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Abstract

At an exogenous deadline, Receiver must take an action, the payoff of which

depends on Sender’s private binary type. Sender privately observes whether

and when an opportunity to start a public flow of information about her type

arrives. She then chooses when to seize this opportunity. Starting the informa-

tion flow earlier exposes to greater scrutiny but signals credibility. We charac-

terize the set of equilibria and show that Sender always delays the information

flow and completely withholds it with strictly positive probability. Focusing on

the stable equilibrium, we derive comparative statics, and discuss implications

for organizations, politics, and financial markets.
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1 Introduction

On 27 February 2012 Russian authorities announced that they had foiled an assassi-
nation plot against Prime Minister Vladimir Putin. State-controlled press reported
that Chechen militant leader Doku Umarov was behind the plot. The timing was
curious, as Putin was a candidate for President in an election to be held on March 4.
Some questioned the timing of the announcement as being designed to favor Putin
in the upcoming election. For instance, the New York Times reported:

Dmitri Oreshkin, a political commentator often critical of the Kremlin,
was more direct. “This is a sign that the real leaders of Mr. Putin’s po-
litical structure, the people from the Federal Security Service, are trying
to mobilize public opinion according to the logic that we are surrounded
by enemies and that we have one decisive, effective and intelligent na-
tional leader that they want to destroy,” he said on Ekho Moskvy Radio.
“The timely disclosure of this conspiracy against this leader is a serious
addition to the electoral rating of the potential president.”1

Yet the information was not released the day before the election time when it might
have had maximal impact by being salient in the minds of voters as they went to the
polls. One naturally wonders whether that timing might have been seen as particu-
larly suspicious by voters and possibly have backfired. It seems clear that the timing
of the information release was chosen strategically. Indeed, it subsequently became
known that the prisoners had been held for two weeks prior to the 27 February
announcement.

This logic highlights a basic tradeoff in strategic dynamic information release.
Early release of information is more credible, in that it signals that the sender has
nothing to hide. On the other hand, it exposes to longer scrutiny—possibly leading
to the information being discovered to be false.

This tradeoff between credibility and scrutiny is central to many economic prob-
lems. The seller of a home via auction can schedule a long or short window for
potential buyers to inspect the house. The CEO of a company can give her board

1New York Times, February 27 2012: http://www.nytimes.com/2012/02/28/world/europe/
plot-to-kill-vladimir-putin-uncovered.html?r=0
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of directors more or less time to examine draft proposals before the board meets to
sign them off. Public figures can announce their intention to run for political posts
at different times before the election date. In all these situations, (i) a biased sender
has information which matters to the receiver; (ii) the receiver must make a choice
at a given date; and (iii) the sender privately knows the earliest date at which she
can release information to the receiver, but she can choose to release it later. In this
paper we introduce and analyze a formal model of precisely these types of dynamic
information release problems.

Understanding the credibility-scrutiny tradeoff is fundamental for the design
of a variety of institutions. For instance, should there be media blackout rules a
certain time prior to an election, as is the case in some countries? More broadly,
what institutional design parameters induce CEOs, media, or politicians to gather
more, high quality information and release it faster?

We analyze the credibility-scrutiny tradeoff in a model with three key features:
(i) Sender privately knows her binary type, good or bad, and wants Receiver to take
a higher action; (ii) at an exogenous deadline, Receiver chooses his action, which
increases in his belief that Sender is good; (iii) Sender privately observes whether
and when an opportunity to start a public flow of information about her type arrives
and chooses when to seize this opportunity. We call this opportunity an arm and say
that Sender chooses when to pull the arm.

In Section 3, we characterize the set of perfect Bayesian equilibria. In all equilib-
ria, bad Sender delays pulling the arm longer than good Sender, despite the fact that
pulling the arm has a positive instantaneous effect on Receiver’s belief. An immedi-
ate implication is that, all else equal, an arm released earlier induces higher beliefs
for Receiver. Thus, inter alia, our theory provides a rational foundation for confirma-
tion bias–a greater reliance on information encountered earlier in a sequence (Baron,
2000, pp. 197-200). Moreover, bad Sender chooses not to pull the arm with strictly
positive probability. Thus, the tension between credibility and scrutiny provides
an opposing force to the Milgrom’s (1981) unraveling effect, and helps explain why
information is often withheld in organizations.
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We prove that there exists an essentially unique stable equilibrium (Kohlberg
and Mertens, 1986).2 In this equilibrium good Sender immediately pulls the arm
when it arrives and bad Sender is indifferent between pulling the arm at any time
and not pulling it at all. Uniqueness allows us to analyze comparative statics in a
tractable way in a special case of our model where the arm arrives according to a
Poisson process and pulling the arm starts an exponential learning process in the
sense of Keller et al. (2005).

We do this in Section 4 and show that the comparative static properties of this
equilibrium are very intuitive. Welfare increases with the speed of the learning pro-
cess, the arrival rate of the arm, and the probability that Sender is good. A higher
probability of a good Sender also decreases the probability that bad Sender pulls
the arm, as Receiver is less likely to believe that Sender is bad, and hence withhold-
ing information is less damning. However, this strategic effect does not completely
offset the direct effect of the increased probability of a good Sender on Receiver’s
posterior belief, even if no arm is pulled.

We then apply this model to the strategic release of political scandals in US Presi-
dential campaigns. We interpret Sender as a media outlet opposed to the incumbent,
and Receiver as the median voter. If the incumbent is worse than alternative can-
didates, a scandal may arise, but a scandal can also be fabricated. We show that
fabricated scandals are only released sufficiently close to the election. Also, a higher
prior belief that the incumbent is good increases the probability of a scandal be-
ing released, provided that the incumbent has a high approval rating. An intuition
for this is that the opposition media outlet optimally resorts to fabricated scandals
when the incumbent is so popular that only a scandal could undermine her suc-
cessful reelection. We also show that fewer scandals are released when voters apply
more scrutiny to them and when other events make air time scarce. These results
are consistent with a number of empirical regularities in US Presidential elections.

We also discuss the time pattern of campaign events. The probability that a re-
leased scandal is fabricated increases with the release time. Nonetheless, the proba-
bility that a fabricated scandal is released follows an inverted U-shape over time, as
does the probability that a scandal is revealed to be fabricated.

2The equilibrium is essentially unique in the sense that the probability with which each type of
Sender pulls the arm at any time t is uniquely determined.
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In Section 5, we generalize the model in several directions. We then discuss how
to extend the model to study the design of institutions. We argue that campaign
blackout periods are generally counterproductive for the voters. We further discuss
different approaches to the design of institutions that encourage managers to gather
more information and report it earlier to the company board. Finally, we discuss a
number of further applications captured by our model and conclude.

1.1 Related Literature

Grossman and Hart (1980), Grossman (1981), and Milgrom (1981) pioneered the
study of verifiable information disclosure and established the unraveling result: if
Sender’s preferences are common knowledge and monotonic in Receiver’s action
(for all types of Sender) then Receiver learns Sender’s type in any sequential equi-
librium. Dye (1985) first pointed out that the unraveling result fails if Receiver is
uncertain about Sender’s information endowment.3 When Sender does not disclose
information, Receiver is unsure as to why, and thus cannot conclude that the non-
disclosure was strategic, and hence does not “assume the worst” about Sender’s
type.

Acharya, DeMarzo and Kremer (2010) and Guttman, Kremer and Skrzypacz
(2013) explore the strategic timing of information disclosure in a dynamic version
of Dye (1985).4 Acharya et al. (2010) focus on the interaction between the timing of
disclosure of private information relative to the arrival of external news, and clus-
tering of the timing of announcements across firms. Guttman et al. (2013) analyze a
setting with two periods and two signals and show that, in equilibrium, both what
is disclosed and when it is disclosed matters. Strikingly, the authors show that later
disclosures are received more positively.

All these models are unsuited to study either the credibility or the scrutiny sides
of our tradeoff, because information in these models is verified instantly and with

3See also Shin (1994), Jung and Kwon (1988), and Dziuda (2011). The unraveling result migh also
fail if disclosure is costly (Jovanovic, 1982) or information acquisition is costly (Shavell, 1994).

4Shin (2003, 2006) also study dynamic verifiable information disclosure, but Sender there does
not strategically time disclosure. A series of recent papers consider dynamic persuasion with differ-
ent focuses to us, including: Che and Hörner (2015); Ely, Frankel and Kamenica (2015); Ely (2015);
Grenadier, Malenko and Malenko (2015).
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certainty once disclosed. In our motivating examples, information is not immedi-
ately verifiable: when Sender releases the information, Receiver only knows that
“time will tell” whether the information released is reliable. To capture this notion
of partial verifiability, we model information as being verified stochastically over
time in the sense that releasing information starts a learning process for Receiver
akin to processes in Bolton and Harris (1999), Keller, Rady and Cripps (2005), and
Brocas and Carrillo (2007). In contrast to these papers, in our model Sender is pri-
vately informed and she chooses when to start rather than stop the process.5

2 The model

There are two players: Sender (she) and Receiver (he). Sender privately knows her
binary type θ: good (θ = G) or bad (θ = B). Let π ∈ (0, 1) be the common prior belief
that Sender is good.

Time is discrete and indexed by t ∈ {1, 2, . . . , T + 1}. At a deadline t = T,
Receiver must take an action a ∈ R. (Time T + 1 combines all future dates after the
deadline).

Sender privately observes when an arm arrives. The arm arrives at a random
time according to a distribution Fθ satisfying Assumption 1.

Assumption 1. The distribution Fθ satisfies FG (t) ≤ FB (t) and 0 < FG (t) < FG (t + 1)
for all t ∈ {1, 2, .., T}.

This assumption captures both (i) good and bad Sender receiving the arm at the
same time and (ii) bad Sender receiving it at time 1 and good Sender receiving it at a
later random time. More generally, this assumption allows for the arm to arrive ear-
lier to bad Sender than to good Sender in the first-order stochastic dominance sense.
This assumption also ensures that at any time (including T + 1) the probability that
good Sender receives the arm is strictly positive.

If the arm has arrived, Sender can pull it immediately or at any time after its
arrival (including after the deadline). As Sender can take no action until the arrival

5In our model Sender can influence only the starting time of the experimentation process, but not
the design of the process itself. Instead, in the “Bayesian Persuasion” literature (e.g. Rayo and Segal
(2010); Kamenica and Gentzkow (2011); Kolotilin (2015))
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of the arm, we can equivalently assume that Sender learns her type either when the
game starts or when the arm arrives.

Let τ be the pulling time. If the arm is pulled before the deadline (τ ≤ T),
Receiver observes realizations of a finite-valued stochastic process

L = {Lθ (t; τ) , τ ≤ t ≤ T} .

The process L can be viewed as a sequence of signals, one per each time from τ to
T with the precision of the signal at time t possibly depending on τ and t. Notice
that if the arm is pulled at τ = T, Receiver observes the realization Lθ (T, T) before
taking his action.

It is more convenient to work directly with the distribution of beliefs induced
by the process L rather than with the process itself. Let p denote Receiver’s interim
belief that Sender is good upon observing that she pulls the arm at time τ and before
observing any realizations of L. Likewise, let s denote Receiver’s posterior belief that
Sender is good after observing all realizations of the process from τ to T. Given τ

and p, the process L generates a distribution H (. | τ, p) over Receiver’s posterior
beliefs s; given τ, p, and θ, the process L generates a distribution Hθ (. | τ, p) over s.
Notice that if the arm is pulled after the deadline (τ = T + 1), then the distributions
Hθ (. | τ, p) and H (. | τ, p) assign probability one to s = p.

Assumption 2 says that (i) pulling the arm later reveals strictly less information
about Sender’s type in Blackwell (1953)’s sense and (ii) it is impossible to fully learn
Sender’s type.6

Assumption 2. (i) For all τ, τ′ ∈ {1, 2, . . . , T + 1} such that τ < τ′, H (. | τ, π) is a
strict mean-preserving spread of H (. | τ′, π). (ii) The support of H (. | 1, π) is a subset of
(0, 1).

To analyze the model, we need to understand how beliefs evolve over time from
Sender’s perspective. Lemma 1 presents three statistical properties of the belief evo-
lution. First, a more favorable interim belief results in more favorable posteriors for

6For example, this assumption holds if Lθ (t; τ) = L̃θ (t) − L̃θ (τ − 1) or Lθ (t; τ) =

L̃θ (t− (τ − 1)) for some finite-valued process L̃ with (i) Pr
(

L̃G (t) = y (t)
)
6= Pr

(
L̃B (t) = y (t)

)
for some y (t) and all t ∈ {1, 2, . . . , T} and (ii) Pr

(
L̃G (t) = y

)
> 0 equivalent to Pr

(
L̃B (t) = y

)
> 0

for all y and t.
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all types of Sender and for all realizations of the process. Second, from bad Sender’s
perspective, pulling the arm later results in more favorable and less spread out pos-
teriors (provided that the interim belief does not depend on the pulling time). Third,
from good Sender’s perspective, pulling the arm earlier results in more favorable
and more spread out posteriors (again provided that the interim belief does not
depend on the pulling time). The first two properties rely on the standard stochas-
tic orders; the third property relies on a less common stochastic order, which we
call second-convex-order stochastic dominance. Formally, distribution H2 second-
convex-order stochastically dominates distribution H1 if there exists a distribution
H such that H2 first-order stochastically dominates H and H is a mean-preserving
spread of H1.

Lemma 1 (Statistical Properties). For all τ, τ′ ∈ {1, . . . , T + 1} such that τ < τ′, and
all p, p′ ∈ (0, 1] such that p < p′,

1. Hθ (. | τ, p′) strictly first-order stochastically dominates Hθ (. | τ, p) for θ ∈ {G, B};

2. HB (. | τ′, p) strictly second-order stochastically dominates HB (. | τ, p);

3. HG (. | τ, p) strictly second-convex-order stochastically dominates HG (. | τ′, p).

Proof. In Appendix.

Sender’s and Receiver’s payoffs, v (a, θ) and u (a, θ), depend on a and θ. We are
interested in situations where each type of Sender wishes Receiver to believe that
she is good. Formally, Receiver’s best response function

a∗ (s) ≡ arg max
a
{su (a, G) + (1− s) u (a, B)}

is well defined for all values of Receiver’s posterior belief s ∈ [0, 1]. Also, Sender’s
payoff is a linear strictly increasing function of s in that v∗θ (s) ≡ v (a∗ (s) , θ) =

αθs + βθ with αθ > 0.7

7All results continue to hold if, for example, v∗B (s) is strictly increasing and concave in s and
v∗G (s) is strictly increasing and convex in s. Otherwise, there may exist only unintuitive equilibria in
which good Sender pulls the arm later than bad Sender (see Section 5.1).
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3 Equilibrium

We characterize the set of perfect Bayesian equilibria, henceforth equilibria. Let
π (τ) be Receiver’s equilibrium interim belief that Sender is good given that Sender
pulls the arm at time τ ∈ {1, 2, . . . , T + 1}. Also, let Pθ denote an equilibrium distri-
bution of pulling time τ given Sender’s type θ (with convention Pθ (0) = 0).

We begin by showing that in any equilibrium good Sender strictly prefers to pull
the arm at any time at which bad Sender pulls the arm with positive probability.

Lemma 2 (Good Sender’s Behavior). In any equilibrium:

1. For all τ, τ′ ∈ {1, . . . , T + 1} such that τ < τ′ and neither π (τ) = π (τ′) = 0 nor
π (τ) = π (τ′) = 1, if bad Sender weakly prefers to pull the arm at τ than at τ′, then
π (τ) > π (τ′) and good Sender strictly prefers to pull the arm at τ than at τ′;

2. For all τ ∈ {1, . . . , T} in the support of PB, we have PG (τ) = FG (τ).

Proof. In Appendix.

The proof relies on the three statistical properties from Lemma 1. To get the in-
tuition, suppose that the interim belief about Sender’s type does not depend on the
pulling time. Then good Sender would like to pull the arm as soon as it arrives and
bad Sender would like to never pull the arm, as pulling the arm earlier reveals more
information about Sender’s type. Therefore, if bad Sender pulls the arm (with pos-
itive probability) at any time τ before the deadline, then the interim belief π (τ) at
this time must be higher than π (T + 1). But then good Sender has an even stronger
incentive to pull the arm at τ under these interim beliefs than under constant interim
beliefs. Notice that this argument does not imply that good Sender always pulls the
arm as soon as it arrives. Indeed, for any t ≤ T, there always exists an equilibrium
in which good Sender never pulls the arm before or at t (i.e., PG (t) = 0) but always
pulls it after t (i.e., PG (τ) = FG (τ) for all τ > t).

Next, we show that good Sender pulls the arm earlier than bad Sender in the
first-order stochastic dominance sense. Moreover, good sender pulls the arm strictly
earlier unless no type pulls the arm.

Lemma 3 (Bad Sender’s Behavior). In any equilibrium, for all τ ∈ {1, . . . , T} with
PG (τ) > 0, we have PB (τ) < PG (τ).
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Proof. In Appendix.

Intuitively, if bad and good Sender were pulling the arm at the same time, then
the interim beliefs would not depend on the pulling time. But as discussed earlier,
with constant interim beliefs, bad Sender would never pull the arm. Therefore, good
Sender must necessarily pull the arm earlier than bad Sender. Notice that Lemma 3
does not imply that good Sender pulls the arm at a faster rate for all times. Indeed,
there exist equilibria with PG (t)− PG (t− 1) < PB (t)− PB (t− 1) for some t ≤ T.

An immediate implication of Lemma 2 is that bad Sender always withholds the
arm with positive probability:

Corollary 1 (Bad Sender’s Withholding). In any equilibrium, PB (T) < FB (T).

We now show that bad Sender is indifferent between pulling the arm at any time
when good Sender pulls and not pulling the arm at all. Thus, Receiver’s beliefs are
pinned down by bad Sender’s indifference condition (1) and the aggregation con-
dition (2). The aggregation condition requires that the likelihood ratios of bad and
good Sender’s arms pulled at various times must average out to the prior likelihood
ratio of bad and good Sender.

Lemma 4 (Receiver’s Beliefs). In any equilibrium, PG and PB have the same supports. For
τ in the support of PG, π (τ) ∈ (0, 1) is uniquely determined by the system of equations:

ˆ
v∗B (s) dHB (s|τ, π (τ)) = v∗B (π (T + 1)) , (1)

∑
τ∈supp(PG)

1− π (τ)

π (τ)
(PG (τ)− PG (τ − 1)) =

1− π

π
. (2)

Proof. In Appendix.

Intuitively, suppose there exists a time τ ∈ {1, . . . , T} at which only good Sender
pulls the arm with positive probability. Upon observing that the arm is pulled at
τ, Receiver must conclude that Sender is good. But then bad Sender should strictly
prefer to pull the arm at τ, contradicting our supposition that only good Sender
pulls the arm at τ.
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We now characterize the set of equilibria. Theorem 1 states that in all equilibria,
at any time when good Sender pulls the arm, she pulls it with probability 1 and bad
Sender pulls it with strictly positive probability. The probability with which bad
Sender pulls the arm at any time is determined by the condition that the induced
interim beliefs keep bad Sender exactly indifferent between pulling the arm then
and not pulling it at all.

Theorem 1 (All Equilibria). A pair (PG, PB) constitutes an equilibrium if and only if PG

and PB have the same supports, and for all τ in the support of PG, PG (τ) = FG (τ) and

PB (τ) =
π

1− π ∑
t∈supp(PG) s.t. t≤τ

1− π (t)
π (t)

(PG (t)− PG (t− 1)) , (3)

where π (τ) are uniquely determined by (1) and (2).

Proof. In Appendix.

The following theorem characterizes the stable equilibrium. In such an equilib-
rium, good Sender pulls the arm as soon as it arrives.

Theorem 2 (Stable Equilibrium). There exists a stable equilibrium (Kohlberg and Mertens,
1986). In any such equilibrium, PG (t) = FG (t) for all t ∈ {1, . . . , T}.

Proof. In Appendix.

Although there exist a plethora of stable equilibria, in all such equilibria Re-
ceiver’s beliefs and each type of Sender’s pulling probabilities are uniquely deter-
mined by (1), (2), PG (τ) = FG (τ), and

PB (τ) =
π

1− π ∑
t≤τ

1− π (t)
π (t)

(FG (t)− FG (t− 1)) (4)

for all τ ∈ {1, . . . , T + 1}.
By Lemma 4, bad Sender is indifferent between pulling the arm at any time when

good Sender pulls and not pulling the arm at all. Thus, in every stable equilibrium,
bad Sender is indifferent between pulling the arm at any time before the deadline
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and not pulling the arm at all. Then, by Lemma 2, Receiver’s interim beliefs π (τ)

decrease over time. Furthermore, using PG (τ) = FG (τ) and (4), we have

1− π (τ)

π (τ)
=

1− π

π

PB (τ)− PB (τ − 1)
PG (τ)− PG (τ − 1)

.

Therefore the likelihood ratio of an arm being pulled by bad and good Sender in-
creases over time.

Corollary 2 (Equilibrium Dynamics). In every stable equilibrium, for all τ, τ′ ∈ {1, . . . , T + 1}
such that τ < τ′, we have π (τ) > π (τ′) and

PB (τ)− PB (τ − 1)
PG (τ)− PG (τ − 1)

<
PB (τ

′)− PB (τ
′ − 1)

PG (τ′)− PG (τ′ − 1)
.

Pulling the arm is considered good news by Receiver in the sense that Receiver’s
belief at time τ about Sender’s type is higher if Sender pulls the arm than if she does
not. Let π̃(τ) denote Receiver’s interim belief that Sender is good given that she
does not pull the arm before and including τ. Corollary 3 shows that π (τ) > π̃ (τ).
Using (4), we have that for all τ ≤ T

1− π̃ (τ)

π̃ (τ)
=

1− π

π

1− PB (τ)

1− PG (τ)

=
∑T+1

t=τ+1
1−π(t)

π(t) (FG (t)− FG (t− 1))

1− FG(τ)
(5)

= EFG

[
1− π(t)

π(t)
| t ≥ τ + 1

]
.

By Corollary 2 π(t) decreases with time, which implies that π̃(t) decreases with
time and π(τ + 1) > π̃(τ).

Corollary 3 (Belief Dynamics). In every stable equilibrium, for all τ, τ′ ∈ {1, . . . , T + 1}
such that τ < τ′, we have π(τ + 1) > π̃(τ) > π̃(τ′).

To understand how primitives of the model affect players’ welfare and behavior,
in the next section we specialize to a Poisson model. In the Poisson model, how-
ever, Assumption 2, part (ii), that it is impossible to fully learn Sender’s type, fails.
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Nevertheless, Theorem 2 continues to hold even without this assumption, with the
caveat that there might exist t̄ ∈ {1, . . . , T} such that π(τ) = 1 and PB (τ) = 0 for
all τ ≤ t̄.

4 Poisson Model: Comparative Statics

We now specialize to a Poisson model. Time is continuous t ∈ [0, T].8 Bad Sender
receives the arm at t = 0, but good Sender receives the arm at Poisson rate α. After
receiving the arm, each type of Sender chooses when to pull it. If the arm is pulled
by bad Sender, a breakdown occurs at Poisson rate λ. But if the arm is pulled by good
Sender, a breakdown never occurs. At a deadline t = T, Receiver takes a binary
action a ∈ {0, 1}.

Each type of Sender gets payoff 1 if a = 1 and 0 otherwise. Receiver privately
knows her type r, uniformly distributed on the unit interval. If Receiver takes action
a = 0, he gets payoff r; if he takes action a = 1, he gets payoff 1 if Sender is good and
0 otherwise. Therefore, Sender’s and Receiver’s payoffs as a function of posterior s
are given by v∗G (s) = v∗B (s) = s and u∗ (s) =

(
1 + s2) /2.

4.1 Stable equilibrium and welfare

We begin by explicitly characterizing the stable equilibrium. By Theorem 2 and
the discussion at the end of Section 3, the stable equilibrium has the following three
properties. First, good Sender pulls the arm as soon as it arrives. Second, bad Sender
is indifferent between pulling the arm at any time t ≥ t̄ ≥ 0 and not pulling it at all.
Third, bad Sender strictly prefers to delay pulling the arm if t < t̄. The threshold t̄
is uniquely determined by the parameters of the model.

In the Poisson model, equations (1) and (2) become

π (t) e−λ(T−t)

π (t) + (1− π (t)) e−λ(T−t)
= π (T) for t ≥ t̄,

ˆ T

0
α

1− π (t)
π (t)

e−αtdt +
1− π (T)

π (T)
e−αT =

1− π

π
.

8Technically, we use the results from the previous section by treating continuous time as an ap-
propriate limit of discrete time.
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Combining these two equations with the boundary condition π (t) = 1 for t < t̄
yields the explicit solution π (t). This completely characterizes the stable equilib-
rium.

Proposition 1. In the stable equilibrium, good Sender pulls the arm as soon as it arrives
and Receiver’s interim belief that Sender is good given pulling time t is:

π (t) =


π(T)

1−π(T)(eλ(T−t)−1)
if t ≥ t̄;

1 otherwise,

where π (T) is Receiver’s posterior belief if the arm is never pulled and

t =

0 if π < π̄;

T − 1
λ ln 1

π(T) otherwise,

π (T) =


[

αeλT+λe−αT

α+λ + 1−π
π

]−1
if π < π̄;[

(α+λ)(1−π)
λπ eαT + 1

]− λ
α+λ otherwise,

π =

[
1 +

λ

α + λ

(
eλT − e−αT

)]−1

.

We define the probability of withholding, denoted by q, as the probability that bad
Sender never pulls the arm. By Bayes’ rule we have

π (T) =
πe−αT

πe−αT + (1− π) q
, (6)

which yields

q =
π

1− π

1− π (T)
π (T)

e−αT. (7)

Proposition 2 presents monotone comparative statics on equilibrium variables.

Proposition 2. In the stable equilibrium,

1. q and t̄ increase with π and λ but decrease with α;

2. π (T) increases with π but decreases with λ and α.
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Proof. In Appendix.

Part 1 says that bad Sender pulls the arm later and withholds with a higher prob-
ability if the prior belief about Sender is higher, the arrival rate of the breakdown
is higher, and the arrival rate of the arm is lower. The intuition is as follows. If
the prior belief that Sender is good is high, bad Sender has a lot to lose in case of a
breakdown. Similarly, if the arrival rate of the breakdown is high, pulling the arm is
likely to reveal that Sender is bad. In both cases, bad Sender is then reluctant to pull
the arm. In contrast, if the arrival rate of the arm is high, good Sender is more likely
to pull the arm and Receiver will believe that Sender is bad with high probability if
she does not pull the arm. In this case, bad Sender is then willing to pull the arm.

Part 2 says that Receiver’s posterior belief about Sender if the arm is never pulled
is higher if the prior belief about Sender is higher, the arrival rate of the breakdown
is lower, and the arrival rate of the arm is lower. Equation (6) suggests that there
are direct and strategic effects of the prior belief and the arrival rate of the arm on
Receiver’s posterior belief. Holding the probability of withholding q constant, a
higher prior belief and a lower arrival rate of the arm improve Receiver’s posterior
belief about Sender if the arm is never pulled. But the strategic effect works in the
opposite direction, because the probability of withholding q increases with the prior
belief and decreases with the arrival rate of the arm. Part 2 says that the direct effect
always dominates the strategic effect in the Poisson model. Finally, a higher arrival
rate of the breakdown worsens Receiver’s posterior belief about Sender if the arm
is never pulled because it increases the probability of withholding 1 but does not
affect the behavior of good Sender.

Proposition 3 presents monotone comparative statics on Receiver’s and Sender’s
expected payoffs.

Proposition 3. In the stable equilibrium,

1. the expected payoffs of Receiver and good Sender increase with π, λ, and α;

2. the expected payoff of bad Sender increases with π but decreases with λ and α.

Proof. In Appendix.
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There are both direct and strategic effects of parameters on the equilibrium ex-
pected payoffs. Just as in Proposition 2, it turns out that direct effects dominate.
Specifically, a higher prior probability that Sender is good increases the expected
payoffs of all players; a higher arrival rates of the breakdown and the arm allow
Receiver to learn more about Sender and take a more appropriate action, which
increases the expected payoffs of Receiver and good Sender, but decreases the ex-
pected payoff of bad Sender.

4.2 The Pattern of Release of Political Scandals

To interpret the comparative statics results, we use our motivating example of the
strategic release of scandals before elections. Our model delivers precise theoretical
predictions which we tie to the available empirical evidence on the likelihood of US
presidential scandals.

There is an election with two candidates: an incumbent and an opposition can-
didate. We interpret Sender as an opposition media outlet and θ as the quality of the
opposition candidate relative to the incumbent. If θ = G, then the opposition candi-
date is superior to the incumbent and the opposition media receives a good scandal
involving the incumbent at Poisson rate α. If θ = B, then the opposition candidate
is inferior to the incumbent and the opposition media receives a bad or fabricated
scandal involving the incumbent at time t = 0. We interpret Receiver as the me-
dian voter. At the election date T, the voter chooses to elect either the opposition
candidate, a = 1, or the incumbent a = 0.9

A breakdown is to be interpreted as the voter’s discovery that the scandal is
fabricated. Notice that (i) the prior π is the voter’s initial belief that the opposition
candidate is superior to the incumbent, (ii) the arrival rate of the breakdown λ is the
level of scrutiny applied by the voter to a released scandal, and (iii) the arrival rate
of the arm α is the level of investigation of the incumbent by the opposition media.

Proposition 2 says that the probability PB (T) = 1− q that bad Sender pulls the
arm before the deadline decreases with the prior π. Our model then predicts that
the probability of release of a bad scandal decreases with voters’ initial belief that

9Recall that Receiver privately knows his type r. Thus, in our model the opposition media is
uncertain about the preference parameter r of the median voter.
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the opposition candidate is superior to the incumbent. Notice that this does not
imply that the total probability that a scandal is released is higher when voters’
initial belief is lower. In fact, the total probability of release of a scandal is given by

R ≡ π
(

1− e−αT
)

︸ ︷︷ ︸
PG(T)

+ (1− π) (1− q)︸ ︷︷ ︸
PB(T)

= 1− πe−αT

π (T)

As PB (T) = 1− q decreases with π, we have two contrasting effects. On one hand,
holding the probability of withholding q constant, a marginal increase in π increases
the total probability of release R by PG (T)− PB (T), which is positive by Lemma 3.
This is a direct effect: if the incumbent is expected to be superior (low π), then there
are simply fewer good scandals. On the other hand, conditional on a bad scandal,
the probability of release (1− q) decreases with π. This is a strategic effect: if the
incumbent is expected to be superior, the opposition media has greater incentives to
release bad scandals.

Part 1 of Proposition 4 says that the strategic effect dominates the direct effect
when π is sufficiently low.

Proposition 4. In the stable equilibrium, the total probability that Sender pulls the arm

1. decreases with π if

π <
αeαT

αeαT + λ (eαT − 1)
∈ (0, 1)

and increases with π otherwise;

2. decreases with λ;

3. increases with α.

Prediction 1. The total probability of release of a scandal:

1. decreases with voters’ initial belief that the opposition candidate is supe-
rior to the incumbent if voters’ initial belief is sufficiently low. Otherwise,
it increases with voters’ initial belief that the opposition candidate is su-
perior to the incumbent;
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2. decreases with the level of scrutiny applied by voters to a released scan-
dal;

3. increases with the level of investigation of the incumbent by the opposi-
tion media.

Proof. In Appendix.

Nyhan (forthcoming) and Raizada (2013) study what factors determine the likeli-
hood of US presidential scandals. Raizada (2013) finds that more scandals involving
the incumbent president are released when economic indicators and approval rates
suggest that voters approve of the president. From the perspective of the opposition
media, this means that the prior belief π that the opposition candidate is superior to
the incumbent is low. Thus, this empirical observation is consistent with our finding
in Part 1 of Prediction 1 that the strategic effect can dominate the direct effect.

Nyhan (forthcoming) finds that more scandals involving the incumbent presi-
dent are released when opposition voters are more hostile to the president. The
author conjectures that when opposition voters are more hostile to the president,
then they are “supportive of scandal allegations against the president and less sen-
sitive to the evidentiary basis for these claims” (p. 6). This mechanism is therefore
consistent with Part 2 of Prediction 1.

Nyhan (forthcoming) also finds that more scandals involving the incumbent
president are released when the news agenda is less congested. When the news
agenda is congested, the opposition media can devote fewer resources to investi-
gating the incumbent, thus reducing the arrival rate of scandals. This empirical
observation is therefore consistent with Part 3 of Prediction 1.

As breakdowns are observable, it is also possible to test how the release time of
a scandal affects its likelihood to be discovered to be bad before the election. As bad
scandals are released later than good ones, then there are two contrasting effects. On
one hand, conditional on being bad, a scandal released earlier on is directly more
likely to produce a breakdown. On the other hand, bad scandals are strategically
more likely to be released later. The following corollary says that the strategic effect
dominates if the scandal is released sufficiently early.
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Corollary 4. In the stable equilibrium, the probability of a breakdown increases with the
pulling time t if

t < tb ≡ T − 1
λ

ln
(

1 + π (T)
2π (T)

)
< T

and decreases with t otherwise.

Prediction 2. The probability that a scandal is revealed to be bad increases with its
release time if it is released sufficiently early and decreases with its release
time otherwise.

Proof. In Appendix.

Notice that if the interval before the deadline T is sufficiently short or the arrival
rate of the arm α is sufficiently small, then tb is negative and hence the probability
of the breakdown monotonically decreases with the pulling time of the arm.

Were it possible to identify ex-post whether a released scandal is bad or good,
then one could test whether bad scandals are more likely to be released earlier or
later. We can precisely identify the conditions under which bad scandals are more
likely to be released later.

Corollary 5. The probability that bad Sender pulls the arm at time t increases with t if

t < tp ≡ T − 1
λ

ln
(

α

α + λ

1
π (T)

)
and decreases with t otherwise.

Prediction 3. The probability of release of a bad scandal increases with time if the
scandal is released sufficiently early and decreases with time otherwise.

Proof. In Appendix.

Notice that if the arrival rate of the arm α is sufficiently small (large), then tp > T
(tp < 0) and hence the probability that bad sender pulls the arm monotonically
increases (decreases) with time.
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Short-sighted campaigns and political figures might care the most about the in-
stantaneous impact on beliefs upon the release of a scandal at time t ≤ T, π (t)−
π̃ (t), where (using (5))

π̃ (t) =

[
1 +
ˆ T

t

1− π (z)
π (z)

αe−α(z−t)dz +
1− π (T)

π (T)
e−α(T−t)

]−1

is Receiver’s belief at t if Sender has not pulled the arm yet. Corollary 3 says that
the instantaneous impact of the release of a scandal is strictly positive for any release
time t < T. From an empirical perspective, when π (t)− π̃ (t) is larger, then opinion
surveys and voting polls should be more responsive to the release of a scandal. Our
model could be used to make predictions about the impact of scandals released at
different times. For example, as the election date approaches, π (t) − π̃ (t) goes
to 0, implying that scandals released immediately before an election should have
no impact. In contrast, scandals released before the threshold date t̄ have greater
impact when they are released later.

5 Discussion

5.1 Generalizations

In this section, we discuss how to generalize our model of Section 2 in several direc-
tions. We discuss each new aspect in separate paragraphs.

Sender’s Risk Attitudes. In Section 2 we assumed that good Sender is weakly
risk-loving and bad Sender is weakly risk-averse. In contrast, were good Sender
very risk-averse, then she could prefer to delay pulling the arm to reduce the spread
in posterior beliefs. Likewise, were bad Sender very risk-loving, then she could
prefer to pull arm sooner than good Sender to increase the spread in posterior be-
liefs. However, for a given process satisfying Assumption 2, our results hold if good
Sender is not too risk-averse and bad Sender is not too risk-loving. In the Poisson
model of Section 4, our results hold for any risk attitude of good Sender and only
rely on bad Sender being not too risk-loving.
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Stochastic Deadline. We assumed throughout that the deadline T is fixed and
common knowledge. For many applications, it is more realistic to assume that
T is stochastic. In particular, suppose that T is a random variable distributed on
{T, T + 1, . . . , T̄}where time runs from 1 to T̄ + 1. Now the process L has T as a
random variable rather than a constant. For this process, we can define the ex-ante
distribution H of posteriors at T, where H depends only on pulling time τ and in-
terim belief p. Notice that Assumption 2 still holds for this ex-ante distribution of
posteriors for any τ, τ′ ∈ {1, . . . , T̄ + 1}. Therefore, from the ex-ante perspective,
Sender’s problem is identical to the problem with a deterministic deadline and all
results carry over.

Imperfectly Informed Sender. We assumed throughout that Sender perfectly knows
the binary state θ. If instead Sender privately observes a binary signal σ ∈ {σB, σG}
with Pr (θ = G | σG) > π > Pr (θ = G | σB), then from the perspective of Sender σB,
pulling the arm earlier results in lower posterior beliefs in expectation, but from the
perspective of Sender σG, pulling the arm earlier results in higher posterior beliefs
in expectation. These statistical results are sufficient to establish that in the stable
equilibrium, Sender σG pulls the arm as soon as it arrives and bad Sender is indif-
ferent between pulling the arm at any time and not pulling it at all. Moreover, we
can allow signal σ to be continuously distributed on the interval [σ, σ̄) with normal-
ization σ = Pr (θ = G | σ). In this case, there exists a partition equilibrium with
σ̄ = σ0 > σ1 > · · · > σT+1 = σ such that Sender σ ∈ [σt, σt−1) pulls the arm as
soon as it arrives unless it arrives before time t ∈ {1, . . . , T + 1} (and pulls the arm
at time t if it arrives before t).

5.2 Extensions and Future Directions

In this section, we discuss several extensions to the Poisson model of Section 4.

Blackout Period. More than a third of the world’s countries mandate a blackout
period before elections: a ban on political campaigns for one or more days imme-
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diately preceding elections.10 Without such ban, in our model there exists a (non-
stable) equilibrium with a blackout period: neither type of Sender pulls the arm
between some time t and T. This is consistent with a gentlemen agreement between
campaigns without external enforcement. Our model can be employed to compare
Receiver’s expected payoff under a variety of blackout rules. For a wide range of
parameter values, we find that Receiver’s optimal blackout period is zero.

Information Leaks. Sensitive information about candidates also leaks through so-
cial networks and independent channels. One naturally wonders whether such
leaks are beneficial for the voters. We can incorporate such leaks into the model
by assuming that after arrival the arm can be unintentionally pulled at a random
time. Receiver observes whether the arm was pulled unintentionally. In the stable
equilibrium, if the arm is pulled unintentionally, then Receiver learns that Sender is
bad. This is consistent with voters’ interpretation of leaked information as evidence
that the candidate was suppressing information. Therefore, in this extension of our
model, bad Sender will have an additional incentive to pull the arm earlier to pre-
empt unintentional pulling, which suggests that the voters will learn more about
the candidates.

Endogenous Parameters. In reality, campaigns not only choose when to release
information but also actively seek information that can be released; similarly, voters
not only cast votes but also investigate the released information. Our model can
be extended to allow Sender to choose the arrival rate of the arm α and Receiver to
choose the arrival rate of the breakdown λ, perhaps conditional on pulling time τ. In
most applications of interest, seeking information is costly for Sender and scrutiny
is costly for Receiver. Results for α are sensitive to two dimensions: (i) whether
Sender observes the state before the arrival of the arm and (ii) whether Sender’s
choice is public information. For example, if Sender observes the state only when
arm arrives, then the chosen α is greater when it is private; otherwise, the chosen
α is greater when it is public. When λ is chosen by Receiver, if we keep Sender’s
pulling strategy fixed, then Receiver would choose a higher λ if the arm has been

10The 1992 US Supreme Court sentence Burson v. Freeman, 504 US 191, forbids such practices as
violations of freedom of speech.
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pulled later. In turn, this would reduce bad Sender’s value of delaying pulling the
arm, accelerating Sender’s release of information.

5.3 Further Applications

The setup we study is sufficiently rich to capture a number of applications beyond
the strategic timing of political scandals.

Funds Management Consider a funds manager who claims to have an invest-
ment strategy that generates positive risk-adjusted return, or “alpha”. The manager
knows whether this is the case, but a potential investor does not. The investor must
decide whether to invest in the fund by a fixed deadline.11 Meanwhile, a new in-
vestment opportunity may come along. If it does, the manager can invest or not. If
she invests then, if she truly has a positive-alpha strategy, the investment will look
good. If, however, she does not have such a strategy then with some probability the
investment will be revealed to be bad.

Our model speaks directly to the structure of equilibrium in this market and the
amount of information about the true ability of the funds manager that is revealed
in equilibrium.

Organizations A fundamental design feature of any organization is to provide
incentives for information gathering and sharing within the organization. Suppose
Sender is an employee and Receiver is a manager with decision-making authority.
The manager has many employees and does not generate ideas herself, but decides
whether or not to implement ideas brought to her by employees. The employee in
question may have an innate “knack” for finding good ideas (the good type), or not
(the bad type). Both types of employee simply want their ideas implemented. In
many organizational settings in seems counterfactual that full unraveling occurs.
Indeed, management practices such as choosing which ideas to implement is often
seen as an important explanation for differential firm performance for firms within
the same industry.

11It is standard practice for closed-end funds to announce, well in advance, a date by which com-
mitments to the fund must be finalized.
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We feel that the temporal dimension of disclosure problems in organizations is a
first-order feature in explaining why unraveling fails. Employees are not typically
endowed with “ideas”—they arrive over time, perhaps as the result of a search pro-
cess; and persuading a manager to implement an idea typically involves an evalua-
tion process that takes time and involves potentially both type-I and type-II errors.
Our model captures these features of the problem.

Election Candidatures While the time of elections is usually fixed, candidates can
announce their intention to run at different times. A US politician can announce his
or her intention to run (and file as a candidate with the Federal Election Commis-
sion) for President at any time. Some candidates announce their intention to run
much before the election. For example, by December 2014, 142 candidates filed for
the 2016 Presidential Election and candidate Yinka Abosede Adeshina filed as early
as September 9, 2010.12 As official candidates receive more attention in the media,
voters accumulate more information about them if their announcement comes ear-
lier. Earlier announcements, therefore, might signal to voters that the candidate has
“nothing to hide.” Our results suggest that earlier candidatures should come from
less well-known candidates, for whom the prior probability of being a suitable can-
didate is lower.

5.4 Concluding remarks

Timing the release of information is a key strategic choice in many economic prob-
lems. The fundamental tradeoff facing the sender is between credibility and scrutiny.
Triggering information flows early increases credibility, but also allows for more ex-
tensive scrutiny, possibly damaging the sender. We show how these forces induce
the sender to strategically delay the release of information to the receiver and we
provide an explanation for why information is often withheld in organizations.

Understanding the credibility-scrutiny tradeoff is of crucial importance in the
design of a variety of institutions, which we touched upon in this section. We hope
our model will serve as a basic framework to address these design questions in more

12Source: Federal Election Commission: http://fec.gov/press/resources/2016presidential_form2nm.shtml,
retrieved December 20, 2014.
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depth in the future.

References

Acharya, Viral V., Peter M. DeMarzo, and Ilan Kremer, “Enodgenous Information
Flows and the Clustering of Annoucements,” NBER Working Paper w16485, 2010.

Banks, Jeffrey S. and Joel Sobel, “Equilibrium Selection in Signaling Games,”
Econometrica, 1987, 55 (3), 647–661.

Baron, Jonathan, Thinking and Deciding (3rd ed.), Cambridge university Press, 2000.

Blackwell, David, “Equivalent comparisons of experiments,” Annals of Mathematical
Statistics, 1953, 24 (2), 262–272.

Bolton, Patrick and Christopher Harris, “Strategic Experimentation,” Econometrica,
1999, 67 (2), 349–374.

Brocas, Isabelle and Juan D Carrillo, “Influence through ignorance,” The RAND
Journal of Economics, 2007, 38 (4), 931–947.

Che, Yeon-Koo and Johannes Hörner, “Optimal design for social learning,” Yale
University Working Paper, 2015.

Dye, Ronald A, “Disclosure of nonproprietary information,” Journal of accounting
research, 1985, 23 (1), 123–145.

Dziuda, Wioletta, “Strategic argumentation,” Journal of Economic Theory, 2011, 146
(4), 1362–1397.

Ely, Jeffrey, Alexander Frankel, and Emir Kamenica, “Suspense and Surprise,”
Journal of Political Economy, 2015, 123 (1), pp. 215–260.

Ely, Jeffrey C, “Beeps,” Northwestern University Working Paper, 2015.

Grenadier, Steven R, Andrey Malenko, and Nadya Malenko, “Timing Decisions
in Organizations: Communication and Authority in a Dynamic Environment,”
Stanford University Graduate School of Business Research Paper No. 15-1, 2015.

24



Grossman, Sanford J., “The Informational Role of Warranties and Private Disclo-
sures about Product Quality,” Journal of Law and Economics, 1981, 24, 461–483.

and Oliver D. Hart, “Takeover Bids, the Free-Rider Problem, and the Theory of
the Corporation,” Bell Journal of Economics, 1980, 11 (1), 42–64.

Guttman, Ilan, Ilan Kremer, and Andrej Skrzypacz, “Not Only What but also
When: A Theory of Dynamic Voluntary Disclosure,” American Economic Review,
2013, 104 (8), 2400–2420.

Jovanovic, Boyan, “Truthful Disclosure of Information,” Bell Journal of Economics,
1982, 13 (1), 36–44.

Jung, Woon-Oh and Young K Kwon, “Disclosure when the market is unsure of
information endowment of managers,” Journal of Accounting research, 1988, 26 (1),
146–153.

Kamenica, Emir and Matthew Gentzkow, “Bayesian Persuasion,” American Eco-
nomic Review, 2011, 101, 2590–2615.

Keller, Godfrey, Sven Rady, and Martin Cripps, “Strategic experimentation with
exponential bandits,” Econometrica, 2005, 73 (1), 39–68.

Kohlberg, Elon and Jean-Francois Mertens, “On the strategic stability of equilib-
ria,” Econometrica, 1986, 54 (5), 1003–1037.

Kolotilin, Anton, “Experimental Design to Persuade,” Games and Economic Behavior,
2015, 90, 215–226.

Milgrom, Paul R., “Good News and Bad News: Representation Theorems and Ap-
plications,” Bell Journal of Economics, 1981, 12, 350–391.

Nyhan, Brendan, “Scandal Potential: How Political Context and News Congestion
Affect the President’s Vulnerability to Media Scandal,” British Journal of Political
Science, forthcoming.

Raizada, Himanshi, “The Timing of Presidential Scandals: The Dynamic of Eco-
nomics, the Media and a Divided Government,” Open Journal of Political Science,
2013, 3 (3), 98–105.

25



Rayo, Luis and Ilya Segal, “Optimal Information Disclosure,” Journal of Political
Economy, 2010, 118 (5), 949–987.

Shavell, Steven, “Acquisition and Discolsure of Information Prior to Sale,” RAND
Journal of Economics, 1994, 25 (1), 20–36.

Shin, Hyun-Song, “News Management and the Value of Firms,” RAND Journal of
Economics, 1994, 25 (1), 58–71.

, “Disclosure and Asset Returns,” Econometrica, 2003, 71 (1), 105–133.

, “Disclosure Risk and Price Drift,” Journal of Accounting Research, 2006, 44, 351–
379.

A Omitted Proofs

Proof of Lemma 1. Part 1. By Blackwell (1953), Assumption 2 with τ′ = T + 1 im-
plies that releasing the trigger at τ is the same as releasing a finite-valued informa-
tive signal y. By Bayes’ rule, posterior s is given by:

s =
pq (y | G)

pq (y | G) + (1− p) q (y | B)

where q (y | θ) is the probability of y given θ. Therefore,

q (y | G)

q (y | B)
=

1− p
p

s
1− s

. (8)

Writing (8) for interim beliefs p and p′, we obtain the following relation for corre-
sponding posterior beliefs s and s′:

1− p′

p′
s′

1− s′
=

1− p
p

s
1− s

which implies that s′ > s for p′ > p; so part 1 follows.
Part 2. By Blackwell (1953), Assumption 2 implies that pulling the arm at τ is

the same as pulling the arm at τ′ and then releasing an additional finite-valued
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informative signal y. A signal y is informative if there exists y such that q (y | G) is
not equal to q (y | B). Part 2 holds because for any strictly increasing concave v∗, we
have

E [v∗ (s) | τ, p, B] = E

[
v∗
(

sq (y | G)

sq (y | G) + (1− s) q (y | B)

)
| τ′, p, B

]
= E

[
E

[
v∗
(

sq (y | G)

sq (y | G) + (1− s) q (y | B)

)
| τ′, s, B

]
| τ′, p, B

]
≤ E

[
v∗
(

E

[
sq (y | G)

sq (y | G) + (1− s) q (y | B)
| τ′, s, B

])
| τ′, p, B

]

< E

v∗

 sE
[

q(y|G)
q(y|B) | τ′, s, B

]
sE
[

q(y|G)
q(y|B) | τ′, s, B

]
+ (1− s)

 | τ′, p, B


= E

v∗

 s ∑ q(y|G)
q(y|B) q (y | B)

s ∑ q(y|G)
q(y|B) q (y | B) + 1− s

 | τ′, p, B


= E

[
v∗ (s) | τ′, p, B

]
,

where the first line holds by Bayes’ rule, the second by the law of iterated ex-
pectations, the third by Jensen’s inequality applied to concave v∗, the fourth by
strict monotonicity of v∗ and Jensen’s inequality applied to strictly concave func-
tion f (z) ≡ sz/ (sz + 1− s), the fifth by definition of expectations, and the last by
Kolmogorov’s axioms.

Part 3. Analogously to Part 2, Part 3 holds because for any strictly increasing
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convex v∗, we have

E [v∗ (s) | p, τ, G] = E

[
v∗
(

sq (y | G)

sq (y | G) + (1− s) q (y | B)

)
| τ′, p, G

]
= E

[
E

[
v∗
(

sq (y | G)

sq (y | G) + (1− s) q (y | B)

)
| τ′, s, G

]
| τ′, p, G

]
≥ E

[
v∗
(

E

[
sq (y | G)

sq (y | G) + (1− s) q (y | B)
| τ′, s, G

])
| τ′, p, G

]

> E

v∗

 s

s + (1− s)E
[

q(y|B)
q(y|G)

| τ′, s, G
]
 | τ′, p, G


= E

v∗

 s

s + (1− s)∑ q(y|B)
q(y|G)

q (y | G)

 | τ′, p, G


= E

[
v∗ (s) | p, τ′, G

]
.

Proof of Lemma 2. Part 1. Suppose, on the contrary, that π (τ) ≤ π (τ′). Then

ˆ
v∗B (s) dHB (s|τ, π (τ)) ≤

ˆ
v∗B (s) dHB

(
s|τ′, π (τ)

)
≤
ˆ

v∗B (s) dHB
(
s|τ′, π

(
τ′
))

,

where the first inequality holds by Lemma 1 part 2 and the second by Lemma 1 part
1. Moreover, at least one inequality is strict. Indeed, if π (τ) ∈ (0, 1), then the first
inequality is strict. If π (τ) = 0, then π (τ′) > 0 (because π (τ) = π (τ′) = 0 is
not allowed); so the second inequality is strict. Finally, if π (τ) = 1, then π (τ) ≤
π (τ′) cannot hold (because π (τ) = π (τ′) = 1 is not allowed). The displayed
inequality implies that bad Sender strictly prefers to pull the arm at τ′ than at τ. A
contradiction.
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Good Sender strictly prefers to pull the arm at τ because

ˆ
v∗G (s) dHG (s|τ, π (τ)) ≥

ˆ
v∗G (s) dHG

(
s|τ′, π (τ)

)
>

ˆ
v∗G (s) dHG

(
s|τ′, π

(
τ′
))

,

where the first inequality holds by Lemma 1 part 3 and the second by π (τ) > π (τ′)

and Lemma 1 part 1.
Part 2. If τ is in the support of PB, then bad Sender weakly prefers to pull the

arm at τ than at any other τ′ > τ. By Bayes’ rule π (τ) < 1. Also, π (τ) cannot
be zero, otherwise bad Sender would strictly prefer to pull the arm at T + 1 since
π (T + 1) > 0 by FG (T) < 1. Therefore, by part 1 of this lemma, good Sender strictly
prefers to pull the arm at τ than at any other τ′ > τ; so PG (τ) = FG (τ).

Proof of Lemma 3. Suppose, on the contrary, that there exists τ such that PG (τ) >

0 and PB (τ) ≥ PG (τ). Because Pθ (τ) = ∑τ
t=1 (Pθ (t)− Pθ (t− 1)), there exists

τ′ ≤ τ in the support of PB such that PB (τ
′)− PB (τ

′ − 1) ≥ PG (τ′)− PG (τ′ − 1).
Similarly, because 1− Pθ (τ) = ∑T+1

t=τ+1 (Pθ (t)− Pθ (t− 1)) and 1− PG (τ) > 0 by
PG (T) ≤ FG (T) < 1, there exists τ′′ > τ in the support of PG such that PG (τ′′)−
PG (τ′′ − 1) ≥ PB (τ

′′)− PB (τ
′′ − 1). By Bayes’ rule,

π
(
τ′
)

=
π (PG (τ′)− PG (τ′ − 1))

π (PG (τ′)− PG (τ′ − 1)) + (1− π) (PB (τ′)− PB (τ′ − 1))
≤ π

≤ π (PG (τ′′)− PG (τ′′ − 1))
π (PG (τ′′)− PG (τ′′ − 1)) + (1− π) (PB (τ′′)− PB (τ′′ − 1))

= π
(
τ′′
)

.

Therefore, by Lemma 2, bad Sender strictly prefers to pull the arm at τ′′ than at τ′,
which implies that τ′ cannot be in the support of PB. A contradiction.

Proof of Lemma 4. By Lemma 2 part 2, each t′ in the support of PB is also in the
support of PG. Suppose, on the contrary, that there exists t′ in the support of PG but
not in the support of PB. Then, by Bayes’ rule π (t′) = 1; so bad Sender who receives
the arm at t ≤ t′ gets the highest possible equilibrium payoff v∗B (1). Therefore, there
exists a period τ ≥ t′ at which π (τ) = 1 (recall that the support of H (.|τ, π) does
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not contain s = 1) and bad Sender pulls the arm with a positive probability. A
contradiction. Therefore, PG and PB have the same supports and therefore π (τ) ∈
(0, 1).

Let the support of PG be {τ1, ..., τn}. Notice that τn = T + 1 because PG (T) ≤
FG (T) < 1. Since τn−1 is in the support of PB and

PB (τn−1) < PG (τn−1) = FG (τn−1) ≤ FB (τn−1) ,

where the first inequality holds by Lemma 3, the equality by Lemma 2 part 2, and
the last inequality holds by Assumption 1. Therefore, bad Sender who receives the
arm at τn−1 must be indifferent between pulling the arm at τn−1 or at τn. Anal-
ogously, bad Sender who receives the arm at τn−k−1 must be indifferent between
τn−k−1 and some τ ∈ {τn−k, . . . , τn}. Thus, by mathematical induction on k, bad
Sender is indifferent between all τ in the support of PG, which proves (1).

By Bayes’ rule, for all τ in the support of PG,

1− π

π
(PB (τ)− PB (τ − 1)) =

1− π (τ)

π (τ)
(PG (τ)− PG (τ − 1)) . (9)

Summing up over τ yields (2). Finally, suppose, on the contrary, that there exist
two distinct solutions π′ and π′′ to (1) and (2). By Lemma 1 part 1, (1) uniquely
determines π (τ) for a given π (T + 1) and π (τ) is increasing in π (T + 1). Thus,
for π′ and π′′ to be distinct, it must be that π′ (T + 1) 6= π′′ (T + 1). Without loss,
suppose that π′ (T + 1) < π′′ (T + 1), and thus π′ (τ) < π′′ (τ) for all τ in the
support of PG. But then (2) cannot hold for both π′ and π′′. A contradiction.

Proof of Theorem 1. Using Lemmas 3 and 4 together with (9) proves the only if part
of the theorem. Setting π (τ) = 0 for τ not in the support of PG and using Lemma 2
proves the if part of the theorem.

Proof of Theorem 2. First, we notice that, by Theorem 1, there exists an equilibrium
with PG (t) = FG (t) for all t.

Adopting Banks and Sobel (1987)’s definition to our setting, we say that an equi-
librium is divine if π (t) = 1 for any t /∈ supp (PG) at which condition D1 holds. D1

30



holds at t if for all p ∈ [0, 1] that satisfy

ˆ
v∗B (s) dHB (s|t, p) ≥ max

τ∈supp(PG),τ>t

ˆ
v∗B (s) dHB (s|τ, π (τ)) (10)

the following inequality holds:

ˆ
v∗G (s) dHG (s|t, p) > max

τ∈supp(PG),τ>t

ˆ
v∗G (s) dHG (s|τ, π (τ)) . (11)

Suppose, on the contrary, that there exists a divine equilibrium in which PG (t) <
FG (t) for some t ∈ {1, . . . , T}. By Theorem 1, t /∈ supp (PG). Let τ∗ denote τ

that maximizes the right hand side of (11). By Lemma 4, π (τ∗) ∈ (0, 1) and τ∗

maximizes the right hand side of (10). Therefore, by Lemma 2 part 1, D1 holds at t;
so π (t) = 1. But then t /∈ supp (PG) cannot hold, because

ˆ
v∗G (s) dHG (s|t, 1) = v∗G (1) > max

τ∈supp(PG)

ˆ
v∗G (s) dHG (s|τ, π (τ)) .

Banks and Sobel (1987) show that all stable equilibria in the sense of Kohlberg and
Mertens (1986) are divine, which completes the proof.

Proof of Proposition 2. We first prove part 2 and then part 1.
Part 2:

For π:

dπ (T)
dπ

=


d

dπ

[
αeλT+λe−αT

α+λ + 1−π
π

]−1
if π < π,

d
dπ

[
(α+λ)(1−π)

λπ eαT + 1
]− λ

α+λ otherwise,

=


1

π2

[
αeλT+λe−αT

α+λ + 1−π
π

]−2
if π < π,

eαT

π2

[
(α+λ)(1−π)

λπ eαT + 1
]− α+2λ

α+λ otherwise,

=

{
1

π2 π (T)2 if π < π,
eαT

π2 π (T)2+ α
λ otherwise,

}
> 0.
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For λ:

dπ (T)
dλ

=


d

dλ

[
αeλT+λe−αT

α+λ + 1−π
π

]−1
if π < π,

d
dλ

[
(α+λ)(1−π)

λπ eαT + 1
]− λ

α+λ otherwise.

First, when π < π̄, dπ(T)
dλ < 0 since e−(α+λ)T > 1 − (α + λ) T for all α, λ, T > 0.

Second, let

φ (λ) ≡ (α + λ) (1− π)

λπ
eαT > 0.

Then, when π > π̄,
dπ (T)

dλ
=

d
dλ

e−
λ

α+λ ln(1+φ(λ)).

To show dπ(T)
dλ < 0 it is then sufficient to note that

d
dλ

λ

α + λ
ln (1 + φ (λ)) =

1
α + λ

[
ln (1 + φ (λ))

α + λ
− 1

λ

1− π

π

1
1 + φ (λ)

]
> 0

where the last passage follows from (1 + φ (λ)) ln (1 + φ (λ)) > φ (λ).
For α:
If π < π̄, then

dπ (T)
dα

= − (π (T))2 χ

(α + λ)2 < 0

χ ≡ λ
{

eλT − [1 + (α + λ) T] e−αT
}
> 0

where the last passage follows from e(α+λ)T > 1 + (α + λ) T for all α, λ, T > 0.
If π ≥ π̄, by log-differentiation,

dπ (T)
dα

= π (T)
λ

α + λ

[
ln (1 + ξ)

α + λ
−

dξ
dα

1 + ξ

]

ξ ≡ α + λ

λ

1− π

π
eαT.

Thus,
dπ (T)

dα
< 0 ⇐⇒ (1 + ξ) ln (1 + ξ)

ξ
< 1 + T (α + λ) . (12)
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For π = π, ξ = e(α+λ)T − 1 > 0; so

dπ (T)
dα

< 0 ⇐⇒ ln (1 + ξ) < ξ,

which is true for all ξ > 0. If π is greater than π, then ξ is smaller than e(α+λ)T − 1
and the inequality (12) is stronger because the left hand side is increasing in ξ for
ξ > 0; so dπ(T)

dα < 0 for π ≥ π̄.
Part 1:
For π on q:

dq
dπ

=
d

dπ

[
π

1− π

1− π (T)
π (T)

e−αT
]

=
e−αT

π (T) (1− π)
×
[

1− π (T)
1− π

− π

π (T)
dπ (T)

dπ

]
,

=
e−αT

π (T) (1− π)︸ ︷︷ ︸
>0

×


[

1−π(T)
1−π − π(T)

π

]
if π < π,[

1−π(T)
1−π − eαT π(T)1+ α

λ

π

]
otherwise.


If π < π̄, then dq

dπ > 0 if and only if 1−π(T)
π(T) > 1−π

π , which is satisfied since in
equilibrium π (T) < π.

If π ≥ π̄, then dq
dπ > 0 if and only if

1− π (T)
π (T)

>
1− π

π
eαTπ (T)

α
λ , (13)

which can be rewritten as

1− (1 + φ (λ))−
λ

α+λ >
λ

α + λ

φ (λ)

1 + φ (λ)

⇐⇒ 1 + φ (λ)− (1 + φ (λ))
α

α+λ >
λ

α + λ
φ (λ)

⇐⇒ 1 +
α

α + λ
φ (λ) > (1 + φ (λ))

α
α+λ .

To conclude, notice that 1 + xb > (1 + b)x for b > 0 and x ∈ (0, 1).
For π on t̄:
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For π < π̄, t̄ = 0, but for π ≥ π̄, t̄ is increasing in π and decreasing in α because
π (T) is increasing in π and decreasing in α.

For λ on q:

dq
dλ

=
d

dλ

[
π

1− π

1− π (T)
π (T)

e−αT
]

= − π

1− π

e−αT

π (T)2
dπ (T)

dλ
> 0.

For λ on t̄:
For π < π̄, t̄ = 0, but for π ≥ π̄

dt̄
dλ

= − d
dλ

[
1

α + λ
ln
(
(α + λ) (1− π)

λπ
eαT + 1

)]
=

1
α + λ

(
ln (1 + φ (λ))

α + λ
− dφ (λ)

dλ

1
1 + φ (λ)

)
> 0

where the last passage follows from

dφ (λ)

dλ
= − α

λ2
1− π

π
eαT < 0.

For α on q:
If π < π, then

1− π

π

dq
dα

=
(λ− α (α + λ) T) e(λ−α)T − λ (1 + 2 (α + λ) T) e−2αT

(α + λ)2 −
(

1
π
− 2
)

Te−αT

<
(λ− α (α + λ) T) e(λ−α)T − λ (1 + 2 (α + λ) T) e−2αT

(α + λ)2 −
(

1
π
− 2
)

Te−αT

= − e−2αT

(α + λ)2

(
λ (1 + (α + λ) T) +

(
(α + λ)2 T − λ

)
e(α+λ)T − (α + λ)2 TeαT

)
.
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Thus dq/dα < 0, because for all positive α and λ

f (α, λ) = λ (1 + (α + λ)) +
(
(α + λ)2 − λ

)
e(λ+α) − (α + λ)2 eα

=
∞

∑
k=3

[
(α + λ)k

(k− 2)!
− λ

(α + λ)k−1

(k− 1)!
− (α + λ)2 αk−2

(k− 2)!

]
> 0,

where the inequality holds because each term ck in the sum is positive:

ck =
(α + λ)2

(
(α + λ)k−2 − αk−2

)
(k− 2)!

− (α + λ)2 λ (α + λ)k−3

(k− 1)!

=
(α + λ)2 λ

(
∑k−3

n=0 (α + λ)k−3−n αn
)

(k− 2)!
− (α + λ)2 λ (α + λ)k−3

(k− 1)!

>
(α + λ)2 λ (α + λ)k−3

(k− 2)!
− (α + λ)2 λ (α + λ)k−3

(k− 1)!
> 0.

If π ≥ π̄, then without loss of generality we can set T = 1 and get

1− π

π

dq
dα

= e−α

[
1− 1

π (T)

(
1 +

dπ (T)
dα

π (T)−1
)]

< 0

⇐⇒ dπ (T)
dα

> π (T) (π (T)− 1) .

This inequality is equivalent to:

1 + ξ

ξ

[
ln (1 + ξ) +

(α + λ)2

λ

(
1− (1 + ξ)−

α+λ
λ

)]
− 1− α− λ > 0

The left hand side is increasing in α, treating ξ as a constant. Then the inequality
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holds because it holds for α→ 0 :

1 + ξ

ξ

[
ln (1 + ξ) + λ

(
1− (1 + ξ)−1

)]
− 1− λ > 0

1 + ξ

ξ

[
ln (1 + ξ) + λ

ξ

1 + ξ

]
− 1− λ > 0

1 + ξ

ξ
ln (1 + ξ) > 1.

Proof of Proposition 3. We first prove part 2. We then separately prove the results
about good Sender’s and Receiver’s expected payoffs in part 1.

Part 2: Bad Sender’s expected payoff. Recall that (i) Sender’s payoff equals
Receiver’s posterior belief about Sender at t = T and (ii) in equilibrium, bad Sender
(weakly) prefers not to pull the arm at all than pulling it at any time t ∈ [0, T].
Therefore, bad Sender’s expected payoff equals Receiver’s belief about Sender at
t = T if the arm has not been pulled:

E [vB] = π (T) . (14)

Part 2 then follows from Proposition 2.
Part 1: Good Sender’s expected payoff. By the law of iterated expectations,

E [s] = πE [vG] + (1− π)E [vB] = π

⇒ E [vG] = 1− 1− π

π
π (T)

where s is Receiver’s posterior belief about Sender at t = T and we used (14) in
the last passage. Thus, good Sender’s expected payoff increases with α and λ by
Proposition 2. Finally, it is easy to see that E [vG] increases in π after sustituting
π (T) in E [vG].

Part 1: Receiver’s expected payoff. We shall show that in the stable equilibrium

E [u] =
1 + πE [vG]

2
. (15)

Part 1 about Receiver’s expected payoff then follows from the result in Part 1 about
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good Sender’s expected payoff.
To prove (15), we divide the proof in two cases: π ≤ π̄ and π > π̄. If π ≤ π̄,

Receiver’s expected payoff is given by the sum of four terms: (i) Sender is good and
the arm does not arrive; (ii) Sender is good and the arm arrives; (iii) Sender is bad
and she does not pull the arm; and (iv) Sender is bad and she pulls the arm. Thus,

2E [u]− 1 = πe−αT (π (T))2

+π

ˆ T

0

(
eλ(T−t)π (T)

)2
αe−αtdt

+ (1− π) q (π (T))2

+ (1− π)

ˆ T

0
e−λ(T−t)

(
eλ(T−t)π (T)

)2 π

1− π

(
1− π (t)

π (t)

)
αe−αtdt.

Solving all integrals and rearranging all common terms we get

2E [u]− 1 = πE [vG] .

If π > π̄, Receiver’s expected payoff is given by the sum of five terms: (i) Sender is
good and the arm does not arrive; (ii) Sender is good and the arm arrives before t̄;
(iii) Sender is good and the arm arrives between t̄ and T; (iv) Sender is bad and she
does not pull the arm; (v) Sender is bad and she pulls the arm. Thus,

2E [u]− 1 = πe−αT (π (T))2

+π
(

1− e−αt̄
)

+π

ˆ T

t̄

(
eλ(T−t)π (T)

)2
αe−αtdt +

+ (1− π) q (π (T))2

+ (1− π)

ˆ T

t̄
e−λ(T−t)

(
eλ(T−t)π (T)

)2 π

1− π

(
1− π (t)

π (t)

)
αe−αtdt.

Solving all integrals and rearranging all common terms we again get

2E [u]− 1 = πE [vG] .
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Proof of Proposition 4. Part 1: We differentiate R with respect to π:

dR
dπ

=
d

dπ

(
1− π

π (T)
e−αT

)
= −e−αT π (T)− dπ(T)

dπ π

π (T)2 .

Therefore R is non-decreasing in π if and only if

dπ (T)
dπ

≥ π (T)
π

.

We now show that

dπ (T)
dπ

≥ π (T)
π

⇐⇒ π ≥ αeαT

(α + λ) eαT − 1
.

Recall from the Proof of Proposition 2 that

dπ (T)
dπ

=


π(T)2

π2 if π < π̄;

eαT π(T)2+ α
λ

π2 otherwise.

Case 1: π < π̄.
If π < π̄, then dR/dπ < 0 because π (T) < π and

dπ (T)
dπ

=
π (T)2

π2 <
π (T)

π
.

Case 2: π ≥ π̄.
If π ≥ π̄, then dR/dπ < 0 if and only if

dπ (T)
dπ

= eαT π (T) 2+ α
λ

π2 <
π (T)

π
eαT.

Substituting π (T), we get that this inequality is equivalent to

π <
αeαT

αeαT + λ (eαT − 1)
.

38



It remains to show that

αeαT

αeαT + λ (eαT − 1)
> π̄.

Substituting π̄, we get that this inequality is equivalent to

e(α+λ)T − 1
α + λ

>
eαT − 1

α
,

which is satisfied because function (ex − 1) /x is increasing in x.
Part 2: We differentiate R with respect to λ:

dR
dλ

=
d

dλ

[
π
(

1− e−αT
)
+ (1− π) (1− q)

]
= − (1− π)

dq
dλ

< 0

where the last inequality follows from Proposition 2.
Part 3: We differentiate R with respect to α

dR
dλ

=
d

dα

[
π
(

1− e−αT
)
+ (1− π) (1− q)

]
> − (1− π)

dq
dα

> 0,

where the last inequality follows from Proposition 2.

Proof of Corollary 4. The unconditional probability of a breakdown of the arm pulled
at t is given by

Pr (bd | t) ≡
(

1− e−λ(T−t)
)
[1− π (t)] .

Notice that Pr (bd | t) is continuous in t because π (t) is continuous in t. Also,
Pr (bd | t) equals 0 for t ≤ t̄, is strictly positive for all t ∈ (t̄, T), and equals 0 for
t = T. Substituting π (t) and taking the derivative of Pr (bd | t) with respect to t ≥ t̄

39



we have
d Pr (bd | t)

dt
= −λ

e−λ(T−t) (1 + π (T))− 2π (T)[
1− π (T)

(
1− eλ(T−t)

)]2
which is positive if and only if

t < T − 1
λ

ln
(

1 + π (T)
2π (T)

)
< T.

Proof of Corollary 5. The probability of release of a bad scandal at time t is given
by

RB ≡
dPB (T)

dt
=

αe−αt
(

1− π (T) eλ(T−t)
)

π (T)
.

Differentiating with respect to t we get

dRB

dt
=

αe−αt

π (T)

[
(α + λ)π (T) eλ(T−t) − α

]
which is positive if and only if

t < T − 1
λ

ln
(

α

α + λ

1
π (T)

)
.
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