
 

 

business.unsw.edu.au  

Last Updated 29 July 2014    CRICOS Code 00098G 

 

 
 

 

 
 
UNSW Business School Research Paper No. 2016 ECON 04 
 
 
 
Double round-robin tournaments 
 
 
Francesco De Sinopoli 
Claudia Meroni 
Carlos Pimienta 
 
 
 
 
 
 
 
 
 
 
 
 
This paper can be downloaded without charge from 
The Social Science Research Network Electronic Paper Collection: 
http://ssrn.com/abstract=2770217 

 

 

 

 

 

 

 

 

 

 

 

 

UNSW Business School 

Working Paper 

http://ssrn.com/abstract=2770217


DOUBLE ROUND-ROBIN TOURNAMENTS

FRANCESCO DE SINOPOLI†, CLAUDIA MERONI‡, AND CARLOS PIMIENTA§

ABSTRACT. A tournament is a simultaneous n-player game that is built on

a two-player game g. We generalize Arad and Rubinstein’s model assuming

that every player meets each of his opponents twice to play a (possibly) asym-

metric game g in alternating roles (using sports terminology, once "at home"

and once "away"). The winner of the tournament is the player who attains

the highest total score, which is given by the sum of the payoffs that he gets

in all the matches he plays. We explore the relationship between the equilib-

ria of the tournament and the equilibria of the game g. We prove that limit

points of equilibria of tournaments as the number of players goes to infinity

are equilibria of g. Such a refinement criterion is satisfied by strict equilibria.

Being able to analyze arbitrary two-player games allows us to study mean-

ingful economic applications that are not symmetric, such as the ultimatum

game.

1. INTRODUCTION

Consider the following two-player game:

C D

A 6,5 4,3

B 4,0 3,1

If two individuals were matched to play such a game with the objective to

maximize their expected payoff, they would play the unique Nash equilibrium

{A,C}. Now, think of a situation in which the two individuals are matched twice

to play simultaneously the same game in alternating roles, with the objective

to maximize the sum of the payoffs in the two matches. If both of them play

A when in the role of the first player and C when in the role of the second

player, they both get a payoff of 11. None of them has an incentive to deviate,

since any other choice leads to a lower payoff, and {(A,C), (A,C)} is the unique

equilibrium of the game. Consider the same situation with the difference that

now a prize is awarded to the individual with the highest total payoff, and
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the two individuals want to maximize their probability of winning the prize.

In the event of a tie, each of them would be the winner with probability 1/2.

In this case {(A,C), (A,C)} is no longer an equilibrium. Indeed, if one of the

two individuals is playing (A,C), the other one has an incentive to deviate, for

instance, to (B,C), losing two points but lowering the payoff of his opponent

by five points, becoming in this way the sole winner. It is easy to see that the

unique (symmetric) equilibrium of the game is {(B,D), (B,D)} and both players

win with probability 1/2. Then, we can think of the same competitive situation

extended to any number of individuals, where everyone meets all his opponents

twice to play the same two-player game. Such a competition is called double

round-robin tournament.

A double round-robin tournament is a simultaneous n-player game that is

built on a two-player game g. Each player is matched with every other player

twice and in every match the game g is played. In the two matches with the

same opponent, a player plays once in the role of the first player and once in the

role of the second player of g. Using sports terminology, we say that a player

plays once “at home” and once “away”. The winner of the tournament is the

player with the highest score, where a player’s score is the sum of the payoffs

that he gets in all the matches he plays. This implies that players do not care

about their absolute total score and maximize their probability of winning the

tournament.

Arad and Rubinstein (2013) analyze tournaments of the round-robin type,

where each player meets every other player once. In their analysis, the two-

player game on which the tournament is built is a symmetric game. Moreover,

the solution concept is that of a symmetric mixed strategy equilibrium, where

a mixed strategy is executed only once and the player employs the resulting

action in all his matches. Such a concept is appropriate to a situation in which

individuals are drawn at random from a large population and are matched in

pairs to play the same game anonymously. In this case, indeed, a mixed strat-

egy can be interpreted as a distribution of actions in the population.

With our model, we aim to extend the analysis of tournaments to asymmetric

games. Since any two individuals play the asymmetric game twice in alternat-

ing roles, the symmetry among players is restored. Hence, we also employ the

solution concept of a symmetric Nash equilibrium. In the same spirit as Arad

and Rubinstein (2013), we assume that each player employs always the same

action when he is playing at home, as well as when he is playing away. Consider

again the example at the beginning of this section. Under the assumptions of

our model, the tournament with three players has a symmetric equilibrium
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in which every player chooses B at home and D away (the same as the two-

individual case). For n ≥ 4, instead, the symmetric Nash equilibrium of the

tournament prescribes to choose A when playing at home and C when playing

away, which are the Nash equilibrium strategies of the two-player game. This

is not a coincidence, as we will see when analyzing the relationship between

equilibria of the tournament and equilibria of the two-player game on which it

is built. Intuitively, as n grows, deviating from the equilibrium strategies of the

base game becomes less and less profitable. Indeed, the loss inflicted to each of

the other players becomes negligible with respect to the higher payoffs that the

other players obtain in the increasing number of matches among them.

An alternative tournament model is the one in Laffond et al. (2000). As in

our model, each player chooses one action and employs it in all his interactions.

However, a player’s payoff is given by the sum of the payoffs that he gets in all

the (symmetric) games he plays, so players do care about their absolute total

score.1

Note the difference between the tournament model that we adopt and the

classic model of contests. In the classic contest model, players compete for a

given prize by exerting an effort that increases their probability of winning (see,

e.g., Green and Stokey (1983), Dixit (1987), Konrad (2009); among others). Each

player’s utility depends on his probability of winning, which is a function also of

the other players’ efforts, and on the cost of his own effort. In the tournament

model, instead, the ranking of a player depends on the combination between

his choice and the choices of all the other players, and actions are costless. A

particular contest model is that of the elimination tournament, which consists

of several rounds in which individuals play pair-wise matches (see, e.g., Rosen

(1986), Konrad (2004), Groh et al. (2012)). Differently from our model, the

winner of a match advances to the next round of the tournament, while the

loser is eliminated from the competition.

Double round-robins are common in several sports competitions, especially

in those with a large number of matches per season. Most professional associ-

ation football leagues in the world are based on a double round-robin,2 as are

1The same assumption is examined in the example at the beginning, when individuals have

the objective to maximize the sum of the payoffs in the two matches. In that case, the unique

equilibrium prescribes the Nash equilibrium strategies of the base game. With the appropriate

modifications, this is consistent with the results in Laffond et al. (2000).
2Examples are the top european national leagues, like Spain’s La Liga, England’s Premier

League, Germany’s Bundesliga, Italy’s Serie A. Moreover, double round-robins are used during

the qualification phases of the FIFA World Cup and the respective continental leagues, and

during the group phases of the UEFA Champions League and the Copa Libertadores de América.
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most basketball leagues outside the United States.3 In such competitions, the

assumptions of our model fit for instance the case of the teams, which have to

make several choices to comply with throughout the entire tournament (e.g. the

players, the coach, the home field).

Besides this straightforward interpretation, we can think also of another in-

terpretation of tournaments. Namely, if we focus on the Nash equilibria of a

two-player game g, we can use tournaments as an equilibrium refinement. As

a matter of fact, a mixed-strategy Nash equilibrium of g can be interpreted as

a stable distribution of pure strategies in a large population, where individuals

play g over time and maximize their expected payoff. One might ask whether

a Nash equilibrium of g can also be interpreted as a stable distribution of ac-

tions in situations where many individuals are matched to play g in alternating

roles and maximize their probability of winning. It turns out that only some of

the equilibria of g are “stable” in this sense. Thus, tournaments provide a re-

finement criterion, which selects all the equilibria of g that are limit points of

equilibria of the tournament built on g as the number of players goes to infinity.

Finally, as Arad and Rubinstein (2013) point out, the analysis of the relation-

ship between the equilibria of the tournament and the equilibria of the base

game can be useful for experimental design. Indeed, the tournament structure

has been used in some experiments to study the agents’ behavior in the game

g. Such a design has been criticized because, in the case in which a prize is

awarded to the participant with the highest score, individuals may have differ-

ent incentives from those in the base game. In this work, we also aim to exam-

ine whether the tournament structure is appropriate for experiments based on

asymmetric games. To preview, our analysis confirms the results obtained for

symmetric games, as all the equilibria of the tournament based on a game g

turn out to be a good approximation of equilibria of g.

We describe the model in the next Section. In Section 3, we analyze the

interaction between any two players in the tournament. We examine the re-

lationship between equilibria of the tournament and equilibria of the game on

which it is built in Section 4, and we discuss it in some examples in Section 5.

2. THE MODEL

A double round-robin tournament D(g, n), simply referred to as tournament

in the following, is a simultaneous n-player game built on a two-player game

g = (Sh,Sa, uh, ua). Each player plays g with every other player twice, at home

and away. The sets Sh and Sa are the finite sets of actions, the former available

to the player who is playing at home and the latter available to the player who

3The qualification stages of the Euroleague are an example.
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is playing away. Every player is assumed to employ the same action sh ∈ Sh in

all the matches he plays at home and the same action sa ∈ Sa in all the matches

he plays away. The real-valued functions uh and ua are defined on Sh ×Sa.

When the player who is at home plays sh and the player who is away plays sa,

uh(sh, sa) and ua(sh, sa) are the payoffs they respectively obtain in the match.

A player’s score is the sum of the payoffs that he obtains in the 2(n−1) matches

he participates in. The player with the highest score wins the tournament. In

the case of a tie, the winner is chosen randomly among the set of top-scoring

players. We assume that each player’s objective is to maximize his probability

of winning the tournament.

A pure strategy si of player i is a mapping which assigns an action sh to the

matches he plays at home and an action sa to the matches he plays away. The

set of all pure strategies of each player is S ≡ Sh ×Sa. A mixed strategy σ
i of

player i is an element of Σ ≡ ∆(S), the set of all probability distributions on

S. A strategy profile σ = (σ1, . . .,σn) is an element of Σn. Following Arad and

Rubinstein (2013), in order to avoid non-existence problems we assume global

randomization, that is, mixed strategies are executed only once and the player

employs the resulting actions sh and sa in all the matches he plays at home and

away respectively.

Given the structure of the problem, the tournament is a symmetric game

(but the match g is usually not) and we focus on symmetric Nash equilibria.4

Let P(σi,σ) be the probability that player i wins the tournament when he plays

the mixed strategy σ
i and his (n−1) opponents play according to σ.

Definition 1. A strategy profile σ = (σ∗, . . . ,σ∗) is a symmetric Nash equilib-

rium of the tournament D(g, n) if

P(σ∗,σ)≥ P(σ′,σ) for all σ′
∈Σ.

The set Σ is nonempty, compact, and convex, and the function P(σi,σ) is lin-

ear in σ
i and continuous in σ, making the associated best response correspon-

dence convex-valued and upper semicontinuous. Thus, by standard fixed point

theorems applied to finite symmetric games, a symmetric Nash equilibrium in

mixed strategies always exists.

Notice that, if σ= (σ∗, . . .,σ∗) is a symmetric Nash equilibrium of the tourna-

ment, every action in the support of σ∗ wins with probability 1/n when all the

other (n−1) players play σ
∗. On the contrary, every action that is not in the

support of σ∗ wins the tournament with probability not greater than 1/n.

4For the sake of notation, we will often denote a symmetric Nash equilibrium with the mixed

strategy that every player chooses.
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3. THE TWO-PLAYER INTERACTION

A player in the tournament interacts twice with a given opponent, playing

the match g against him once at home and once away. We now focus on such

two-player interaction. This allows us to examine the relationship between

mixed strategies of the tournament and strategy combinations of the game g.

To this end, given g = (Sh,Sa, uh, ua), construct the two-player symmetric

game G = (S, u), where u(s, s′) = uh(sh, s′a)+ ua(s′
h
, sa) is the utility of a player

who plays s when his opponent plays s′. G summarizes the two matches that

each player plays with any other player. Clearly, the double round-robin tour-

nament built on top of g coincides with the round-robin tournament built on

top of G. Note that each player’s strategy set in the game G coincides with the

set of mixed strategies of the tournament.

We define a b-strategy bi
= (bi

h
, bi

a) of player i as a pair of probability distri-

butions, the first on Sh and the second on Sa. The set of all b-strategies of each

player is B ≡∆(Sh)×∆(Sa). Given a b-strategy bi of player i, the corresponding

product mixed strategy is the mixed strategy σ
i defined by σ

i(s)= bi(sh) ·bi(sa)

for every s ∈ S. Note that the set of b-strategies B is the set of strategy com-

binations of the game g. Thus, with slight abuse of notation, we will denote a

strategy combination of g with bi and a strategy of G with σ
i.

We can prove that mixed and b-strategies are related through an analogue

of Kuhn’s theorem (Kuhn, 1953).5 As we will see in the next section, this result

allows us to extend some general properties of round-robin tournaments to our

tournaments.

Let two (mixed or b-) strategies of player i be outcome-equivalent in the two-

player interaction of the tournament if, for every (mixed or b-) strategy of the

opponent, they induce the same probability distributions on the payoffs that

each player can get at home and away.

Proposition 1. In the two-player interaction of the tournament, for any mixed

strategy σ
i
∈Σ of player i there is an outcome-equivalent b-strategy bi

∈ B, and

vice versa.

Proof. Consider the two matches that player i plays against player j, at home

and away. Let C(sh) and C(sa) denote respectively the set of all pure strategies

that choose sh in the match at home and the set of all pure strategies that

choose sa in the match away.

For every mixed strategy σ
k of player k, k = i, j, consider the b-strategy bk

defined by bk(sh) =
∑

s∈C(sh)σ
k(s) and bk(sa) =

∑

s∈C(sa)σ
k(s). Fix a mixed strat-

egy σ
j of player j. For any s, s′ ∈ S, the weight that σ

i induces on player i’s

5We cannot directly apply Kuhn’s theorem given the lack of perfect recall.
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utility ui(s, s′) = ui
h
(sh, s′a)+ ui

a(s′
h
, sa) is equal to σ

i(s)σ j(s′).6 Thus, for any

sh, s′
h
∈ Sh and sa, s′a ∈ Sa, σi induces a weight of

∑

s∈C(sh)

∑

s′∈C(s′a)σ
i(s)σ j(s′) on

ui
h
(sh, s′a) and a weight of

∑

s∈C(sa)

∑

s′∈C(s′
h
)σ

i(s)σ j(s′) on ui
a(s′

h
, sa). By construc-

tion, these weights are respectively equal to bi
h
(sh)b

j
a(s′a) and to bi

a(sa)b
j

h
(s′

h
),

which are exactly the weights of ui
h
(sh, s′a) and ui

a(s′
h
, sa) according to bi, given

b j. In the same way, the equivalence holds also for the weights induced by σ
i

and bi on player j’s utilities.

For the other way round, it is enough to consider for any b-strategy bk of

player k, k = i, j, the corresponding product mixed strategy σ
k. Given a (mixed

or b-) strategy of player j, for any sh, s′
h
∈ Sh and sa, s′a ∈ Sa, the weights of

ui
h
(sh, s′a), ui

a(s′
h
, sa), u

j

h
(s′

h
, sa), and u

j
a(sh, s′a) according to bi and σ

i are clearly

the same. �

Given the equivalence result stated in Proposition 1, the Nash equilibria of

the game G could be equivalently defined in terms of b-strategies.

Let bi, b j
∈B. We have

uh(sh, b
j
a) =

∑

sa∈Sa

b j(sa)uh(sh, sa), and

ua(b
j

h
, sa) =

∑

sh∈Sh

b j(sh)ua(sh, sa).

Moreover, we have

uh(bi
h, b

j
a) =

∑

sh∈Sh

∑

sa∈Sa

bi(sh)b j(sa)uh(sh, sa),

ua(b
j

h
, bi

a) =

∑

sh∈Sh

∑

sa∈Sa

bi(sa)b j(sh)ua(sh, sa), and

u(bi, b j) = uh(bi
h, b

j
a)+ua(b

j

h
, bi

a).

Clearly, in the game G a player has a profitable deviation from a given strat-

egy when it is profitable for him to deviate either in the match at home, or in

the match away, or in both. Therefore we have:

Proposition 2. Let the strategies bi and σ
i be outcome-equivalent in the two-

player interaction. If bi
= (bi

h
, bi

a) is a Nash equilibrium of g, then (σi,σi) is a

symmetric Nash equilibrium of G, and vice versa.

Proof. First, note that bi
= (bi

h
, bi

a) is a Nash equilibrium of g if and only if the

following conditions are satisfied:

if bi(sh)> 0, then uh(sh, bi
a)= max

s′
h
∈Sh

uh(s′h, bi
a) ∀sh ∈ Sh, (3.1)

6Note that, given σ
j , σi(s)σ j(s′) is also the weight induced by σ

i on player j’s utility u j (s′,s)=

u
j

h
(s′

h
,sa)+u

j
a (sh,s′a).
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if bi(sa)> 0, then ua(bi
h, sa)= max

s′a∈Sa

ua(bi
h, s′a) ∀sa ∈ Sa, (3.2)

while (σi,σi) is a symmetric Nash equilibrium of G if and only if

if σi(s)> 0, then u(s,σi)=max
s′∈S

u(s′,σi) ∀s ∈S. (3.3)

Because at least one action at home and one action away receive positive

probability, conditions (3.1) and (3.2) can be rewritten as

if bi(sh) ·bi(sa)> 0, then

uh(sh, bi
a)+ua(bi

h, sa)= max
s′

h
∈Sh ,s′a∈Sa

uh(s′h, bi
a)+ua(bi

h, s′a) ∀sh ∈ Sh, sa ∈ Sa,

that is,

if bi(sh) ·bi(sa)> 0, then u(s, bi)=max
s′∈S

u(s′, bi) ∀s = (shsa) ∈ S.

Since bi and σ
i are equivalent, u(s, bi)= u(s,σi) for every s ∈ S. Moreover, if

σ
i(s)> 0 then bi(sh) · bi(sa) > 0, while if bi(sh) > 0 then σ

i(shs′a) > 0 for at least

one s′a ∈ Sa and if bi(sa)> 0 then σ
i(s′

h
sa)> 0 for at least one s′

h
∈ Sh. The result

readily follows. �

4. THE TOURNAMENT

In this section, we analyze the relationship between equilibria of the game g

and equilibria of the tournament built on g. The results obtained in the previ-

ous section suggest that two approaches can be used to analyze tournaments,

one based on mixed strategies and the other based on b-strategies. First, we

want to examine whether these two approaches are equivalent. To this end,

we explore further how mixed and b-strategies are related in the tournament.

Note that, given a b-strategy bi, there may be more than one mixed strategy

that is outcome-equivalent to bi in the two-player interaction. Hence, we start

by examining whether all the strategies that are equivalent in the two-player

interaction are also equivalent in the tournament.

Two (mixed or b-) strategies of player i are outcome-equivalent in the tour-

nament if, for every n and for every (mixed or b-) strategy of the other (n−1)

players, they induce the same probability of winning for each action. The fol-

lowing example shows that two strategies that are outcome-equivalent in the

two-player interaction are not necessarily outcome-equivalent in the tourna-

ment.

Example 1. Consider the tournament with two players built on the following

game g:
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C D

A 2,0 0,2

B 0,1 1,0

We can easily construct the corresponding two-player symmetric game G:

AC AD BC BD

AC 2,2 0,4 3,0 1,2

AD 4,0 2,2 2,1 0,3

BC 0,3 1,2 1,1 2,0

BD 2,1 3,0 0,2 1,1

and the 4×4 matrix with the probabilities of winning for each action:

AC AD BC BD

AC 1
2
, 1

2
0,1 1,0 0,1

AD 1,0 1
2
, 1

2
1,0 0,1

BC 0,1 0,1 1
2
, 1

2
1,0

BD 1,0 1,0 0,1 1
2
, 1

2

Take the b-strategy bi
=

(

1
3

A+
2
3
B, 1

3
C+

2
3

D
)

, which is the unique Nash equi-

librium of g. The product mixed strategy σ
i
=

(

1
9

AC+
2
9

AD+
2
9
BC+

4
9
BD

)

and

the strategy σ̃
i
=

(

1
3

AC+
2
3
BD

)

are both outcome-equivalent to bi in the two-

player interaction, and they are both symmetric Nash equilibria of G. However,

they are not outcome-equivalent in the tournament. Indeed, note for instance

that σ
i wins against AC with probability 13

18
, while σ̃

i wins against the same

action with probability 5
6
.

Henceforth, we refer to strategies that are outcome-equivalent in the two-

player interaction simply as equivalent strategies. The previous example im-

plies that a choice between the two approaches, based on mixed strategies and

on b-strategies, has to be made. In particular, note that the set of b-strategies

is a strict subset of the set of mixed strategies, thus one may wonder whether

a full analysis can be carried out focusing just on this lower-dimensional set.

However, the same example shows that such a limitation would lead to the

problem of non-existence of Nash equilibria.7

7In particular, let P(bi ,b) be the probability that player i wins the tournament when he

plays bi and his opponents play according to b. Note that the set B is nonempty, compact, and

convex. However, the function P(bi ,b) is continuous in b but it is not quasi-concave in bi , so

standard arguments cannot be used to state that the best response correspondence is convex-

valued. Actually, the non-convexity of such a correspondence is the reason why Nash equilibria

in b-strategies may not exist.
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To see that the tournament in Example 1 does not have symmetric Nash

equilibria in b-strategies, note first that if a b-strategy is a symmetric Nash

equilibrium when the strategy set of each player is B, then the corresponding

product mixed strategy is a symmetric Nash equilibrium when the strategy set

of each player is Σ.8 Then, notice that there is no symmetric Nash equilibrium

neither in pure strategies nor in completely-mixed strategies (as AC is weakly

dominated by AD). It follows that there cannot be neither a symmetric Nash

equilibrium in pure b-strategies nor in completely-mixed b-strategies. Finally,

since the tournament does not have symmetric Nash equilibria with support

{AC, AD}, there exists no symmetric Nash equilibrium in b-strategies where

players play A at home with probability one. Analogously, no other partially-

mixed symmetric Nash equilibrium in b-strategies exists, as there are no sym-

metric Nash equilibria with support {BC,BD}, {AC,BC}, or {AD,BD}.9

Since Nash equilibria in b-strategies may not exist, our analysis will be

based on mixed strategies, as outlined in Section 2. Now, we focus on the re-

lationship between equilibria of the tournament and equilibria of the game on

which it is built.

Recall that the double round-robin tournament built on g coincides with the

round-robin tournament built on the corresponding game G. Arad and Rubin-

stein (2013) prove two main results about the relationship between the equi-

libria of a round-robin tournament and the equilibria of the symmetric base

game. Thus, we can apply directly their results to the relationship between the

equilibria of a tournament D(g, n) and the equilibria of the corresponding game

G. As a consequence of Proposition 1, we can then extend such results to the

equilibria of the game g.

The following proposition is an analogue of Proposition 1 in Arad and Rubin-

stein (2013), which can be directly extended to our framework as a consequence

of the results presented in Section 3. Thus, we can state it without proof.

Proposition 3. Let σ
i be the limit point of a subsequence of symmetric Nash

equilibria of D(g, n) as n →∞. Then σ
i is a (symmetric) Nash equilibrium of G,

and the equivalent b-strategy bi
= (bi

h
, bi

a) is a Nash equilibrium of g.

Proposition 3 tells us that the set of limit points of the equilibria of a tour-

nament as n → ∞ is a subset of the Nash equilibrium set of the base game.

Proposition 4 shows that this subset is strict.

8This follows from the fact that every pure strategy is a b-strategy.
9As a matter of fact, the unique (symmetric) Nash equilibrium strategy of the tournament is

σ
i
=

1
3 AD+

1
3 BC+

1
3 BD.
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Proposition 4. Let bi
= (bi

h
, bi

a) be a Nash equilibrium of g and let Σi(bi) be the

set of all equivalent mixed strategies. The set Σi(bi) does not necessarily contain

a limit point of a sequence of symmetric Nash equilibria of D(g, n) as n →∞.

Proof. See the ultimatum game presented in Example 3, where U AA is not a

limit point of equilibria of the tournament.10
�

Note that Propositions 3 and 4 suggest a refinement criterion, since only

some equilibria of g have the nice property of being approachable by equilibria

of large tournaments. The next proposition shows that the strongest equilib-

rium refinement proposed in the literature, the one of strict equilibrium, has

such a nice property.

Proposition 5. Let bi
= (bi

h
, bi

a) be a strict Nash equilibrium of g, and let s

be the only equivalent strategy. Then, there exists an integer n̄ such that s is a

symmetric Nash equilibrium of the tournament D(g, n) for every n ≥ n̄.

Proof. Recall that a Nash equilibrium is strict if every deviation implies a loss.

Let k = mins′,s u(s, s)− u(s′, s), i.e., the minimum loss that a player incurs in

any two-player interaction if he deviates, which is strictly positive. Moreover,

let k̄ =maxs′,s u(s, s)−u(s, s′), i.e., the maximum loss (or the minimum gain) of

the opponent that such deviation entails. Clearly, a player does not have an

incentive to deviate from s if (n−1)k ≥ k̄, that is, if n ≥
k̄+k

k
. Defining n̄ =

⌈

k̄+k
k

⌉

,

the result follows. �

From this standpoint, even the relationship between mixed and b-strategies

should be studied as n goes to infinity. Let bi be a Nash equilibrium of g. One

may conjecture that if a mixed strategy that is equivalent to bi is the limit point

of a sequence of equilibria of the tournament as n →∞, then all the equivalent

mixed strategies are. The following example shows that this is not the case.

Example 2. Consider the tournament based on the following game g:

C D

A 0,0 1,−1

B 1,−1 0,0

whose corresponding two-player symmetric game G is:

10Alternatively, one can consider the double round-robin tournament built on the “degener-

ate” game used to prove Proposition 2 in Arad and Rubinstein (2013). Note that such proposition

cannot be directly extended to our framework, given our constraints on G.
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AC BD AD BC

AC 0,0 0,0 1,−1 −1,1

BD 0,0 0,0 −1,1 1,−1

AD −1,1 1,−1 0,0 0,0

BC 1,−1 −1,1 0,0 0,0

The game g has a unique Nash equilibrium, bi
=

(

1
2

A+
1
2
B, 1

2
C+

1
2

D
)

. Propo-

sition 3 implies that at least one of the mixed strategies that are equivalent

to bi (and, hence, symmetric equilibria of G) must be a limit point of a subse-

quence of symmetric Nash equilibria of D(g, n) as n →∞. Now, take the equiva-

lent mixed strategy σ
i
=

(

1
2

AC+
1
2
BD

)

. For any n sufficiently large, if the other

(n−1) players play according to σ
i, strategy 1

2
AC+

1
2
BD wins the tournament

with probability 1/n, while strategies AD and BC win with probability close to

1/2. It follows that σ
i is never an equilibrium of D(g, n) for large n, and it is

not even a limit point of equilibria of the tournament as n →∞. Indeed, since

the probability of winning is continuous in the strategies of the opponents, the

above argument implies that, for every σ̃
i
∈Σ and ǫ small enough, (1−ǫ)σi

+ǫσ̃
i

is not an equilibrium of the tournament with sufficiently large n.

5. EXAMPLES

We present now some examples, where the relationship between equilibria

of the base game and equilibria of the tournament is discussed. In particular,

we compare the limit points of equilibria of tournaments with the standard

refinements in the literature.

The first example shows that a dominated Nash equilibrium of g can be a

symmetric equilibrium of D(g, n) for every n. Moreover, it shows that a stable

set of g in the sense of Kohlberg and Mertens (1986) does not necessarily con-

tain an equilibrium of the tournament D(g, n) for any n, and not even a limit

point.

Example 3 (Ultimatum game). Consider the following ultimatum game, where

Player 1 can offer a fair (F) or unfair (U) proposal about how to split 10 dollars,

and Player 2 can either accept (A) or reject (R) it:

FU

1

R

0,0

A

10,0

2

R

0,0

A

5,5

2

Let the match g be the corresponding normal form game:
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AA AR RA RR

U 10,0 10,0 0,0 0,0

F 5,5 0,0 5,5 0,0

Note that the mixed strategy FRA is a symmetric equilibrium of the tour-

nament for every n, and the equivalent b-strategy (F,RA) is an undominated

Nash equilibrium of g. Also URR is a symmetric equilibrium of the tournament

for every n, but the equivalent b-strategy (U ,RR) is a dominated Nash equilib-

rium of g. On the contrary, note that the b-strategy (U , AA) is a strictly perfect

equilibrium of g, therefore a stable set as defined by Kohlberg and Mertens

(1986). The equivalent strategy U AA, however, is not a symmetric equilibrium

of the tournament for any n, and neither is a close-by strategy. Indeed, in the

matches in which he moves second, each player has the incentive to deviate and

reject the unfair offer, in order to inflict a loss of 10 to his opponents. Hence, if

everybody conforms to U AA, a player can increase his probability of winning

from 1/n to 1 by deviating to URA, and therefore U AA is not even a limit point

of equilibria.

Example 4 (Modified ultimatum game). Consider now a modified version of

the ultimatum game, in which Player 1 can make also an intermediate (M)

offer that gives an amount z to Player 2, with 0< z < 5:

FU
M

1

R

0,0

A

10,0

2

R

0,0

A

10− z, z

2

R

0,0

A

5,5

2

Let the match g(z) be the corresponding normal form game:

AAA AAR ARA ARR RAA RAR RRA RRR

U 10,0 10,0 10,0 10,0 0,0 0,0 0,0 0,0

M 10− z, z 10− z, z 0,0 0,0 10− z, z 10− z, z 0,0 0,0

F 5,5 0,0 5,5 0,0 5,5 0,0 5,5 0,0

As before, to offer the fair proposal when moving first and to accept only it

when moving second is a symmetric Nash equilibrium of the tournament for

every n and every z. Now, however, to accept also an unfair proposal can be

part of an equilibrium strategy of the tournament. Indeed, for each z, MRAA

is a symmetric Nash equilibrium of the tournament D(g(z), n) if and only if

n ≥ nz =
⌈

10
z

⌉

. Note that limz→0 nz =∞.
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Lastly, we present a further example in which dominated equilibria of g are

limit points of symmetric equilibria of the tournament as n →∞.

Example 5 (Entry game). Consider the following “entry game”, in which Firm

1 has to decide whether or not to enter the market, and Firm 2 has to decide

how to compete, either aggressively (Fight) or not (Accomodate):

EN

0,2

1

A

1,1

F

−1,−1

2

Let the match g be the corresponding normal form game:

F A

N 0,2 0,2

E −1,−1 1,1

The game g has an undominated Nash equilibrium, (E, A). The equiva-

lent strategy EA is a symmetric Nash equilibrium of the tournament D(g, n)

for every n ≥ 3. Moreover, g has a continuum of dominated Nash equilibria,
{

(N,αF + (1−α)A) : 1
2
≤α≤ 1

}

. Note that NF is a symmetric equilibrium of the

tournament D(g, n) for n ≥ 4. To see whether the other mixed strategies in

the continuum
{

(αNF + (1−α)N A) : 1
2
≤α≤ 1

}

are symmetric equilibria of the

tournament for large values of n, note first that the only profitable deviation to

consider is playing E instead of N when in the role of the first player. Then,

for a given α ∈
[

1
2
,1

)

, consider a player who plays (αEF + (1−α)EA) while all

the other players are playing (αNF + (1−α)N A). Let x be the number of play-

ers that play NF in equilibrium. The player who plays E attains a score of

3n−3−2x, the players that play N A get 2n−3, while the players that play NF

get 2n−5 (so they never win the tournament). Of course, when all the players

play the same strategy, they all win with probability 1/n. Thus, playing E when

in the role of the first player is a profitable deviation if and only if

P

(

x=
n

2

) 1

n− x
+P

(

x<
n

2

)

>
1

n
, (5.1)

where P
(

x =
n
2

)

=
(n−1

n/2

)

α
n/2(1−α)n−1−n/2 is positive only if n is an even number,

and P
(

x <
n
2

)

=
∑

k=0,...,m−1

(n−1
k

)

α
k(1−α)n−1−k, with m =

⌈

n
2

⌉

.

When α =
1
2
, E is always a profitable deviation, so

(

1
2

NF +
1
2

N A
)

is never a

symmetric Nash equilibrium of the tournament for any n. For a fixed n >4, the

lhs of (5.1) is decreasing in α and equals the rhs at a value α
∗
n ∈

(

1
2
,1

)

. It follows
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that, for every n > 4,
{

(αNF + (1−α)N A) :α∗
n ≤α≤ 1

}

is a continuum of Nash

equilibria of the tournament D(g, n). In particular, α∗

n is decreasing in n and

approaches 1
2

as n goes to infinity.We can thus conclude that all the strategies

in the continuum, included
(

1
2

NF +
1
2

N A
)

, are limit points of equilibria of the

tournament as n →∞.
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