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Abstract

This paper proposes a new dynamic forecast combination strategy for forecast-
ing inflation. The procedure draws on explanations of why the forecast combination
puzzle exists and the stylized fact that Phillips curve forecasts of inflation exhibit
significant time-variation in forecast accuracy. The forecast combination puzzle is
the empirical observation that a simple average of point forecasts is often the best
forecasting strategy. The forecast combination puzzle exists because many dynamic
weighting strategies tend to shift weights toward Phillips curve forecasts after they
exhibit a significant period of relative forecast improvement, which is often when
their forecast accuracy begins to deteriorate. The proposed strategy in this paper
weights forecasts according to their expected performance rather than their past
performance to anticipate these changes in forecast accuracy. The forward-looking
approach is shown to robustly beat equal weights combined and benchmark uni-
variate forecasts of inflation in real-time out-of-sample exercises on U.S. and New
Zealand inflation data.
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1 Introduction

Medium horizon forecasts of inflation are key inputs into the decision making process

of monetary policymakers. However, the construction of accurate inflation forecasts is

fraught with model uncertainty. The uncertainty is best summarized by Stock and Wat-

son (2007) who note that on the one hand inflation forecasting is relatively simple because

standard univariate time series models or even a näıve random walk model can produce

efficient - meaning a forecast that reliably minimizes a chosen loss function - forecasts of

inflation. While on the other hand, it is exceedingly difficult to construct an efficient fore-

cast that improves upon the näıve forecast, despite economic theory providing a host of

alternative model specifications that should predict inflation well. Of course if all multi-

variate or theoretically motivated inflation forecasts failed to outperform univariate time

series models, then forecasters could abandon these strategies all together. But, Stock

and Watson (2008) show that this is not the case. Forecasts based on the Phillips curve

relationship still provide significant improvements over univariate forecasts episodically.

Therefore, inflation forecasters are faced with the choice of a relatively efficient forecast

using simple univariate models or uncertain but potential improvements by employing a

Phillips curve-type specification.

A common solution to mitigate this type of model uncertainty in economic forecast-

ing is to pool individual forecasts together to create a single combined forecast. The

combined forecast hedges against choosing the worst forecasting model in any given pe-

riod and is typically found to improve overall forecast efficiency relative to the individual

models being combined. The effectiveness of this strategy was first shown by Bates and

Granger (1969) and has been confirmed by dozens of subsequent studies over the last

forty plus years.1 However, here too an inflation forecaster runs into another specifica-

tion uncertainty problem. Empirically, the most reliable way to construct a combined

forecast is to place equal weight on each considered model and take the mean of their

point forecasts. The effectiveness of this simple strategy is found to be robust despite

the fact that equal weights is only optimal under very restrictive assumptions about the

correlation and covariance of the individual models’ forecast errors and despite the fact

there often exists significant past differences in forecast efficiency among forecasts that

should be exploitable when choosing combination weights.2 In fact, equal weights is

found to be the most efficient forecast strategy so frequently that the result is commonly

1Surveys and comments on the literature are found in Clemen (1989), Granger (1989), Diebold and
Lopez (1996), Timmermann (2006), and Wallis (2011).

2See Timmermann (2006) for a discussion of the assumptions under which equal weights is optimal.
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referred to as the forecast combination puzzle.3

There are two explanations for why the puzzle exists. The first explains the failure

of optimal weighting strategies in stationary environments. Optimal weighting strate-

gies require the estimation of combination weights from the joint distribution of all the

considered models’ forecast errors. This in practice introduces estimation uncertainty

into the forecasts because the number of models considered is typically large relative

to the amount of available data. Smith and Wallis (2009) formalize this argument and

show using Monte Carlo experiments that in general equal weights provide more efficient

forecasts compared to estimated optimal weights because of estimation uncertainty. The

literature, therefore, often recommends employing combination strategies that do not

require estimation of the weights.

The second explanation is that in general economic forecasting models are often mis-

specified and economic data is subject to relatively frequent structural breaks. Hendry

and Clements (2004) show that equal weights in this case is an effective strategy because

it mitigates the different biases that arise in differently specified models. In particular,

differently specified models may manifest bias in opposite directions following a change

in the data generating process, which is averaged out in the combined forecast. Equal

weights also prevent a forecaster from shifting the relative weight placed on different mod-

els following increases in forecast efficiency that often quickly reverse. The agnosticism

of equal weights is, therefore, the key driver of its efficiency gains.

Combined forecasts of univariate and Phillips curve models of inflation provide an

excellent example of the type of time-variation in forecast efficiency that generates the

forecast combination puzzle. Stock and Watson (2008, 2010) provide evidence that the

forecast efficiency of the Phillips curve is related to the state of the business cycle. In

particular, the Phillips curve relationship appears to only have forecasting power relative

to univariate models during times of economic contraction. Therefore, any backward-

looking combination routines that uses recent past performance will place high weight on

Phillips curve forecasts following recessions. The high weight, however, comes precisely as

univariate forecasts start to provide more efficient forecasts of inflation during expansions.

The time-varying efficiency of the Phillips curve though also provides a clear example

of how the forecast combination puzzle can be overcome. The time-varying efficiency of

the Phillips curve is not random. As stated previously, it is related to the state of the

business cycle and the current state of the business cycle is to a degree predictable in real

3An empirical example of the forecast combination puzzle for inflation is found in Stock and Watson
(2003). The first formal reference to the forecast combination puzzle in the literature to my knowledge
is Stock and Watson (2004), however, the results is certainly known in the literature at least dating back
to Bates and Granger (1969).
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time as demonstrated by Chauvet and Piger (2008) and Owyang et al. (2014). Therefore,

periods when Phillips curve based forecasts are likely to experiences changes in forecast

efficiency should be to a degree predictable i.e. as the economy moves into recession it

should indicate a period when Phillips curve models perform well and vice versa when

the economy begins to recover.

In this paper I propose a new forecast combination strategy to demonstrate that

the time-varying efficiency of the Phillips curve is indeed identifiable and exploitable

in real-time out-of-sample forecasting experiments. The strategy uses forward-looking

weights to anticipate changes in forecast accuracy. The changes in forecast accuracy

are anticipated by predicting the forecast error of a considered model using information

on past forecast errors and real activity measures. The real activity measures provide

information about the current state of the business cycle and hence information about

the future performance of Phillips curve-type forecasts. The combined forecast is then

constructed by weighting each individual model by its predicted forecast error relative

to the predicted errors of all other models. The predicted weights strategy is shown to

result in statistically significant reductions in mean squared forecast error (MSFE) and

forecast bias relative to simple time series models, simple backward-looking combination

strategies, and an equal weights combined forecasts across a number of real-time out-of-

sample forecasting experiments.

1.1 Contribution and Related Works

The effectiveness of the proposed strategy illustrates two points to potentially overcome

the forecast combination puzzle in a variety of settings. The first point is that time-

varying weighting strategies should be forward-looking. Weights should adjust according

to how models are expected to perform in the near future, rather than how they have

performed in the recent past.

The second point is that other information, beyond past forecast performance, can

often be leveraged to anticipate changes in forecast efficiency. The parsimonious models

that are most effective in economic forecasting are often purposefully misspecified to avoid

data overfitting. This misspecification means that there exists information that theory

predicts should be useful for forecasting, but which in practice may not improve individual

point forecasts if included in the original model specification. The extra information,

however, may be useful for constructing forward-looking model combination weights.

Predicting forecast failure and exploiting information in forecast errors is of course

not a novel idea. For example, Giacomini and Rossi (2009) develop a statistical test for
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predicting when forecast accuracy will deteriorate. They show, as in this paper, that

the deterioration of forecast accuracy of Phillips curve forecasts is predictable in real

time. Wallis and Whitley (1991) and Clements and Hendry (1996) also study the use

of forecast errors to improve forecast efficiency through a strategy known as intercept

correction. Intercept correction uses the most recent observed forecast errors to correct

the bias of a point forecast by adding the errors to the next forecast in order to set the

model back on track. Wallis and Whitley (1991) finds that intercept correction produces

modest improvements over an uncorrected model for forecasts of UK inflation as well as

other macroeconomic variables.

The prediction of forecast errors is also closely related to the idea of inflation gap

forecasting explored by Stock and Watson (2007, 2010) and Cogley et al. (2010). The

inflation gap is defined as the deviation of inflation from a stochastic trend. An inflation

gap forecast is constructed by forecasting the inflation gap and then adding it back

to the last observation of the trend. Stock and Watson (2010) and Faust and Wright

(2012) both find that inflation gap forecasting offers modest improvements over other

parsimonious time series models in pseudo (single vintage of data) and real-time (multiple

vintages of data) out-of-sample experiments, respectively. Therefore, the novelty of the

combination strategy proposed in this paper is marrying forecast combination to the

ideas of identifying changes in forecast efficiency, intercept correction, and forecasting

the inflation gap.

The aim of this paper is to provide a proof-of-concept for forward-looking combi-

nation weights in a transparent way, rather than to obtain the absolute best possible

inflation forecast. To achieve transparency I restrict the analysis to a set of simple model

specifications to predict inflation and forecast errors. The success of the concept using

simple models, however, suggests that large improvements in forecast efficiency may be

possible if more sophisticated forecasting techniques are brought to bear.

I also attempt to address an external validity concern that exists when comparing

forecast combination strategies on a fixed set of forecasting models. The individual

forecasting specifications chosen by a researcher of course dictate the improvements in

forecast accuracy that are possible and these choices often drive the reported results. An

example of this is when a number of poor performing forecasts are considered among the

set of included forecasts. A sophisticated forecast combination routine may easily detect

the poor forecasts and result in a superior combined forecast than equal weights. However,

the forecast combination puzzle would re-emerge if the set of models was trimmed to

include only the best performing models. This concern is addressed by conducting a

forecasting tournament that compares multiple forecast combination strategies on many
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different sets of models to illustrate the relative forecast efficiency of the proposed strategy

with respect to model choice.

Finally, I test the proposed strategy in real-time forecasting exercise of New Zealand

inflation. The U.S. and New Zealand economies clearly differ on a number of dimensions

and the confirmation of the forecasting strategies effectiveness on New Zealand data

serves to demonstrate the general applicability of the proposed strategy.

The remainder of the paper proceeds as follows. The next section presents the data,

forecast models, and the forecast combination strategy. Section 3 presents the results for

U.S. data. Section 4 presents the results for New Zealand data. Section 5 concludes.

2 Data and Methods

2.1 Data

The main forecasting experiments are conducted on U.S. data from the Philadelphia Fed-

eral Reserve’s Real-Time Macroeconomic data set.4 The measures of inflation I consider

are constructed using the Price Index for Personal Consumption Expenditure (PCE) and

the GDP Deflator (PGDP). These measures are chosen because real-time data is available

dating back to 1965Q4, which allows for the longest possible out-of-sample forecasting

period. Quarterly inflation is defined as πt = ln( pt
pt−1

) and expressed as an annual rate.

The predictors employed to forecast inflation and to predict model performance are

constructed from the real GDP and the civilian unemployment rate measures available

in the real-time data set. The real GDP measure is used to create three predictors: 1)

GDP growth, constructed as log differenced GDP; 2) output gap, constructed using the

standard HP filter; 3) and a growth gap measure, which is constructed as difference of

the current GDP growth rate from the maximum growth rate observed over the previous

twelve quarters. The unemployment rate is used in levels and as a one sided unemploy-

ment gap measure. The unemployment gap measure follows Stock and Watson (2010)

and is constructed as the difference in current quarter’s unemployment rate from the

previous twelve quarter’s minimum rate. The growth and unemployment gaps provide

one-sided measures of the business cycle to capture the nonlinearity of the Phillips Curve.

The real-time New Zealand data comes from a dataset provided by the Reserve Bank

of New Zealand. The dataset does not include real-time measures of PCE or GDP

Deflator so quarterly non-tradable CPI inflation is used instead.5 Inflation is defined and

4A detailed description of the data set and an explanation of its usefulness for evaluating forecasting
strategies is given by Croushore and Stark (2001).

5Since New Zealand is a small open economy, the measure of inflation that has the most similar
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Univariate Phillips Curve Direct Forecasts

AR(1) PC Output Gap DF Output Gap
AR(2) PC Unemployment Gap DF Unemployment Gap
AR(4) PC GDP Growth DF GDP Growth
ARMA(1, 1) PC Growth Gap DF Growth Gap
ARMA(4, 4) PC Unemployment Rate DF Unemployment Rate
AO VAR All

Table 1: Forecast model specifications.

computed using the same definitions employed for the U.S. data and the same real GDP

and unemployment measures are constructed.

2.2 Models

The list of considered models is given in Table 1. The included univariate models are

chosen either because they are frequently used as benchmarks in the inflation forecasting

literature or to provide variety in the specifications.6 The AO forecast is based off the

näıve model employed in Atkeson and Ohanian (2001) and is the average of the previous

four quarters of inflation

π̂AOt+h =
1

4

4∑
i=1

πt−1−i. (1)

The AO model serves as the main benchmark for the forecasting experiments.7

The Phillips curve (PC) specifications are bi-variate VARs with two lags of inflation

and two lags of a real activity measure. VARs are used as the PC-type forecasts to

provide a degree of generality to the results. The VARs do not impose a specific theory

on the structure of the Phillips curve but incorporate the basic observable information

that is used in many different theoretically based PC forecasts. This of course includes

nonlinear Phillips curves through the use of one-sided unemployment and output gap

measures. The lag length for the VARs is selected for parsimony and held constant

throughout the exercise.

The specifications labeled as direct forecasts (DF) are OLS regressions of a given real

relationship to the output gap as PCE and GDP Deflator for U.S. data is non-tradeable CPI inflation.
6For example the ARMA(1,1) is the benchmark forecast employed by Ang et al. (2007), who compared

dozens of different forecast specifications covering surveys, ARMA models, regressions using real-activity
measures, and term structure models or the AR(4), which is the benchmark in Stock and Watson (2010).

7The AO forecast performs comparably to the inflation gap forecasting strategy proposed by Stock
and Watson (2007) as shown by Faust and Wright (2012).
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activity measure on h-quarter ahead inflation

πt+h = c+ βxt + εt. (2)

where xt represents a real activity measure and εt is the error term.8 The specification

is included primarily as a robustness check. The prediction of an individual model’s

performance is constructed using the same direct forecast specification. The concern is

that the prediction step of the combination strategy is picking up a correctable form of

model misspecification. The underlying assumption of the proposed combination strategy

is that there is model misspecification that can be exploited through the prediction of

a model’s performance, but which cannot be exploited in the actual forecast model’s

specification.

The VAR All model is also included for robustness. The VAR All model includes all

the information that is found to predict forecast performance well into a single specifi-

cation (GDP growth, output gap, and the unemployment gap). If the information used

to predict a future forecast model’s performance is more useful for predicting the level of

inflation, then this model should provide relatively efficient forecasts. The lag length of

this specification is also two and fixed for all exercises.

2.3 Forecasts and Inference

The forecast of interest in this paper is the four quarter ahead forecast of quarterly

inflation expressed as an annual rate. The real-time forecasts are constructed using the

latest vintage of data available at each point in time. Due to lags in the release of data

to the public, however, the current quarter’s observation of inflation is not available at

the time a forecast is made. Therefore, the forecast considered is actually the nowcast

and the subsequent three quarters. The forecasts are denoted as ET
t πt+4, where t is the

last observation of data, T is the vintage of data and the time at which the forecast is

made (i.e. T = t+ 1).

The forecasts are evaluated based on root MSFE to measure accuracy and mean

forecast error to measure forecast bias. Inference on the observed differences in MSFE

are obtained using the Diebold and Mariano (1995) (DM) test for equal within sample

forecast accuracy with the Harvey et al. (1997) small sample size and long horizon correc-

tion. There is not much guidance in the literature on the correct test statistic to evaluate

combined forecasts. This is especially true in the context considered here where it is

assumed that the data suffers from frequent structural breaks. Most test statistics are

8For an explanation of the merits of direct forecasting see Marcellino et al. (2006).

8



based on the assumption of asymptotic convergence to stationary distributions for the

estimated regressors of the model considered and their forecast errors.9 None of which

can be argued to hold in this case and which of course is part of the reason for consider-

ing model combination in the first place. However, the use of Diebold and Mariano test

statistic follows recommendations given by Clark and McCracken (2011) for evaluating

forecasts on real-time data and Diebold (2014) who notes that the only assumption that

must be satisfied in order to use the DM test statistic is that the differences in squared

forecast errors are covariance stationary. Inference on the bias results is obtained using

a t-test with Newey and West (1987) standard errors.

The target measure of inflation to which the real-time forecasts are compared is a

composite series constructed out of the second release quarterly observations of inflation

as they appear in the real-time data set. The use of second release data minimizes the

influences of large renormalization that occur in the sample due to definitional changes

and provides a final measure of inflation that is closer to the actual measure a forecaster

would have been attempting to forecast at any given point in time.

2.4 Predicting Forecast Model Performance

The prediction of a forecast model’s performance is obtained via a direct forecast of the

model’s real-time forecast errors. The direct forecast regresses a real activity measure on

the four quarter ahead forecast error

fei,t+4 = c+ βxt + εt, (3)

where fei,t = πt − Et−4πt for the ith considered model.10 The forecast error series is

constructed using real-time errors obtained from comparing past real-time forecasts to

the composite series of second release information. The last forecast error in each period

though is compared to first release information as the second release is not available

at the time the forecast is made. Note that by construction this procedure introduces

new information into the forecasts because the individual forecasts models are estimated

on the most recent vintage of data available at the time the forecast is made, while

the series of forecast errors contains information from multiple vintages. Therefore, the

forecast error series incorporates some information about revision into the final combined

9See West (2006) for a review of the literature.
10This specification is the same as the specification considered by Stock and Watson (2010) to forecast

the inflation gap.
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forecast.11

In addition to real activity measures, I also consider two specifications that rely solely

on past forecast errors for robustness. The first specification uses a rolling average of the

last four forecast error observations to predict future errors similar to the AO forecast

for inflation. The specification is also similar to simple backward-looking combination

strategies that are frequently considered in the literature and partially accounts for the

fact that by construction a series of forecast errors follows an MA(h-1) process, where h

is the forecast horizon.12 This specification is denoted AOPW. The second specification

attempts to capture trends in the forecasts errors. This specification employs a three

year rolling window regression of a constant and a time trend on past forecasts errors.

2.5 Combining Forecasts and Out-of-sample Experiments

The combined forecasts are constructed as a weighted average of point forecasts

π̂t+4 =
N∑
i=1

ωi,tEtπi,t+4, (4)

where ωi,t is the weight given to the ith model. The weights are constructed as

ωi,t =
e−β(Etfei,t+4)

2

Zt
, Zt =

12∑
i=1

e−β(Etfei,t+4)
2

where β is the shrinkage or intensity of choice parameter.13 The β parameter governs

the relative weight given to each model based on expected differences in squared errors.

If β is close to zero, then weights shrink towards equal weights. If β is large, then almost

all weight is placed on the best predicted model.

The out-of-sample forecasting exercise requires the data to be separated into three

subsets. The required divisions are a training subset to estimate the initial parameters

of the candidate forecast models, an in-sample forecasting period to recursively forecast

the candidate models to construct an initial series of forecast errors to estimate Equation

(3), and an out-of-sample period to conduct out-of-sample forecasts. The three periods

are 1947Q2-1965Q4, 1966Q1-1969Q4, and 1970Q1-2014Q1, respectively.

11I tested both revised and unrevised forecast error series and the revised series do appear to add a
small amount of forecasting power relative to the unrevised.

12Predicting forecast errors using an MA(3) specification does not improve upon any of the specifica-
tions considered.

13The functional form of the weights is a multinomial logit, which is used extensively in the discrete
choice econometric literature.
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The out-of-sample forecasts are made recursively using the following procedure at

each time period T :

1. Each candidate forecast is estimated on vintage T data.

2. Each candidate forecast is used to construct a four quarter ahead forecast.

3. Equation (3) is estimated on the available real-time forecast errors for each of the

candidate forecasts.

4. Equation (3) is used to predict the expected forecasts error of each model to con-

struct Etfei,t+4.

5. The predicted errors are used to construct weights and the weight are used to

construct the combined forecast.

3 U.S. Results

The results are separated into five sections. The first section provides the individual

forecasting performance of the 17 considered models to establish baselines to compare to

the combined results. The second section presents out-of-sample forecasting results using

the predicted weights combination strategy. The third section illustrates the source of

gains in forecast efficiency for forward-looking weights using an explicit example. The

fourth section conducts a tournament that compares the proposed combination strategy

to backward-looking combination strategies to illustrate robustness. And finally, the fifth

section presents the intercept correction results.

3.1 Individual Model Results

Table 2 reports the real-time out-of-sample forecasting results for the individual model of

PCE inflation. Results are reported for the full out-of-sample period (1970Q1-2014Q1)

and two sub-sample periods: 1983Q1-2007Q3, which roughly covers the Great Modera-

tion; and the most recent period 2007Q4-2014Q1, which covers the Financial Crisis and

the recovery. I only present the results for PCE inflation in this section because I find

little difference in the forecast outcomes between the PCE and the PGDP measures of

inflation. PGDP results are, however, presented in the forecasting tournament section.

All RMSFE results are reported relative to the AO forecast.

The AO forecast clearly dominates all other considered forecasts specifications. The

AO forecast results in the lowest RMSFE over the full sample and both subsamples with
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Individual Model Results

Model RMSFE Bias RMSFE Bias RMSFE Bias

AO 2.353 0.09† 1.483 0.20† 2.282 0.21†

DF CUR 1.287 0.24† 1.432 1.42 1.349 2.28
DF GDP 1.267 -0.27† 1.189 1.10 1.062 1.51
DF Growth Gap 1.258 -0.08† 1.262 1.27 1.109 1.67
DF Output Gap 1.368 -0.22† 1.461 1.30 1.095 1.45
DF U. Gap 1.263 -0.09† 1.246 1.22 1.153 1.79
VAR ALL 1.073 -0.31† 1.198 0.54 1.090 0.55†

PC CUR 1.064 0.14† 1.169 0.81 1.190 1.33
PC GDP growth 1.041 -0.37† 0.985 0.54 1.062 0.65†

PC Growth Gap 1.002 -0.11† 1.018 0.53 1.082 0.77
PC Output Gap 1.087 -0.31† 1.086 0.71 1.099 0.74
PC U. Gap 1.026 -0.04† 1.055 0.62 1.159 1.10

AR(1) 1.114 -0.22† 1.066 0.84 1.078 1.05
AR(2) 1.021 -0.15† 1.017 0.64 1.073 0.85
AR(4) 1.072 -0.30† 1.019 0.63 1.067 0.82
ARMA(1, 1) 1.003 -0.15† 0.991 0.57 1.057 0.78
ARMA(4, 4) 1.085 -0.22† 1.122 0.70 1.042 0.71

Dates 1970Q1-2014Q1 1983Q1-2007Q3 2007Q4-2014Q1

*** p < 0.01, ** p < 0.05, * p < 0.1; † p < 0.1

Table 2: This table reports the individual forecast model results. The RMSFE of the AO forecast is
reported in the first row. All remaining results are reported relative to the AO forecast. A number less
than one represents an improvement in forecast accuracy. Significance for the RMSFE results is only
indicated for improvements over the benchmark.

only two exceptions. The PC GDP growth forecasts and the ARMA(1,1) forecast both

result in lower RMSFE during the subsample covering the Great Moderation. However,

neither of the improvements are statistically different from the AO forecast. The AO

forecast also has the lowest bias of any of the forecast models considered.

The best performing PC specification in terms of RMSFE is the specification that

utilizes the one-sided growth gap measure. The growth gap specification is statistically

no different from AO forecast over the full sample and the Great Moderation subsample.

The worst performing PC specification in terms of RMSFE is the output gap specification.

It is statistically significantly worse than the AO forecast on the full sample and on the

two subsamples.

One perhaps surprising result of this exercise is that all models provide unbiased

forecasts on the full sample. Although this result is largely driven by the fact that all

models, except the AO forecast, have a negative bias in the period leading up to the

Great Moderation and a positive bias thereafter.
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Predicted Weights Combined Results

Predictor Rel. RMSFE Bias Rel. RMSFE Bias Rel. RMSFE Bias

Equal Weights 1.054 -0.14† 1.056 0.80 1.046 1.07

Output Gap 0.922∗∗∗ -0.19† 0.949 0.23† 0.998 0.74
U. Gap 0.979 0.22† 1.028 0.53 1.044 1.06
GDP Growth 0.931∗∗∗ 0.15† 0.974 0.43 1.058 1.11
Growth Gap 1.009 0.26† 1.007 0.46 1.076 1.21
CUR 1.003 0.29† 1.028 0.48 1.047 1.06

Trend 1.155 0.02† 1.060 0.62 1.042 0.88
AOPW 1.075 0.20† 1.054 0.56 1.014 0.76

Dates 1970Q1-2014Q1 1983Q1-2007Q3 2007Q4-2014Q1

*** p < 0.01, ** p < 0.05, * p < 0.1; † p < 0.1

Table 3: Forecasts are constructed with β = 5. The RMSFE are shown relative to the AO forecast.
Significance for the RMSFE results is only indicated for improvements over the benchmark.

3.2 Forward-Looking Combined Forecasts

Table 3 reports the results for the predicted weights combined forecasts incorporating

all seventeen models. The RMSFE results are normalized relative to the AO forecast.

The Predictor column denotes the real activity measure used to predict forecast errors to

construct the weights. The shrinkage parameter for all exercises is set to β = 5. The β

parameter is chosen by searching over whole number values of β to minimize the MSFE

in the pre-sample 1967Q1-1969Q4.

The largest improvements in forecast efficiency relative to equal weights and the AO

forecasts are obtained on the full sample. In particular, the output gap and real GDP

growth predictors generate statistically significant reduction in forecast accuracy relative

to both benchmarks. The combined forecasts constructed using only the past information

available in the real-time forecast errors (Trend and AOPW), however, do not show any

notable improvements in forecast accuracy. These forecasts are about as efficient as

the equal weights forecasts across the different samples. The lack of any significant or

qualitative improvements in RMSFE in these two cases illustrates that the correlation

of the forecast errors with real activity is the relationship exploited to improve forecast

efficiency.

The absolute performance of the predicted weight forecasts is attenuated in the two

subsamples. Although, the combined forecasts do retain a statically significant advantage

over equal weights in most cases and a qualitative advantage over the AO forecasts for

at least one predictors in each subsample. The predicted weights forecasts also exhibit

a reduction in bias in almost every case compared to the underlying individual models

13



Best Predicted Model in Each Period

Predictor Rel. RMSFE Bias Rel. RMSFE Bias Rel. RMSFE Bias

Equal Weights 1.054 -0.14† 1.056 0.80 1.046 1.07

Output Gap 0.941∗∗ 0.28† 1.002 0.22† 0.987 0.52†

U. Gap 1.011 0.33† 1.117 0.57 1.124 1.28
GDP Growth 0.962 0.09† 0.973 0.26† 1.167 1.04
Growth Gap 1.029 0.14† 1.005 0.25† 1.220 1.68
CUR 1.019 0.26† 1.070 0.41† 1.093 1.09

Trend 1.201 -0.02† 1.123 0.59 1.080 0.82
AORW 1.106 0.14† 1.228 0.47 1.156 0.44†

Dates 1970Q1-2014Q1 1983Q1-2007Q3 2007Q4-2014Q1

*** p < 0.01, ** p < 0.05, * p < 0.1; † p < 0.1

Table 4: Forecasts are constructed with β → ∞. The RMSFE are shown relative to the AO forecast.
Significance for the RMSFE results is only indicated for improvements over the benchmark.

and a comparable or improved bias relative to equal weights across all samples.

Table 4 reports the forecasting results when the β parameter is sent to infinity. This

case is equivalent to placing a weight of one on the best predicted forecast in each time

period, which removes the hedging component of combining forecasts. The case is of

particular interest because, as noted in Timmermann (2006), choosing a single model in

every period typically results in very poor out-of-sample forecasting efficiency. There-

fore, the results are quite surprising. Choosing the expected best model in each period

actually leads to reductions in relative RMSFE compared to equal weights in a majority

of out-of-sample forecast experiments and even results in lower RMSFE compared to the

AO benchmark for some predictors in every sample period considered. It also leads in

most cases to a reduction in bias compared to the combined forecasts. The results illus-

trates that the gains in forecast efficiency observed in Table 3 are partly due to correct

predictions of the actual best performing forecast model in each period.

The best overall predictor for the weights observed in these exercises is the output

gap measure. This is somewhat surprising because Orphanides and Van Norden (2005)

show that the HP filtered output gap has very little predictive power over inflation in

real-time and because the output gap is the worst predictor of inflation on average among

the PC and DF forecasts reported in Table 2. One explanation for the finding is that the

HP filter provides an estimate of the output gap that only captures large business cycle

fluctuation, which is when a change in relative efficiency between the Phillips curve and

univariate models is most likely.
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Figure 1: The figure depicts the PCE measure of U.S. inflation from 1970Q1 to 2014Q1 (solid), the
ex post best possible forward-looking combined forecast (dashed), and the cumulative weight placed on
the Phillips curve forecasts relative to equal weights constructed using ex post forecast errors (shaded
blue). The dark bars indicate the NBER recession dates.

3.3 An Illustration of Forward-Looking Weights and the Fore-

cast Combination Puzzle

This section provides an explicit example of the forecast combination puzzle and how

forward-looking weights can improve forecast efficiency. For the example, I take the six

univariate and six PC forecast specifications given in the first two columns of Table 1 and

compare backward-looking and forward-looking weighting strategies to the ex post best

weights a forecaster could obtain using the forecasting strategy proposed in this paper.

Figure 1 illustrates the ex post best weights and their implied combined forecast for

PCE inflation. The weights are constructed using the actual ex post observed squared

forecast errors of each model. In particular, the weights are constructed as

ωi,t =
e−βfe

2
i,t+4

Zt
, Zt =

12∑
i

e−βfe
2
i,t+4 (5)

where fei,t+4 is the actual forecast error and β = 5. The weights represent those that

would be obtained if it were possible to perfectly forecast the error of each model in

real time. The benchmark weights produce an unbiased combined forecast that is a
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Figure 2: The figure depicts the PCE measure of U.S. inflation from 1970Q1 to 2014Q1 (solid), the
backward-looking weights combined forecast (dashed), the cumulative benchmark weights relative to
equal weights (shaded blue), and the cumulative backward-looking weights relative to equal weights
(shaded red). The cumulative weight placed on the Phillips curve forecasts from the backward-looking
weighting strategy are constructed using the four-quarter rolling average of past MSFE. The dark bars
indicate the NBER recession dates.

26% improvement over both the AO and equal weights combined forecast in RMSFE.14

The cumulative weights illustrated in the graph are constructed by summing the weights

placed on the PC forecasts in each quarter and subtracting it from 0.5 (
∑

PC ωi,t − 0.5).

The graph, therefore, provides an approximate description of how the cumulative weight

placed on PC forecasts shifts relative to equal weights over time. Points above zero

indicate that greater than half of all weight is on the PC forecast specifications. Points

below zero represent that greater than half of all weight is on the univariate forecast

specifications.

Figure 2 illustrates the weights and combined forecasts that results from a simple

backward-looking weighting strategy similar to one proposed by Bates and Granger

(1969). Each model is weighted relative to the four-quarter rolling average of past ob-

served forecast errors. Specifically, the weights are constructed using Equation (5), where

fei,t+4 is replaced with 1
4

∑4
i=1 fe

2
i,t−i. This strategy results in a modest but statistically

significant 5% loss in relative RMSFE compared to an equal weights combined forecast

14The AO and equal weights combined forecasts have a relative RMSFE of 1.0004. The benchmark
combined weights also result in a slight increase in RMSFE compared to actually forecasting with the
ex post best model in each period.
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Figure 3: The figure shows the PCE measure of U.S. inflation from 1970Q1 to 2014Q1 (solid), the
forward-looking predicted weights combined forecast (dashed), the cumulative benchmark weights rel-
ative to equal weights (shaded blue), and the cumulative predicted weights relative to equal weights
(shaded red). The cumulative predicted weights are constructed using Equation (3) with the output gap
real activity measure. The dark bars indicate the NBER recession dates.

and the AO forecast.

The reason this strategy fails to improve upon equal weights is clearly visible in

the figure. The backward-looking weights are negatively correlated with the benchmark

weights (corr = -0.1382). The strategy shifts weight to the PC forecasts after periods

where the PC forecasts performs well, which is of course precisely when the strategy is

about to lose forecast efficiency relative to the univariate forecasts.

Figures 1 and 2, however, illustrate the relationship between Phillips curve forecast

efficiency and economic downturns. In particular, the benchmark weights consistently

shift towards the Phillips curve forecasts in the periods surrounding the NBER recession

dates. A forward-looking strategy can take advantage of this regularity by shifting weight

towards PC forecasts when real activity is weak and by shifting weights towards the

univariate models when real activity is strong.

Figure 3 demonstrates the forward-looking strategy. The expected error of each con-

sidered model is predicted in real-time using Equation (3) with the output gap real

activity measure. The figure shows that predicted weights often deviate far from the

benchmark but are positively correlated with it over time (corr = 0.1780). The posi-

tive correlation translates into a statistically significant 7% improvement in RMSFE over

both equal weights and the AO forecasts for the set of considered models.
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3.4 Forecast Tournament

Comparisons of combined forecast techniques face an external validity problem because

the results are sensitive to the set of forecast models considered. This concern is especially

relevant when comparing a combination strategy to an equal weights forecast. Equal

weights of course has no mechanism to filter out obviously poor forecasts. Therefore, it

is easy to construct a straw man equal weights forecast by considering poor performing

forecasts that a sophisticated model combination strategy can easily detect and which

an actual forecasters would not consider. To overcome this issue and provide a relatively

fair comparison of equal weights to the proposed predicted weights strategy, I conduct a

forecast tournament that varies the set of combined models. The tournament is conducted

by selecting the twelve most efficient models from the 2007Q4-2014Q1 subsample found

in Table 2 and then considering every combination of the twelve distinct forecast taken n

at time, where n = 2, 3, ..., 12. This provides 4,083 different sets of models to combine.15

The tournament compares four different combination strategies: 1) equal weights,

2) AOPW weights, 3) weights based of the past observed MSFE of each model, and 4)

predicted weights that use the output gap as the predictor.16 The MSFE weights follow

Stock and Watson (2004). The weight are constructed using relative past mean squared

forecast error

ωi,t =
(1/MSFEi,t)

k∑n
i=1(1/MSFEi,t)k

, (6)

where MSFEi,t = (1/m)
∑t

τ=t−m fe
2
i,τ−4, m is the sample size, and k is a shrinkage

parameter.17 The MSFE weights are one of the simple combination procedures that, like

equal weights, consistently improves upon more sophisticated weighting procedures.18

Figure 4 gives a summary of the results for the real-time out-of-sample forecasting

exercises conducted on the 1970Q1-2014Q1 PCE and PGDP measures of inflation. The

figure shows the median, minimum, and maximum RMSFE observed for each subset

of models of size n relative to the AO forecast RMSFE. The maximum RMSFE plot

shows the worst case scenario for each of the combination methods for combining n

different forecasts, the minimum RMSFE plot shows the best case scenario for combining

15The number of distinct combination of the twelve models for each n is as follows: n = 2 → 66 sets,
n = 3 → 220 sets, n = 4 → 495 sets, n = 5 → 792 sets, n = 6 → 924 sets, n = 7 → 792 sets, n = 8 →
495 sets, n = 9 → 220 sets, n = 10 → 66 sets, n = 11 → 21 sets, n = 12 → 1 set.

16The predicted weights assume β = 5.
17For the forecast tournament I choose k = 5.
18I also considered the optimal weights implied by regressing all past forecasts on the actual realization

of inflation proposed by Granger and Ramanathan (1984). However, the weights perform so poorly
compared to the other four methods considered that it did not provide a useful comparison.
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1970Q1 - 2014Q1 Tournament Results
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Figure 4: Median, minimum, and maximum relative RMSFE results for combination of n different
models. The results are relative to the RMSFE of the AO forecast.

n different forecasts, and the median RMSFE provides a measure of the distribution of

RMSFE observed for combining n different forecasts.

The maximum RMSFE results shows that each combination method exhibits roughly

equal risk over the full sample. The maximum RMSFE or worst forecasting outcomes of

all four strategies are comparable to each other across all sets of size n. Efficiency though

is increasing in the number of forecast considered in all cases.

The minimum RMSFE results show a clear advantage for the predicted weights strat-

egy. The predicted weights strategy consistently results in the lowest observed RMSFE

among the four different forecast combination strategies. The PGDP results are espe-

cially impressive with consistent improvements nearing 15% relative to the AO forecast

for the minimum RMSFE observations for all n.

The median RMSFE results in Figure 4 also show an advantage for the predicted

weights forecasts. The median improvements in efficiency are as high as 10% relative to

the AO forecast for combinations of n > 5 models. The increase in efficiency at n > 5

also provides some evidence of the exploitable time-varying trade-off between PC and

univariate forecasts. For n > 5, almost all experiments include at least one PC and one

univariate forecast model.

Figure 5 and 6 show the results for the two subsamples. The 1983Q1-2007Q4 sub-

sample is consistent with the full sample results. The 2007Q4-2014Q1 subsample results,

however, are attenuated compared to the RMSFEs obtained on the other samples. The
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1983Q1 - 2007Q3 Tournament Results
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Figure 5: Median, minimum, and maximum relative RMSFE results for combination of n different
models. The results are relative to the RMSFE of the AO forecast.

2007Q4 - 2014Q1 Tournament Results
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Figure 6: Median, minimum, and maximum relative RMSFE results for combination of n different
models. The results are relative to the RMSFE of the AO forecast.
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attenuation is most pronounced for the GDP Deflator measure of inflation. Here there are

no consistent improvements over equal weights. Though subsequent exploration revealed

that increasing the β parameter can significantly improve performance in this sample.

The results shown in Figures 4, 5, and 6 can roughly be replicated using either the

GDP growth or the unemployment gap predictors to construct the predicted weights. The

GDP growth measure in particular produces forecasts that are comparable to the output

gap forecasts across all considered samples. The results for the one-sided growth gap

and unemployment rate measure, however, are less impressive. These predictors perform

well compared to the equal weights combined forecasts, but often fail to outperform the

AOPW and SW Weights.

3.5 Intercept Correction

Table 5 presents the intercept correction results. The intercept correction results use the

output gap predictions of the forecast errors to correct the points forecast of each model

such that

Etπ
IC
i,t+4 = Etπi,t+4 + Etfei,t+4. (7)

The table shows that the point forecasts of the forecast errors are not very accurate. The

intercept corrected forecasts are less efficient than the uncorrected forecasts in almost

all cases. The one exception is the AO forecast. Although, the reported improvement

in forecast efficiency is not statistically different from the uncorrected AO forecast. The

results are similar for any of the five real activity measures considered to predict forecast

errors.

The explanation for the disparity in effectiveness between predicted weights forecasts

and the intercept corrected forecasts is that the two strategies use the predictions of

the forecast errors in different ways. Predicted weights exploits the relative ranking of

the forecasts implied by the predicted forecast errors, while intercept correction relies on

the accuracy of the actual point forecast of the error. The differences suggest that the

predictions of forecast errors contain information about relative performance, but little

information about the absolute performance of the considered models.

4 New Zealand Inflation

The justification of the proposed strategy in this paper is motivated completely by the

stylized facts of U.S. inflation. Therefore, to determine whether the insights from those
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Intercept Correction Results

Model RMSFE Bias RMSFE Bias RMSFE Bias

AO 0.937 0.32† 1.262 0.49† 1.130 -0.09†

DF CUR 1.562 1.81 2.703 3.06 1.493 2.17
DF GDP 1.513 1.62 2.553 3.20 1.258 1.89
DF Growth Gap 1.512 1.74 2.611 3.25 1.271 1.88
DF Output Gap 1.667 1.61 2.772 3.36 1.278 1.87
DF U. Gap 1.509 1.70 2.579 3.20 1.294 2.03
VAR ALL 1.296 1.09 2.073 1.99 1.229 0.91†

PC CUR 1.232 1.27 1.988 1.87 1.414 1.21†

PC GDP 1.197 1.13 1.895 2.11 1.217 1.03
PC Growth Gap 1.137 1.10 1.771 1.70 1.243 0.87†

PC Output Gap 1.309 1.17 2.036 2.27 1.231 1.13
PC U. Gap 1.179 1.11 1.843 1.82 1.352 1.14†

AR(1) 1.297 1.24 2.141 2.48 1.227 1.28
AR(2) 1.139 1.05 1.806 1.93 1.196 1.00
AR(4) 1.208 1.22 1.917 2.20 1.217 1.15
ARMA(1, 1) 1.100 1.00 1.708 1.79 1.177 0.91†

ARMA(4, 4) 1.252 1.22 1.900 2.09 1.171 0.91†

Dates 1970Q1-2014Q1 1983Q1-2007Q3 2007Q4-2014Q1

*** p < 0.01, ** p < 0.05, * p < 0.1; † p < 0.1

Table 5: Intercept correction results. The RMSFE results are presented relative to the uncorrected AO
forecasts. Significance for the RMSFE results is only indicated for improvements over the benchmark.

observed U.S. relationships are more broadly applicable, this section applies forward-

looking weights to real-time data for New Zealand.

Table 6 reports the baseline results for the seventeen models used in the previous

forecasting experiments. The out-of-sample forecast period for New Zealand is 1997Q1-

2014Q1. The table shows the results are very similar to those obtained on U.S. data.

Predicted weights results in significant increases in forecast efficiency relative to the AO

forecast and an equal weights forecast.

Figure 7 shows the results for the forecast tournament on New Zealand real-time data.

The results here as well are nearly identical to those observed for U.S. data.

5 Conclusion

The time-varying efficiency of the Phillips curve illustrates a flaw in the assumptions un-

derpinning many forecast combination strategies. Forecast combination strategies almost

always assume that recent past performance is positively correlated with performance in
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New Zealand Results

β = 5 β →∞

Predictor RMSFE Rel. RMSFE Bias RMSFE Rel. RMSFE Bias

Equal Weights 1.649 0.971 0.55 - - -

Ouput Gap 1.714 1.009 0.38† 1.728 1.017 0.35†

U. Gap 1.681 0.989 0.23† 1.762 1.037 0.05†

GDP Growth 1.583 0.932∗ 0.25† 1.603 0.943 0.19†

CUR 1.626 0.957 0.44 1.694 0.997 0.39

Trend 1.667 0.981 -0.36† 1.755 1.033 0.62†

AOPW 1.655 0.974 -0.58† 1.673 0.985 -0.39†

*** p < 0.01, ** p < 0.05, * p < 0.1; † p < 0.1

Table 6: The RMSFE are shown relative to the AO forecast. Significance for the RMSFE results is
only indicated for improvements over the benchmark.

1997Q1 - 2014Q1 NZ Tournament Results
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Figure 7: Median, minimum, and maximum relative RMSFE results for combination of n different
models with β = 5 for New Zealand non-tradable inflation. The results are relative to the RMSFE of
the AO forecast.

the near future. This paper demonstrates that if forecast are weighted by their expected

performance, rather than their past performance, that robust improvements in forecast

efficiency for inflation are obtained.

The positive result represents a proof-of-concept for forward-looking weights. Time-

varying forecast efficiency is not confined only to inflation forecasting. Similar time-

variation in forecast efficiency likely exists in many forecasting settings and it may be

exploitable by similar forward-looking forecast combination strategies.
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