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1 Introduction

It is well known that time of sale, product age and cohort—three temporal variables—
cannot all be included linearly or as dichotomous variables in hedonic regressions because of
the identity: age + cohort = sale time. This is problematic in the housing context because
these variables are regarded as important determinants of house prices, and the exclusion of
one of the variables potentially biases the estimates of the other variables (Bailey, Muth and
Nourse 1963; Goodman and Thibodeau 1995; Knight and Sirmans 1996; Hill, Knight and
Sirmans 1997; Englund, Quigley and Redfearn 1998; Chau, Wong and Yiu 2005; Harding,
Rosenthal and Sirmans 2007).

Perhaps two of the most important measures in the housing context are housing inflation
and age-price profile of houses. In hedonic regressions, it is customary to include the time
of sale as dummy variables to capture the movement of house prices. The age variable, on
the other hand, is included in a non-linear form, such as log(age), squared-age, or squared-
and cubic-age, in order to obtain estimates of depreciation rates. This approach averts the
perfect collinearity problem and provides an algebraic solution to the ordinary least squares
problem. However, forcing the measure of the age effect to follow a pre-defined functional
form may produce biased estimates of the depreciation pattern of houses (Malpezzi, Ozanne
and Thibodeau 1987; Coulson and McMillen 2008). Malpezzi et al., surveying the empirical
literature of housing depreciation, found a large variability in the estimates of depreciation

rates, ranging from 0.5% to 2.5% per year. They make the following observation:

“One shortcoming of the first two methods [the observed age and perpetual inven-
tory methods] and of most hedonic studies, which may be a source of variability
of results, is that they restrict functional form in a manner which arbitrarily

imposes a particular depreciation pattern”. (p. 373)

In this paper, we introduce a method that provides estimates of age, cohort and time
effects emerging directly from the variation in the data without requiring us to specify a pre-
defined functional form for any of these variables. The method follows the logic of the hedonic
imputation approach and uses state-of-the-art index number formulae in the housing context.
The advantages of the hedonic imputation method in the context of measuring inflation have
been discussed in the literature (e.g. Triplett 1996; Pakes 2003; Silver and Heravi 2007; Hill
and Melser 2008; Diewert, Heravi and Silver 2009; de Haan 2010; Syed 2010; Erickson and



Pakes 2011; Hill 2013; Rambaldi and Fletcher 2014); these include the method’s flexibility
in terms of its treatment towards the regression parameters of the models and, when the
double imputation is applied, its ability to reduce the omitted variable bias in estimated price
indexes. However, the use of the hedonic imputation method in disentangling the age, cohort
and time effects, and measuring the depreciation pattern of houses remains unexplored. We
show how the method can address one of the challenging econometric tasks of separating the
effects of these three highly correlated temporal variables in product prices.

Applying our method to data for a city in the Netherlands, we find that the functional
forms typically used in the literature to represent the depreciation pattern do not provide
reasonable approximations of the actual pattern of depreciation over the life of a house. We
also find that omitting the cohort effect in hedonic regressions significantly overestimates
the ageing effect on house prices. Although we apply our model to the housing market, its
application extends to many other durable products, such as furniture, used cars, electronic
items, machineries and non-residential structures.

In the next section, we briefly discuss the hedonic method typically used in the literature
for measuring depreciation rates, including the approaches pursued so far to disentangle the
age, time and vintage effects in house prices. Section 3 provides a detailed description of our
method. In section 4, we apply our method to Dutch data and compare our measures with

those obtained from standard approaches. Section 5 concludes the paper.

2 Hedonic Approaches to Measuring the Depreciation
of Houses

The economic depreciation of assets is typically defined as the decline in asset prices due to
the ageing of assets (Hotelling 1925; Fieldstein and Rothschild 1974; Hall 1968; Hulten and
Wykoff 1981), and the measurement of economic depreciation centers around establishing an
empirical relationship between price and age of assets (Jorgenson 1996; Clapp and Giaccotto

1998).1 The most widely used method to obtain a measure of economic depreciation is the

"While the empirical literature of depreciation focusses on finding the relationship between price and
age, some question whether the ageing effect actually identifies the economic depreciation. For example,
Rubin (1993) argues that the negative age effect is the consequence of age premiums for new houses rather
than the consequence of depreciation of old houses. Hulten and Wykoff (1996) provide an excellent review
of the debate surrounding the theory and measurement of economic depreciation of capital goods (see also
Goodman and Thibodeau 1995; Clapp and Giaccotto 1998; Redfearn 2009).



hedonic method where data are pooled across time, and the natural log of prices for houses
is hypothesised as a function of time dummies; characteristics of houses, including their age;

and a random error term (¢;), as follows:?

T c
lnpz :Z(Stdt,z—i—Zﬂch,z—i—/Yf(az)+€m 1= 177[7 (1)
t=1 c=1
where, Inp; refers to the natural log of prices of house ¢, for ¢ = 1,...,1. d,; refers to time

dummies taking the value of 1 if the period of sale of house 7 is ¢, and 0 otherwise, for
t=1,...,T, with the exponentials of the coefficients, d;, providing a quality-adjusted price
index. The contribution of each characteristic of a house to its log(price) is given by the
coefficient f3., where 2, is a measure of characteristic ¢ for house 7, c =1,...,C. A non-linear
function of age, f(a;), is included as one of the characteristics in hedonic regressions, and ~
provides a measure of the economic depreciation of houses. This measure provides a measure
of the net depreciation rather than the gross depreciation rate as the effect of maintenance
expenses on prices is not removed from ~ (see Knight and Sirmans 1996; Harding et al.
2007).3

Different non-linear specifications of f(a;) have been used in the literature, which might
have influenced the estimates of depreciation rates obtained in different studies. For example,
Malpezzi et al. (1987) specify a cubic age function and a dummy variable if the dwelling
belongs to the oldest cohort, while Lee, Chung and Kim (2005) specify cubic and log age
functions. Smith (2004) specifies a squared age function and interaction terms of age with
location and period of sale, and Fletcher, Gallimore and Mangan (2000) and Fisher et al.
(2005) use a quadratic age function. Knight and Sirmans (1996) and Wilhelmsson (2008)
specify a quadratic age function and interaction variables of age with maintenance, and
Clapp and Giaccotto (1998) apply a non-linear weight to the age variable and allow the
age coefficient to change with shifts in supply and demand over time. Ong, Ho and Lim
(2003) and Harding et al. (2007) specify a log age function, the latter within a repeat-sales

regression framework.?

2Goodman and Thibodeau (1995) argue that ¢; can be heteroscedastic if dwelling improvements are not
adequately captured in hedonic regressions, with larger variations of the errors occurring for older houses
rather than for newer houses.

3To our best knowledge, Harding et al. (2007) is the only paper that provides estimates of gross depre-
ciation rates of houses which they obtain after controlling for maintenance expenses of the sample houses in
the American Housing Survey data.

4The collinearity problem between time and age would not arise if data for a fixed period of time is



While the typical approach in specifying hedonic regressions in the housing context does
not properly account for age and cohort effects (Sirmans et al. 2006), the problem that this
may cause has been noted at least since Baily et al. (1963). Case and Quigley (1991), Quigley
(1995), Hill et al. (1997) and Englund et al. (1998) approached the perfect collinearity issue
by jointly estimating hedonic and repeat-sales models. A common feature of these models,
the hybrid models, is that the single and repeat prices are combined in a single regression
through some explicit assumptions about the error structures of the single and repeat prices,
where the details of the error structures vary across the models. Intuitively, these models
exploit the cross sectional variation of price levels to obtain estimates of the ageing effect
which are then augmented in the repeat-sales prices to obtain estimates of the inflationary
effects (see also Yiu 2009). The findings of these papers indicate that both age and time
effects should be accounted for in the regression of housing values.

In a more recent work, and following a different approach, Coulson and McMillen (2008)
find that the age and cohort effects on the house prices in Chicago are different and argue for
“treating cohort and age effects separately and more flexibly than is possible in a standard
hedonic [model]” (p. 148). Following McKenzie (2006), they assume that each price consists
of additive components of age, time and cohort effects. They take the second-difference of
house prices in a particular order to nullify two temporal effects and, with some normalization
assumptions, identify the third temporal effect on the prices (see also Yiu 2009, and Karato,
Movshuk and Shimizu 2015). Recently, Karato et al. (2015) have constructed bivariate
splines of age and cohort effects on house prices in the framework of the generalized additive
model and find that the depreciation patterns vary across different cohorts of houses in the

city of Tokyo.

used (see e.g. Shilling, Sirmans and Dombrow 1991; Lee et al. 2005; Wilhelmsson 2008). Some researchers
have, however, argued that the results obtained from a single point in time may not represent the actual
depreciation patterns of houses (Clapp and Giaccotto 1998; Smith 2004; Coulson and McMillen 2008).
Furthermore, the difference in the estimated depreciation rates between the periods would be due to a mix
of quality change and inflationary effects (Dixon, Crosby and Law 1999).



3 Disentangling the Age, Cohort and Time Effects in
House Prices

We apply the logic of the hedonic imputation method in conjunction with the GEKS index
number formulae in a new context. Our objective is to obtain separate measures of age,
cohort and time effects, which are not convoluted by the other effects on houses prices.
For example, we obtain measures of the depreciation rate which are controlled for (1) the
inflationary effect as indicated by the time of sale, (2) the cohort effect as indicated by
the period of construction of houses and (3) the quality change effect on prices, net of the
maintenance effect, as indicated by the differences in the characteristics of houses.

In order to achieve this, we run hedonic regressions separately for each age-cohort pair
of houses. Although the age and cohort of the houses are fixed in each regression, the time
of sale of these houses would differ. This is because a cohort typically covers a long period
of time. For instance, if a unit of age is 1-2 years and a cohort is 10-20 years, there would
be sample houses in each age-cohort pair which are sold in different periods, where each
period corresponds to a month or quarter. These houses would be of different quality as
indicated by their locations and physical characteristics. Each of the age-cohort hedonic
regressions includes time dummies to control for the difference in the time of sale, and the
characteristics of houses to control for the difference in the quality of houses. There are
no restrictions on how these variables and their interactions are included in the hedonic
regressions, and whether the hedonic models of log(price) or price level are specified.

Once the hedonic models have been estimated for each age-cohort pair of houses, the
price of a house of a given cohort sold at one age in a particular period is imputed if the same
house in the same period was sold at another age. Suppose a house was sold in 2010, 10
years after its construction. We would impute the price of this house sold in the same period
but when it was 9 and 11 years old. The imputation process provides us with estimates of
price ratios, referred to as price relatives in the index number literature, which compare the

prices of houses sold at two different ages, holding the time of sale, cohort and characteristics

5Note that this set up is not the same as running a single hedonic regression on pooled data, as shown in
equation (1), with cohort, age and time of sale defined linearly but in different intervals. This is because in
a single equation, these three temporal variables would be highly collinear leading to unstable and imprecise
estimates, the degree of which would depend on the differences in the time intervals for these temporal
variables. Our method separates these three variables at the regression stage, and then pull together the
individual level estimates using indexes to obtain average measures of these temporal effects.



constant. These price relatives are aggregated using index number formulae in order to obtain
price indexes measuring the price changes due to the ageing of the houses. In a similar way,
we can measure the cohort effect by estimating the price relatives, comparing the prices of
houses belonging to different cohorts, holding the age, time and characteristics constant.
The inflationary effects, on the other hand, are obtained directly from the estimated time

dummy coefficients in the regressions.

3.1 Hedonic Imputations

For the purpose of illustration, let us consider two ages, 7 and k, and two cohorts, [ and m,
of houses. This gives us houses belonging to four age-cohort pairs: (j,1), (k, 1), (j,m) and
(k,m). We estimate hedonic regressions of the following form for each age-cohort pair of

houses:

T c
Inp!" = Zéf’”dz’iv + Z ey g (j,k)€ea, (I,m)ewv, i=1,...,1%; (2)
t=1 =1
where Inp"” denotes the price of house i belonging to cohort v and sold at age a, for
1=1,..., 1% where I*" is the number of houses of age a and cohort v in the entire sample,
with (j,k) € a and (I,m) € v. d}} takes the value of 1 if house i is sold in period ¢ and 0
otherwise. 2.} refers to the value of characteristic ¢ = 1,...,C of house i, and the uj"" are
1.1.d. error terms. The periods ¢t = 1,...,T are those in which transactions took place. The
exponential of 0;"" provides a measure of price change of the houses of cohort v sold at age
a in period ¢ holding other characteristics constant, and 3" refers to the implicit value of
the characteristic ¢ of the (a,v) pair houses.
Consider a house, h, which belongs to cohort [ and was sold when it was at age j. Then
the price of house h reaching age k (i.e. when house h becomes older) can be imputed from
equation (2) as follows, for mfl’l = (djllh, o ,d{}fh, z{lh, o ,zéfh), and where a hat denotes an

estimated parameter:®

T c
il Rkl gl Dl il
PPl () = exp (Z o dyy, + Zﬁflzgh> : (3)
t=1 c=1

6This requires making an assumption that E(exp(u;"")) = 1, which is not the case because we are taking
the expectation of non-linear transformation of a random variable. One can carry out a correction (Kennedy
1981), but these corrections are typically small enough that they can be ignored.




Hence, in order to obtain the imputed price of house h of cohort [ as it reaches age k
(originally sold at age 7): (1) we insert the characteristics of house h into the corresponding
estimated implicit values obtained from the hedonic regression for the houses of the (k1)
pair, and (2) we stick the period of the sale of house h with the estimated coefficient for
the same period obtained from the hedonic regression for (k,1) houses. Therefore, pi*(z3")
provides the imputed price of house h if this house was sold in period ¢, but instead of being
sold at age 7, the house was sold at age k.

In a similar way, using the estimated coefficients obtained from the (j,m) hedonic
regression, we can impute the price of a house sold at age j, originally belonging to cohort

[, had this house belonged to cohort m:

T
By (a3') = exp (Z I+ Z Jm J’). (4)

We can use the estimated hedonic regression of the (j,1) pair houses to impute a price for

the same house sold at age j and cohort [:

(i —exp<z5jld —i—Zﬁ“ ) (5)

Hence, the imputation process provides us with three imputed prices for each house in the
sample. This is shown in Figure 1. For example, if a house is in the (j,1) age-cohort pair, as

/\jm

in Figure 1(a), then the three imputed prices are p&!(z2), p2™ (z2') and p' (=]

27"); if a house

belongs to the (k,l) age-cohort pair, as in Figure 1(b), then the three imputed prices are

ﬁs;l( ) ﬁim(xlfbl) and Akl(mfil); and so on.”

A price relative measuring the change in the price of house h as it ages from j to k —
holding the cohort, time of sale and the characteristics constant — is obtained from dividing

the imputed price of the house at age k, shown in equation (3), by its actual price:

(k1) /(o) ph ( l)
o, (ST) = === (6)
ph

"This imputation process essentially generates numbers for the matrix specified in equation (1) of Hulten
and Wykoff (1981a) although in our case each matrix belongs to a single construction vintage of assets.



Figure 1: Imputed Price of Each House in our Four Age-Cohort Pair Houses
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Equation (6), referred to as single imputation (SI) price relative, uses the imputed price only
when the price is unobserved. An alternative is to use the double imputation (DI) method
where we replace the observed price in equation (6) with the imputed price obtained from

equation (5). This provides the following measure of price change between age j and k:

(kD) () oy ()
©p ” (D]) = Gl gy (7)
Py, (xh )



We can likewise obtain two price relatives measuring the change in price of house h if the
cohort changes from [ to m, while the age, time of sale and other characteristics remain the
same. The SI price relative divides the imputed price in equation (4) by its actual price to

obtain the following measure of cohort effect:

1
,m) l p ($]7 )
pi I (ST) = Fgh ®)
Py,
The corresponding DI price relative, which replaces the actual price with the imputed price
shown in equation (5), is the following:
im) /(7,0
o (DD =2 (9)
Similarly, we can obtain the ageing and cohort effects for each house in the sample
belonging to (j,1), (j,m), (k,l) and (k,m) pairs of houses. Table 1 shows the imputed price
relatives measuring these effects for the houses belonging to our 4 age-cohort pairs. For

example, suppose now that house h belongs to the (k,m) pair. The effect of the change

in the cohort from m to [ on the price of house h can be obtained from the price relative,

p;lk,l)/(kﬂ’n) (DI):]/?\IZ ( )/Ak: m( k, m> Where ph (:L‘im) = exp ( T (Sk mdk m + Zc . Bk ,m
is the imputed price of the house at its original cohort m and pF D) ( ﬁm)
= exp (Zt 15k ldf,;n - ZC_ 6’” ", m> is the imputed price of house h if the house had be-

longed to cohort .8

3.2 Constructing Price Indexes

In order to obtain aggregated measures of the ageing and cohort effects of houses, we use
the resulting price relatives as inputs in index number formulae. We calculate the Fisher
Ideal index because it falls in the class of “superlative” index numbers used for measuring
price changes (Diewert 1976) and also satisfies the largest number of desirable axiomatic

properties of index numbers (see Balk 1995). It is argued that, if data permits, superlative

8The SI method uses less imputation and therefore minimizes the estimation variance (Triplett 1996).
The DI method potentially reduces the omitted variables bias (Silver and Heravi 2001; Hill and Melser 2008;
Syed 2010). We estimate our price indexes using both methods, and find that the difference is very small
and does not make any qualitative difference in the result. Therefore, in the subsequent sections we limit
our discussions mainly to the DI indexes while the SI results are obtained for robustness checks.



Table 1: Price Relatives Measuring the Ageing and Cohort Effect of Houses

(a) Ageing effect of a house due to change in age from j to k

Age-Cohort  Imputation Price Relative for a
(l,m) €v Method Single House'
: - (k0)/(v) i (ef") _emp(S B e B )
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(k,v) Double o (DI) PR e:vp(ZtT:uSi” By AT
tay” = (dyy, s dpy, 20 20), a € (4,k), ve€ (lm)and t =1,...,T.

(b) Cohort Effect of a house due to change in cohort from [ to m

Age-Cohort, Imputation Price Relative for a
(,k) €a Method Single House
~a,m_a,l ex <a,m ja,l C tclm a,l
(a,]) Single plem/@d) (g BT ) cor(Bi 0l BT
Py, ph

(asm)/(al) ( ry py PR @) enp(Si 80 g+ 30 B =)
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indexes should be used in order to measure price changes (see e.g. Triplett 1996; Hill 2006a).”

The Fisher index can be obtained by taking the geometric mean of the Laspeyres and
Paasche indexes. The latter two indexes are probably the two best known price index
formulae, whose inception dates back to the nineteenth century. A Laspeyres index based

on the houses in the (j,v) pair with (I, m) € v and measuring the price changes of houses as

9Diewert (1976) shows that the superlative indexes are free of substitution bias and have the advantage of
being able to approximate the underlying cost of living to the second order. Hill (2006b), however, notes that
Diewert’s result breaks down for the quadratic mean of order r indexes as r becomes too large in magnitude.
However, Diewert’s results hold for the standard superlative index such as the one we are using in this paper.

10



they age from j to k is as follows:

Las

1w v v g
Zw [Ajv—;vi] , where w)¥ = % (I,m) € v. (10)
i i=1 Py 4
Here the price relative is obtained from equation (7); q{’” refers to the quantity of house ¢
belonging to cohort v sold at age j, and wf’” reflects the corresponding expenditure share. In
constructing consumer price indexes, the weighting of items according to their expenditure
shares in the basket of goods and services consumed provides the best representation of the
average price movements faced by households. However, the case of housing is different to
the regular type of goods and services consumed by households. This is because each house is
different and, therefore, irrespective of the price, only one house of a particular type is bought.
This means that, in equation (10), ¢/* = 1 and w?" = p? /Zl 7. This implies that w]"
gives more weight to more expensive houses in the construction of price indexes, which is
not the same as giving more weight to items which account for larger expenditure shares in
household consumption. Since each house is somewhat different from other houses, it is more
reasonable to give equal weight to each house in the sample, wf = qz v/ ZIJ 1 qZ =1/
(Hill 2013). Hence, our Laspeyres-type index that measures the price change due to houses

ageing from j to k, with holding cohort, time of sale and other characteristics constant, is

as follows: '
) 1 VR ﬁk’v(l‘j’v)
Js U _ ’L Z
PLaS - Ijﬂ) ; [ﬁ7v<x57v)] ) (l7m) 6 U: (11)

which is the arithmetic mean of the imputed price relatives corresponding to the houses sold
in the (j,v) pair. A Paasche index based on the houses in the (k, v) pair measuring the price

changes due to houses ageing from 5 to k is as follows:

Ik ﬁkz,v (xk,v) -1 pk vqk K
lvk ) k, i i k,
pUkw E w2 , where W' = —,j : (I,m) € v.
Pas v /\J,U(l,k,v) ¢ Ikv kv ko’
P Py (; i P4

(12)
Here qf " refers to the quantity of house i of cohort v sold at age k. Following the argument

as in the Laspeyres case above, we set wf ¥ = 1/I*¥. Hence, our Paasche-type index that

11



measures the price change due to houses ageing from j to k is as follows:

(G.0) L& et
Py — SR , I,m) € v, 13
Pas Ik,'l) ; [ﬁgﬂ) (Ifﬂ)) ] ( ) ( )

which is the harmonic mean of the imputed price relatives corresponding to the houses in the
(k,v). We take the geometric mean of the Laspeyres- and Paasche-type indexes to obtain

the Fisher-type index as follows:

= JREBT S PERT () e w. (14)

In a similar way, we construct the price indexes measuring the cohort effect of the houses
in (a,l) and (a,m) pairs for a € (j,k). A Laspeyres index based on the houses in the (a,!)

pair and measuring the price change if the cohort had changed from [ to m is the following:

I /~am al
a,(l,;m .
La(s )= Ial Z [/ﬂl al)] ) (]7k) € a. (15)

The corresponding Paasche index based on the houses in the (a,m) pair is the following:

-1

Iam _1
. ~a,m am> »
PPa(s = Iamz [Aal am) 5 (]7k)€a~ (16>

The corresponding Fisher index is the following:

Pl = [Pt o patm (i gy e a (17)

An alternative to the Fisher index is the Tornqvist index which is also a widely used
superlative index. The Tornqvist-type index for our purpose can be calculated by taking the
geometric mean of the geometric analogues of the Laspeyres-type and Paasche-type indexes.
Diewert (1978) shows that superlative indexes approximate each other to the second order,
and thus empirically, it should not matter which one is used. In fact, conforming to Diewert’s

theory we find that our measures of Fisher- and Toérnqvist-type indexes are very similar (see

Table 4).1°

10See Hill and Melser (2008) for alternative ways of constructing price indexes using imputed prices, and

12



The above illustration is shown for two ages and two cohorts, whereas in most cases
we would construct indexes covering many ages, a = 1,..., A, and, at least, a few cohorts,
v =1,...,V. This extension can be attained by constructing direct and chained indexes
based on the constructed superlative indexes. In constructing the direct index measuring
the ageing effect, one particular age is taken as the base age, and the prices corresponding to
other ages are compared with the prices of the base age. Suppose the base age is 1, then in
equation (11), (13) and (14), we set j = 1, and k = 2 for obtaining the price indexes between
age 1 and 2, k = 3 for obtaining indexes between age 1 and 3, and so on. The direct index
measuring the ageing effect between age 1 and any arbitrary age «, and for (I, m) € v, is the

following:

0 o piee | LS [ e
PFD \/PL " Pas = 1UZ /\Zlv iv X avz /\zl,v Zz,v '
i (z;) Iem < )
=1 =1
(18)
Similarly, a direct index measuring the cohort effect between cohort 1 and any arbitrary

cohort x, and for (j, k) € a, can be obtained by setting [ = 1 and m = & in equations (15),
(16) and (17) as follows:

pot (L) LS [ L ]
\/PL X PPas = Ja.l Z |:Azz,1 (Zz 1 X {I“’” Z |i/~iz,1 Zz,n):| } .
=1 =1 ’ )

p; (%1)
(19)

A problem with the direct index is that it makes the price comparison dependent on the
choice of base age or cohort. Furthermore, as the distance between the comparison ages and,
similarly, the comparison cohorts get larger, the price comparisons may become less reliable.
For example, houses constructed in two adjacent periods would probably entail more ‘like
with like’ comparisons than the houses constructed in longer periods apart. An alternative
to constructing the direct indexes is to chain the bilateral indexes for two adjacent ages and,
similarly, for two adjacent cohorts. The chained index measuring the ageing effect between

age 1 and « for (I,m) € v is as follows:

P}%a),v _ P}1,2),v % PISZ,?;),U < % P}an,afl),v % P}afl,a),v7 (20>

Rambaldi and Fletcher (2014) for attaining stability in the price indexes using Kalman filters.
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where the indexes on the right hand side are the Fisher indexes shown in equation (14). In
a similar way, the chained index measuring the cohort effect between cohort 1 and &, using
the Fisher index in equation (17) and for (j, k) € a, is the following:

e A SN Y Ay (21)

Although the chained indexes circumvent the comparability problem inherent in the
direct indexes, and may reduce the Paasche-Laspeyres spread (see Hill 2006a), the chained
indexes have a shortcoming in that they are not transitive, i.e. P};S # P}f X Pffs, even when
they are based on superlative index number formulae. The chaining may introduce a drift in
the price comparison causing the chained index to deviate from the direct index counterpart
(Ivancic, Diewert and Fox 2011; de Haan and van der Grient 2011). This would make the
measurement of price changes dependent on the selection of base age or cohort. A solution
to this problem is to apply the GEKS formula (Gini 1931; Eltet6 and Kéves 1964; Szulc
1964) on the Fisher indexes in equation (14) and (17). The GEKS index is the geometric
mean of the ratios of the Fisher indexes between a number of entities, where each entity is
taken as the base. Let PY*" and P be the indexes shown in equation (14) measuring
the ageing effect between j and «, and k and «, respectively, where a = 1, ..., A. The GEKS

index measuring the ageing effect between j and k is the following:

() A paee\ Gia) (a,k)0\ /4
Pieris = 11 Pl ZH(PFJ”XPF”) , (22)

a=1 F a=1

where the second expression holds because the bilateral Fisher index satisfies the entity
reversal property of indexes, so that P}k’a)’v =1/ P}a’k)’v. Unlike the Fisher chained indexes,
it can be shown that the GEKS indexes are transitive, i.e. Pypxg = Pumxs X Popis:
making the price comparison independent of the choice of the base.!! In a similar way, we

can obtain the GEKS index measuring the cohort effect between [ and m using the Fisher

index specified in equation (17) in the following way, where v =1,...,V:
\% a,(l,v) /v \%
P A%
a,(l,m a,(l,v a,(v,m
PRl = H1 <P§(mm)> — H1 (pF< ! x Pt >> , (23)

IGEKS indexes suffer from the loss of characteristicity because they make a price comparison between
two entities dependent on the price comparisons between other entities. This would be a problem in the
cases where revisions of the measurement of price changes are discouraged.
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The price indexes Pg’k)’v for Z € (FD, FC, FGEKYS) shown in equations (18), (20) and
(22), respectively, measure the ageing effect of the houses belonging to a particular cohort,

v, as these houses age from j to k. In order to obtain an overall measure of the ageing effect

for all houses in the sample, we aggregate Pg k) aeross all cohorts, v =1,...,V, as follows:
. v . 0.50( 890 +8k:)
k k) v

v=1

where S and S*? are the proportion of houses in the (j,v) and (k,v) pairs in the sample.
The overall measure of the cohort effect is obtained by aggregating Pg % indexes shown in

equations (19), (21) and (23) across all ages as follows:

plm ﬁ [p;(l,m)]0'50““’1*5““’ , (25)
a=1
where S® and S»™ are the share of houses in the (a,l) and (a,m) pairs in the sample.
Similarly, we construct the Tornqvist based GEKS index measuring the ageing and cohort
effects of houses.!?

The time effects are obtained from the estimated coefficients of the time dummies in
equation (2). Let ea:p(gfflﬁt) provide the estimate of the price change from period t — 1 to ¢
for a particular age-cohort pair of houses. Aggregating these estimates across all age-cohort
pair of houses provides the measurement of housing inflation as follows:

) 0.5(5%% +55)

0.5(S¢_,+5)
] : (26)

ATV
ol i
a=1 Lv=1
where S}, and S;"" are the shares of houses in the (a,v) pairs in period ¢t — 1 and ¢,
respectively. In the second stage of aggregation, Si* ; and S refer to the shares of houses
sold at age a in period t — 1 and ¢, respectively.

It should be noted that in the above framework, the ageing and cohort effects are
estimated using the hedonic imputation method and the inflationary effects are estimated
using the time dummy method. Both methods allow these effects to emerge directly from

the variation in the data rather than being forced to take a pre-determined functional form.

12The Fisher based GEKS index is generally referred to as the GEKS index. In order to avoid any
terminological confusion, and following de Haan and Krsinich (2014), we refer to Fisher based GEKS as the
Fisher-GEKS and Tornqvist based GEKS as the Tornqvist-GEKS index.
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While de Haan (2010) derives the conditions required for the hedonic imputation and time
dummy price indexes to be equivalent, the hedonic imputation method outperforms the time
dummy method in a number of different aspects. Evidence shows that the implicit values
of the characteristics vary across different parts of a data set belonging to a market (Hill
et al. 1997; Berndt and Rappaport 2001; Pakes 2003; Hill and Melser 2008; Erickson and
Pakes 2011; Hill 2013). That is, in our context, the estimated hedonic coefficients of the, for
example, physical attributes are expected to vary across different ages and cohorts of houses.
The hedonic imputation method would allow this variation to take place.'®

Silver and Heravi (2007) show, through formal algebraic exposition, that two factors lead
to the difference between the hedonic imputation and time dummy indexes; the parameter
instability and the changes in the value of characteristics. Diewert, Heravi and Silver (2009),
Eurostat (2013) and Rambaldi and Fletcher (2014) argue that the parameter flexibility is a
significant advantage of the hedonic imputation method and favor using hedonic imputation
price indexes unless degrees of freedom are very limited. This implies that if the interest
of a study is, for example, to measure the age-price profile of houses, one should set the
framework so that the ageing effect is one of the two temporal effects estimated through
hedonic imputations while the control for the third temporal effect is attained through the
dummy variables in the regressions.'*

Another advantage of the hedonic imputation method lies in the flexibility in its ap-
plication. This arises from the fact that the regression and compilation stages are separate
in the hedonic imputation method. The method provides separate estimates of price rela-
tives for each observation, which essentially adds new columns to the data. Once the price
relatives are obtained, one is free to compile these using index number formulae in order to
obtain different aggregated measures of choice, such as for different sections of the market

and periods in the sample. The double imputation method has an added advantage because

I3Perhaps the main criticism of the hedonic imputation method is related to the loss of efficiency of the
estimates due to not exploiting the cross-equation correlations and to lower degrees of freedom for each
regression (Eurostat 2013; Hill 2013).

14One could run regressions separately for each cohort-time pair of houses with age-dummy variables
included in the regressions and obtain the ageing effect for that particular cohort-time houses from the
estimated age-dummy coefficients. The flexibility in the ageing parameters, similar to what prevails in
hedonic imputations, can be attained by adding interaction terms to the age-dummies, such as age-dummies
x house types, age-dummies x In(lotsize), age-dummies X room-dummies, and so on. However, it would
then attenuate the parsimony of the time dummy type hedonic model (here, the age-dummy model) which
is probably its greatest advantage (de Haan 2010; Hill 2013). Furthermore, it would not be straightforward
to obtain an aggregated measure of price changes from compiling all the estimated direct and interactive age
coefficients.
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it has the potential for correcting for omitted variable bias incurred in the estimated hedo-
nic regressions (Silver and Heravi 2001; Hill and Melser 2008; Syed 2010; Hill 2013). Hill
argues that since houses are so heterogeneous, there is likely to be serious omitted variable
bias problems in hedonic regressions of house prices. It can be shown that under certain
plausible assumptions the omitted variable bias in the numerator and denominator of the
double imputation price relative tend to cancel each other out.

In addition, our method provides an in-built mechanism to correct for sample selection
bias occurring when depreciation is estimated only on the surviving houses. The issue of
potential sample selection bias has been raised, among others, by Hulten and Wykoff (1981a),
Dixon, Crosby and Law (1999) and Coulson and McMillen (2008). The problem is that the
houses which have retired early might have depreciated faster than the average. Hence, if
this attrition is not accounted for it would lead to an underestimation of the measure of
depreciation rates. In our method, the prices of houses are compared between two adjacent
ages; between age 1 and 2, 2 and 3, and so on. Therefore, in each comparison the houses
would have the same or a similar survival rate. This implies that the sample selection bias
incurred in each regression would tend to cancel each other out while constructing the indexes
between two consecutive ages. We obtain the estimates of the depreciation rates between
ages of larger gaps by chaining the price indexes obtained for consecutive ages, implying
that the depreciation pattern covering the life of houses would also tend to be free of sample

selection bias.

4 Empirical Results

We apply our framework to housing data consisting of 6,348 observations of the quarterly
sales of detached houses for a city, “Assen”, in the Netherlands, covering the period between
1998:1 and 2008:2.16 Assen is a small city with a population of around 60,000. Each ob-
servation in the data contains information on the address, sale price, quarterly period of
sale, lot size, floor space, number of rooms, number of toilets, construction period,