

(
∆k, β

)
→ PD (0, β), and therefore, by the continuity of (25), we have

xk → x; hence F is lower hemicontinuous.

The objective function UD
∆ (x, β) is jointly continuous in the variables (x, β) and the

parameter ∆. Since F is both upper and lower hemicontinuous, it is continuous at ∆ =
0. Then the maximum theorem immediately implies that the optimal solutions are also
upper hemicontinuous at ∆ = 0. In other words, as ∆ goes to zero all optimal solutions of
the constrained maximization problem P∆ approach the unique solution of the problem
P0, which is the limiting problem we solve in the body of the paper.

A.4 Proofs of Section 6

Proof of Proposition 4

Proof. Let the posterior probability of the tough type at the end of round k be π̂Ck . A
strategy of Defender comprises finitely many functions xk for k = 0, 1, . . . , K, mapping
from [0, 1] to [0, 1] such that the kth offer is xk

(
π̂Ck−1

)
. Let (βk | k = 0, 1, . . . , K) be the

corresponding acceptance probability mappings from [0, 1] to [0, 1], such that the offer
made in round k ∈ {0, 1, . . . , K} is accepted with probability βk

(
π̂Ck−1

)
. The strategy of

Challenger decides which offer to accept and with what probability, one for each round;
we omit the notation for this.

We prove this by induction on the number of rounds. Let K = 2 henceforth and as-
sume that the offer in round 1 is accepted with strictly positive probability β1. The optimal
offer at each state and each history is (i) Markovian, i.e. it depends only on beliefs about
the type of Challenger; and (ii) deterministic. If B is the function such that β∗ = B

(
πC
)

is
the unique solution to the equation (15), then it is clear that B is increasing in πC (strictly
increasing unless it has hit 1), and so is the posterior probability πC/

(
1−B

(
πC
))

. Take
any candidate equilibrium of the 2-offer game with the equilibrium acceptance functions
(β1, β2). Clearly, sequential rationality requires that β2

(
π̂C1
)

= B
(
π̂C1
)
, where π̂C1 is given

by π̂C1 = πC/ (1− β1) > πC . The total probability (summed over rounds and types) that
conflict will not start is then given by β̄ = β1 + (1− β1) β2. The posterior at the end of
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round 2 is

πC0 = π̂C1
1− β2

= πC

(1− β1) (1− β2) = πC

1− β̄
.

By the above and using (13), the sequentially rational offer in round 2 is

x̄ = e−r∆1,2

1− πD
(

πC

1− β̄

) `C

1−`D

 , (26)

where ∆1,2 ≥ 0 is the time interval between the first and the second offer. Incentive com-
patibility of normal Challenger then requires that acceptance in any round give the same
utility to Challenger. This, together with the fact that

(
x̄, β̄

)
satisfies (26), means that the

utility of Defender is the utility of a game in which he takes out a mass β̄ of Challengers (at
a cost of x̄ per unit mass); this is denoted by UD

0

(
x̄, β̄; πC , πD

)
. Let

(
x∗
(
B
(
πC
))
, B

(
πC
))

be the optimal pair when we have a single round with the prior πC . Since x̄ > x∗ and
β̄ > B

(
πC
)
, it follows that

UD
0

(
x̄, β̄; πC , πD

)
< UD

0

(
x∗
(
B
(
πC
))
, B

(
πC
)

; πC , πD
)
.

If Defender deviates in round 1 from β1 and chooses β′1 = 0 instead, it would have been
sequentially rational to make the optimal offer x∗ in round 2 and have it accepted with
probability β∗. Therefore, if two offers are accepted with positive probability in any equi-
librium, it is better to deviate and change the earlier offer to 0, so that the first offer is re-
jected. Hence there is no such equilibrium: the only possibility is β∗1 = . . . = β∗K−1 = 0.

A.5 The role of Assumption 2 as ∆→ 0

We solve the conflict part of our model for any positive ∆ subject to Assumption 2. Sup-
pose that, contrary to Assumption 2, ln πC0 / ln π̄C = m ∈ N \ {1} while ln πD/ ln π̄D < m

(the case ln πD/ ln π̄D ∈ N \ {1} is symmetric). Lemmas 3 to 5 do not rely on Assump-
tion 2. Therefore, in all equilibria, beliefs move according to (6) from period 2, stage 1
onward. The first part of the proof of Proposition 1, then guarantees that there exists an
equilibrium as in Proposition 1: at t = 1, Challenger attacks with probability 1 and De-
fender concedes with probability 1− πD/

(
π̄D
)m

; πDm−1 = π̄D and πCm = π̄C . Yet, there exist
also other equilibria. In all other equilibria, at t = 1, Challenger attacks with probability 1
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and Defender concedes with probability p:

p ∈
[
1− πD

(π̄D)m , 1−
πD

(π̄D)m−1

]
.

Therefore, π̄Cm = π̄C and πDm−1 < π̄D ≤ πDm. Lemmas 3 to 5 guarantee that these are all the
possible equilibria. While this means there are multiple equilibria, it is easy to see from
Lemma 1 that (

1− πD

(π̄D)m−1

)
−
(

1− πD

(π̄D)m
)
↓ 0 as ∆ ↓0.

Therefore in the limit as ∆ ↓ 0 , the equilibrium strategies are uniquely determined by
those in Proposition 1 and Challenger’s continuation payoff from conflict converges to
the one given by Remark 1.
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