
 

business.unsw.edu.au  

Last Updated 29 July 2014    CRICOS Code 00098G 

 

 
 

 

 
 
UNSW Business School Research Paper No. 2015 ECON 17 
 
 
 
Changes in the Factor Structure of the U.S. Economy: Permanent Breaks or 
Business Cycle Regimes? 
 
 
 
Luke Hartigan 
 
 
 
 
 
 
 
 
 
 
 
 
 
This paper can be downloaded without charge from 
The Social Science Research Network Electronic Paper Collection: 
http://ssrn.com/abstract=2642067 

 

 

 

 

 

 

 

 

 

 

 

UNSW Business School 

Working Paper 

 

http://ssrn.com/abstract=2642067


Changes in the Factor Structure of the U.S. Economy: Permanent

Breaks or Business Cycle Regimes?

Luke Hartigan∗

University of New South Wales

August 10, 2015

Abstract

The factor structure of the U.S. economy appears to change over time. Unlike previous studies

which suggest this is due to permanent structural breaks in factor loadings, I argue instead

that the volatility and persistence of factor processes undergo recurring changes related to the

business cycle. To capture this, I develop a two-step Markov-switching static factor estimation

procedure and apply it to a well studied U.S. macroeconomic data set. I find strong support

for Markov-switching in the factors processes, with switching variances being most dominant.

Conditional on Markov-switching factor processes, tests for regime-dependent factor loadings

show only moderate evidence of change. Overall, the results support regime-dependent factor

processes as the main explanation for the diverging number of estimated factors in empirical

applications and challenge the global linearity assumption implicit in large dimensional factor

models of the U.S. economy.
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1 Introduction

Factor modelling is a popular dimensional reduction technique that assumes a small number of

latent variables (factors) explain most of the common variation observed in a panel of data. The

degree of correlation between the factors and the variables in the panel is measured by the factor

loadings. Together, they represent a factor structure, and changes in either the processes describing

the factors or the loadings would result in a change in the panel’s factor structure. Accordingly,

any change in factor structure will mean that the estimated number of factors needed to adequately

describe the panel of data will also change. A growing body of research has shown that permanent

structural breaks in factor loadings can impact the number of estimated factors in a panel of

data; however, this literature does not consider the possibility that processes describing the factors

themselves could possibly be changing.

To be specific about changes in factor processes, if the volatility and persistence of the underlying

variables in a panel of data are not constant, then this could result in changes in the volatility and

persistence of the extracted factors themselves. Meanwhile, if a majority of underlying variables

in the panel also show a similar change in volatility and persistence, then the factor loadings will

not necessarily change. It is only if some portion of underlying variables display disproportionate

changes in variances, persistence, and/or correlation, then this will likely result in a change in the

factor loadings.

To allow for these alternative sources of change in factor structure, I develop a two-step Markov-

switching approximate static factor estimation procedure, similar in spirit to the two-step method

presented by Diebold and Rudebusch (1996) for (exact) dynamic factor models with Markov-

switching intercepts. First, I extract the factors via principle components and then fit a series of

univariate two-regime Markov-switching autoregressive models to each factor separately, treating

the factors as data. Second, I compute regime-dependent factors by interacting the extracted factors

with the estimated smoothed regime probabilities. Following this, I obtain regime-depended factor

loadings by regression. While this method is less efficient than a one-step method, it overcomes the

‘curse of dimensionality’ which can be an issue in estimating large dimensional Markov-switching

models. I apply the procedure to the Stock and Watson (2005) data set and show that the factor

structure of the U.S. economy appears to change with the peaks and trough of the business cycle

and that the estimated number of static factors needed to adequately describe the U.S. economy

has also changed over time. Taken together, these changes suggest that the stage of the business

cycle can impact the degree of the common variation amongst a panel of macroeconomic time series.

A two regime model appears to capture the main time series properties of the estimated factors,

with the first state corresponding to a low variability regime associated with expansionary periods,

while the second state reflects a high variability regime, which is shown to match up with the

standard NBER recession dates. Furthermore, although each regime-dependent factor is modelled

separately, the estimated smoothed regime probabilities for each factor show a high degree of
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similarity with each other and with the NBER recession dates.

Formal tests for Markov-switching in the processes describing the factors show strong support for

nonlinearity, with switching variances having the largest impact. Meanwhile, tests for changes

in factor loadings only indicate moderate support towards regime-dependent loadings. The re-

sults suggests that regime-dependent factor processes provide a better explanation than permanent

structural breaks in factor loadings for the divergent number of estimated factors when using ex-

isting estimation methods. The findings also raises the question of whether the global linearity

assumption implicit in static factor models is suitable in panels of data subject to instability such

as macroeconomic time series.

The rest of this paper is organised as follows: Section 2 documents how the estimated number

of static factors changes with peaks and troughs of the business cycle and how changing factor

processes might be the cause of this. Section 3 presents a two-step Markov-switching estimation

procedure for static factor models. Tests for Markov-switching and regime-dependent loadings as

well as implications are discussed in Section 4, while Section 5 concludes.

2 Factor Models and the Business Cycle

For a single variable, xit, in a panel of data X with dimensions i = 1, . . . , N ; t = 1, . . . , T , a factor

model is defined as:

xit = ΛiFt + εit (1)

In Equation (1) the factors are given by Ft, with dimension r×1, while Λi, with dimension 1×r, are

the factor loadings and measures the weight variable i puts onto each factor and is analogous to the

slope coefficient in regression. The term ΛiFt is the common component of xit whereas the residual

term, εit, represents the idiosyncratic or ‘unique’ component of xit. Note, all of these parameters

are unobserved and must be estimated jointly. The model is referred to as an approximate static

factor model. The term ‘static’ refers to the contemporaneous relationship between the data xit

and the factors Ft; however, note that Ft itself can be a dynamic process and this will be exploited

later in Section 3. The term ‘approximate’ is used because in this set-up the idiosyncratic errors are

permitted to be weakly correlated across i and t dimensions. This is in contrast to the traditional or

‘strict’ factor model approach which assumes the idiosyncratic terms are orthogonal to each other.

Estimating the number of static factors, r, is critical. The main estimation methods proposed in

the literature use the fact that the first r eigenvalues of the covariance matrix of X, representing

the ‘systematic’ part, are unbounded, whereas the remaining eigenvalues, representing the ‘non-

systematic’ part, are bounded as both N, T → ∞. Note, either X ′X or XX ′ can be used in

estimation since they share the same eigenvalues. Three main methods for determining r include:

the ICP2 estimator (Bai and Ng 2002), the ED estimator (Onatski 2010), and the GR estimator
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(Ahn and Horenstein 2013). All three estimators are based on estimating the number of factors

using an a integer sequence k, defined as 0 ≤ k ≤ kmax, with kmax interpreted as the maximum

number of factors to test for a priori. There is a fourth estimator, the ABC estimator of Alessi et al.

(2010), which is based on the Bai and Ng (2002) ICP estimator but requires two extra parameters

to be determined related to tuning and stability checks. No guides exist for the correct specification

of these additional parameters and so this estimator will not be considered here. We now explain

each of the three main estimators in turn.

Bai and Ng (2002) suggested estimating the number of static factors, r, by minimising one of two

model selection criterion functions (PCP for Panel CP and ICP for panel information criterion).

The two proposed estimators are linked to the eigenvalues of the covariance matrix of X with each

estimator equal to the number of eigenvalues larger than a threshold value specified by a penalty

function which depends on both N and T . The ICP2, which has been shown to have good properties

in simulations (Bai and Ng 2008), can be written as:

ICP2 (k) = ln
(
σ̂2
k

)
+ k

(
N + T

NT

)
lnC2

NT (2)

where σ̂2
k = (NT )−1∑N

i=1

∑T
t=1

(
ε̂kit
)2

, C2
NT = min [N,T ]. The estimated number of factors, r̂, is

then given by the minimum ICP2 for the sequence k. Note, if true process describing the data is a

dynamic factor model, then the Bai and Ng (2002) estimators will give an upper bound of the true

number of factors in the panel as it will count both the factors and their lags.

Onatski (2010) proposed the ‘Edge Distribution’ (ED) estimator, which estimates the number of

static factors using successive differences between eigenvalues of the covariance matrix of X. The

threshold is found as the difference which is greater than some fixed value δ > 0 which needs to be

calibrated. It can be written as:

r̂ = max {i ≤ kmax : λi − λi+1 ≥ δ} (3)

where λi is the ith eigenvalue of the covariance matrix of X. The idea behind the test is that for

any i > r, the difference in successive eigenvalues λi − λi+1 converges to 0, while the difference

λr − λr+1 diverges to infinity. If the true DGP is a dynamic factor model then the ED should

in principle capture the number of factors and their lags. Some advantages of the ED is that it

works well in small samples when the amount of cross-sectional and temporal correlation in the

idiosyncratic terms is relatively large. It also improves on the Bai and Ng (2002) estimators when

the share of the observed variation in the panel attributed to the factors is small relative to the

variation due to the idiosyncratic term (Onatski 2010). However, the ED may underestimate the

number of factors if some of the factors are ‘weak’. Used in this context, weak is taken to mean

that the smallest eigenvalue of the systematic part is close in magnitude to the largest eigenvalue

of the non-systematic part.
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Ahn and Horenstein (2013) proposed two estimators: the ‘Eigenvalue Ratio’ (ER) and the ‘Growth

Ratio’ (GR) and suggest estimating r as the maximiser of the ratio of two adjacent eigenvalues

of the covariance matrix of X arranged in descending order. The authors report that the GR

performs better than the ER in situations in which the panel has a dominant factor (in terms

of the proportion of explained variation). This tends to be the case in empirical applications in

macroeconomics so I focus solely on the GR estimator here. The GR can be written as:

GR (k) =
ln [V (k − 1) /V (k)]

ln [V (k) /V (k + 1)]
(4)

where V (k) =
∑min(N,T )

j=k+1 λj , the cumulative sum of the eigenvalues of the covariance matrix of X.

The estimate of the number of factors, r̂, is then given as the maximum GR for the sequence k.

Note, the authors also suggest that these two estimators may be inappropriate in cases in which

some factors have dynamic factor loadings of infinite order such as in Generalised Dynamic Factor

models.

In their study Stock and Watson (2005) estimated seven static factors for the full sample of their

data set (henceforth SW2005) using the ICP2 estimator. However, it is worth investigating if the

estimated number of factors is sensitive to the sample period considered. To do this I follow the

procedure first used by Bai and Ng (2007) and re-estimate the number of factors multiple times

using all three estimators over an expanding time window starting at t = January 1963 (an initial

four year window), and expanding the length of the estimation window by one month until the end

of the sample using kmax = 15 at each step.

The results are presented in Figure 1. The starting point was chosen to maximise the length of time

available for the sequential estimation procedure while also ensuring a relatively large initial sample

size. Observe the ICP2 does not estimate the number of factors to be seven until towards the end of

the time sample of the SW2005 data set. Another feature of Figure 1 is that the estimated number

of factors over time from all three methods are quite different; nonetheless, one aspect common

between all three estimators is the tendency for the estimated number of factors to change across

peaks and troughs of the business cycle as judged by the NBER recession dates. This is especially

true for the 1970s and early 1980s; a period renowned for its increased volatility as a consequence

of the two oil shocks, rising unemployment and the significant movements in interest rates by the

U.S. Federal Reserve as a way of mitigating historically high inflation at the time. One reason for

the difference observed between the three estimators may relate to the some of the issues mentioned

when discussing each one in turn, such as the the ED’s tendency to underestimate r when some

factors are weak and the GR’s inability to deal with dynamics in factors.
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Figure 1: Recursive Estimated Number of Static Factors – SW2005 Data Set

It is worth asking why there are so many factors estimated in the panel of U.S. data, as Stock

and Watson (2005) did in their original study, and what is causing the changes in the number

estimated over time. Recently, the literature has come to understand that permanent structural

breaks in factor loadings augment the factor space. The reason is that a factor model with breaks

in loadings is equivalent to another factor model with an increased number of factors and constant

factor loadings. The idea was first proposed by Breitung and Eickmeier (2011) and later proved

by Chen et al. (2014). These authors, plus others such as Stock and Watson (2009), Corradi and

Swanson (2014), Yamamoto and Tanaka (2014), Yamamoto (2014), and Han and Inoue (2015),

have shown how breaks in factor loadings can inflate the estimated number of factors and each

have proposed alternative tests for detecting a one-time common break in the factor loadings.

By focusing on structural breaks in factor loadings only, however, this literature downplays the

idea that the processes describing the factors could also undergo change and, in addition, that this

change may be recurrent and not necessarily permanent. This was first conjectured by Stock and

Watson (2009) while Chen et al. (2014) discuss that their proposed test for structural breaks in

factor models, which is based on the stability of regression coefficients of the first factor on the

remaining factors, cannot differentiate between breaks in loadings, breaks in the covariance matrix

of the factors or both. (The idea of breaks in factor dynamics was also mentioned by Han and

Inoue 2015 in an earlier working paper version of their paper). Therefore, it might be the case that

these proposed tests for breaks in loadings are just picking up the effects of a change in the factor
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processes instead.

The factors themselves might be subject to change since the underlying macroeconomic data used

in their estimation is well known to have instability (see the comprehensive studies of Stock and

Watson 1996 for changes in the first moments and Sensier and van Dijk 2004 for changes in the

second moments of many macroeconomic time series data frequently used in factor analysis). Be-

cause the factors represent the common variation in a panel of macroeconomic data, if the variances

and/or covariances of the underlying variables change (due the alternation between recessions and

expansions for instance), then these changes could cause a change in the time series properties

of the extracted factors. For example, if the variances of the factors declines and this decline in

variability is also reflected in a large proportion of the variables in the underlying panel, then the

factor loadings will not change even though the factor processes have. Hence, an unexplored area

of the research agenda in this literature relates to the possibility of changes in the factor processes

themselves.

Chan et al. (2012) point out an insightful method for differentiating between the effects of a change

in the loadings or in the factor processes. Provided there is only one source of instability in the

factor model, they suggest comparing the estimated number of factors obtained from the full sample

with those from different subsamples split at an estimated break point. If there is no change in

factor loadings between the two points, then the number of factors should be consistently estimated

for the full sample and each of the subsamples. Alternatively, provided the factors are stationary

and there is a change in factor loadings, then the true number of factors can still be consistently

estimated for each subsample; however, it will be overestimated for the full sample.

Hence, if the number of estimated factors in each subsample approximately sums to the number

estimated for the full sample, that is, r ≈
∑J

j=1 rj where j is the estimated number of break points,

then it appears that changes in the factor loadings are the main cause of the divergent number of

estimated factors, (which Han and Inoue 2015 label as a Type 1 Break). Alternatively, if r ≈ rj

for j = 1, . . . , J , then it would appear that changes in the processes describing the factors are the

reason for the different number of estimated factors, (which is called a Type 2 break by Han and

Inoue 2015).

Furthermore, some support for this idea can also be found in the work of Bai and Ng (2007) where

the authors’ develop a test for the number of dynamic factors in a large N, T setting. Using the

SW2005 data set, the authors find that the number of estimated dynamic factors remains relatively

stable over time at four, but that the estimated number of static factors diverges over time (similar

to Figure 1). The divergence between the estimated number of static and dynamic factors could

reflect a change in the persistence and/or variance of the factor processes over time. Note that a

dynamic factor model with s lags on q dynamic factors can always be written as a static factor

model with r = q(s + 1) static factors. The dimension of the static factors, r, is generally larger

than that of the dynamic factors because it includes the leads and lags of the dynamic factors.
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To investigate this idea in relation to the current study, I divide the SW2005 data set into five

subsamples. Then, I re-estimate the number of static factors in each of these subsamples using the

three different estimators to determine how rj for j = 1, . . . , 5 varies relative to the estimate of r

over the combined samples inferred from Figure 1. To ascertain potential break points, I use the

observed step increases in the ICP2 estimator from Figure 1 since Breitung and Eickmeier (2011)

showed in simulation work that this estimator overestimates the true number of factors when there

are breaks in factor loadings. There appears to be five break points to consider as subsamples:

i) January 1960 to June 1971; ii) July 1971 to July 1973; iii) August 1973 to February 1978; iv)

March 1978 to March 2002; and v) April 2002 to December 2003. The number of factors, rj , are

then estimated in each of these five subsamples using the three different methods with the results

presented in Table 1:

Table 1: Estimated Number of Factors Across Subsamples

Estimator

Subsample Time Period Sample Size ICP2 ED GR

1 1960M1–1971M6 138 2 7 1

2 1971M7–1973M7 25 2 7 1

3 1973M8–1978M2 55 5 4 2

4 1978M3–2002M3 289 6 4 1

5 2002M4–2003M12 21 1 5 2

All 1960M1–2003M12 528 7 5 1

NOTE : The subsamples were determined in reference to the step increases observed in

the ICP2 estimator for the SW2005 data set in Figure 1. In each sub-sample kmax = 10.

There is a fair amount of variability in the estimated number of factors across the five subsamples.

Focusing primarily on the ICP2 estimates, the first two subsamples show results consistent with

what might be changes in factor loadings. This is because in each subsample, both r1 and r2

are estimated to be two, while for the two periods combined there is estimated to be four factors

(Figure 1). However, the next two subperiods suggest otherwise, because the estimates for r3 and

r4 rises to five and six respectively, when we would expect to see estimates closer to one in each

subsample to mirror with the unit step rises in Figure 1. Collectively, the estimates for rj in each

of these two subsamples is identical to the combined sample estimates of five and six as would be

the outcome if the change was predominately from changes in factor processes rather than changes

in factor loadings. Additionally, the subsample March 1978 to March 2002 effectively encompasses

the period referred to as the ‘Great Moderation’ which is known to correspond to a decline in the

volatility of many macroeconomic series from around March 1984 (see Kim and Nelson 1999 and

McConnell and Perez-Quiros 2000). This adds further weight to the notion that processes describing

the factors might have changed during this period. Finally, the estimate of r5 for subsample five

weighs in favour of a change in factor loading since the estimate of one would correspond with the

unit step increase from six to seven observed in Figure 1 which occurred during that period.
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As an additional check I also compare the factors estimated over the full sample to those from

each of the subsamples using a fixed r in all cases. This idea is based on Theorem 3 (T3) in Stock

and Watson (2002) and Proposition 1 (P1) in Chan et al. (2012). T3 suggests that even with time

variation in the factor loadings, the subsample estimates of the static factors should nearly span

the same factor space. Whereas P1 suggests that if the factor loadings change due to a big break,

then factors associated to the changing loadings will be effectively zero before the break point,

while these same factors will be non-zero after the break point. Hence, if the estimated subsample

factors do not span the same spaces as the full sample estimated factors, then it suggests the full

sample factors might be zero in that subsample and the change in the estimated number of factors

is more likely due to a change in factor loadings. However, if the opposite is found, then it suggests

changing factor processes are the cause.

One method to measure the spaces spanned by the factors in different subsamples is by using

canonical correlation. Indeed, Stock and Watson (2009) do something similar, but they compare

only two subsamples with the subjectively chosen break point of March 1984, corresponding the

start of the Great Moderation. Canonical correlation analysis is used to study linear relationships

between two sets of variables, x = (xi, . . . , xm)′ and y = (y1, . . . , yn)′. If there are correlations

between the two sets of variables, then canonical correlation analysis will find linear combinations

of the xi and yj variables which have maximum correlation with each other (see Anderson 2003).

We can define the sample squared canonical correlation coefficient, ρ̂2
j , such that 1 > ρ̂2

1 ≥ ρ̂2
2 ≥

· · · ≥ ρ̂2
p > 0 with p = min [m, n]. The squared canonical correlations are just the characteristic

roots of S−1
xx SxyS

−1
yy S

′
xy where: Sxx = var (x), Syy = var (y), and Sxy = cov (x, y). Table 2 present

estimated sample squared canonical correlations for each subsample relative to the full sample of

factors based on r = 7 static factors. Squared canonical correlations close to one in value suggest

that the subsample and the full sample of estimated static factors span nearly the same spaces

whereas a value close to zero implies the subsample and full sample estimated factors do not span

the same spaces.

Table 2: Subsample Squared Canonical Correlations

Subsample

Factor 1 2 3 4 5

1 0.998 0.993 0.998 0.999 0.996

2 0.989 0.992 0.995 0.996 0.986

3 0.978 0.980 0.989 0.994 0.957

4 0.960 0.865 0.945 0.991 0.886

5 0.902 0.660 0.877 0.980 0.774

6 0.871 0.454 0.728 0.973 0.389

7 0.003 0.169 0.037 0.727 0.236

NOTE : Each column entry represents the jth sample squared

canonical correlation between the jth full sample factor and the

jth subsample factor, for j = 1, . . . , 7.
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There are clearly differences in the estimated sample squared canonical correlations across the five

subsamples. The factors from the second and fifth subsamples appear to span different spaces than

the full sample factors with squared canonical correlation estimates well below 0.9, although the

relatively smaller sample sizes in subsamples two and five could be impacting these estimates. For

the most part, the first five or six squared canonical correlations in subsamples one, three, and five

appear relatively high (i.e., close to 0.9 and above), indicating that the factors in these subsamples

seem to span the same spaces as the full sample factors. In comparison to the other subsamples,

the factors estimated from the fourth subsample show the most similarity with the spaces spanned

by the full sample factors, however, this too may be driven by its relatively larger sample size.

Note, with the exception of the seventh squared canonical correlation from subsample four, none

of the other subsamples’ seventh squared canonical correlation suggest that the last factor from

each of those subsamples appear to span the same space as the seventh factor from the full sample.

Indeed, the estimated seventh squared canonical correlation from the first subsample is very close

to zero, suggesting that this factor could be a result of a change in factor loadings at some later

point in time. Taken together, the results are not consistent with structural breaks in the factor

loadings being the only reason for the divergent number of estimated factors in the SW2005 data

set and gives some weight to the idea that maybe the processes describing the estimated factors

change over time, especially for the 1970–1980 time period.

3 A Two-step Estimation Procedure For Markov Switching Factor

Models

Given the findings in Section 2, it is worthwhile trying to disentangle changes in factor loadings

from those of factor processes, since the impact on the estimated number of static factors because

of these alternative changes can be misinterpreted. If we had an indicator variable which could be

used to distinguish between the two types of changes, then we could test each change separately.

One way to achieve this is to treat the indicator as an unobserved variable and estimate it. If we

assume it follows a first-order Markov process, then we can use a Markov-switching model for this

purpose.

Hamilton (1989; 2005) showed that macroeconomic data can be successfully modelled with a switch-

ing mean and/or variance. Furthermore, Markov-switching dynamic factor models have a long

history in the literature with the first use by Diebold and Rudebusch (1996) who proposed a two-

step estimation method, conceptually similar to the one proposed here, with further contributions

from Chauvet (1998) and Kim and Nelson (1998), but as yet there has been no attempt to use

a Markov-switching framework within a static factor model. The idea of a switching static factor

model is not unusual though and was suggested by Stock and Watson (2011) as an area for future

research.
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Recently Camacho et al. (2014) investigated the estimation properties of the two-step and one-step

estimation methods in the dynamic factor model case and found that while the one-step method is

generally preferred, the benefits diminish as the quality of the indicators increases (in the sense of a

signal-to-noise ratio). Their findings suggest the increase in estimation error might not be an issue

if we only want to get an inference of the regime probabilities as is the case here. Additionally, a

two-step method overcomes the ‘curse of dimensionality’ that is an issue when trying to estimate

large dimensional Markov-switching models.

3.1 Estimation Method

The method involves a two-step estimation process. In the first step, factors are extracted using

principal components and univariate Markov-switching AR (MS-AR) models are estimated for each

factor separately treating them as ‘data’ which is permissible as long as both N and T are large.

The principal components estimators of the factors and loadings can be simultaneously estimated

by solving the following minimisation problem:

min
Λk, Fk

V (k) = (NT )−1
N∑
i=1

T∑
t=1

(
xit − Λk

i F
k
t

)2
(5)

The superscript k indicates the number of estimated factors and is not necessarily equal to the

true number of factors r. There are two alternative but equal methods for estimating the factors

in a panel using the method of principal components (for a detailed survey of factor models see

Bai and Ng 2008). The first estimator of F is obtained by concentrating out Λk and imposing the

normalisation F k′F k/T = Ik and that Λk′Λ is a diagonal matrix. The resulting estimator, F̃ k, is

given by
√
T times the eigenvectors corresponding to the k largest eigenvalues of the T × T matrix

XX ′. The corresponding factor loadings are given by Λ̃k′ = F̃ k′X/T .

The second method is obtained by first concentrating out F k and then imposing the normalisation

Λk′Λk/N = Ik and that F k′F k is a diagonal matrix. This alternative estimator is given by F̄ k =

XΛ̄k/N , with Λ̄k equal to
√
N times the eigenvectors corresponding to the k largest eigenvalues

of the N × N matrix X ′X. Note, in both estimation methods the normalisation is necessary to

achieve a unique identification for Λk and F k. The first estimator is computationally efficient when

T < N , while the second is efficient when N < T . Finally as in Bates et al. (2013), we can define

the re-scaled factors F̂ = F̄
(
F̄ ′F̄ /T

)1/2
. I will use this estimator of the factors (with the ‘hat’

notation removed) in the subsequent analysis.

I next assume the time series characteristics for each factor can be successfully captured by a

Markov-switching AR(2) process where the persistence and the variance are allowed to switch

between two regimes. The lag order for the AR was determined from examining ACF and PACF

plots for each factor. Some factors, such as the first one, show a high level of persistence, while

the lower-ordered factors show relatively less persistence. However, in the interests of parsimony
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and to keep the model for each factor consistent, the same number of lags is used for each factor.

Hence, the process describing each factor is defined as:

Ft = φ1,StFt−1 + φ2,StFt−2 + ηt, ηt
i.i.d.∼ N

(
0, σ2

St

)
(6)

This effectively says the estimated factors follow a mixture of Gaussian distributions with common

location (mean) and different scale (variance) with the component weights determined by the regime

probabilities and with a chance for the persistence of the process driving the factors to also change

between regimes. Note, an intercept term not required since the factors have zero unconditional

mean by construction. (However, as a robustness check, a Markov-switching Intercept model for

each factor was investigated, but within each regime the constant term was found to be insignificant

for all but the seventh factor. Additionally, the estimated value of the Likelihood for each process

was less than the value estimated for the MS-AR model for each factor.) The discrete first order

Markov process St is assumed to have two states: low and high variability (St = 1 and St = 2)

respectively and is governed by the transition probabilities pij = Pr [St = j | St−1 = i]. This mea-

sures the probability of moving from state i at time t − 1 to state j at time t. The Gaussian

Likelihood function for this process at time t conditional on St and the parameter vector θ is then

given by:

lt (Ft | St; θ) =
1√

2πσSt
exp

[
− (Ft − φ1,StFt−1 − φ2,StFt−2)2

2σ2
St

]
(7)

Following this, in the second step we calculate regime-dependent factors by interacting the ex-

tracted factors with the estimated smoothed probabilities, ST , from the previous step which were

computed using Kim (1994)’s smoothing algorithm based on the full sample. After which the

regime-dependent factors are used to estimate regime-dependent loadings using regression. In par-

ticular, the estimate Λ̂
(j)
i where j = {1, 2} can be calculated from the regression of x̃

(j)
it on F̃

(j)
t :

Λ̂
(j)
i =

[
T∑
t=1

[
F̃

(j)
t

] [
F̃

(j)
t

]′]−1 [ T∑
t=1

[
F̃

(j)
t

] [
x̃

(j)
it

]]
(8)

where:

x̃
(j)
it = x

(j)
it ×

√
P̄ r
[
ST = j | θ̂

]
(9)

and:

F̃
(j)
t = Ft ×

√
Pr
[
ST = j | θ̂

]
(10)

As reported in Hamilton (1994), Equation (8) describes Λ̂
(j)
i as satisfying a weighted OLS orthogo-

nality condition where each observation is weighted by the probability that it came from regime j.

Note that in this regression there is one dependent variable but seven explanatory variables. To
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compute a regime-dependent dependent variable as shown in Equation (9) I use P̄ r
[
ST = j | θ̂

]
which is equal to the average smoothed probability from all seven univariate Markov-switching

AR(2) models. Other weighting schemes were investigated such as using the amount of variation

in the data explained by each factor, but the results were very similar.

3.2 Data Set

I now turn to implementing this two-step estimation procedure with the SW2005 data set which

is a well studied data set in the static factor model literature, see for example; Bai and Ng (2007),

Breitung and Eickmeier (2011), Caner and Han (2014), and Yamamoto (2014). The SW2005 data

set is comprised of monthly observations on 132 U.S. macroeconomic time series spanning the

time period: January 1959–December 2003 and covering real (i.e., activity), nominal (i.e., prices)

and financial categories.1 Each series is transformed by removing outliers and taking logs and/or

differencing so that the transformed series are approximately stationary (for precise details see

Stock and Watson 2005). After transformations there are 528 observations for each series. Finally,

the data are standardised to have zero unconditional mean and unit unconditional variance as is

standard in factor analysis.

3.3 Empirical Results

Table 3 presents estimation results for the MS-AR(2) models for each factor and for the whole

time period. The first thing to note is that the estimate for the standard deviation for each factor

process is very different between the two regimes and are all highly significant in both regimes.

Generally, the estimated sample standard deviation in the high variability regime (St = 2) is more

than twice that of the low variability regime (St = 1) for factors one to four, and is very close to

double for factors five to seven.

1The data set can be accessed from Mark Watson’s web site: http://www.princeton.edu/~mwatson/.
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Table 3: Markov-switching AR(2) Model Parameter Estimates

Static Factor

Parameter 1 2 3 4 5 6 7

φ1,(St=1) 0.484 0.493 0.347 -0.321 0.340 0.498 0.087

(0.055) (0.047) (0.050) (0.056) (0.058) (0.052) (0.081)

φ2,(St=1) 0.374 0.313 0.160 -0.070 0.313 0.338 -0.023

(0.054) (0.047) (0.049) (0.059) (0.059) (0.052) (0.096)

φ1,(St=2) 0.625 0.840 0.534 -0.310 0.312 0.389 0.279

(0.089) (0.090) (0.146) (0.074) (0.069) (0.086) (0.080)

φ2,(St=2) 0.174 -0.008 -0.009 -0.313 -0.166 0.319 0.028

(0.089) (0.080) (0.207) (0.075) (0.069) (0.090) (0.097)

σ(St=1) 0.076 0.034 0.037 0.029 0.029 0.017 0.020

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)

σ(St=2) 0.162 0.071 0.079 0.067 0.047 0.033 0.034

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)

p11 0.97 0.99 0.99 0.97 0.98 0.95 0.94

(0.04) (0.04) (0.04) (0.03) (0.04) (0.05) (0.05)

p12 0.03 0.01 0.01 0.03 0.02 0.05 0.06

(0.02) (0.01) (0.01) (0.01) (0.01) (0.03) (0.04)

p21 0.08 0.04 0.06 0.04 0.02 0.11 0.09

(0.04) (0.03) (0.04) (0.02) (0.02) (0.06) (0.05)

p22 0.92 0.96 0.94 0.96 0.98 0.89 0.91

(0.03) (0.01) (0.04) (0.01) (0.04) (0.06) (0.06)

L(θ̂) 473.33 945.62 914.45 924.59 989.57 1258.56 1176.64

Dur(St=1) 35.75 112.84 90.30 38.71 63.41 21.78 16.18

Dur(St=2) 12.15 23.54 15.64 22.54 45.33 8.70 11.29

Per(St=1) 0.90 0.86 0.61 0.27 0.75 0.88 0.15

Per(St=2) 0.83 0.83 0.52 0.56 0.41 0.79 0.36

NOTE : Estimation of the MS-AR(2) model for each factor was done using Maximum Likelihood with uniform initial values

for the regime probability St. The regimes are labelled as, ‘Low Variance’ for St = 1 and ‘High Variance’ for St = 2.

Standard errors are in parentheses and were calculated using the Hessian matrix of the log-likelihood function. L(θ̂) refers to

the estimated value of the Log-Likelihood. ‘Dur’ refers to the estimated average duration of each regime (in months) and is

calculated as 1/(1 − pii) for i = 1, 2. ‘Per’ refers to the estimated persistence of each AR(2) process in each regime for each

factor. It is computed as the absolute value of the largest eigenvalue of the 2×2 companion matrix formed from the estimated

AR(2) coefficients for each regime and each factor.

The autoregressive coefficients are all significant in the low variability regime for all factors except

for the seventh factor. Interestingly, in the high variability regime the second autoregressive coeffi-

cient is insignificant for all factors while the first autoregressive coefficient is significant for factors

one, two, three, and seven, and stands in contrast to the low variability regime estimation results.

This suggests that the underlying process describing the factors in each regime may be different

and potentially could be better captured using a time-varying dimension model (see Chan et al.

2012).

The duration of a regime, as measured by 1/ (1− pii) i = {1, 2}, is estimated to be longer for the

low variability regime compared to the high variability regime. Estimates for the duration of the
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low variability regime range from 16 months on average for factor seven to 113 months on average

for factor two. The persistence for each autoregressive process, as measured by the absolute value

of the largest eigenvalue calculated from the 2×2 companion matrix formed from the autoregressive

coefficients, appears to also change between low and high variability regimes. Generally, persistence

is higher in the low variability regime compared to the high variability regime. However, the reverse

is true for factors four and seven. This is because the roots of the AR(2) process describing these

two factors are complex and signifies that these two factor processes show more cyclical features in

the high variability regime relative to the low variability regime. Plots of each smoothed probability

and the high and low variability regime for each factor are presented in Figures 2–8.

1960 1970 1980 1990 2000

0.0

0.2

0.4

0.6

0.8

1.0

(a) Probability of a High Variance Regime

1960 1970 1980 1990 2000

−0.6

−0.3

0.0

0.3

0.6

0.9

High

Low

(b) High-Low Variance Regimes

Figure 2: MS-AR(2) Probability and Regime-Dependent Factor 1
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Figure 3: MS-AR(2) Probability and Regime-Dependent Factor 2
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Figure 4: MS-AR(2) Probability and Regime-Dependent Factor 3

1960 1970 1980 1990 2000

0.0

0.2

0.4

0.6

0.8

1.0

(a) Probability of a High Variance Regime

1960 1970 1980 1990 2000

−0.3

−0.2

−0.1

0.0

0.1

0.2

High

Low

(b) High-Low Variance Regimes

Figure 5: MS-AR(2) Probability and Regime-Dependent Factor 4
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Figure 6: MS-AR(2) Probability and Regime-Dependent Factor 5
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Figure 7: MS-AR(2) Probability and Regime-Dependent Factor 6
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Figure 8: MS-AR(2) Probability and Regime-Dependent Factor 7

Generally the estimated smoothed regime probabilities capture the changes in the variability of

the factors. The first factor, which appears mostly associated with real variables like Non-farm

payrolls and industrial production, shows strong support for the Great Moderation. However, the

first factor’s variance is shown to switch to the low variance regime from the end of 1982 which is

two years before the acknowledged start of the Great Moderation in March 1984.

The second factor shows close linkages to variables representing interest rate spreads to the Federal

Funds rate. The estimated smoothed probabilities for factor two show three main peaks, located

in the early 1970s, mid 1970s and the early 1980s, which corresponds to the higher interest rate

period associated with the time that Paul Volker was chairman of the Federal Reserve. Both the

third and the fifth factors tend to describe changes in interest rate yields, and like factor two the

estimated smoothed probabilities for both classify the 1970s/1980s period as being a high variance

regime. The third Factor shows three prominent regime changes reminiscent of those observed

for the second factor. In contrast, the fifth factor indicates that the whole 20 year period was

characterised as a high variance regime.

The fourth factor appears to correspond to the variables related to changes in inflation (as measured

by the CPI and the PCE price deflater) and shows frequent regime changes to the high variability

regime at times of recessions. The last two factors, which seem to be linked to the housing sector

(e.g., new home starts) and financial variables related to the stock market, show some estimation

issues because the regime probabilities are not as well defined between the two regimes. This is

evident because of the tendency for the estimated smoothed regime probability to hover in between

the high and low variability regimes; however, the estimated smoothed probability for each factor

does display a regime change at times when the U.S. economy has moved into recession.

Finally, all seven factors agree with the characterisation of the 1980–1982 period as being a high
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variability regime as previously noted. This period is two years earlier than the beginning of the

Great Moderation as well as the break date found by Breitung and Eickmeier (2011) using the same

data set. However, the period of 1980–1982 more closely corresponds to the finding of a break point

around 1979–1980 by Chen et al. (2014) who used a slightly different and more recent data set on

the U.S. economy from Stock and Watson (2009). Furthermore, when treating the break point as

an unknown nuisance parameter, Han and Inoue (2015) in an earlier working paper version and

also using the Stock and Watson (2009) data set, find weak evidence towards a break point located

around March 1984. Indeed, one of their sup-type tests (LMQS) suggest possible break points of

September 1974 (at a 5% significance level) and June 1980 (at a 10% significance level).

Although the smoothed probability for each factor was estimated separately, there is a high degree

of similarity between them and between each of them with the NBER determined recession dates.

We can more formally measure their similarity using the concordance index proposed by Harding

and Pagan (2002). This statistic, denoted by Ijk, quantifies the level of similarity as the fraction

of time each smoothed probability (Sj where j = 1, . . . , 7) and the NBER recession dates (the

‘reference’ series Sk) remain in the same regime (Table 4). The index is bounded by the interval

[0, 1], with 0 indicating the two processes are exactly counter-cyclical and 1 indicating the two

processes are exactly pro-cyclical and is defined as:

Ijk = T−1

[
T∑
t=1

SjtSkt +

T∑
t=1

(1− Sjt) (1− Skt)

]
(11)

Table 4: Concordance Indices – Smoothed Regime Probabilities

Static Factor

Statistic 1 2 3 4 5 6 7 Mean

Ijk 0.76 0.84 0.80 0.69 0.62 0.73 0.68 0.73

E [Ijk] 0.66 0.73 0.75 0.61 0.55 0.65 0.56 0.65

NOTE : The Concordance index is a measure of the fraction of time the estimated

smoothed probability for each factor (j = 1, . . . , 7) and the NBER Recession dates

(k) are simultaneously in the same state of low variability (St = 1) or high variability

(St = 2).

For comparison, the expected value of the index assuming the two processes were independent is

also presented in the second row of Table 4. Each factor has a concordance index relatively close

to 1 with the first three factors having a concordance index above 0.75 (with factor 2 being the

highest) and the remaining factors at least above 0.6. It is also evident from Figure 3 and Figure 4

as well as Table 4 that the transitions between regimes for the second and third factors are very

similar to each other.

Given the results of the Markov-switching models, it is useful to also compare how the factor

loadings differ between the high and low variability regimes as well as the ‘baseline’ of no regime
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changes. This is illustrated in Figures 9–10 which plots the regime-dependent factor loadings for a

selection of relatively important variables: industrial production (IPS10), the Federal Funds rate

(FYFF), the unemployment rate (LHUR) and the PCE price deflater (GMDC). The dot-point

for each loading in each plot represents the estimated value of each factor loading for these four

variables assuming no regime switching. In comparison, the dark and light shaded bands highlight

the estimated magnitude of the regime-dependent factor loadings for each of the four variables

in the high and low variability regime respectively. The plots help illustrate the difference in the

estimated regime-dependent factor loadings between the high and low-variability regimes and the

baseline.
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Figure 9: Regime-Dependent Factor Loadings – ISP10 & FYFF
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Figure 10: Regime-Dependent Factor Loadings – LHUR & GMDC

What is notable is that for some of these variables, there does not appear to be much difference
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in factor loadings between the two different regimes. This is especially true for the Federal Funds

rate. Furthermore, a proportion of the factors appear unimportant in both regimes for some of

these variables, such as the PCE price deflater, with estimated loadings close to zero in each regime.

However, relatively large changes are observed for the fourth loading for the PCE price deflater and

the seventh loading for industrial production. Finally, when there are divergences in the regime-

dependent loadings, these tend to be related to the lower-order factors which is most evident with

loadings five to seven for industrial production and the seventh loading for the unemployment rate.

We can use these results to understand the impact that changes in factor processes can have on

factor loadings. If the factor processes change and the underlying observables also change by the

same proportion, then we would not expect to observe any substantial changes in the estimates of

the factor loadings in each regime but would instead observe regime switching in the factor processes.

However, a change in factor loadings suggests that what is happening is more complicated than a

simple rescaling of the variables and factors. Instead, it suggests the correlation structure of the

observables is changing.

4 Testing for Regime Dependence in Static Factor Models

Given the preceding results from the two-step estimation method using the SW2005 data set, I

now formally test for Markov-switching parameters in models of the factors and for changes in the

factor loadings given the regime-dependent factors.

4.1 Do the Factor Processes Change over Time?

The previous results suggest the presence of Markov-switching, especially in the variance of each

process. However, I test this formally in this section. Tests for Markov-switching are hampered

by the presence of nuisance parameters which are only identified under the alternative hypothesis

of Markov-switching as well as the additional issue of identically zero scores at the null hypothesis

(see for example Hansen 1992). Nonetheless, the test introduced by Carrasco et al. (2014) (hence-

forth CHP) overcomes these problems and has previously been applied to macroeconomic data by

Hamilton (2005) and Morley and Piger (2012) for example.

It is an information-matrix-based test for constancy of parameters in random coefficient models

which also covers Markov-switching models. The test is based on functions of the first two deriva-

tives of the likelihood evaluated under the null of no Markov-switching and the autocorrelations of

the process describing the random parameters (ρ). One advantage of the CHP test is that it only

requires the estimation of the model under the null hypothesis. Furthermore, the authors’ results

indicate that the test has improved properties when the alternative allows for Markov-switching in
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the variances of the process. The supremum form of the test statistic (supTS) is calculated as:

supTS = sup
1

2

[
max

(
0,

Γ∗T√
ε̂∗′ε̂∗

)]
(12)

Where Γ∗T =
∑T

t=1 µ
∗
2,t (β, θ) /

√
T and ε̂∗ is the residual of the regression of µ∗2,t on the score of the

likelihood function of the process under the null of no Markov-switching l
(1)
t

(
θ̂
)

. We can calculate

µ∗2,t (β, θ) using:

µ∗2,t (β, θ) =
1

2
h′

[(
∂2lt
∂θ∂θ′

+

(
∂lt
∂θ

)(
∂lt
∂θ

)′)
+ 2

T∑
s<t

ρ(t−s)
(
∂lt
∂θ

)(
∂lt
∂θ

)′]
h (13)

Here, lt is the value of the likelihood at time t and h is a vector used to specify which parameters

are allowed to change under the alternative. To test for switching variance I set h = (0, 0, 1)′, where

1 indicates that parameter (σ) is permitted to change while the other two parameters (φ1 and φ2)

are held fixed. To test for switching in the two autoregressive parameters as well as switching in all

three parameters, I follow Carrasco et al. (2014) and generate the respective two or three elements

in h uniformly over the unit sphere 100 times.

To use the supTS, we must also compute empirical critical values and p–values for the test statistic

by parametric bootstrap. In doing so, I follow the strategy detailed in Carrasco et al. (2014). First,

AR(2) models are fitted by Maximum Likelihood to each of the seven estimated factors under the

null of no Markov-switching. From these estimates I compute the SupTS for each factor. Next,

I generate S = 1000 samples based on the Maximum Likelihood estimate for each AR(2) process

with Gaussian innovations under the null of no Markov-switching for each factor. Then, for each

bootstrapped sample, the Maximum Likelihood estimator for that simulated DGP is calculated

and the supTS(s) s = 1, . . . , 1000 is maximised numerically with respect to the nuisance parameter

ρ ∈ [0.2, 0.8] to capture persistence, similar to Hamilton (2005). Finally, the empirical critical

value for a nominal size α was computed by finding the (1− α) % quantile. The empirical p–value

was then calculated as the proportion of simulated supTS(s) which exceed the supTS for the actual

process being examined. The results of the testing procedure are displayed in Table 5.
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Table 5: CHP Test for Markov-switching Parameters

Static Factor

1 2 3 4 5 6 7

Markov-switching Dynamics

supTS 5.54 5.06 6.01 6.22 5.99 2.18 1.81

5% c.v. 2.15 2.24 2.20 2.33 2.19 2.13 2.41

p–value 0.00 0.00 0.00 0.00 0.00 0.05 0.09

Markov-switching Variance

supTS 17.93 21.87 15.62 17.10 8.04 8.31 4.05

5% c.v. 1.14 1.32 1.28 1.24 1.27 1.14 1.33

p–value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Markov-switching Dynamics and Variance

supTS 18.52 22.15 15.97 23.08 9.16 8.55 5.39

5% c.v. 2.21 2.10 2.18 2.13 1.99 2.02 1.87

p–value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NOTE : The null hypothesis of the CHP test is no Markov-switching for each

factor. The supTS for each factor and each test was calculated using ρ ∈ [0.2, 0.8].

The empirical 5% critical value for each test was calculated as the 95% quantile of

the sample distribution of the supTS from 1000 replications of the AR(2) model

under the null for each factor and each test. The empirical p–value for each test

was calculated as the proportion supTS statistics greater than the observed test

statistic.

For all factors the null hypothesis of no Markov-switching is strongly rejected for both cases of

switching dynamics and variance and solely switching variances. Indeed, the largest empirical

supTS(s) found in both tests was well below the calculated supTS for each factor. For the case of

switching dynamics only, the evidence is less conclusive. While the first five factors reject the null,

the sixth factor is borderline with a empirical p–value of 0.049 whereas the seventh factor does not

reject the null at conventional levels of significance. Furthermore, the test statistics for the test of

only switching dynamics are much smaller in magnitude than those for the other two tests. These

findings suggest that switching variance is the most dominant changing parameter for each factor

process, with some support for switching dynamics for the first five factors at least.

The test results also suggest some delineation between the first four factors to the remaining three

factors from the full-sample of the SW2005 data set. Indeed, the supTS value for seventh factor

is the smallest in each of the three different tests, and while it is still significant, it does indicate

that the evidence against the null it less overwhelming than it is for the second or fourth factors for

instance. When viewed together with the previous results from the canonical correlations analysis

and Figures 9–10, these findings indicate that a possible conclusion could be that the first four

factors are more likely to support the notion of changes in the processes describing the factors,

whereas the remaining three factors could in fact be a result of breaks in factor loadings.
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4.2 Are Factor Loadings Regime-Dependent?

It was previously shown that there are some observed differences in factor loadings between the

high and low variability regimes for some variables (e.g., industrial production), whereas others

are less supportive (e.g., the Federal Funds rate). As in the previous Section, I now propose three

methods to test for changes in the factor loadings given the processes describing the factors support

Markov-switching parameters more formally. These include, a Wald test, Wi, a Likelihood Ratio

test, LRi, and a Lagrange Multiplier test, LMi, for each variable i = 1, . . . , N in the SW2005 data

set. I now define each in turn. The Wald test for changing loadings can be written as:

Wi = T
(

Λ̂
(1)
i − Λ̂

(2)
i

)′ (
Σ̂

(1)
i + Σ̂

(2)
i

)−1 (
Λ̂

(1)
i − Λ̂

(2)
i

)
∼ χ2

(r) (14)

Where Λ̂
(j)
i j = {1, 2} is calculated via regression as described by Equation (8) and Σ̂

(j)
i j = {1, 2}

is the estimated (HAC corrected) covariance matrix for the estimated regime-dependent factor

loadings from the two different regimes, thereby allowing for the estimated covariance matrix to be

different in the two regimes.

The Likelihood Ratio test statistic is formed by first estimating a regression using the non-regime

switching form of the factor model as in Equation (1) and labelling this the ‘restricted model’ and

then obtain the value of the estimated likelihood for this model, L̂iR. Next, another regression is es-

timated for each variable incorporating the regime-dependent factors as calculated in Equation (10)

which I label as the ‘unrestricted model’ and then obtain the value of the estimated likelihood from

this second regression, L̂iUR. Finally, I compute the Likelihood Ratio test statistic as:

LRi = −2
(
L̂iR − L̂iUR

)
∼ χ2

(r) (15)

The Lagrange Multiplier test statistic can be constructed by taking the estimates of the idiosyn-

cratic term from the ‘restricted’ regression model formed when computing the Likelihood Ratio

test and then regressing these idiosyncratic terms on the regime-dependent factors calculated as

in Equation (10) for all the variables in the SW2005 data set and then calculate the Lagrange

Multiplier test statistic as:

LMi = TR2
i ∼ χ2

(r) (16)

Where T is the sample size and R2
i is the R2 calculated from the ith regression of the idiosyncratic

term on the regime-dependent factors for the ith variable. The collected results for all the variables

in the SW2005 data set as well as for sub groupings using the significance levels α = 5% and the

relatively more conservative α = 1% are presented in Table 6. The classification of the sub groups

follows those used by Yamamoto (2014).

There is a small difference between the Wald test results and those of the other two tests. This

could be due to the Wald test explicitly accounting for different covariance matrices in each of
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the two regimes which is not the case with the Likelihood Ratio or Lagrange Multiplier tests. At

a nominal size of 5%, just under half of the SW2005 data set supports regime-dependent factor

loadings. Because I am aggregating a large number of individual tests together, it makes sense to

use a more conservative significance level for each individual test. At the 1% level, the proportion

of rejections for the three tests declines to around one-third of the panel.

Table 6: Tests for Regime-Dependent Factor Loadings

α = 1% α = 5%

Category Count W LR LM W LR LM

Income/Consumption/Employment 39 0.26 0.18 0.18 0.38 0.44 0.41

Production/New orders/Inventories 25 0.44 0.32 0.32 0.60 0.48 0.48

Housing 10 0.60 0.70 0.70 0.70 0.80 0.80

Money/Credit 11 0.00 0.18 0.18 0.09 0.27 0.27

Financial 26 0.58 0.54 0.54 0.62 0.77 0.77

Prices 21 0.29 0.14 0.14 0.43 0.24 0.24

All sectors 132 0.36 0.31 0.31 0.48 0.49 0.48

NOTE : The numbers represent the proportion of variables for each group which reject the null hypothesis of

constant factor loadings. The Wald statistics for α = 1% and α = 5% are based on HAC corrected covariance

matrices using the Bartlett kernel.

When compared to previous results these proportions are slightly lower than those reported by

Breitung and Eickmeier (2011) and Yamamoto (2014), who both used the same data set but

only focused on testing for a one-time change in factor loadings, ignoring regime changing factor

processes. For instance, when using their preferred LM and sup−LM tests and r = 7 factors,

Breitung and Eickmeier (2011) find 52% and 67% of the (outlier adjusted) SW2005 data set support

changing factor loadings. In addition, Yamamoto (2014) finds that around 65% of the SW2005

data set have unstable factor loadings when using his preferred testing procedure (the ‘MBE-mod’

method).

In contrast, the results from the three proposed tests are in line with the findings of Stock and

Watson (2009) who use a more recent data set and a Chow-test with the pre-determined break

point of March 1984. At the 5% level, they report 41% of their panel reject the null of constant

factor loadings while at the 1% level they find only 23% of their panel reject the null. What is

notable from this is that Stock and Watson (2009)’s results are based on using only four factors,

which suggests that it could be the case that the extra factors used by Breitung and Eickmeier

(2011) might be causing this divergence between these sets of results.

Looking at the sub-categories, the majority of rejections of the null of constant factor loadings

is from the three groups: ‘Income/Consumption/Employment’, ‘Production/New orders/Invento-

ries’, and ‘Financial’ which incorporates stock market, interest rate and exchange rate time series.

However, as a proportion of each sub-group total, the ‘Housing’ sub-group displays the largest

percentage of series supporting regime-dependent factor loadings for all three tests followed by the
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‘Financial’ sub group, which is similar to the findings of Stock and Watson (2009) and Yamamoto

(2014) who each find variables from these two sub groups were more likely to have unstable factor

loadings than other sub groups. In contrast, the ‘Money/Credit’ sub-category shows the smallest

proportion of rejections in all three tests which is similar to the findings of Stock and Watson (2009)

for this category.

Linking these results back to Figures 9–10; both industrial production and the PCE price deflater

reject the null of constant factor loadings at 1% and 5% significance levels for all three tests, whereas

the Federal Funds rate does not. The results for the unemployment rate series differs between the

Wald test, which does not reject the null at both 1% and 5% levels, and the other two which do reject

the null but only at the 5% level. With these results there is also some disagreement with previous

studies, for example, Stock and Watson (2009) find little evidence for changing factor loadings for

the Federal Funds rate whereas Breitung and Eickmeier (2011) reject the null of constant factor

loadings for this same variable.

In summary, once we account for regime-dependent factor processes, the proposed three test results

provide moderate evidence supporting regime changes for the factor loadings. Hence the conclusions

of previous authors who focus exclusively on testing for a change in factor loadings could also be

influenced by the presence of switching factor processes as well.

4.3 What are the Implications?

There is strong evidence that the dynamics and the variability of the estimated factors change

with the peaks and troughs of the business cycle. Switching variances appear to be the main

feature of change in the factor processes. High variance regimes are associated with recession

periods, while the low variance regime associated with expansionary periods. There is also some

evidence to suggest the persistence of the factors also changes between recessions (less persistent)

and expansions (more persistent). On the other hand, there is only moderate evidence to support

changes in factor loadings. One reason for this result could be that the factors are just describing

the common features of the data. If a majority of the variables used to extract the factors also

show the same changing variance or persistence characteristics, then only a minority of variables

that do not share those common features will be likely to support changes in the factor loadings as

judged by my proposed tests.

Another implication is that it appears, at least in reference to the SW2005 data set on the U.S.

economy, that the observed increase in the estimated number of static factors does not simply

reflect either changes in loadings or changes in factor processes, but reflects a combination of both,

and these changes can take place at different times.

Finally, the results also question whether the global linearity assumption implicit in static factor

models is suitable in panels of data subject to instability such as macroeconomic time series.
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Perhaps instead what might be more appropriate is a ‘global’ non-linear process comprised of a

‘locally’ linear set of factor models (with different factor loadings and/or factors or even a different

number of factors in each subsample) similar in concept to the mixtures of factor analyzers popular

in the statistics literature (see for example McLachlan and Peel 2000). This might provide a new

area of research for the factor model literature.

5 Conclusion

Factor models are a popular method for summarising the common variation contained in a large

panel of macroeconomic data. However, the alteration of peaks and troughs of the business cycle

can impact this common variation which results in a change in the factor structure describing the

panel. The change in factor structure can come from two sources: changes in the factor loadings

or changes in the factor processes. Both have consequences when trying to estimate the number

of factors in the panel. Previous studies have attributed changes in factor loadings as a primary

reason for this occurrence; however, these studies have not considered the possibility that the

factors processes themselves change as the economy transitions between periods of expansion and

contraction. Using data on the U.S. economy, I highlight that there are changes in the estimated

number of factors between different time periods and across three established estimators. The

changes correspond with peaks and troughs of the business cycle as measured by NBER recession

dates. By comparing subsamples with full sample estimates, I show that some subsamples appear

to support changes in factor loadings while other subsamples seem to support changes in the actual

factors processes.

To help disentangle these two effects I proposed a two-step estimation procedure allowing for

Markov-switching factor processes. In the first step, the factors are estimated using principal

components and then individual MS-AR(2) processes for each factor are estimated treating the

factors as data. In the second step, the estimated smoothed transition probabilities are used as

an indicator variable to identify regime-dependent factors. These estimates are then employed to

compute regime-dependent factor loadings using regression.

Tests for Markov-switching parameters in the factor processes displayed strong support, with

switching variances the most important feature. Conditional on the extracted factors supporting

regime switching, tests for regime-dependent factor loadings were proposed. The results showed

moderate support against constant factor loadings, with around one-third of the SW2005 data set

supporting regime-dependent factor loadings.

Finally, the assumption of a globally linear factor model is challenged, and alternative models which

allow some non-linearity as proposed in this paper are recommended as avenues for future research.
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