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Abstract: This paper develops an algorithm, called the sales spotter, which iden-

tifies the sale prices in the transaction price series provided in point-of-sale data.

The goal of the sales spotter is to identify the maximum number of sale prices while

minimizing the incorrect attribution of non-sale price reductions to sale prices. The

spotter is developed and the values of its parameters are selected by analysing around

7.5 million flagged sales in a US supermarket scanner data. At the optimal values

of the parameters, the spotter identifies 84% of authentic flagged sale weeks in the

data.
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1 Introduction

The point-of-sale or scanner data sets, constructed from actual transactions recorded by

scanning bar codes at the supermarket checkouts, provide detailed transaction informa-

tion on prices and quantities of different varieties of items in a product category sold in

different shopping outlets. These data sets, however, typically do not identify whether the

transaction price corresponds to shelf price or promotional price. This may limit the use of

these data sets because the distinction between the shelf and sale price may be important

in many studies of pricing behaviour at the retail level.1

In recent years, a number of studies have used scanner data to investigate the per-

sistence of retail prices, both with and without temporary price changes. These studies

develop their own algorithms (henceforth called sales filters) in order to create a price

series which reflects the most frequently occurring or representative price in a given period

(e.g. Eichenbaum, Jaimovich, and Revelo, 2011; Chahrour, 2011; Hosken and Reiffen, 2004;

Kehoe and Midrigan, 2008; Lloyd, Morgan, McCorriston, and Zgovu, 2011; Nakamura and

Steinsson, 2008; Campbell and Eden, 2014). The details of the filters vary between the

studies, which may make the series of regular prices generated from the filters different

from each other, and reflect the ongoing debate on what price constitutes the most rele-

vant price in studying ‘sticky prices’ in the context of macroeconomics (Chahrour, 2011).

Kehoe and Midrigan, Eichenbaum et al. and Chahrour generally create a reference price

series, reflecting the relatively persistent prices, from the modal prices and regard the other

observed prices within a given window as temporary prices. While Eichenbaum et al. uses

a fixed non-overlapping window, Chahrour shows that the use of a rolling window is bet-

ter for filtering out the temporary price changes from the observed prices. The indicated

temporary prices do not necessarily, and were not intended to, correspond to sale prices.

For example, 21% of the temporary (‘non-reference’) prices in Eichenbaum et al. and 12%

in Chahrour are actually found to be higher than the corresponding reference prices (i.e.

price spikes) when they apply their filter to scanner data sets.

On the other hand, the sales filters in Hosken and Reiffen (2004), Lloyd et al. (2011),

Nakamura and Steinsson (2008) and Campbell and Eden (2014) consider any temporary

price movements as having occurred due to sales. In general, a price fall by more than

a fixed percentage that continues for less than a fixed period of time before reverting to

1We use the terms, shelf and regular prices, and promotional and sale prices, interchangeably in this
paper.
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the original price or a new higher price is identified as a sale. For example, Campbell

and Eden, Hosken and Reiffen and Lloyd et al. consider price falls of 10% or more, and

with maximum durations of 2 weeks, 1 month and 12 weeks, respectively, as sales. These

threshold numbers play a crucial role in the identification of sales. The evidence from the

flagged sales of Dominick’s Finer Foods data shows that a large number of sales have price

dips of less than 10%, and that while a 2 week duration would miss many sales, 12 weeks

would be too long and would wrongly identify non-sale price reductions as sale prices.

Nakamura and Steinsson report that if the window of comparison period is increased from

1 month to 5 months and if only the V-shaped (or U-shaped) price changes are considered

to be sales, the median frequency of price change decreases from 15.3 to 11.4 in the US

during 1998-2005. Chahrour (2011) argues that the requirement of full price recovery

in order to consider the end of a sale identifies fewer sales and, in turn, leads to lower

estimates of price rigidity.

In scanner data which records transactions at weekly frequencies, an observed price is

typically either a regular price or a sale price. This is because retail prices are usually set

once a week at most, which is regarded by various authors as an important advantage of

using scanner data sets for studying microeconomic adjustment of prices (see, for example,

Chevalier, Kashyap, and Rossi, 2003; Dutta, Bergen, and Levy, 2002; Kehoe and Midrigan,

2008; Levy, Chen, Muller, Dutta, and Bergen, 2010). While most scanner data sets do

not provide an indicator variable identifying whether the transaction price corresponds to

regular or sale prices, an exception to this is the data on Dominick’s Finer Foods, a retail

chain in Chicago in the US.2 Although, as reported by the data provider, Dominick’s data

only partially flags the sales, there are more than 7.5 million flagged sales in this data.

We use the information from flagged sales in the Dominick’s data to understand the key

features of sales (such as, duration of sales, magnitude of price dips and percentage recovery

of prices) and to develop an algorithm, the “sales spotter”, along with its parameters to

identify the sale prices in the data.

Furthermore, we have set the values of the parameters of the spotter after analysing

the behaviour of the flagged sales in the Dominick’s data. To give an example, for around

17% of the flagged sales in the Dominick’s data, after the sale is over, the new regular

prices are lower than the regular prices before the sale. We introduce a parameter which

is related to the minimum percentage recovery from the initial dip to consider the end of

a sale. While Kehoe and Midrigan (2008) and Lloyd et al. (2011) allow for lower recovery

2The data is available at http://research.chicagobooth.edu/marketing/databases/dominicks/index.aspx.
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after the sale, Hosken and Reiffen (2004), Nakamura and Steinsson (2008), Campbell and

Eden (2014) consider a price fall a sale only when the returned price is at least as high as

the pre-sale regular price. In agreement with Chahrour (2011), we find that the restraint

of full price recovery leads to missing a large number of authentic sales.

The task of identifying sales in point-of-sale data is not straightforward. While the

majority of sale prices are of a regular type in the sense that price reduction is large, the

duration of the reduced price is short and the price returns to its original price after the sale

is over (U-shaped sales); there are also a large number of sales where the price dips are very

small (around 15% of Dominick’s flagged sales have price dips of 5% or less), the duration

is long (around 5% have a duration of five weeks or more), and prices do not return to their

original pre-sale prices (around one-third of the flagged sales return to a different price).

The problem lies in identifying the latter types of sales, because in many cases these sales

are indistinguishable from non-sale price changes. Further complications arise due to large

number of missing prices, price variations within a single sale and frequent price spikes.

For instance, if price spikes are not accounted for, a filter may identify a post-spike regular

price as a sale price.

One might design an algorithm to capture the sales of very small price dip and long

duration, but it would at the same time capture a large number of regular price reductions.

The key to a good spotter is to draw a balance so that it maximizes the correct spotting

of sales and minimizes the incorrect identification of non-sale price reductions. In order

to achieve this, we incorporate four parameters in the design of the spotter, where one

parameter addresses the missing prices and other three parameters address the hetero-

geneity in the key features of sales. We determine the values of the parameters through

detailed observation of the data, and by setting up optimization rules consisting of an ob-

jective function and constraints. While the objective is to identify the maximum number

of flagged sales weeks, the constraints ensure that the basic features of the identified sales

are in line with those in the flagged sales.

Our approach to selecting the values of the parameters differs from the approach

taken by the other filters where the values of the parameters are essentially set arbitrarily.

Our study finds that the identification of sales is sensitive to the selected values of the

parameters. The identification is particularly sensitive to the parameter related to the

maximum duration of sales, suggesting that if the value of this parameter is set too high

or low it may affect the construction of the regular price series, and consequently, our

understanding of the pricing behaviour of firms.
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The next section discusses some important features of the flagged sales in the Do-

minick’s data. Section 3 describes the sales spotter and explains how the optimal values

of the parameters of the sales spotter are obtained.3 Section 4 draws conclusion.

2 Features of Flagged Sales in Dominick’s Data

The Dominick’s data contains information on prices paid by consumers and traded quan-

tities of 29 products at weekly frequencies for around 100 stores of the chain. The period

covered is nearly 400 weeks between September 1989 and May 1997 (although not all prod-

ucts are included from the beginning to the end). The data contains sales flag denoting

three types of sales: (1) a discount on the regular price given regardless of the quanti-

ties purchased, which is referred to as a discount (D); (2) a discount on the regular price

given if at least a certain minimum quantity is purchased, which is referred to as a bonus

(B); and (3) a discount for coupon holders (C). The coupon transactions account for only

0.47% of all flagged sales and are not considered in our analysis. The product category,

cigarettes, is excluded because the number of flagged sales in this category is negligible

(only 21 flagged sales).4

In spite of the fact that not all sales are flagged, as reported by the data provider,

a large number of sales — both in terms of the absolute number and the percentage of

transactions — are flagged. There are 3,175,465 discounts and 4,391,937 bonuses, totalling

over 7.5 million sales, flagged in the data (see Table 1). These sales cover 13.66 million

weeks of transactions, accounting for 14.92% of total weekly transactions reported in the

data. However, we detect some inconsistencies in the flagging of sales. These inconsisten-

cies include the flagged sales where (1) the magnitude of a price reduction is non negative

in the first period of the flagging of a sale (16.13% of flagged sales) and (2) the flagging

of a sale not ending though the price has returned to at least the pre-sale regular price

(2.93%).5 These inconsistent flagged sales have been excluded from the calculations shown

in Table 1 and Figure 1.

3The algorithm is written in the MATLAB program.
4The papers that use the Dominick’s sales flag to study retail pricing behaviour include Chevalier et al.

(2003) and Levy et al. (2010).
5Note that because sales are inconsistently flagged does not mean that all sale weeks within these sales

are also inconsistently flagged. The inconsistency may happen when the flagging is shown mistakenly one
week before or after the actual occurrence of sales. Our estimates show that the 10.07% of the flagged
sales weeks are inconsistently flagged.
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Table 1: Features of Flagged Sales in Dominick’s Data

Products Discounts Bonuses All Sales: Discounts & Bonuses
Total Average Average Average Total Average Average Average Total Average Average Average
Weekly Duration Price Price Weekly Duration Price Price Weekly Duration Price Price
Transact. (in Dip Recovery Transact. (in Dip Recovery Transact. (in Dip Recovery
(‘000) weeks) (%)† (%)‡ (‘000) weeks) (%) (%) (‘000) weeks) (%) (%)

Analgesics 31.61 1.10 22.36 99.50 91.09 1.90 14.06 99.63 122.70 1.70 16.20 99.60
Bath Soap 6.64 1.05 24.76 100.00 17.65 1.87 16.83 99.65 24.29 1.65 19.00 99.81
Beer 6.62 1.21 12.59 101.49 204.92 2.21 15.59 99.74 211.54 2.18 15.50 99.79
Bottled Juices 96.85 1.08 19.55 99.54 201.49 2.81 9.63 98.61 298.33 2.25 12.85 98.91
Cereals 73.16 1.11 32.14 98.28 98.19 1.97 13.30 99.13 171.35 1.61 21.35 98.77
Cheeses 163.93 1.11 18.67 99.10 327.32 2.40 10.35 99.08 491.25 1.97 13.13 99.09
Cookies 122.36 1.12 21.24 99.42 348.12 2.67 12.21 99.22 470.48 2.27 14.56 99.28

Crackers 53.00 1.08 22.04 99.63 128.01 2.90 9.37 98.55 181.01 2.36 13.08 98.87
Canned Soup 131.56 1.07 22.16 99.56 168.47 2.45 9.54 99.40 300.03 1.84 15.07 99.47
Dish Detergents 46.97 1.08 18.84 99.08 76.63 2.39 9.13 99.29 123.60 1.89 12.82 99.21
Front-end-candies 27.98 1.15 32.44 99.84 106.16 2.79 16.98 98.86 134.15 2.45 20.21 99.07
Frozen Dinners 107.12 1.07 24.56 99.10 89.19 2.44 13.42 99.82 196.30 1.69 19.49 99.43
Frozen Entrees 356.96 1.15 29.31 98.90 321.20 2.12 19.93 99.96 678.16 1.61 24.87 99.40
Frozen Juices 81.29 1.13 22.12 99.25 127.39 2.15 13.95 98.54 208.68 1.75 17.13 98.81

Fabric Softeners 39.37 1.06 16.68 99.35 76.85 2.83 9.09 98.75 116.22 2.23 11.66 98.95
Grooming Products 108.84 1.10 22.21 99.15 252.43 1.87 16.24 99.79 361.27 1.64 18.04 99.60
Laundry Detergents 68.66 1.11 22.16 98.70 116.65 2.55 10.95 99.24 185.30 2.02 15.10 99.04
Oatmeal 15.94 1.19 30.14 99.44 22.49 2.71 11.48 100.81 38.43 2.08 19.22 100.24
Paper Towels 29.35 1.13 13.82 99.89 46.62 2.44 9.75 97.88 75.97 1.94 11.32 98.66
Refrigerated Juices 74.03 1.14 24.14 97.92 142.10 2.29 12.30 99.53 216.13 1.90 16.36 98.98
Soft Drinks 1,155.10 1.21 23.14 98.29 655.28 1.83 22.57 99.84 1810.38 1.43 22.94 97.77

Shampoos 154.64 1.11 25.20 98.70 294.51 1.76 19.81 99.80 449.15 1.54 21.66 99.42
Snack Crackers 101.21 1.10 19.91 99.48 180.71 2.98 10.60 98.42 281.91 2.31 13.94 98.80
Soaps 28.48 1.07 16.27 100.00 79.64 2.67 7.81 100.12 108.12 2.25 10.04 100.09
Toothbrushes 61.42 1.08 24.86 98.98 99.13 1.94 20.98 98.67 160.56 1.61 22.46 98.79
Canned Tuna 13.75 1.13 22.42 98.57 108.80 2.99 7.61 99.04 122.55 2.78 9.27 98.99
Toothpastes 107.91 1.10 20.70 99.61 130.59 1.97 16.40 99.33 238.50 1.58 18.34 99.46
Bathroom Tissues 42.26 1.16 15.97 99.32 48.79 2.59 11.91 98.77 91.05 1.92 13.79 99.03

All Products* 3,175.47 1.15 23.25 98.82 4,391.94 2.28 15.04 98.91 7567.40 1.81 18.49 98.87
† Price dip is measured as the fall in the price in the first period of sale as a percentage of the last pre-sale regular price.
‡ Price recovery is the ratio of the first post-sale regular price to the last pre-sale regular price multiplied by 100.
* Total weekly transaction is obtained by summing the weekly transactions across products. Other figures are weighted averages where weights are the shares of
the corresponding weekly transactions.
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We study three features of the flagged sales: (1) the duration of sales in weeks, (2)

the magnitude of price dip, which is measured as the fall in price in the first week of sales

as the percentage of the preceding pre-sale regular price, and (3) the recovery of price after

the sale is over, which is measured as the percentage of the pre-sale regular price. Table

1 shows that the average duration of sales is 1.15 weeks for discounts and 2.18 weeks for

bonuses (medians are 1 week and 2 weeks, respectively). We find that 96.82% of discounts,

68.16% of bonuses and 80.10% of all sales lasted for 2 weeks or less. There is little variation

in the duration of discounts across products. However, there are variations in the duration

of bonuses, with the lowest duration being 1.76 weeks for shampoos and the highest being

2.99 weeks for canned tuna.6

While the duration is considerably lower for discounts compared to that for bonuses,

the magnitude of price dip is greater for discounts than it is for bonuses. The average price

fall is 23.25% for discounts and 18.49% for bonuses. However, there are large variations

in the magnitude of price dip with around 31.78% of sales having price dips of less than

10% and 40.01% having price dips of more than 30% (see also the distribution in Figure

1). The recovery of prices after sales, on the other hand, are around the same, both for

different products and types of sales. On average, the post-sale regular prices are around

99% of the pre-sale regular prices. The recovered price after the sale is 90-110% of the

pre-sale regular price for 86.06% of sales, while it is exactly at 100% for 66.42% of sales.

The price recovery is less than 100% for 17.01% of sales.7

3 Identifying Sale Prices

3.1 The Sales Spotter

Let pt be the observed price in period t.8 pt ∈ (rt, st), where rt and st denote the regular

and sale prices in period t, respectively. The primary aim of the spotter is to identify

whether pt is a regular or a sale price. For this purpose, in a given period t, the spotter

evaluates pt in relation to its adjacent price observations using some specific rules. These

6See appendix table A-1 for the estimates of the standard deviations of the duration, price dip and
recovery price of sales.

7In figure 1(b), 5 on the x-axis indicates the range (0− 5], 15 indicates (10− 15], 25 indicates (20− 25]
and so on. Similarly, in figure 1(c), on the x-axis, 30 = (0− 30], 50 = (30− 50], . . ., 110 = (90− 110] and
so on.

8In scanner data, the observed price corresponds to the transaction price of a distinct item sold in a
distinct outlet in a given period (typically, in a week).
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Figure 1: Distribution of Key Features of Sales
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rules are reflections of the basic features of sale price behaviour observed from scanner

data. The spotter has 4 parameters which provide flexibility in the application of the rules

to the data. The parameters are defined as follows:

1. M : the maximum number of periods the spotter is set to search backwards in time

for an observed (non-missing) price;

2. K: the maximum number of periods for which a series of reduced prices are treated

as sale prices;

3. E: minimum reduction of price as a proportion of the pre-sale regular price to be

considered as a sale;

4. F : minimum recovery of the initial price dip as a proportion of the pre-sale regular

price to consider the end of a sale.

The details of the spotter are as follows:

(1) Initial price: If pt is the first observed price, then pt = rt, i.e. the initial price is

always assumed to be a regular price. This is because it is not possible to compare

the first observed price with the preceding adjacent prices, which are unknown.

(2) Let m ∈ {1, 2, . . . ,M}. If pt−m ∀m = 1, 2, . . . ,M are missing, then pt = rt. The

spotter does not impute missing prices, instead, if it detects a missing price, it moves

one period backward, up to the maximum of M periods.

(3) Let rt−m be the regular price nearest to pt (in terms of time period), where m ≤M .

Also, let E ∈ (0, 1). If pt ≥ (1− E)rt−m, then pt = rt. The parameter E is included

in the spotter so that very small price decreases, such as those having taken place

due to rounding of numbers or typographical errors, are not identified as a sale price.

(4) Now to price decreases, where pt < (1− E)rt−m:

(a) If pt = rt−2 , i.e. pt−1 = rt−1 is a price spike, then the spotter sets pt = rt.

The spotter identifies one-period price spike and does not attribute the return

of price from the spike to sales.

(b) This is the case where pt−1 = rt−1 is not a price spike. The price reductions that

prevail for up to K periods are sale prices and price reductions that continue for

more than K periods are identified as permanent reductions, with the reduced
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prices considered to be the new regular prices. In addition to pt < (1−E)rt−m,

let {pt+1, pt+2, . . . , pt+k} < (1−E)rt−m. The spotter distinguishes between two

possible scenarios in (b)

(i) The first scenario is pt+k+1 ≥ rt−m, i.e. the price reduction continues for k

periods and afterwards the price returns to a price at least as high as the pre-

sale regular price. In this case, for all k ≤ K, [pt pt+1 . . . pt+k pt+k+1]′

= [st st+1 . . . st+k rt+k+1]′ and [rt rt+1 . . . rt+k]′ =

[rt−m rt−m . . . rt−m]′. And for all k > K, pt = rt and, at this stage,

the spotter does not identify {pt+1, pt+2, . . . , pt+k}, instead moves back

to period t + 1 and conducts the same operation from the beginning of

3. Suppose, {pt+1, pt+2, . . . , pt+k} = rt, then [pt+1 . . . pt+k pt+k+1]′ =

[rt+1 . . . rt+k rt+k+1]′.

(ii) The second scenario is pt+k+1 < rt−m, i.e. the returned price is less than

the pre-sale regular price. At this point, the spotter further distinguishes

between two possible cases depending on the extent to which pt+k+1 is lower

than rt−m. Let F ∈ (0, 1). The spotter finds whether pt+k+1 is more or less

than F times the initial drop in price from rt−m.

Case 1: pt+k+1 is close enough to the pre-sale regular price, rt−m, to be

considered the new regular price. More formally, if (1− F ) (rt−m − pt) ≥
rt−m − pt+k+1, for all k ≤ K, [pt pt+1 . . . pt+k pt+k+1]′ =

[st st+1 . . . st+k rt+k+1]′. And for all k > K, pt = rt and the spotter

moves back to period t + 1 and conducts the same operation from the

beginning of 3.

Case 2: In the case where pt+k+1 is less than F times the initial drop in price

from rt−m, the variation is too small to pull pt+k+1 out of the reduced prices

and to consider it the new regular price. That is, if (1− F ) (rt−m − pt) <
rt−m−pt+k+1, for all k ≤ K, the spotter at period t does not assign whether

{pt, pt+1, . . . , pt+k} are regular or sale prices. Instead, the spotter adds one

period to k and conducts the same operation again from the beginning of

point 4. This operation is continued for a maximum of K periods. And, as

before, for all k > K, pt = rt and the spotter moves back to period t + 1

and conducts the same operation from the beginning of 3.

(5) End-of-sample price: Let pt be the last observed price. The identification of a sale

9



price is based on the preceding prices. If pt ≥ (1 − E)rt−m, then pt = rt and if

pt < (1− E)rt−m, then pt = st.

Figure 2 shows examples of how the spotter works and what roles the parameters

play in the identification of sale prices when there are no missing prices. These figures

provide prices for 7 consecutive weeks. Since there are no missing prices, the parameter

M does not play any role in identifying the sale prices in Figure 2. Let us begin with the

simple case, shown in figure 2(a), where the parameters (E,K, F ) are (0.03, 5, 0.80) and

the prices in weeks 1–7 are: 100, 60, 60, 60, 60, 60 and 110 cents. The price from week

1 to week 2 drops by 40%. Since this drop is larger than (100× E)%, the spotter carries

out further evaluation in order to find whether the reduced price is a sale or a regular

price. The reduced price prevails from week 2 to 6 with no change in price in-between

this period. Given that K = 5, this period of 5 weeks falls within the maximum allowable

period for the reduced prices to be considered as sale prices. Hence the spotter identifies

the prices in week 2–6 as sale prices.

The next 3 figures, 2(b), 2(c) and 2(d), demonstrate the role of parameter F in the

determination of sales. The prices are the same as they were in figure 2(a) with only one

difference; that the week 5 price is now 90 cents. While the parameter E remains the same

at 0.03, the parameters K and F vary between the figures. In figure 2(b), given that the

drop in price from week 1 to week 2 is 40 cents and F = 0.80, at least (0.80 × 40) = 32

cents are required to be recovered to consider the increased price the new regular price.

But the price recovery is 30 cents, and hence the sale continues in week 5. However, in

figure 2(c), F = 0.70 and, therefore, (0.70× 40) = 28 cents of recovery is required to put

an end to the sale, and hence 90 cents in week 5 is a post-sale regular price. Note that in

figure 2(d), while the prices are the same as in 2(b) and 2(c), K is 4 weeks and F = 0.80.

Since the price recovery in week 5 is not large enough for it to be a regular price (at least

32 cents of recovery is required) and the reduced prices prevail for more than 4 weeks, the

reduced prices are not identified as sale prices.

Figure 2(e) differs from the previous three figures with respect to the price in week 6,

which is now 88 cents. Hence, price drops by only 2 cents from week 5 to 6. This drop is

less than the E × 90 = 2.7 cents price drop required for the price to be considered a sale

price. Hence, in contrast to that in figure 2(c), the week 6 price is a regular price. In figure

2(f), the price in week 3 is treated as a temporary spike and, therefore, the price reduction

in week 4 is not treated as a sale. Hence, the price in week 4 is considered a regular price
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Figure 2: Sales Spotter and its Parameters
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(c) E=0.03, K=5, F=0.70, M=10
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(d) E=0.03, K=4, F=0.80, M=10

1 2 3 4 5 6 7

60

80

100

120

Weeks

P
ric

e 
(in

 c
en

ts
)

 

 

Transaction price
Regular price
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(f) E=0.03, K=4, F=0.80, M=10
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and then the subsequent price reductions are evaluated to find whether they are regular

or sale prices. The examples in figures 2(a)–2(e) show that the selection of parameters are

important in the identification of sales. The general idea would be to set the parameters

K, F and E at a level so that the maximum number of sale prices are identified, while at

the same time regular prices are not mis-identified as sale prices. However, these examples

do not consider the presence of missing prices which are quite prevalent in scanner data
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sets and may introduce additional complication in the identification of sales.

Figure 3 shows how missing prices impact on the identification of sale prices. The

observed prices in these figures are the same as those in figures 2(b)–2(d) except that one

of the prices is missing in each figure. Although the goal of the spotter is not to impute

the missing prices, an implicit assumption about these prices are required in order to make

the spotter work. In general, it is assumed that a missing price is the same as the price

observed in the preceding week. For example, in figure 3(a), the price in week 2, which

is between a regular and a reduced price, is missing. In week 3, the spotter attempts

to compare the price for this week with the price in week 2. However, since the price is

missing in week 2, the spotter searches backward up to M = 10 weeks for an observed

price. In this case, a price is observed in week 1. The spotter assumes that the price in

week 2 is a regular price and is the same as that in week 1, and counts the parameter K

from week 3.

Figure 3: Missing Prices and the Sales Spotter
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In figure 3(b), the missing price is between two reduced prices, so the spotter assumes

that the price in week 3 is also reduced and is the same as week 2. The sale prevails in

weeks 2-4. In figure 3(c), the observed price in week 7, the last week in the sample, is

missing. The price in week 6 is a sale price because the price drops by (90 − 60) = 30

cents between weeks 5 and 6, which is more than the E × 90 = 2.7 cents required to be

considered a sale price. The spotter assumes that the price in week 7 is the same as week

6 and identifies week 7 as a sales week.

3.2 Determining the Values of the Parameters of the Spotter

The parameter M is included due to the presence of frequent missing observations in

scanner data. As expected, the number of flagged sales identified increases with M , though

the increment is small and the rate of increase falls steadily with each subsequent increase

in M . This holds for all 28 products. For the whole data set, an increase in M from 4

weeks to 13 weeks adds about 1% to the identification of the flagged sale weeks, then from

13 to 52 weeks adds less than 0.4%. Given such low increments and the possibility that

a larger gap may identify non-sale price reductions as sales, the parameter M is set at 13

weeks, i.e. a quarter of a year. The parameter E is set so that any small or, rather, very

small, price reductions documented in scanner data due to typographical error or rounding

of numbers are not identified as sales. The flagged sales with an initial price dip of less or

equal to 1%, 2%, 3%, 4% and 5% account for 0.98%, 3.76%, 7.45%, 11.17% and 15.11%

of sales, respectively. This empirical observation leads us to choose E = 0.02 for all the

products, implying that a price fall of more than 2% would undergo further evaluation for

identification as a sale event. We have conducted sensitivity analysis with E = 0.01, 0.04

and M = 52 weeks. These are discussed later in the section.9

The values of two other parameters, K, the maximum duration of a sale, and F , the

minimum price recovery to call the end of a sale, are chosen using an optimization rule.

The objective of the optimization problem is to identify the maximum number of flagged

sale weeks, subject to the constraints that the deviations between the flagged and identified

sales in terms of average duration and price dips are equal or at the minimum. In other

words, the constraints are set so that the spotter identifies sales whose main features are

9The studies that have considered only the price reductions of 10% or more as sale prices might have
excluded a large number of sales from their analysis (e.g. Hosken and Reiffen, 2004; Lloyd et al., 2011;
Campbell and Eden, 2014).
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around the same as those of the flagged sales. The optimization problem is as follows:

maxK,F η(K,F ) = NI∩f (K,F )/Nf (1)

subject to,

c1 : mdurI −mdurf ≤ 0 (2)

c2 : −mdipI +mdipf ≤ 0 (3)

c3 : K − 18 ≤ 0 (4)

c4 : −F + 0.25 ≤ 0 (5)

In in equation (1), Nf is the number of flagged sale weeks and NI∩f (K,F ) is the number

of flagged sale weeks which are identified by the spotter. Hence, η(K,F ) denotes the

proportion of flagged sale weeks which are identified by the spotter. In equations (2) and

(3), mdurf and mdurI denote the mean durations, and mdipf and mdipI denote the mean

of percentage price dips of the flagged and identified sales, respectively. Note that while

mdurf and mdipf are fixed as obtained from the Dominick’s data set, mdurI and mdipI

change with the changes in the value of K and F .

In the objective function, a larger K is expected to identify more flagged sale weeks,

although at a decreasing rate; δη/δK = η′K > 0 and δ2η/δK2 = η′′K < 0. However, a larger

K would attribute some regular price falls to sale prices. This would increase the average

duration and decrease the average price dip of the identified sales since, in general, the

durations are higher and price falls are lower for regular price reductions. A larger F may

increase the identification of the flagged sale weeks by allowing a sale to continue when

there are small variations within the sale period, although it may attribute some post-sale

regular prices to sale prices. If, however, F is too large (e.g. F = 1, implying at least 100%

recovery), the effect may be the opposite because it may increase the duration which may

become too large to call the price drop a sale. Hence, a priori, the direction of the effect

of F on the identification of sales is less clear than that of K.

Turning our attention to the constraints now, c1 restricts the mean duration of the

identified sales to exceed that of the flagged sales as we increase K and F . c2 restricts

the mean price dip of the identified sales from falling below that of the flagged sales as

we increase K and F . Hence, these two constraints hold two main features of sales to be

around the same in the identified and flagged sales and, given that regular price falls are
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lower and last longer, provide a check to the false identification of non-sale price reductions

as sale prices. c3 restricts K to be no more than 18 weeks and c4 requires that the price

recovery is above 25% to consider the end of a sale.10

Figure 4 shows the combined objective and constraint functions of all 28 products.

These values are obtained by taking the weighted average of the product-wise objective

and constraint values, where weights are the proportion of flagged sales corresponding to

each product. Figures 4(a), 4(d) and 4(g) show the actual values of the objective (η), c1

and c2 constraints of the “combined product”, respectively, for feasible K and F . We fit

linear, quadratic and cubic functions on the objective, c1 and c2 values and find that the

cubic function provides a better fit for all three sets of values. The adjusted-R2 of the cubic

fit of the objective, c1 and c2 values are 98.07, 98.86 and 94.32 percent, respectively. This

leads us to choose the cubic fits of all functions while solving the optimization problem.

The figures show that the objective and constraint values are more sensitive to K than

they are to F .11

Figures 4(b), 4(e) and 4(h) show the actual and fitted values of the objective, c1 and

c2 functions at F = 0.25, respectively. These figures show that the objective and constraint

values grow rapidly for up to K = 5 weeks, then the rate of increase slows down or nearly

stalls. For example, with regard to the objective function, the identified flagged sale weeks

are 58.0, 72.3, 76.9 and 79.2 percent of the total flagged sales weeks for K = 3, 5, 7 and 9,

respectively. Figures 4(c), 4(g) and 4(i) show the actual and fitted values of the objective,

c1 and c2 functions at K = 6, respectively. These figures show that while the effect of

parameter F on the objective and c2 values are small, its effect on c1 values is non-trivial

and positive. The positive effect implies that a larger F tends to identify price reductions

of a larger duration, some of which may be non-sale price falls, as sale prices. The figures

indicate that the values related to the duration of sales — the parameter K and constraint

c1 — would play an important role in the identification of sale prices.

Table 2 shows the optimal values of K and F , the corresponding objective value and

indicators showing which constraints are active in the solution to the optimization problem.

The optimal K and F for the combined product are 6 weeks and 0.25, respectively. The

corresponding objective value is 0.75. The active constraints in the solution are c1 and

c2, where the former restrains the mean duration of the identified sales to be the same

10Only 0.33% and 0.01% of sales have duration of more than 18 weeks and price recovery of less than
25%, respectively.

11Given that the objective and constraint functions are smooth and bounded in a fixed domain, a
solution to the optimization problem exists.
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Figure 4: Objective and Constraint Values Aggregated over All Products

(a) Objective (η) Values - Actual

4
8

12
16

0.25
0.50

0.75
1.00

0

0.2

0.4

0.6

0.8

1

K − in weeks

F − in proportion

η 
− 

pr
op

or
tio

n 
id

en
tif

ie
d

(b) η Values at F=0.25

4 8 12 16
0

0.2

0.4

0.6

0.8

1

K − max. duration in weeks

η
 −

 p
ro

p
o

rt
io

n
 i
d

e
n

ti
fi
e

d

 

 

Actual
Quadratic fit
Cubic fit

(c) η Values at K=5

0.25 0.50 0.75 1.00
0

0.2

0.4

0.6

0.8

1

F − min. recovery in proportion

η
 −

 p
ro

p
o

rt
io

n
 i
d

e
n

ti
fi
e

d

 

 

Actual
Quadratic fit
Cubic fit

(d) Constraint (c1) Values - Actual

4
8

12
16

0.25
0.50

0.75
1.00

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

K − in weeks

F − in proportion

c 1 v
al

ue
s 

(w
ee

ks
)

(e) c1 Values at F=0.25

4 8 12 16
−0.75

−0.5

−0.25

0

0.25

0.5

0.75

K − max. duration in weeks

c
1
 v

a
lu

e
s
 (

w
e

e
k
s
)

 

 

Actual
Quadratic fit
Cubic fit

(f) c1 Values at K=5
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of the flagged sales and the latter sets the requirement of at least 25% price recovery for

declaring the end of a sale. Looking at the product-wise results, the optimal K ranges

from 3 to 9 weeks, with K at 5− 6 weeks for 16 out of 28 products. The optimal F is less

than 0.50 for 23 products, of which F takes the minimum of 0.25 for 19 products. The

largest optimal F is found to be for analgesics, 0.67. While constraint c1 is binding for 22

products, constraint c2, ensuring that the magnitude of price dips are around the same in

the flagged and identified sales, is active for 13 products. Both c1 and c2 are found to be

active for 7 products.12

The average objective value at the optimal solutions of all products is 0.738, implying

that around 73.8% of the flagged sale weeks are identified by the spotter. We find that

around 10.1% of flagged sale weeks are inconsistently flagged because they correspond to

sales whose price in the first or last period of sale is larger than the regular price preceding

the sale. Since these flagged sales are not intended to be identified, the spotter identifies

around 84.0% of the authentic flagged sale weeks.

Table 3 shows the sensitivity of the optimal values with respect to changes in the

constraints and the values of the parameters M and E. With respect to c1, when we let the

average duration of the identified sales to exceed that of the flagged sales by one standard

deviation of the duration of the flagged sales, the optimal K, F , and the corresponding

objective values of the combined product become 8, 0.25 and 0.784, respectively. Hence,

when compared with the base case, this perturbation in c1 increases the objective value

by 3.4 percentage points. If we let the constraint c2 exceed by two standard deviations of

the duration of the flagged sales, then the objective value increases to 0.822. The results

show that the identification of sales is sensitive to c1, because c1 restricts K from becoming

too large. If c1 is removed from the optimization problem, the optimal K and F , and the

objective value become 10, 1.0 and 0.828, respectively.

We conduct similar sensitivity analysis with respect to constraint c2, where we perturb

the constraint by adding one and two standard deviations of the size of the price dips of

the flagged sales and, finally, by removing the constraint from the optimization problem.

Since c2 is not binding in the combined product, any perturbation to c2 would not impact

the optimal solution of the combined product. However, the perturbation in c2 affects

12Kehoe and Midrigan (2008) chose 5 weeks and Chahrour (2011) chose 6 weeks for the size of window
within which the current price is compared with the forward prices, while Campbell and Eden (2014)
consider only 2 weeks and Lloyd et al. (2011) consider price reductions up to 12 weeks as sales. Our
finding appears to be supportive of the selection of window size of Chahrour, and Kehoe and Midrigan,
although their filters have a different objective and use a different mechanism.
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Table 2: Optimal Values of Parameters by Products

Products Optimal Values† Active Constraints‡

K F η c1 c2 c3 c4
Analgesics 3 0.67 0.682 0 1 0 0
Bath Soap 4 0.57 0.820 0 1 0 0
Beer 5 0.25 0.811 1 0 0 1
Bottled Juices 6 0.25 0.706 1 0 0 1
Cereals 5 0.45 0.711 1 1 0 0
Cheeses 5 0.25 0.717 1 1 0 1
Cookies 6 0.25 0.778 1 0 0 1

Crackers 7 0.25 0.792 1 0 0 1
Canned Soup 5 0.25 0.699 1 1 0 1
Dish Detergents 5 0.25 0.674 1 0 0 1
Front-end-candies 5 0.47 0.713 0 1 0 0
Frozen Dinners 8 0.25 0.776 1 0 0 1
Frozen Entrees 5 0.25 0.763 1 0 0 1
Frozen Juices 5 0.25 0.715 1 0 0 1

Fabric Softeners 7 0.25 0.654 1 0 0 1
Grooming Products 4 0.51 0.786 0 1 0 0
Laundry Detergents 6 0.25 0.657 1 0 0 1
Oatmeal 9 0.49 0.656 1 0 0 1
Paper Towels 6 0.25 0.630 1 0 0 1
Refrigerated Juices 6 0.25 0.712 1 0 0 1
Soft Drinks 6 0.25 0.746 1 0 0 1

Shampoos 5 0.25 0.773 1 1 0 1
Snack Crackers 7 0.34 0.763 1 1 0 0
Soaps 7 0.25 0.726 1 1 0 0
Toothbrushes 4 0.62 0.758 0 1 0 0
Canned Tuna 6 0.25 0.654 1 0 0 1
Toothpastes 3 0.52 0.720 0 1 0 0
Bathroom Tissues 8 0.25 0.655 1 1 0 1
Average* 6 0.30 0.738 – – – –
Combined** 6 0.25 0.750 1 0 0 1
† For all products, M = 13 and E = 0.02. Here K is set to
the closet integer corresponding to the optimal value and η is
the corresponding actual objective value (see appendix table
A-3 for the optimal values that includes decimals and
the fitted objective values.)
‡ 1 means active constraint and 0 means inactive constraint.
* Weighted average of the optimal values of all products
where weights are the proportion of flagged sales.
** Uses the weighted average of objective and constraint
functions in the optimization problem where weights are the
proportion of flagged sales.
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Table 3: Sensitivity Analysis

Constraints & All Products Combined Product
Parameters K F η K F η
Base case†

Combined Prod. 6 0.30 0.738 6 0.25 0.750

Constraint c1
‡

+ (1× σdurf ) 7 0.46 0.783 8 0.25 0.784
+ (2× σdurf ) 8 0.65 0.807 10 0.63 0.822
= {∅}** 8 0.79 0.809 10 0.69 0.828

Constraint c2*
+ (1× σmagf ) 6 0.29 0.753 6 0.25 0.750
+ (2× σmagf ) 6 0.28 0.752 6 0.25 0.750
= {∅}** 6 0.25 0.750 6 0.25 0.750

Parameter F
≥ 0.00 6 0.14 0.740 6 0.00 0.731
≥ 0.50 5 0.51 0.736 5 0.50 0.734
≥ 0.75 5 0.75 0.735 5 0.75 0.735
≥ 1.00 4 1.00 0.666 4 1.00 0.667

Parameter E
= 0.01 5 0.32 0.741 5 0.25 0.737
= 0.04 6 0.30 0.700 6 0.25 0.696

Parameter M
= 52 weeks 6 0.31 0.759 6 0.25 0.754

† In the base case, E = 0.02 and M = 13 weeks. Here K is set to the
closet integer corresponding to the optimal value and η is the
corresponding actual objective value.
‡ σdurf denotes the standard deviation of the duration of the flagged sales.
* σmagf denotes the standard deviation of the price dip of flagged sales.
** c1 = {∅} and c2 = {∅} mean that the respective constraint is removed.

the optimal solution for 7 products. The average impact of the one- and two-standard

deviation perturbations on these 7 products is the increase in the objective values from

0.682 to 0.701 and 0.723, respectively. The removal of c2 increases the objective value to

0.741. However, as shown in Table 3, the average impact of any perturbation in c2 on all

28 products is very small. This finding is supportive of our earlier observation that while

c2 — at least for some products — is an important constraint, c1 plays a more dominant

role in the determination of sales.

With regard to constraint c4, if the minimum price recovery is reduced to 0, the

objective value remains around the same as the base case scenario. This is expected

because there are only a few sales which have price recovery of less than 25% of the pre-

sale regular price. On the other hand, if only the sales with the full price recovery is

considered, the objective value for the combined product is reduced to 0.667. Hence, if
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the spotter had identified only U-shaped sales, it would have missed around 8.3% of sale

weeks. The results from the perturbation of c4 indicate that although there are many sales

whose recovered price are lower than the pre-sale regular price, they are probably not far

below the pre-sale regular price.13

We have also conducted sensitivity analysis to changes in M and E. Although the

presence of frequent missing prices makes the inclusion of M in the spotter necessary,

the change in its value has a negligible effect on the identification of flagged sales. For

example, if M is increased from 13 weeks (the base case) to 52 weeks, the identification of

sales weeks increases by only 0.4% points. However, the effect of the change in E on the

identification of sales can be significant. This is expected because a large number of sales

have very small price dips. We find that if E is increased from 0.02 to 0.04, the spotter

misses identifying around 5.4% of the flagged sales weeks.

The flagged sales which are not identified by the spotter include: (1) sale prices which

are the initial prices (2.06%); (2) sales prices which have price dips of less than (100×E)%

of the regular price (3.07%); (3) sales whose price recovery is less than (100× F )% of the

regular price (0.01%); and (4) sale prices with durations larger than optimal K (2.83%).

Note that the longer duration sales correspond to around 8.02% of flagged sale weeks.

Hence, the sales which have durations longer than the optimal duration account for the

largest percentage of sale weeks not identified by the spotter.14

We summarize our results with regard to determining the value of the parameters as

follows: (1) The parameter for the maximum duration of sales plays the most important

role in identifying the sale prices. Our evidence from 28 products shows that the optimal

value for this parameter ranges from 3 to 9 weeks. The average is 6 weeks, the value that we

suggest using if one would prefer to use one value for all products. Since the identification

of sales is sensitive to the value of this parameter, sensitivity analysis may be conducted

in studies of pricing behaviour where the distinction between the regular and sale prices is

important (such as, measuring price stickiness and inflation). The values in the range of 4

– 8 weeks might be a reasonable choice in undertaking the sensitivity analysis, noting that

a lower value would miss identifying some sales and a higher value would add some sales at

the expense of attributing some non-sale price reductions to sales. (2) Any mechanism to

13It is common for the sales filters to consider only the fully recovered price falls as sale prices (e.g
Hosken and Reiffen, 2004; Nakamura and Steinsson, 2008; Campbell and Eden, 2014).

14The sum of the percentage of unidentified sales would not match exactly with the unidentified sale
weeks implied by the objective functions. This is because of the distinction between the percentage of
sales and the percentage of sale weeks, overlaps of sales in the above 4 categories and other unknown
reasons.
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identify sales should be cognizant of the fact that for a large number of sales the recovered

price after the sale is lower than the pre-sale regular price. Our analysis indicates that

if we set the parameter for the minimum price recovery requirement at 0.25, the spotter

maximizes the identification of sales. However, our sensitivity analysis shows that the value

of this parameter exerts a significant influence on the identification only when it gets close

to 1. This leaves us with some room for flexibility in choosing the value for this parameter,

and leads us to suggest that a one-half recovery should be considered large enough to end a

sale. (3) A large number of sales have very small price dips and, therefore, the identification

of sales is sensitive to the minimum percentage reduction required in price to consider a

price reduction a sale. We set this value at 2% based on observing the Dominick’s data.

Our analysis leads us to suggest that a 5% price drop should be considered large enough

to be considered as a sale.

4 Conclusion

Since many scanner data sets do not provide an indicator for whether the transaction

took place during a promotion or not, for many studies on retail pricing behaviour, an

algorithm is required to be developed to identify sale prices from all transaction prices.

This task is not straightforward because there are wide variations in sale prices in terms of

the duration of sales, magnitude of price dips and recovered price after the sale. Further

complications arise from a large number of missing prices and frequent price spikes. Some

features of sale and non-sale price reductions overlap, making their distinctions difficult.

We have developed an algorithm, the sales spotter, coded in the MATLAB pro-

gramme, in order to identify sale prices in point-of-sale data. The spotter depends on 4

parameters reflecting the main features of sale prices and providing flexibility in the way

spotter identifies sales prices from the transaction price series. While one parameter is

related to how the spotter handles the missing prices in the data, the other parameters are

related to the maximum duration of sales, the magnitude of price dips, and the recovery

of price after the sale is over. We set the values of the parameters by analyzing the basic

features of around 7.5 million flagged sales in the data, with the goal of maximizing the

spotting of sales while preventing the identification of non-sale price changes as sale prices.

We find that among the four parameters, the identification of sales is most sensitive to

the parameter related to the maximum duration of sales, K. We find that in our base case

scenario, the optimal K is 6 weeks and the spotter identifies around 84% of the authentic
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sale weeks. The remaining sale weeks were not identified mainly because they correspond

to sales which have large durations and very small price dips.

Our sensitivity analysis shows that if we remove the constraint from the optimization

problem which prevents the value of K from becoming too large, then the optimal K

becomes 10 weeks, leading to the identification of around 93% of authentic sale weeks. We

find that if the spotter had only identified sales whose recovery price is at least as high as

the pre-sale regular price, then it would have missed spotting around 8.3% of authentic

sale weeks. We further find that if the spotter had considered price dips of 4% or more,

instead of 2% or more, it would have missed identifying another 5.4% of authentic sale

weeks.
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Table A-1: Standard Deviation of Some Key Features of the Flagged Sales in Dominick’s Data

Products† Duration (in weeks) Price Dip(%) Price Recovery(%)
Discounts Bonuses All Discounts Bonuses All Discounts Bonuses All

Analgesics 0.23 0.60 0.59 11.52 9.53 11.13 5.85 6.71 6.37
Bath Soap 0.24 0.86 0.76 9.88 10.51 10.75 8.89 8.59 8.72
Beer 0.37 0.73 0.78 10.20 6.29 7.35 13.16 5.48 7.68
Bottled Juices 0.19 1.12 1.15 10.09 7.41 9.74 5.75 6.41 6.14
Cereals 0.21 0.77 0.69 13.31 10.43 14.54 8.86 7.84 8.31
Cheeses 0.31 0.78 0.86 8.82 6.71 9.02 5.80 5.62 5.75
Cookies 0.21 1.06 1.12 10.30 7.20 8.94 6.29 6.71 6.59

Crackers 0.27 1.03 1.15 8.53 10.40 9.35 5.65 26.91 22.26
Canned Soup 0.16 0.79 0.83 7.28 6.32 9.91 3.40 6.17 5.14
Dish Detergents 0.13 0.97 0.95 9.54 6.25 9.64 4.74 6.80 6.13
Front-end-candies 0.23 0.93 0.99 14.56 16.66 15.09 7.81 26.06 22.72
Frozen Dinners 0.14 0.99 0.96 9.33 9.95 11.74 6.98 8.85 8.07
Frozen Entrees 0.31 0.76 0.74 10.66 11.45 12.24 6.44 11.08 9.37
Frozen Juices 0.18 0.72 0.74 9.81 7.32 9.63 6.31 5.22 5.74

Fabric Softeners 0.18 1.56 1.48 9.73 5.97 8.87 5.67 7.09 6.62
Grooming Products 0.23 0.71 0.66 11.61 11.09 11.57 8.50 11.07 10.11
Laundry Detergents 0.21 1.20 1.14 11.88 8.26 10.97 7.84 7.16 7.44
Oatmeal 0.19 0.97 0.99 10.85 8.91 12.36 13.00 8.22 10.73
Paper Towels 0.22 0.87 0.84 7.48 6.67 7.30 5.73 7.10 6.51
Refrigerated Juices 0.21 0.70 0.74 11.11 9.81 11.65 8.39 9.16 8.90
Soft Drinks 0.34 1.05 0.86 8.04 13.86 12.66 21.80 29.69 24.26

Shampoos 0.27 0.70 0.64 13.32 9.96 11.75 12.42 8.95 10.49
Snack Crackers 0.21 1.31 1.35 11.28 7.65 10.42 7.59 7.06 7.27
Soaps 0.22 1.08 1.12 9.44 5.94 8.79 3.92 5.15 4.73
Toothbrushes 0.29 0.60 0.61 12.73 11.76 12.36 10.60 11.01 10.83
Canned Tuna 0.18 1.11 1.19 11.81 3.88 8.03 6.14 3.29 4.05
Toothpastes 0.26 0.66 0.63 10.00 9.85 10.35 7.43 8.65 8.09
Bathroom Tissues 0.19 1.21 1.10 7.51 12.46 11.35 4.17 4.07 4.13

Average* 0.26 0.92 0.88 9.97 10.03 11.67 10.63 13.56 12.03
† See Table 1 for the measures of averages of these features of sales.
* This is the weighted average of all products where weights are the proportion of flagged sales of the respective
products to all flagged sales in the data.
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Table A-2: Adjusted R-squares of the Polynomial Fits to the Objective and Constraint
Functions

Products Objective function Constraint: c1 function Constraint: c2 function
Linear Quad. Cubic Linear Quad. Cubic Linear Quad. Cubic

Analgesics 43.84 77.03 93.27 79.88 89.04 96.82 53.69 81.21 94.82
Bath Soap 43.50 76.97 92.58 67.20 84.09 94.52 47.52 69.11 86.32
Beer 44.79 75.96 92.00 58.05 79.55 92.01 44.66 78.76 93.33
Bottled Juices 62.82 93.86 99.48 66.45 93.92 99.55 42.70 77.59 93.77
Cereals 55.84 86.39 97.30 87.47 93.62 97.62 53.28 80.22 93.15
Cheeses 56.75 87.77 93.97 67.17 91.08 98.39 43.93 78.82 94.39
Cookies 56.98 89.39 98.22 60.90 89.65 98.37 42.54 77.22 94.28

Crackers 63.43 93.64 99.48 64.82 93.07 99.41 43.02 76.91 92.77
Canned Soup 59.69 91.66 99.13 71.03 92.49 99.00 47.29 80.55 95.53
Dish Detergents 67.01 93.00 98.99 79.72 95.30 99.30 48.70 79.30 94.36
Front-end-candies 66.10 93.38 99.03 67.17 92.94 99.18 47.28 81.09 95.83
Frozen Dinners 55.84 87.68 98.01 67.55 91.43 98.61 43.31 77.03 93.52
Frozen Entrees 49.30 84.20 96.70 63.33 89.57 98.25 34.09 70.33 90.07
Frozen Juices 56.72 89.42 98.38 74.88 94.21 99.03 41.62 76.94 93.52

Fabric Softeners 77.49 96.82 99.26 83.28 96.66 99.22 51.20 83.66 95.69
Grooming Products 38.43 72.30 90.33 73.53 87.24 96.01 30.04 63.36 85.54
Laundry Detergents 66.43 94.58 99.63 77.17 96.05 99.69 47.83 81.32 95.55
Oatmeal 70.31 94.02 98.96 84.34 96.00 99.04 60.68 85.25 95.73
Paper Towels 74.87 94.51 99.05 85.16 96.75 99.18 40.21 74.62 93.34
Refrigerated Juices 57.86 87.92 97.85 75.07 92.87 98.65 37.91 71.37 89.99
Soft Drinks 62.42 88.01 96.55 77.52 94.60 98.73 26.55 65.49 87.07

Shampoos 39.37 70.85 89.31 76.32 87.17 95.51 53.14 78.07 91.56
Snack Crackers 68.55 94.85 99.20 74.04 96.25 99.46 49.16 83.40 96.98
Soaps 65.12 93.99 99.58 71.77 94.20 99.45 45.49 79.47 94.59
Toothbrushes 50.30 81.22 94.81 72.59 90.54 97.49 52.56 85.89 97.05
Canned Tuna 71.31 97.32 99.51 73.48 96.52 99.77 46.63 81.33 95.79
Toothpastes 44.56 77.63 93.32 74.54 89.06 97.19 49.09 77.77 94.08
Bathroom Tissues 71.32 93.18 98.57 78.76 95.55 98.98 44.16 78.53 94.48

Average* 58.60 88.81 98.07 72.36 92.87 98.86 44.46 78.25 94.32
* This is the weighted average of all products where weights are the proportion of flagged sales of
the respective products to all flagged sales in the data.
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Table A-3: Optimal Values of the Parameters by Products

Products Optimal Values† Active Constraints‡

K F f c1 c2 c3 c4
Analgesics 3.31 0.672 0.641 0 1 0 0
Bath Soap 3.79 0.569 0.738 0 1 0 0
Beer 5.01 0.250 0.811 1 0 0 1
Bottled Juices 5.53 0.250 0.664 1 0 0 1
Cereals 4.47 0.453 0.658 1 1 0 0
Cheeses 4.80 0.250 0.672 1 1 0 1
Cookies 5.93 0.250 0.768 1 0 0 1

Crackers 6.70 0.250 0.797 1 0 0 1
Canned Soup 4.77 0.250 0.665 1 1 0 1
Dish Detergents 4.72 0.250 0.633 1 0 0 1
Front-end-candies 4.91 0.467 0.657 0 1 0 0
Frozen Dinners 7.67 0.25 0.792 1 0 0 1
Frozen Entrees 4.92 0.250 0.751 1 0 0 1
Frozen Juices 4.67 0.250 0.677 1 0 0 1

Fabric Softeners 6.80 0.250 0.647 1 0 0 1
Grooming Products 3.55 0.510 0.695 0 1 0 0
Laundry Detergents 5.63 0.250 0.629 1 0 0 1
Oatmeal 8.91 0.487 0.665 1 0 0 1
Paper Towels 6.36 0.250 0.645 1 0 0 1
Refrigerated Juices 5.84 0.250 0.699 1 0 0 1
Soft Drinks 6.14 0.250 0.762 1 0 0 1

Shampoos 5.29 0.250 0.779 1 1 0 1
Snack Crackers 6.75 0.344 0.764 1 1 0 0
Soaps 6.72 0.251 0.717 1 1 0 0
Toothbrushes 3.65 0.616 0.678 0 1 0 0
Canned Tuna 6.00 0.250 0.632 1 0 0 1
Toothpastes 3.15 0.521 0.662 0 1 0 0
Bathroom Tissues 8.44 0.250 0.686 1 1 0 1

Average* 5.46 0.298 0.724 – – – –
Combined** 5.55 0.250 0.735 1 0 0 1
† For all products, M = 13 and E = 0.02. f corresponds
to the fitted (cubic) objective value.
‡ 1 implies active and 0 implies inactive constraint.
* Weighted average of the optimal values of all products
where weights are the proportion of flagged sales in the
products to all flagged sales.
** Uses the objective and constraint values which are the
weighted average of the respective values of all products, and
weights are the proportion of flagged sales for each product.
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Table A-4: Un-identified Flagged Sales as a Percentage of Total Flagged Sales

Products* Inconsis Initial Duration Price Price
-tent Prices K > Dip Recovery

Flagging as Sales Optimal < E% < F%
Analgesics 9.45 3.61 7.11 4.49 0.00
Bath Soap 4.71 6.38 4.38 0.69 0.00
Beer 5.10 3.39 6.62 0.69 0.00
Bottled Juices 12.90 1.92 3.71 6.71 0.00
Cereals 11.04 2.25 2.04 7.25 0.00
Cheeses 11.32 1.13 2.69 7.84 0.00
Cookies 7.40 2.10 2.66 2.48 0.00

Crackers 9.16 2.24 4.16 2.98 0.00
Canned Soup 11.99 1.10 2.73 4.46 0.00
Dish Detergents 11.18 2.09 3.64 6.15 0.00
Front-end-candies 13.65 2.08 4.67 1.46 0.02
Frozen Dinners 8.56 2.90 0.60 2.69 0.01
Frozen Entrees 10.23 1.44 1.41 1.51 0.01
Frozen Juices 12.08 0.70 1.77 4.03 0.01

Fabric Softeners 11.52 2.31 4.10 6.38 0.07
Grooming Products 5.29 4.29 4.40 1.25 0.01
Laundry Detergents 12.84 3.09 3.28 6.48 0.00
Oatmeal 11.72 0.92 0.79 10.73 0.00
Paper Towels 15.17 2.02 3.45 2.96 0.00
Refrigerated Juices 10.75 1.02 1.26 5.67 0.01
Soft Drinks 10.05 1.46 1.49 0.88 0.03

Shampoos 6.68 5.00 3.15 0.54 0.01
Snack Crackers 9.78 1.71 3.57 2.86 0.00
Soaps 7.89 3.07 2.43 11.79 0.00
Toothbrushes 8.32 3.07 5.14 1.04 0.02
Canned Tuna 13.38 1.22 8.38 7.12 0.00
Toothpastes 7.87 2.92 4.91 1.75 0.00
Bathroom Tissues 13.35 1.19 1.11 3.80 0.00

All Products** 10.07 2.06 2.83 3.07 0.01
* Inconsistent flagging figures refer to the percentage of sale weeks and
others refer to the percentage of sales.
** This is the weighted average of all products where weights are the
proportion of flagged sales of the respective products to all flagged
sales in the data.
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Table A-5: Sensitivity of Optimal Values to Changes in Constraint c1

Products† c1 + (1× σdurf )‡ c1 + (2× σdurf )‡ c1 = {∅}∗
K F f K F f K F f

Analgesics 3.31 0.672 0.641 3.31 0.672 0.641 3.31 0.672 0.641
Bath Soap 3.79 0.569 0.738 3.79 0.569 0.738 3.79 0.569 0.738
Beer 5.50 0.500 0.820 5.96 0.700 0.845 10.52 0.250 0.893
Bottled Juices 6.67 0.286 0.726 6.90 0.689 0.748 6.90 0.689 0.748
Cereals 4.50 0.531 0.660 4.50 0.531 0.660 4.50 0.531 0.660
Cheeses 5.53 0.499 0.730 5.81 0.805 0.751 5.81 0.805 0.751
Cookies 6.86 0.250 0.812 9.54 0.250 0.859 10.06 1.000 0.875

Crackers 7.38 0.773 0.846 7.38 0.773 0.846 7.38 0.773 0.846
Canned Soup 4.94 0.675 0.685 4.94 0.675 0.685 4.94 0.675 0.685
Dish Detergents 5.61 0.250 0.688 6.95 0.250 0.746 11.28 1.000 0.833
Front-end-candies 4.91 0.467 0.657 4.91 0.467 0.657 4.91 0.467 0.657
Frozen Dinners 9.36 0.722 0.847 10.01 1.00 0.868 10.01 1.000 0.868
Frozen Entrees 6.44 0.250 0.812 8.64 0.483 0.860 9.32 0.942 0.876
Frozen Juices 8.03 0.421 0.816 8.04 0.559 0.821 8.04 0.559 0.821

Fabric Softeners 8.04 0.250 0.691 8.40 0.536 0.709 8.40 0.536 0.709
Grooming Products 3.55 0.510 0.695 3.55 0.510 0.695 3.55 0.510 0.695
Laundry Detergents 6.23 0.250 0.658 6.98 0.250 0.686 7.63 0.481 0.712
Oatmeal 10.76 0.893 0.711 12.86 1.00 0.727 12.86 1.000 0.727
Paper Towels 11.19 0.419 0.737 13.00 0.797 0.749 13.00 0.797 0.749
Refrigerated Juices 9.67 0.718 0.788 10.20 1.00 0.800 10.20 1.000 0.799
Soft Drinks 9.29 0.453 0.822 10.26 0.837 0.849 10.75 1.000 0.852

Shampoos 5.62 0.311 0.794 5.77 0.429 0.805 5.81 0.540 0.810
Snack Crackers 6.94 0.839 0.789 6.94 0.839 0.789 6.94 0.839 0.789
Soaps 6.77 0.526 0.731 6.77 0.526 0.731 6.77 0.526 0.731
Toothbrushes 3.65 0.616 0.678 3.65 0.616 0.678 3.65 0.616 0.678
Canned Tuna 7.17 0.250 0.702 9.47 0.250 0.785 13.00 1.000 0.795
Toothpastes 3.15 0.521 0.662 3.14 0.521 0.662 3.14 0.521 0.662
Bathroom Tissues 12.26 0.943 0.740 13.00 1.000 0.748 13.00 1.000 0.748

Average** 6.93 0.464 0.767 7.70 0.646 0.788 8.16 0.791 0.797
Combined** 7.66 0.250 0.801 9.50 0.627 0.841 10.08 0.691 0.830
† For all products, M = 13 and E = 0.02. f corresponds to the fitted (cubic) objective value.
‡ σdurf denotes the standard deviation of the duration of the flagged sales.
* c1 = {∅} means that constraint c1 has been removed from the optimization problem.
** See footnotes of Table A-3.
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Table A-6: Sensitivity of Optimal Values to Changes in Constraint c2

Products† c2 + (1× σmagf )‡ c2 + (2× σmagf )‡ c2 = {∅}∗
K F f K F f K F f

Analgesics 3.54 0.681 0.666 3.76 0.571 0.688 3.99 0.250 0.701
Bath Soap 4.81 0.337 0.807 4.95 0.250 0.813 4.95 0.250 0.813
Beer 5.01 0.250 0.811 5.01 0.250 0.811 5.01 0.250 0.811
Bottled Juices 5.53 0.250 0.664 5.53 0.250 0.664 5.53 0.250 0.664
Cereals 4.56 0.348 0.662 4.64 0.279 0.665 4.67 0.250 0.665
Cheeses 4.80 0.250 0.672 4.80 0.250 0.672 4.80 0.250 0.672
Cookies 5.93 0.250 0.768 5.93 0.250 0.768 5.93 0.250 0.768

Crackers 6.70 0.250 0.797 6.70 0.250 0.797 6.70 0.250 0.797
Canned Soup 4.77 0.250 0.665 4.77 0.250 0.665 4.77 0.250 0.665
Dish Detergents 4.72 0.250 0.633 4.72 0.250 0.633 4.72 0.250 0.633
Front-end-candies 5.03 0.338 0.665 5.10 0.250 0.669 5.10 0.250 0.669
Frozen Dinners 7.67 0.250 0.792 7.67 0.250 0.792 7.67 0.250 0.792
Frozen Entrees 4.92 0.250 0.751 4.92 0.250 0.751 4.92 0.250 0.751
Frozen Juices 4.67 0.250 0.677 4.67 0.250 0.677 4.67 0.250 0.677

Fabric Softeners 6.80 0.250 0.647 6.80 0.250 0.647 6.80 0.250 0.647
Grooming Products 3.81 0.524 0.717 4.09 0.536 0.739 5.20 0.250 0.801
Laundry Detergents 5.63 0.250 0.629 5.63 0.250 0.629 5.63 0.250 0.629
Oatmeal 8.91 0.487 0.665 8.91 0.487 0.665 8.91 0.487 0.665
Paper Towels 6.36 0.250 0.645 6.36 0.250 0.645 6.36 0.250 0.645
Refrigerated Juices 5.84 0.250 0.699 5.84 0.250 0.699 5.84 0.250 0.699
Soft Drinks 6.14 0.250 0.762 6.14 0.250 0.762 6.14 0.250 0.762

Shampoos 5.29 0.250 0.779 5.29 0.250 0.779 5.29 0.250 0.779
Snack Crackers 7.01 0.250 0.771 7.01 0.250 0.771 7.01 0.250 0.771
Soaps 6.72 0.251 0.717 6.72 0.251 0.717 6.72 0.251 0.717
Toothbrushes 4.15 0.635 0.719 4.50 0.354 0.740 4.66 0.250 0.747
Canned Tuna 6.00 0.250 0.632 6.00 0.250 0.632 6.00 0.250 0.632
Toothpastes 3.48 0.538 0.693 3.84 0.556 0.724 4.47 0.250 0.759
Bathroom Tissues 8.44 0.250 0.686 8.44 0.250 0.686 8.44 0.250 0.686

Average** 5.52 0.291 0.726 5.55 0.281 0.729 5.63 0.251 0.733
Combined** 5.55 0.250 0.735 5.55 0.250 0.735 5.55 0.250 0.735
† For all products, M = 13 and E = 0.02. f corresponds to the fitted (cubic) objective value.
‡ σmagf denotes the standard deviation of the duration of the flagged sales.
* c2 = {∅} means that constraint c2 has been removed from the optimization problem.
** See footnotes of Table A-3.
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Table A-7: Sensitivity of Optimal Values to Changes in Constraint c4

Products† F ≥ 0‡ F ≥ 0.50‡ F ≥ 0.75‡ F ≥ 1‡

K F f K F f K F η K F f
Analgesics 3.29 0.000 0.626 3.31 0.676 0.641 3.30 0.750 0.640 3.11 1.000 0.612
Bath Soap 3.80 0.569 0.738 3.80 0.569 0.738 3.72 0.750 0.732 3.40 1.000 0.689
Beer 5.61 0.000 0.810 4.75 0.500 0.763 4.74 0.750 0.761 4.72 1.000 0.745
Bottled Juices 6.22 0.000 0.687 5.18 0.500 0.647 4.93 0.750 0.628 4.63 1.000 0.600
Cereals 4.47 0.453 0.689 4.44 0.500 0.656 4.07 0.750 0.630 3.21 1.000 0.562
Cheeses 4.94 0.173 0.678 4.50 0.500 0.657 4.26 0.750 0.640 3.90 1.000 0.601
Cookies 6.67 0.000 0.785 5.53 0.500 0.753 5.19 0.750 0.733 4.82 1.000 0.706

Crackers 7.09 0.118 0.806 6.22 0.500 0.781 5.81 0.750 0.759 5.27 1.000 0.724
Canned Soup 4.79 0.217 0.667 4.57 0.500 0.656 4.33 0.750 0.638 3.91 1.000 0.600
Dish Detergents 5.11 0.000 0.642 4.52 0.500 0.623 4.33 0.750 0.606 3.99 1.000 0.578
Front-end-candies 4.91 0.467 0.657 4.91 0.500 0.657 4.81 0.750 0.647 4.55 1.000 0.620
Frozen Dinners 8.46 0.194 0.793 6.19 0.500 0.777 5.29 0.750 0.750 4.43 1.000 0.698
Frozen Entrees 5.66 0.000 0.800 4.55 0.500 0.737 4.24 0.750 0.717 3.85 1.000 0.678
Frozen Juices 5.39 0.000 0.698 4.39 0.500 0.662 4.14 0.750 0.641 3.74 1.000 0.602

Fabric Softeners 7.50 0.000 0.661 6.47 0.500 0.638 6.23 0.750 0.626 5.89 1.000 0.608
Grooming Products 3.55 0.510 0.695 3.55 0.510 0.695 3.39 0.750 0.675 2.64 1.000 0.580
Laundry Detergents 6.26 0.000 0.642 5.32 0.500 0.615 5.08 0.750 0.597 4.75 1.000 0.570
Oatmeal 8.91 0.487 0.667 8.84 0.500 0.667 7.55 0.750 0.658 5.90 1.000 0.619
Paper Towels 7.75 0.000 0.663 5.91 0.500 0.632 5.52 0.750 0.610 4.76 1.000 0.560
Refrigerated Juices 7.51 0.000 0.720 5.27 0.500 0.677 4.76 0.750 0.642 4.03 1.000 0.577
Soft Drinks 8.47 0.065 0.776 4.97 0.500 0.735 4.29 0.750 0.702 3.79 1.000 0.660

Shampoos 5.51 0.162 0.782 4.68 0.500 0.762 4.27 0.750 0.737 2.52 1.000 0.568
Snack Crackers 6.75 0.344 0.764 6.40 0.500 0.753 5.94 0.750 0.731 5.45 1.000 0.697
Soaps 6.72 0.251 0.717 6.17 0.500 0.702 5.84 0.750 0.683 5.54 1.000 0.657
Toothbrushes 3.65 0.616 0.678 3.65 0.616 0.678 3.61 0.750 0.672 3.15 1.000 0.619
Canned Tuna 6.32 0.00 0.649 5.77 0.500 0.618 5.58 0.750 0.602 5.35 1.000 0.580
Toothpastes 3.15 0.521 0.662 3.15 0.521 0.662 2.96 0.750 0.639 2.11 1.000 0.522
Bathroom Tissues 9.29 0.165 0.687 7.44 0.500 0.677 6.55 0.750 0.652 5.07 1.000 0.590

Average* 6.33 0.142 0.735 4.93 0.506 0.706 4.54 0.750 0.685 3.98 1.000 0.633
Combined* 6.40 0.000 0.750 5.08 0.500 0.719 4.72 0.750 0.698 4.33 1.000 0.663
† For all products, M = 13 and E = 0.02. f corresponds to the fitted (cubic) objective value.
‡ In the base case, c4 : F ≥ 0.25.
* See footnotes of Table A-3.
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Table A-8: Sensitivity of Optimal Values to Changes in the Parameters E & M

Products† E = 0.01 E = 0.04 M = 52
K F f K F f K F f

Analgesics 3.34 0.660 0.665 3.27 0.685 0.570 3.29 0.658 0.647
Bath Soap 3.60 0.556 0.723 4.62 0.595 0.785 4.12 0.527 0.778
Beer 4.98 0.250 0.794 5.28 0.250 0.813 4.81 0.636 0.775
Bottled Juices 5.49 0.250 0.694 5.66 0.250 0.578 5.53 0.250 0.665
Cereals 4.48 0.417 0.692 4.77 0.445 0.599 4.56 0.373 0.668
Cheeses 4.55 0.400 0.697 4.85 0.250 0.548 4.80 0.250 0.673
Cookies 5.73 0.250 0.765 6.21 0.250 0.722 5.93 0.250 0.771

Crackers 6.33 0.284 0.786 6.79 0.250 0.718 6.73 0.250 0.805
Canned Soup 4.67 0.267 0.683 4.88 0.316 0.556 4.77 0.250 0.666
Dish Detergents 4.76 0.250 0.665 4.84 0.250 0.538 4.72 0.250 0.636
Front-end-candies 4.35 0.398 0.611 5.03 0.250 0.646 4.93 0.467 0.661
Frozen Dinners 6.92 0.250 0.794 8.84 0.264 0.719 7.73 0.250 0.785
Frozen Entrees 4.84 0.250 0.752 5.12 0.250 0.737 4.93 0.250 0.754
Frozen Juices 4.64 0.250 0.687 4.68 0.250 0.607 4.68 0.250 0.678

Fabric Softeners 6.52 0.250 0.661 7.47 0.250 0.559 6.80 0.250 0.653
Grooming Products 3.56 0.498 0.700 3.94 0.557 0.709 3.51 0.516 0.700
Laundry Detergents 5.44 0.250 0.658 5.98 0.250 0.555 5.63 0.250 0.633
Oatmeal 7.44 0.392 0.731 9.55 0.401 0.650 8.87 0.485 0.667
Paper Towels 6.26 0.250 0.658 6.59 0.250 0.588 6.35 0.250 0.648
Refrigerated Juices 5.57 0.250 0.711 6.32 0.250 0.639 5.85 0.250 0.701
Soft Drinks 6.06 0.250 0.762 6.30 0.250 0.756 6.11 0.250 0.765

Shampoos 5.26 0.250 0.780 5.49 0.250 0.775 5.04 0.345 0.786
Snack Crackers 6.14 0.522 0.746 6.70 0.466 0.718 6.76 0.339 0.766
Soaps 5.64 0.514 0.718 7.22 0.250 0.586 6.77 0.250 0.723
Toothbrushes 3.55 0.605 0.675 3.71 0.615 0.655 3.70 0.605 0.690
Canned Tuna 5.94 0.250 0.654 6.09 0.250 0.509 6.03 0.250 0.638
Toothpastes 3.17 0.510 0.671 3.14 0.531 0.641 3.19 0.517 0.672
Bathroom Tissues 7.39 0.330 0.699 10.03 0.250 0.634 8.44 0.250 0.687

Average* 5.29 0.316 0.728 5.69 0.304 0.681 5.45 0.311 0.725
Combined* 5.43 0.250 0.743 5.74 0.250 0.691 5.55 0.250 0.739
† In the base case, E = 0.02 and M = 13 weeks. f corresponds to the fitted (cubic) objective value.
* See footnotes of Table A-3.
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