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Abstract

The Beveridge-Nelson (BN) trend-cycle decomposition based on autoregressive fore-
casting models of U.S. quarterly real GDP growth produces estimates of the output gap
that are strongly at odds with widely-held beliefs about the amplitude, persistence, and
even sign of transitory movements in economic activity. These antithetical attributes are
related to the autoregressive coefficient estimates implying a very high signal-to-noise ratio
in terms of the variance of trend shocks as a fraction of the overall quarterly forecast error
variance. When we impose a lower signal-to-noise ratio, the resulting BN decomposition,
which we label the “BN filter”, produces a more intuitive estimate of the output gap that is
large in amplitude, highly persistent, and typically increases in expansions and decreases
in recessions. Real-time estimates from the BN filter are also reliable in the sense that
they are subject to smaller revisions and predict future output growth and inflation better
than estimates from other methods of trend-cycle decomposition that also impose a low
signal-to-noise ratio, including deterministic detrending, the Hodrick-Prescott filter, and
the bandpass filter.
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1 Introduction

The output gap is often conceived of as encompassing transitory movements in log real GDP

at business cycle frequencies. Because the Beveridge and Nelson (1981) (BN) trend-cycle de-

composition defines the trend of a time series as its long-run conditional expectation after all

forecastable momentum has died out (and subtracting off any deterministic drift), the corre-

sponding cycle for log real GDP should provide a sensible estimate of the output gap as long

as it is based on accurate forecasts over short and medium term horizons. Noting that standard

model selection criteria suggest a low-order autoregressive (AR) model predicts U.S. quar-

terly real GDP growth better than more complicated alternatives, Figure 1 plots the estimate of

the output gap from the BN decomposition based on an AR(1) model.1 What is immediately

noticeable about the estimated output gap is its small amplitude and lack of persistence. Its

movements also do not match up well at all with the reference cycle of U.S. expansions and

recessions determined by the National Bureau of Economic Research (NBER). For compari-

son, Figure 1 also plots an estimate of the U.S. output gap based on the Congressional Budget

Office (CBO) estimate of potential output. In contrast to the estimate from the BN decomposi-

tion, the CBO output gap has much higher persistence and larger amplitude. Its movements are

also strongly procyclical in terms of the NBER reference cycle. An important reason for these

differences is that the estimate of the autoregressive coefficient for the AR(1) model used in the

BN decomposition implies a very high signal-to-noise ratio in terms of the variance of trend

shocks as a fraction of the overall quarterly forecast error variance, while the CBO implicitly

assume a much lower signal-to-noise ratio when constructing its estimate.

Our main contribution in this paper is to show how to conduct a BN decomposition impos-

ing a low signal-to-noise ratio on an AR model, an approach we refer to as the “BN filter”. The

BN filter is easy to implement in comparison to related methods that also seek to address the

conflicting results in Figure 1, such as Bayesian estimation of an unobserved components (UC)

model with a smoothing prior on the signal-to-noise ratio (e.g., Harvey et al., 2007). Notably,

1The raw data for U.S. real GDP are taken from FRED for the sample period of 1947Q1-2016Q2. Real GDP
growth is measured in continuously-compounded terms. Model estimation is based on least squares regression or,
equivalently, conditional maximum likelihood estimation under the assumption of normality. Initial lagged values
for AR(p) models are backcast using the sample average growth rate. Our specific choice of lag order p=1 is
based on the Schwarz Information Criterion.
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Figure 1: Two contrasting estimates of the U.S. output gap

Notes: Units are 100 times natural log deviation from trend. The Beveridge-Nelson decomposition estimate of the
output gap is based on an AR(1) model of U.S. quarterly real GDP growth estimated via MLE. The CBO output
gap is derived from the natural log of real GDP minus the natural log of the CBO’s estimate of potential output.
Shaded bars correspond to NBER recession dates.

when we apply the BN filter to U.S. log real GDP, the resulting estimate of the output gap is

persistent and has large amplitude, while its movements match up well with the NBER refer-

ence cycle. At the same time, real-time estimates are subject to smaller revisions and appear to

be more accurate in the sense of performing better in out-of-sample forecasts of output growth

and inflation than real-time estimates for other trend-cycle decomposition methods that also

impose a low signal-to-noise ratio, including deterministic detrending using a quadratic trend,

the Hodrick-Prescott (HP) filter, and the bandpass (BP) filter. Thus, our proposed approach

directly addresses a key critique by Orphanides and van Norden (2002) that popular methods

of estimating the output gap are unreliable in real time.

That Orphanides and van Norden (2002) find output gap estimates unreliable in real time

dramatically undermines their usefulness in policy environments and in forming a meaningful

gauge of current economic slack more generally. Meanwhile, the fact that the BN filter esti-

mates are not heavily revised is not coincidental, but stems from our choice to work within
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the context of AR models. In principle, the BN decomposition can be applied using any fore-

casting model, including multivariate time series models such as vector autoregressive (VAR)

models, structural models such as dynamic stochastic general equilibrium (DSGE) models, or

even nonlinear time series models such as time varying parameter (TVP) or Markov switching

(MS) models. Our choice to work with AR models is deliberate. Because the estimated output

gap for a BN decomposition directly reflects the estimated parameters of the model, it is me-

chanical that any instability in the estimated parameters in real time will produce estimates of

the output gap that are heavily revised. However, estimates of autoregressive coefficients for

AR models of real GDP growth turn out to be relatively stable in real time, unlike with param-

eters for more complicated models. Therefore, a natural outcome of our modeling choice is

output gap estimates that are reliable in the sense of being subject to small revisions. Mean-

while, the out-of-sample forecasting results are suggestive of reliability in the sense of being

more accurate than other methods. Also supportive of greater accuracy, we find that the revised

estimate from the BN filter is much more positively correlated with the Chicago Fed’s index of

economic activity based on 85 data series than are the other more heavily-revised output gap

estimates, while the real-time estimate from the BN filter is more (typically negatively) corre-

lated with future revisions in other estimates than other real-time estimates are correlated with

future revisions in the estimate from the BN filter.

Our proposed approach is robust to the omission of multivariate information in the forecast-

ing model and can account for structural breaks in the long-run growth rate, thus addressing im-

portant issues with trend-cycle decomposition raised by Evans and Reichlin (1994) and Perron

and Wada (2009). Meanwhile, because we use the BN decomposition, our proposed approach

explicitly takes account of a random walk stochastic trend in log real GDP and implicitly allows

for correlation between movements in trend and cycle, unlike many popular methods that as-

sume trend stationarity or that these movements are orthogonal. See Nelson and Kang (1981),

Cogley and Nason (1995), Murray (2003), and Phillips and Jin (2015), amongst others, on the

problem of “spurious cycles” in the presence of a random walk stochastic trend when using

popular methods of trend-cycle decomposition such as deterministic detrending, the HP filter,

and the BP filter. Meanwhile, see Morley et al. (2003), Dungey et al. (2015), and Chan and
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Grant (forthcoming) on the importance of allowing for correlation between permanent and tran-

sitory movements. Application of the BN filter to data for other countries confirms its ability to

produce intuitive estimates of output gaps and suggests strong Okun’s Law relationships when

also considering unemployment gaps.

The rest of this paper is structured as follows. Section 2 presents our proposed approach and

applies it to U.S. quarterly log real GDP, formally assessing its revision properties relative to

other methods. Section 3 provides a justification for our approach, in particular why one might

choose to impose a lower signal-to-noise ratio on an AR model than is implied by sample

estimates, and then presents forecast comparisons with other methods and considers whether

large revisions are useful for understanding the past. Section 4 considers how to modify our

approach to account for structural breaks and applies it to other data series. Section 5 concludes.

2 Our Approach

2.1 The BN Decomposition and the Signal-to-Noise Ratio

Beveridge and Nelson (1981) define the trend of a time series as its long-run conditional ex-

pectation minus any a priori known (i.e., deterministic) future movements in the time series.

In particular, letting {yt} denote a time series process with a trend component that follows a

random walk with constant drift, the BN trend, τBN
t , at time t is

τ
BN
t = lim

j→∞
Et
[
yt+ j− j ·E [∆y]

]
. (1)

The simple intuition behind the BN decomposition is that the long-horizon conditional ex-

pectation of a time series is the same as the long-horizon conditional expectation of the trend

component under the assumption that the long-horizon conditional expectation of the remaining

cycle component goes to zero. By removing the deterministic drift, the conditional expectation

in equation (1) remains finite and becomes an optimal estimate (in a minimum mean squared

error sense) of the current trend component (see Watson, 1986; Morley et al., 2003).

To implement the BN decomposition, it is typical to specify a stationary forecasting model
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for the first differences {∆yt} of the time series. Modeling the first differences in this way

directly allows for a random walk stochastic trend in the level of the time series because forecast

errors for the first differences can be estimated to have permanent effects on the long-horizon

conditional expectation of {yt}.

Based on sample autocorrelation functions (ACFs) and partial autocorrelation functions

(PACFs) for many macroeconomic time series, including the first differences of U.S. quarterly

log real GDP, it is natural when implementing the BN decomposition to consider an AR(p)

forecasting model:

∆yt = c+
p

∑
j=1

φ j∆yt− j + et , (2)

where the forecast error et ∼ iidN(0,σ2
e ).

2 For convenience when defining the signal-to-noise

ratio below, let φ(L) ≡ 1−φ1L− . . .−φpLp denote the autoregressive lag polynomial, where

L is the lag operator. Then, assuming the roots of φ(z) = 0 lie outside the unit circle, which

corresponds to {∆yt} being stationary, the unconditional mean µ ≡ E [∆y] = φ(1)−1c exists.

Using the state-space approach to calculating the BN decomposition in Morley (2002), the BN

cycle, cBN
t , at time t for this model is

cBN
t =−[1 0 · · · 0]F(I−F)−1Xt , (3)

where Xt = (∆ỹt ,∆ỹt−1, ...,∆ỹt−p+1)
′, with ∆ỹt ≡ ∆yt − µ denoting the deviation from the un-

2The normality assumption is not strictly necessary for the BN decomposition. However, under normality, least
squares regression for an AR model becomes equivalent to conditional maximum likelihood estimation, while the
Bayesian shrinkage priors used in our approach, as discussed in the next subsection, become conjugate, making
posterior calculations straightforward. Also, the forecast errors do not need to be identically distributed, as long
as they form a martingale difference sequence. However, in terms of possible structural breaks in the variance of
the forecast error, the key underlying assumption we make in our proposed approach is that there are no changes
in the signal-to-noise ratio, as defined in this subsection below, an assumption which is implicitly supported by the
relative stability of the estimated sum of the autoregressive coefficients across possible variance regimes within
the sample.
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conditional mean, and F is the companion matrix for the AR(p) model:

F =



φ1 φ2 · · · φp

1 0 · · · 0

0 . . . . . . ...
... . . . 1 0


.

Although an AR(1) forecasting model might, in particular, seem reasonable for U.S. real

GDP growth given sample ACFs and PACFs and is supported by the Schwarz Information

Criterion (SIC), we have already seen in Figure 1 that the estimated output gap from a BN

decomposition based on an AR(1) model does not match well at all with widely-held beliefs

about the amplitude, persistence, and sign of transitory movements in economic activity as

reflected, for example, in the CBO output gap. Most noticeably, the estimated output gap is

small in amplitude, suggesting that most of the fluctuations in economic activity have been

driven by trend.

To understand why the BN decomposition based on an AR(1) model in Figure 1 produces

an estimated output gap with such features, it is helpful to note from equation (3) that the BN

cycle in this case is simply −φ(1−φ)−1∆ỹt . Therefore, by construction, the estimated output

gap will only be as persistent as output growth itself, which is not very persistent given that

φ̂ based on maximum likelihood estimation (MLE) is typically between 0.3 and 0.4 for U.S.

quarterly data. Similarly, given that φ̂(1− φ̂)−1 ≈ 0.5, the amplitude of the estimated output

gap will be small, as the implied variance will only be about one quarter that of output growth

itself. Furthermore, given that −φ̂(1− φ̂)−1 < 0, it is not surprising that the estimated output

gap generally increases in recessions when output growth becomes negative and vice versa

in expansions. In terms of the intuition underlying the BN decomposition, the momentum

in output growth implied by the AR(1) model means that when there is a negative shock in

a recession, output growth is expected to remain below average in the quarters immediately

afterwards before eventually returning back to its long-run average, with the converse holding

for a positive shock in an expansion. Thus, log real GDP will initially be above the BN trend

defined as the long-run conditional expectation minus deterministic drift when a shock triggers
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a recession and below the BN trend when a shock triggers an expansion.

More generally, to understand the BN decomposition for an AR(p) model, it is useful to

define a signal-to-noise ratio for a time series in terms of the variance of trend shocks as a

fraction of the overall forecast error variance:

δ ≡ σ
2
∆τ/σ

2
e = ψ(1)2, (4)

where ψ(1)≡ lim j→∞

∂yt+ j
∂et

is the “long-run multiplier” that captures the permanent effect of a

forecast error on the long-horizon conditional expectation of {yt} and provides the key sum-

mary statistic for a time series process when calculating the BN trend based on a forecasting

model given that ∆τBN
t = ψ(1)et .3 For an AR(p) model, this long-run multiplier has the simple

form of ψ(1) = φ(1)−1 and, based on MLE for an AR(1) model of postwar U.S. quarterly real

GDP growth, the signal-to-noise ratio appears to be quite high with δ̂ = 2.22. That is, BN

trend shocks are much more volatile than quarter-to-quarter forecast errors in log real GDP,

leading to an estimated output gap with small amplitude and generally counterintuitive sign.

Notably, however, δ̂ > 1 holds for all freely estimated AR(p) models given that φ̂(1)−1 is al-

ways greater than unity regardless of lag order p. Thus, many of the surprising results for a BN

decomposition based on an AR(1) model carry over to higher-order AR(p) models, although

the estimated output gap no longer has to have the same persistence as output growth and will

not be perfectly correlated with ∆ỹt given that, as can be seen from equation (3), the BN cycle

depends on a linear combination of current and lagged values of output growth, rather than just

the current value, as is the case with the AR(1) model.

2.2 Imposing a Low Signal-to-Noise Ratio

The insight that the signal-to-noise ratio δ is mechanically linked to φ(1) for an AR(p) model

is a powerful one because it implies that we can impose a low signal-to-noise ratio by fixing

3An implicit equivalence between the variance of trend shocks, σ2
∆τ

, and the variance of the changes in the BN
trend follows from the equivalence of the spectral density at frequency zero for {∆yt} based on the reduced-form
forecasting model and a more structural representation that separates out the true permanent and transitory shocks,
but implies the same autocovariance structure as the reduced-form model. Note that, as found in Morley (2011)
and discussed below in Section 3, a similar equivalence does not hold for the variance of the transitory component
and the variance of the BN cycle.
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the sum of the autoregressive coefficients when estimating an AR(p) model. To do so, we

transform the AR(p) model in equation (2) into its Dickey-Fuller representation, which we also

write in terms of deviations from the unconditional mean for convenience when implementing

our approach:

∆ỹt = ρ∆ỹt−1 +
p−1

∑
j=1

φ
∗
j ∆

2ỹt− j + et , (5)

where ρ ≡ φ1 + φ2 + . . .+ φp = 1− φ(1) and φ∗j ≡ −(φ j+1 + . . .+ φp). Then, noting that

δ = (1−ρ)−2 for an AR(p) model, equation (5) can be estimated imposing a particular signal-

to-noise ratio δ̄ by fixing ρ as follows:

ρ̄ = 1−1/
√

δ̄ . (6)

The BN decomposition can then be applied imposing a particular signal-to-noise ratio δ̄ by

solving for the restricted estimates of {φ j}p
j=1 by inverting the Dickey-Fuller transformation

given ρ̄ and estimates of {φ∗j }
p−1
j=1 and calculating the BN cycle as in equation (3).

Before discussing estimation of the model in equation (5) and how we choose δ̄ in practice,

it is helpful to explain why we need to consider a higher-order AR(p) model in order to impose

a low signal-to-noise ratio. In particular, if one were seeking to maximize the amplitude of

the output gap, it turns out an AR(1) model would be a poor choice because the stationarity

restriction |φ |< 1 implies δ > 0.25, which is to say trend shocks must explain at least 25% of

the quarterly forecast error variance. Higher-order AR(p) models allow lower values of δ (e.g.,

δ > 0.0625 for an AR(2) model), although a finite-order AR(p) model would never be able to

achieve δ = 0 given that this limiting case would actually correspond to a non-invertible MA

process with a unit MA root (i.e., {yt} would actually be level or trend stationary, so {∆yt}

would, in effect, be “over-differenced”). Also, as noted above, consideration of a higher-order

AR(p) model allows for different persistence in the output gap and different correlation with

output growth than is possible for an AR(1) model.

Given a higher-order AR(p) model, estimation of equation (5) imposing a particular signal-

to-noise ratio is straightforward without the need of complicated nonlinear restrictions or pos-
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terior simulation.4 Conditional MLE entails a single parametric restriction ρ = ρ̄ , which can

be imposed by bringing ρ̄∆ỹt−1 to the left-hand-side when running a least squares regression

for equation (5). However, even though it is possible to implement our approach using MLE,

we opt for Bayesian estimation in practice because it allows us to utilize a shrinkage prior on

the higher lags of the AR(p) model in order to prevent overfitting and to mitigate the challenge

of how to specify the exact lag order beyond being large enough to accommodate small values

of δ . We thus consider a “Minnesota”-type prior on the second-difference coefficients {φ∗j }
p−1
j=1

as follows:

φ
∗
j ∼ N(0,

0.5
j2 ).

In practice, we consider an AR(12) model, although our results are robust to consideration

of higher lag orders given the shrinkage prior. Readers familiar with the Minnesota class of

priors will recognize that, conditional on σ2
e , the posterior distribution for {φ∗j }

p−1
j=1 will have

a closed-form solution and can be easily calculated without the need for posterior simulation.

For simplicity, we condition on the least squares estimate for σ2
e using the sample mean for µ ,

which is equivalent to assuming a flat/improper prior for these parameters.5 However, it should

be noted that the estimated output gap is highly robust to conditioning on different values for

σ2
e .6

All that remains is to choose a particular value of δ̄ to impose. We see this choice as

a dogmatic prior based on beliefs about large transitory movements in economic activity as

reflected in, say, the CBO output gap in Figure 1. This dogmatic prior is analogous to the

imposition of a low signal-to-noise ratio by fixing λ = 1600 when implementing the HP filter

for quarterly data under the assumption {yt} follows a UC process with a stochastic trend (see

4It would, of course, also be possible to impose a low signal-to-noise ratio for a more general ARMA model.
However, estimation would be far less straightforward, there would be greater tendency to overfit the data given
well-known problems of weak identification and near-cancellation of roots, and the corresponding BN decompo-
sition would be less reliable.

5In the case of a time series with no drift, such as is the case with U.S. unemployment rate data, it is possible
to impose µ = 0 by simply setting ∆ỹt = ∆yt .

6The estimated output gap is virtually identical when halving or doubling σ2
e compared to the least squares

estimate. Meanwhile, it would be possible to place an informative prior on σ2
e and still solve the posterior for

the autoregressive coefficients analytically by using dummy observations. However, given that this would require
eliciting an explicit prior in any particular application, while having virtually no impact on the results for the BN
decomposition, we employ the flat/improper prior for simplicity.
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Harvey and Jaeger (1993)).7

Imposing a dogmatic prior could be as simple as setting δ̄ to a particular low value such as,

for example, δ̄ = 0.05, which would correspond to the strict belief that only 5% of the quarterly

forecast error variance for output growth is due to trend shocks. However, we recognize that

any such particular choice for δ̄ might appear somewhat arbitrary in practice. Therefore, we

propose an automatic selection of δ̄ based on the implied amplitude-to-noise ratio:

α(δ )≡ σ
2
c (δ )/σ

2
e (δ )

where, noting the implicit dependence on the signal-to-noise ratio δ through ρ and {φ∗j }
p−1
j=1 ,

σ2
c (δ ) is the variance of the corresponding BN cycle in equation (3) and σ2

e (δ ) is the variance

of the forecast error for the corresponding restricted version of the AR(p) model in equation

(5).8 For the automatic selection, δ̄ is chosen to maximize the signal-to-noise ratio as follows:

δ̄ = inf{δ > 0 : α
′(δ ) = 0,α ′′(δ )< 0},

This is still a dogmatic prior in the sense that, even in large samples, δ̄ will generally be smaller

than if it were freely estimated (e.g., if, instead, δ̄ = argminσ2
e (δ ) ).9 However, given the use

of a local maximizer for values of δ close to zero, the prior is now framed in terms of the

amplitude-to-noise ratio being “large” for a low signal-to-noise ratio rather than in terms of

7Under the assumption that {yt} is level or trend stationary, the HP filter can be interpreted as an approximate
high-pass frequency-domain filter and the choice of λ = 1600 for quarterly data has an interpretation of isolating
transitory movements at particular frequencies that are often associated with the business cycle. In applying the
BN decomposition, we take it as a given that {yt} can contain a stochastic trend. Thus, we do not frame the choice
of δ̄ in terms of what frequencies it isolates under the assumption that {yt} is stationary. However, we examine
the sample periodogram for the estimated output gap to determine what frequencies are being highlighted and
confirm that they correspond closely to those highlighted by the HP and BP filters and that are often associated
with business cycles. We thank a referee for suggesting this comparison and the results are available in the online
appendix.

8The analytical expression for the variance of the BN cycle is given in the online appendix. However, in
practice, when implementing our approach to selecting δ̄ , we simply calculate the sample variance of the estimated
output gap. Likewise, it is important to note that we use the sample variance of the forecast errors from the
restricted model rather than the posterior estimate of σ2

e , which actually corresponds to the least squares estimate
for the unrestricted model.

9We have confirmed this with a Monte Carlo simulation in the online appendix, with the downward bias much
larger when the true signal-to-noise ratio is large than when it is small. Note that this approach of imposing a
dogmatic prior to induce a downward bias on the signal-to-noise ratio is related to, but different than the sugges-
tion in Bewley (2002) of using Bayesian estimation to offset biases in least squares estimates of autoregressive
parameters.
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Figure 2: Tradeoff across different signal-to-noise ratios between amplitude of the estimated
U.S. output gap based on the BN decomposition and forecasting model fit

Notes: δ is the signal-to-noise ratio in terms of the variance of the trend shocks as a fraction of the overall quarterly
forecast error variance. The estimated output gap is for a BN decomposition based on Bayesian estimation of an
AR(12) model of U.S. quarterly real GDP growth with shrinkage priors on second-difference coefficients and
different values of δ .

the signal-to-noise ratio taking on a particular low value. To be clear, this is not the same as

simply maximizing the amplitude of the estimated output gap. It will still rule out even lower

values of δ that would increase amplitude, but not enough compared to worsening the fit of

the forecasting model. Specifically, maximizing the amplitude-to-noise ratio will balance this

tradeoff between amplitude and fit by equating the percentage increase in the variance of the

BN cycle with the percentage decrease in the variance of the forecast error.

To provide a visual perspective on our approach, Figure 2 plots the relationships for the U.S.

data between δ and the standard deviation of the estimated output gap, the RMSE of the re-

stricted forecasting model, the percentage changes in the corresponding variances for a decrease

in the signal-to-noise ratio of ∆δ =−0.01, and the implied amplitude-to-noise ratio. In the first

panel, the relationship between δ and the amplitude of the output gap is non-monotonic, with
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an inflection around 1.75, below which there is a steady increase in amplitude as δ gets smaller.

Meanwhile, the relationship between δ and the RMSE of the forecasting model considered in

the second panel is also non-monotonic (the minimum, not displayed, is at δ = 2.25, which

reflecting the impact of the shrinkage priors on the second-difference coefficients is closer to

the MLE for an AR(1) model than for an AR(12) model), but is relatively flat except when δ

is very close to zero, at which point decreasing δ has a deleterious impact on fit. In the third

panel, it can be seen that δ̄ = 0.24 (i.e., imposing that trend shocks account for 24% of the

forecast error variance for quarterly output growth) optimizes the tradeoff between amplitude

and fit in the sense that a decrease in δ below δ̄ = 0.24 worsens fit more in percentage terms

than it increases amplitude. The fourth panel shows directly that δ̄ = 0.24 corresponds to the

local maximum in the amplitude-to-noise ratio for values of δ closest to zero.

Because of the non-monotonicities of the relationships of δ with amplitude and fit, we focus

on a local maximizer of the amplitude-to-noise ratio. In particular, for very large values of δ

(much larger than the freely-estimated value), the amplitude-to-noise ratio actually becomes

quite large and increasing with δ , meaning that a global maximum does not exist. However,

because we are interested in imposing a dogmatic prior of a “low” signal-to-noise ratio, the

local maximum for values of δ closest to zero provides a sensible basis for selecting δ̄ .10

Meanwhile, as we show below, the shape of the output gap is highly robust to imposing other

low values of δ̄ . Therefore, a researcher with a particular dogmatic prior about the value of

the signal-to-noise ratio could simply impose a low value such as δ̄ = 0.05 and the estimated

output gap would remain similarly intuitive and reliable.

2.3 The BN Filter and the Estimated Output Gap

Reflecting the similar smoothing effect on the implied trend as for the HP filter when imposing a

low signal-to-noise ratio, we refer to our proposed approach as the “BN filter”.11 To summarize,

10As a check on the reasonableness of restricting fit to increase amplitude in this way, we also consider the
prior predictive density for the restricted model. We find that 82% of the postwar observations for U.S. real GDP
growth lie within the equal-tailed 90% bands of the conditional prior predictive density. In this sense, our restricted
AR(12) model with δ̄ = 0.24 and shrinkage priors on the second-difference coefficients, while clearly different
than what would be freely estimated by MLE, is not strongly at odds with the data.

11We note that a few previous papers refer to a “BN filter”, but always as an alternative terminology for the
traditional BN decomposition, which does not impose a smoothing effect on the trend.
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it has three steps:

1. Set a low δ̄ . We employ an automatic selection based on the local maximum of the

implied amplitude-to-noise ratio for values of δ closest to zero. This is done by repeating

steps 2 and 3 below for proposed incremental increases in δ̄ from an initial increment just

above zero until the estimated amplitude-to-noise ratio σ̂2
c (δ̄ )/σ̂2

e (δ̄ ) decreases.

2. Given δ̄ , estimate the Dickey-Fuller transformed AR(p) model in equation (5) imposing

ρ̄ = 1−1/
√

δ̄ . We conduct Bayesian estimation assuming implicit flat/improper priors

for µ and σ2
e and a “Minnesota”-type shrinkage prior for {φ∗j }

p−1
j=1 . We set p = 12, but

our results are robust to higher values of p given the shrinkage prior.

3. Given ρ̄ and estimates of {φ∗j }
p−1
j=1 , solve for restricted estimates of {φ j}p

j=1 by inverting

the Dickey-Fuller transformation and apply the BN decomposition as in equation (3).

Figure 3 plots the estimated U.S. output gap along with 95% confidence bands for the BN

filter with δ̄ = 0.24 determined by automatic selection based on maximizing the amplitude-to-

noise ratio. A cursory glance at the figure suggests that the BN filter is much more successful

than the traditional BN decomposition based on a freely estimated AR model at producing an

estimated output gap that is consistent with widely-held beliefs about amplitude, persistence,

and the sign of transitory movements in economic activity. In particular, the estimated output

gap is large in amplitude, persistent, and moves procyclically with the NBER reference cycle.

Referring back to Figure 1, the correlation with the CBO output gap is reasonably high at

0.75 rather than -0.30 for the estimate from a BN decomposition based on an AR(1) model.

Meanwhile, the 95% confidence bands are based on inverting a simple z-test that the true output

gap, ct , is equal to a hypothesized value based on the unbiasedness, variance, and assumed

normality of the BN cycle.12 The estimates appear reasonably precise and are significantly

different from zero at many points throughout the sample, especially during recessions.13

12Details for how we calculate confidence bands for a BN cycle are provided in the online appendix.
13All of the methods considered in this paper effectively impose a mean of zero on the estimated output gap

by construction. However, the significantly negative estimates from the BN filter during recessions are consistent
with the findings in Morley and Piger (2012) and Morley and Panovska (2016) using weighted averages of model-
based trend-cycle decompositions for linear and nonlinear time series models that the output gap is asymmetric in
the sense of being generally close to zero during expansions, but large and negative during recessions.
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Figure 3: Estimated U.S. output gap from the BN filter with 95% confidence bands

Notes: Units are 100 times natural log deviation from trend. “BN filter” refers to our proposed approach of
estimating the output gap using the BN decomposition based on Bayesian estimation of an AR(12) model of U.S.
quarterly real GDP growth with shrinkage priors on second-difference coefficients and imposing the signal-to-
noise ratio that maximizes the amplitude-to-noise ratio. The solid line is the estimate. Shaded bands around the
estimate correspond to a 95% confidence interval from inverting a z-test that the true output gap is equal to a
hypothesized value using the standard deviation of the BN cycle. Shaded bars correspond to NBER recession
dates.

Before examining the reliability of our approach, we consider the sensitivity of the esti-

mated output gap to varying the signal-to-noise ratio. The top panel of Figure 4 plots the

estimated output gap for δ ∈ {0.05,0.8} compared against our approach where δ = 0.24. The

shape of the estimated output gap is little changed, with the persistence profile virtually unal-

tered. Indeed, the correlation between the different estimated output gaps varying the signal-to-

noise ratio is well in excess of 0.95. Because the profile of fluctuations in the estimated output

gap are similar even as we change the signal-to-noise ratio, the revision properties and real time

forecast performance will be highly robust to the exact value of δ , at least as long as it is below

one.14

Meanwhile, given this apparent robustness to different values of δ , we check whether our

results are actually being driven by the AR(12) specification rather than imposing a low signal-

14All of the results for δ ∈ {0.05,0.8} are reported in the online appendix.
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Figure 4: U.S. output gap estimates based on the BN decomposition when varying the signal-
to-noise ratio

Notes: Units are 100 times natural log deviation from trend. The different lines in the top panel are for a BN de-
composition based on Bayesian estimation of an AR(12) model of U.S. quarterly real GDP growth with shrinkage
priors on second-difference coefficients imposing different signal-to-noise ratios. In the bottom panel, “AR(12)
MLE” refers to the BN decomposition based on an AR(12) model estimated via MLE. Shaded bars correspond to
NBER recession dates.

to-noise ratio. To do this, we compare the estimated output gap from the BN filter to that

produced by the BN decomposition based on an AR(12) model freely estimated via MLE. The

bottom panel of Figure 4 plots the two output gap estimates and makes it clear that imposing a

low signal-to-noise ratio is crucial. For the freely estimated AR(12) model, we obtain δ̂ = 1.86

and the correlation between the two estimates is only 0.39. Also, as shown below, the revision

properties and forecast performance are not as good when using the BN decomposition based

on a freely estimated AR(12) model as they are for the BN filter.

2.4 Revision Properties of the BN Filter and Other Methods

Having proposed a BN filter that imposes a low signal-to-noise ratio and applied it to U.S. log

real GDP, we now assess its revision properties. As discussed in the introduction, by working

with an AR model, we seek to address the Orphanides and van Norden (2002) critique that
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popular methods of estimating the output gap are unreliable in real time. Orphanides and

van Norden (2002) show that most real-time revisions of output gap estimates are due to the

filtering method rather than data revisions for real GDP. Therefore, to focus on the revision

properties of the filtering method in particular, we consider “pseudo-real-time” analysis using

the final vintage of data (from 2016Q2) rather than a full-blown real-time analysis with different

vintages of data. However, our results are generally robust to consideration of data revisions.15

To evaluate the performance of the BN filter, we compare it to several other methods of

trend-cycle decomposition. First, we consider BN decompositions based on various freely

estimated ARMA forecasting models of {∆yt} and Kalman filtering for a UC model of {yt}. In

particular, we consider BN decompositions based on an AR(1) model, an AR(12) model, and an

ARMA(2,2) model, all estimated via MLE. We also consider a multivariate BN decomposition

based on a VAR(4) model of U.S. real GDP growth and the civilian unemployment rate, also

estimated via MLE. For the UC model, we consider a similar specification to Harvey (1985) and

Clark (1987) estimated via MLE. The AR(1) model is chosen based on SIC for the whole set

of possible ARMA models. The AR(12) model allows us to understand the effects of imposing

a longer lag order, although we note that standard model selection criteria would generally

lead a researcher to choose a more parsimonious specification in practice. Morley et al. (2003)

show that the BN decomposition based on an ARMA(2,2) model is equivalent to Kalman filter

inferences for an unrestricted version of the popular UC model by Watson (1986). In particular,

the Watson UC model features a random walk with constant drift trend plus an AR(2) cycle,

but, as Morley et al. (2003) show (also see Dungey et al., 2015; Chan and Grant, forthcoming),

the zero restriction on the correlation between movements in trend and cycle can be rejected by

statistical tests, suggesting the BN decomposition based on an unrestricted ARMA(2,2) model

is the appropriate approach when considering UC models that feature a random walk trend with

15See the online appendix for the results in a full-blown real-time environment. Not only are the results gener-
ally robust, but the only major change is that the BN filter clearly outperforms the traditional BN decomposition
based on an AR(1) model, the one other method that does comparatively well in the pseudo-real-time environ-
ment. We speculate that the reason for the improved relative performance of the BN filter when also allowing for
data revisions is that the BN cycle for it is a weighted average of 12 quarters of real GDP growth, while the BN
cycle based on an AR(1) model only reflects the current quarter. To the extent that most data revisions apply most
heavily to the current quarter or even recent quarters, the estimated output gap for the BN decomposition based
on an AR(1) model will be more heavily revised with each data revision. More details are provided in the online
appendix.
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drift plus an AR(2) cycle. Meanwhile, for completeness, we also consider the Harvey-Clark

UC model, similar to that considered by Orphanides and van Norden (2002). The Harvey-Clark

UC model differs from the Watson (1986) model in that it also features a random walk drift in

addition to a random walk trend. For this model, we retain the zero restrictions on correlations

between movements in drift, trend, and cycle.

We also consider some popular methods of deterministic detrending and nonparametric

filtering. In particular, we consider a deterministic quadratic trend, the Hodrick and Prescott

(HP) (1997) filter, and the bandpass (BP) filter by Baxter and King (1999) and Christiano

and Fitzgerald (2003). For the HP filter, we impose a smoothing parameter λ = 1600, as is

standard for quarterly data. For the BP filter, we target frequencies with periods between 6 and

32 quarters, as is commonly done in business cycle analysis. It is worth noting that, whatever

documented misgivings about the HP and BP filters (e.g., Cogley and Nason, 1995; Murray,

2003; Phillips and Jin, 2015), they are relatively easy to implement, including often being

available in many canned statistical packages, and are widely used in practice. We report results

for standard implementations, although we note that the results are virtually unchanged when

padding the data with AR(4) forecasts to try to address endpoint problems, as done in Edge and

Rudd (2016). This reflects the difficulty of accurately forecasting future output growth.

Figure 5 plots the pseudo-real-time and the ex post (i.e., full sample) estimates of the out-

put gap from the BN filter and the various other methods.16 The first thing to notice is that

all of the features of the output gap for the BN filter in Figure 3 carry over to the pseudo-real-

time environment.17 Meanwhile, in contrast to the BN filter, both the AR(1) and ARMA(2,2)

models produce output gap estimates that have little persistence, are small in amplitude, and

do not move procyclically with the NBER reference cycle. Adding more lags impacts the

persistence and sign of the estimated output gap, with the AR(12) model suggesting a more

persistent output gap that moves procyclically with the NBER reference cycle. Even so, the

estimated output gap for the AR(12) model still has relatively low amplitude, consistent with

16We start the pseudo-real-time analysis with raw data from 1947Q1 to 1968Q1 for U.S. real GDP and 1948Q1
to 1968Q1 for U.S. civilian unemployment rate and add one observation at a time until we reach the full sample
that ends in 2016Q2. Again, all raw data are taken from FRED. As with real GDP growth, the unemployment rate
is backcast using its pseudo-real-time sample average to allow the estimation sample to always begin in 1947Q2.

17We re-calculate δ̄ for each pseudo-real-time sample. Encouragingly, the values that maximize the amplitude-
to-noise ratio are quite stable, fluctuating between 0.21-0.26.
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Figure 5: Pseudo-real-time and ex post U.S. output gap estimates for various methods

Notes: Units are 100 times natural log deviation from trend. “BN filter” refers to our proposed approach of
estimating the output gap using the BN decomposition based on Bayesian estimation of an AR(12) model of
U.S. quarterly real GDP growth with shrinkage priors on second-difference coefficients and imposing a signal-
to-noise ratio that maximizes the amplitude-to-noise ratio. “AR(1)”, “AR(12)”, and “ARMA(2,2)” refer to BN
decompositions based on the respective models estimated via MLE. “VAR(4)” refers to the BN decomposition
based on a VAR(4) model of output growth and the unemployment rate estimated via MLE. “Deterministic” refers
to detrending based on least squares regression on a quadratic time trend. “HP” refers to the Hodrick and Prescott
(1997) filter. “BP” refers to the bandpass filter of Christiano and Fitzgerald (2003). “Harvey-Clark” refers to the
UC model as described by Harvey (1985) and Clark (1987). Shaded bars correspond to NBER recession dates.

our earlier observation that AR forecasting models estimated via MLE always imply a rela-

tively high signal-to-noise ratio of δ̂ > 1 for U.S. data. The BN decomposition for the VAR

model suggests an output gap that is more persistent and larger in amplitude, consistent with

the point made by Evans and Reichlin (1994) that adding relevant information for forecasting

of output growth mechanically lowers the signal-to-noise ratio. Finally, the estimates for the

other popular methods of trend-cycle decomposition are all reasonably intuitive in the sense of

being persistent, large in amplitude, and generally moving procyclically in terms of the NBER

reference cycle. However, it is notable how different they are from each other and from the rea-
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sonably intuitive estimates based on the BN filter and the BN decompositions for the AR(12)

model and the VAR model. Thus, being “intuitive” clearly cannot be a sufficient condition for

choosing amongst competing methods. Hence, we also consider reliability, which is why, like

Orphanides and van Norden (2002), we look at revision properties of the estimates, although

we will also examine other aspects of reliability in the next section.

In terms of the revision properties of the output gap estimates, the main thing to notice in

Figures 5 is that, regardless of the features in terms of persistence, amplitude, and sign, all of

the estimates for various BN decompositions, including the BN filter, are subject to relatively

small revisions in comparison to the other methods. The key reason why output gap estimates

for the various BN decompositions are hardly revised is because the estimated parameters of the

forecasting models turn out to be relatively stable when additional observations are considered

in real time. Meanwhile, even though the output gap estimates using the BN decomposition

appear relatively stable, the estimates for the more highly parameterized AR(12) and VAR(4)

models are subject to larger revisions than the simpler AR(1) and ARMA(2,2) models. This

suggests overparameterization and overfitting can compromise the real-time reliability of the

BN decomposition.18 This is the main reason we impose a shrinkage prior when considering

the highly parameterized AR(12) model in our proposed approach. In particular, the shrink-

age prior prevents overfitting, while the high lag order still allows for relatively rich dynamics.

The revision properties of the BN filter estimates, which are more similar to those for the AR(1)

model than for the AR(12) model based on MLE suggest that our proposed approach achieves a

reasonable compromise between avoiding potential overfitting and allowing for richer dynam-

ics. Finally, all of the estimates for the other popular methods in Figure 5 are heavily revised

and clearly unreliable in real time.19 In particular, the deterministic detrending is extremely

18Notably, as shown in the online appendix, the pseudo-real-time estimates for the AR(12) and VAR(4) models
lie outside the ex post 95% confidence bands much more than 5% of the time, raising serious doubts about their
reliability in terms of accuracy. At the same time, even the ex post estimates are not particularly precise, especially
with the BN cycle for the VAR(4) model, which is significantly different than zero less than 5% of the time. The
BN cycle for the ARMA(2,2) model is more accurate in the sense that the pseudo-real-time estimates lie within the
ex post 95% confidence bands 100% of the time, but the ex post estimates are almost never statistically different
than zero. Meanwhile, the pseudo-real-time estimates for the BN filter and the AR(1) model appear accurate, with
the estimates within the ex post 95% confidence bands 100% of the time and the ex post estimates are relatively
precise with the cycle being significantly different than zero about 40% and 30% of the time, respectively.

19As shown in the online appendix, the pseudo-real-time estimate for the Harvey-Clark UC model is inaccurate
in the sense that it lies outside the 95% confidence bands about 25% of the time, similar to the BN decomposition
for the AR(12) model. Meanwhile, the cycle is only significantly different than zero about 15% of the time, so it is
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sensitive to the sample period, while the HP and BP filters and the Harvey-Clark estimates all

suffer from the endpoint problems of two-sided filters or smoothed inferences in the case of the

Harvey-Clark model.

While eyeballing Figure 5 suggests the BN filter should be relatively appealing from a

reliability perspective, we formally quantify these revision properties by calculating revision

statistics, similar to the analysis in Orphanides and van Norden (2002), Edge and Rudd (2016),

and Champagne et al. (2016). First, to quantify the size of the revisions, we consider two

measures, the standard deviation and the root mean square (RMS), with the RMS measure

designed to penalize a bias in revisions more heavily than the standard deviation measure.

Both the standard deviation and RMS measures are normalized by the standard deviation of

the ex post estimate of the output gap for each method to enable a fair comparison as the

different methods produce estimates with very different amplitudes.20 Second, we calculate the

correlation between the pseudo-real-time estimate of the output gap and the ex post estimate

of the output gap. Third, we compute the frequency with which the pseudo-real-time estimate

of the output gap has the same sign as the ex post estimate. We consider the evaluation sample

of 1970Q1-2012Q4 to match with the starting point for the out-of-sample forecast comparison

discussed in the next section and because the more recent estimates near the end of the full

sample in 2016Q2 may end up becoming more heavily revised in the future.

Figure 6 presents the revision statistics. As was visually apparent in Figure 5, the BN filter

does well in terms of size of revisions, with both the standard deviation and RMS statistics be-

ing less than one quarter of the standard deviation of the ex post estimate of the output gap. The

BN decompositions based on freely estimated AR(1) and ARMA(2,2) models also do reason-

ably well in terms of size of revisions, with the standard deviation and RMS statistics slightly

better than the BN filter for the AR(1) model and somewhat worse for the ARMA(2,2) model.

By contrast, the BN decompositions based on the highly parameterized AR(12) and VAR(4)

models do quite poorly, with the standard deviation and RMS statistics about one standard de-

relatively imprecise. For deterministic detrending, the pseudo-real-time estimate always lies within what are very
wide 95% confidence bands, with the cycle is significantly different than zero less than 5% of the time. Unlike
with the model-based methods, we do not consider confidence bands for the HP and BP filters.

20Note these statistics are referred to as “noise-to-signal ratios” by Orphanides and van Norden (2002). How-
ever, apart from the labelling, they have nothing to do with the signal-to-noise ratio in our proposed approach.
Thus, we use the terms “standard deviation” and “RMS” of the revisions to avoid any confusion.
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Figure 6: Revision statistics for U.S. output gap estimates

Notes: See notes for Figure 5 for descriptions of labels of methods. Standard deviation and root mean square of
revisions to the pseudo-real-time estimate of the output gap are normalized by the standard deviation of the ex post
estimate of the output gap. “Correlation” refers to the correlation between the pseudo-real-time estimate and the
ex post estimate of the output gap. “Same sign” refers to the proportion of pseudo-real-time estimates that share
the same sign as the ex post estimate of the output gap. The sample period for calculation of revision statistics is
1970Q1-2012Q4.

viation or more of the ex post estimates. Meanwhile, all of the other popular methods produce

revisions that are well over half of one standard deviation of the ex post estimates, implying

very large revisions in absolute terms given the relatively large amplitude of their output gap

estimates. In terms of correlation of pseudo-real-time estimates with the ex post estimates, the

BN decompositions tend to do well, although the correlation is somewhat lower for the more

highly parameterized AR(12) and VAR(4) models. Notably, the BN filter and BN decomposi-

tion based on an AR(1) model have near perfect correlation between the pseudo-real-time and

ex post estimates. The correlation for other popular methods is generally quite low, with the HP

filter performing the worst. Finally turning our attention to whether the sign of the estimated

output gap changes once one is endowed with future information, we find that, again, the BN

decompositions tend to do relatively well, with the pseudo-real-time estimates for the BN filter

and the BN decomposition based on an AR(1) model performing best and correctly identifying

the same sign as the final estimate about 90% of the time.
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To summarize, the BN decomposition appears more reliable in a pseudo-real-time environ-

ment than other popular methods. This is because the consideration of future observations does

not drastically alter the estimates of the forecasting model parameters. Even so, within the

class of BN decompositions, model parameter parsimony seems to be important for reliability

of the estimated output gap. This is not much of a surprise given that models which are highly

parameterized, such as the AR(12) model or the VAR(4) model, will tend to feature parameter

estimates that can be more unstable with the consideration of future observations. Our pro-

posed approach of imposing a low signal-to-noise ratio on a high-order AR(p) model estimated

via Bayesian methods with a shrinkage prior on second-difference coefficients produces what

appears to be a very reliable pseudo-real-time estimate of the output gap. Amongst the various

methods that implicitly or explicitly impose a low signal-to-noise ratio, including the HP and

BP filters, the BN filter performs by far the best. At the same time, the BN decomposition based

on an AR(1) model also performs very well in terms of revision properties, perhaps begging

the question of why we impose a low signal-to-noise ratio. We discuss this issue next.

3 Is Our Approach Reasonable?

3.1 Justification for Imposing a Low Signal-to-Noise Ratio

To recap, we have proposed a BN filter that imposes a low signal-to-noise ratio when con-

ducting the BN decomposition. When applied to U.S. log real GDP, the resulting output gap

estimates are reliable in the Orphanides and van Norden (2002) sense of being subject to small

revisions over time. The BN filter does better than other popular methods, except for the BN

decomposition based on an AR(1) model estimated via MLE, which does marginally better in

terms of revisions, but corresponds to a much higher signal-to-noise ratio and is economically

indistinguishable from zero throughout the sample.21

To the extent that one is agnostic about the true signal-to-noise ratio, there is not much

reason to deviate from using the BN decomposition based on an AR(1) model, especially if

21It is also statistically somewhat less distinguishable from zero in the sense that, as discussed in footnote 19,
zero lies outside the 95% confidence band 30% of the time for the BN decomposition based on an AR(1) model
versus 40% of the time for the BN filter.
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standard model selection and revision properties are the main criteria for choosing an approach

to estimating the output gap. In other words, one can really only justify using the BN filter if

there is a compelling reason to believe that a low signal-to-noise ratio really represents the true

state of the world. Whether a low or high signal-to-noise ratio represents the true state of the

world remains unresolved in the empirical literature. While considerable empirical research has

found support for the presence of a volatile stochastic trend in U.S. log real GDP (e.g., Nelson

and Plosser, 1982; Morley et al., 2003), this view has not gone unchallenged (e.g., Cochrane,

1994; Perron and Wada, 2009).

One reason to believe the signal-to-noise ratio is much lower than that given by a freely

estimated AR model is that {∆yt} may behave more like an MA process with a near unit root

than a finite-order autoregressive process. In this case, the true signal-to-noise ratio would be

small and the process would have an infinite-order AR representation. However, a finite-order

AR(p) model would fail to capture the infinite-order AR dynamics and the estimated signal-to-

noise ratio for such models could be biased upwards.

To demonstrate this possibility, we consider two empirically-plausible data generating pro-

cesses (DGPs). In both cases, the observed time series is equal to a random walk with constant

drift trend plus an AR(2) cycle. Furthermore, in both cases, the first difference of the time series

follows the exact same ARMA(2,2) process with near unit MA root and a low signal-to-noise

ratio of δ = 0.50.

For the first DGP, we parameterize the Watson (1986) UC model of {yt} with uncorrelated

components as estimated for U.S. real GDP by Morley et al. (2003). We choose this DGP be-

cause it corresponds to a low signal-to-noise ratio, unlike the unrestricted UC model in Morley

et al. (2003) that allows for correlation between permanent and transitory movements.22 When

considering model selection for possible ARMA specifications for {∆yt} given this DGP in

finite samples, SIC will pick a low-order AR(p) model with reasonably high frequency, even

though the true model has an ARMA(2,2) specification. Meanwhile, suppose there is some

other observed variable {ut} that is related to the unobserved cycle {ct}, but contains serially-

22Morley et al. (2003) find that a zero correlation restriction can be rejected at the 5% level based on a likelihood
ratio test. However, small values for the correlation cannot be rejected. Thus, we argue that this DGP is empirically
plausible, if not necessarily probable in a Bayesian sense.
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Table 1: Monte Carlo simulation for unobserved components process

T = 250 T = 500,000
Correlation Amplitude Correlation Amplitude

True Cycle 2.47 2.53
AR(1) -0.12 0.51 -0.12 0.50
VAR(4)[4yt ,ct ] 0.99 2.48 1.00 2.54
VAR(4)[4yt ,ut ] 0.48 1.71 0.49 1.73
ARMA(2,2) 0.16 1.15 0.66 1.66
BN filter[δ = δ̄ ] 0.49 1.27 0.59 1.97
BN filter[δ = 0.50] 0.51 0.96 0.59 1.44
AR(12) 0.56 1.01 0.59 0.96

Notes: We consider the following DGP:
yt = τt + ct
τt = 0.81+ τt−1 +ηt ,
ct = 1.53ct−1−0.61ct−2 + εt ,
ut =−0.5ct + vt
vt = 0.9vt−1 +ζt ,
where ηt ∼ iidN(0,0.692),εt ∼ iidN(0,0.622),ζt ∼ iidN(0,1), and ηt , εt , and ζt are mutually uncorrelated.
δ = 0.50 is the true value. “Correlation” refers to correlation between the true cycle and the estimated cycle.
“Amplitude” is in terms of the standard deviation of percent deviation from trend. All estimated cycles are derived
from BN decompositions for the respective models.

correlated “measurement error”. Tests for Granger causality will often suggest that {ut} has

predictive power for {∆yt} beyond a low-order univariate AR(p) process. Based on this, a re-

searcher might consider a multivariate BN decomposition, as argued for by Cochrane (1994)

in such a setting. For this DGP, we consider how well different cases of the BN decomposition

would do in estimating the true cycle {ct}.

Table 1 reports the results for the first DGP in a finite sample (T =250) and in population

(T =500,000). The first thing to note is that the BN decomposition based on an AR(1) model

does poorly in estimating the true cycle, both in a finite sample and in population. The estimated

cycle is negatively correlated with the true cycle and its amplitude (as measured by standard

deviation) is only about 20% that of the true cycle. So this is exactly the example of a true

state of the world in which the BN decomposition based on an AR(1) model would be a bad

approach to estimating the output gap, even though SIC might select a low-order AR model in

a finite sample. Notably, when T =250 for this DGP, we find that SIC chooses a lag order for an

AR(p) model of p=1 more than 95% of the time.

The next thing to note is that a multivariate BN decomposition based on a VAR(4) model

of {∆yt} and the true cycle {ct} almost perfectly estimates the true cycle. This is not too
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surprising given the inclusion of the true cycle in the forecasting model corresponds to a highly

unrealistic scenario in which there exists an observed variable that perfectly captures economic

slack. Indeed, if such a variable really did exist, there would be little reason to estimate the

output gap in the first place rather than just monitoring the observed variable. Instead, a more

realistic scenario is one in which there exists an observed variable that is related to economic

slack but is also affected by persistent idiosyncratic factors (e.g., the unemployment rate). In

order to capture such a scenario, we generate an artificial time series {ut} which is linked to

the true cycle {ct} up to a persistent measurement error. When we estimate the cycle from

a multivariate BN decomposition based on a VAR(4) model of {∆yt} and {ut}, its correlation

with the true cycle drops to around 0.5 and its amplitude is much less than that of the true cycle.

These results hold in both a finite sample and in population.23

A natural question is what role does model misspecification play in the results for the BN

decomposition. To consider this, we conduct the BN decomposition based on an ARMA(2,2)

model estimated via MLE. Despite the fact that the model is correctly specified, we can see that

correlation between the estimated cycle and the true cycle is less than one and the amplitude

is less than for the true cycle, even in population. This is similar to what was found in Morley

(2011), where the BN decomposition based on the true model provided an unbiased estimator

of the standard deviation of trend shocks for a UC process, but the estimate of the standard de-

viation of the cycle was downward biased. Indeed, as long as the true cycle is unobserved, there

will generally be a bias in estimating its standard deviation using the BN cycle.24 Meanwhile,

23Furthermore, a researcher might not consider a multivariate BN decomposition in the first place given this
DGP and a finite sample. In particular, when T =250, we find that a test of no Granger causality from {ut}
to {∆yt} only rejects 30% of the time for a VAR(4) model. It should be noted, however, that this relatively low
power reflects the relative magnitude of the measurement error in {ut}, as the empirical rejection rate is effectively
100% for a test of no Granger causality from {ct} to {∆yt}.

24The BN decomposition based on a VAR(4) model of {∆yt} and the true cyclical component {ct} does not
suffer from a downward bias because the cyclical component is observed and the true DGP has a (restricted)
VAR(2) representation. Also, it is important to emphasize that a bias in the estimate of the standard deviation of
the cycle is not the same as a bias in the estimate of the cycle. In particular, the BN cycle provides an unbiased
estimator of the true cycle given the correct model specification. It is just that a property of the estimates – in
this case their standard deviation – is different than the property of the true values. This is somewhat analogous
to least squares residuals providing unbiased estimates of the true regression errors given the correct model, but
the sample variance of the least squares residuals providing a downwardly biased estimate of the variance of the
true errors. In general, it is always possible for optimal estimates to have different properties than the objects
being estimated. An obvious and relevant example is filtered and smoothed inferences from the Kalman filter and
smoother, which are both optimal subject to different information sets, but which have different properties in terms
of their variability, as directly alluded to by their labels.
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the finite sample results for the ARMA(2,2) model are much worse than the population results,

with the correlation between the estimated cycle and the true cycle being close to zero. The

relatively poor finite sample performance of the BN decomposition in this case likely reflects

well-known difficulties with estimating ARMA parameters due to weak identification.

Turning to our proposed BN filter, we find that the estimated cycle shares the same relatively

high correlation with the true cycle as a version of the BN decomposition that imposes the true

signal-to-noise ratio (which, of course, is never known in practice) and the BN decomposition

based on an AR(12) model. The AR(12) model does reasonably well given that it approximates

the infinite-order AR representation of {∆yt}. However, for this DGP, the BN decomposition

based on the AR(12) model suffers from a larger downward bias in estimating the amplitude

than our proposed approach. Indeed, the BN filter does even better in terms of amplitude than

the BN decomposition imposing the true signal-to-noise ratio because it explicitly involves

targeting δ̄ to maximize amplitude subject to a tradeoff with model fit.

Following Morley (2011), we also consider a second DGP for which the BN trend based

on the true model defines the trend rather than just provides an estimate of an unobserved

random walk trend component, as was the case with the first DGP. In particular, we consider

a single-source-of-error process (see Anderson et al., 2006) that is parameterized to imply the

same ARMA(2,2) process for {∆yt} as the first DGP. Thus, the same signal-to-noise ratio and

all the same tendencies for SIC to pick a low-order AR model hold for this DGP. The only

difference in a univariate context is a conceptual one about whether forecast errors represent

true trend shocks (i.e., they are the “single source of error” in the process for {yt}) or they are

linear combinations of unobserved trend and cycle shocks, as was the case in the first DGP. See

Morley (2011) for a full discussion of this conceptual distinction.

Table 2 reports the results for the second DGP and they are fairly similar to before, except

that the BN decomposition generally does a better job estimating the amplitude of the true

cycle. However, there are a few key results to highlight. First, the BN decomposition based

on the ARMA(2,2) model still does poorly in terms of the correlation with true cycle in finite

samples, despite being correctly specified. The point here is that the estimation problems for

ARMA models remain massive even for sample sizes as large as T =250. Imposing a low signal-
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Table 2: Monte Carlo simulation for single source of error process

T = 250 T = 500,000
Correlation Amplitude Correlation Amplitude

True Cycle 1.62 1.66
AR(1) -0.17 0.51 -0.18 0.50
VAR(4)[4yt ,ct ] 0.98 1.68 1.00 1.65
VAR(4)[4yt ,ut ] 0.26 1.11 0.34 0.90
ARMA(2,2) 0.19 1.16 1.00 1.63
BN filter[δ = δ̄ ] 0.73 1.27 0.89 1.96
BN filter[δ = 0.50] 0.76 0.96 0.90 1.43
AR(12) 0.82 1.02 0.89 0.97

Notes: We consider the following DGP:
yt = τt + ct
τt = 0.81+ τt−1 +ηt ,
ct = 1.53ct−1−0.61ct−2 +0.42ηt −0.18ηt−1
ut =−0.5ct + vt
vt = 0.9vt−1 +ζt ,
ηt ∼ iidN(0,0.692),ζt ∼ iidN(0,1), and ηt and ζt are mutually uncorrelated. “Correlation” refers to correlation
between the true cycle and the estimated cycle. δ = 0.50 is the true value. “Amplitude” is in terms of the standard
deviation of percent deviation from trend. All estimated cycles are derived from BN decompositions for the
respective models.

to-noise ratio for an AR model appears to be a more effective way at getting at the true cycle

than estimating the true model when estimation involves weak identification issues. Second,

the BN decomposition based on a VAR(4) model of {∆yt} and {ut} does worse than for the

first DGP, suggesting that measurement error in an observed measure of economic slack offsets

the benefits of having a forecast error represent the true trend shock. Again, imposing a low

signal-to-noise ratio appears to be a more straightforward and effective way to get the estimated

cycle closer to the true cycle than adding multivariate information, even if the multivariate

information also decreases the signal-to-noise ratio, as discussed in Evans and Reichlin (1994).

Determining the appropriate multivariate information is also a difficult econometric problem in

itself, with finite-sample power issues and, at the same time, considerable danger of overfitting

unless variable selection is handled carefully.25 Meanwhile, even given the correct multivariate

information, the practical issue of measurement error that effectively motivates the need to

estimate the cyclical component in the first place means that a multivariate BN decomposition

will suffer even in population. Third, although the BN decomposition based on an AR(12)

25Interestingly, the finite-sample power of the Granger causality tests for {ut} to {∆yt} and {ct} to {∆yt} is
lower for this DGP than the first one. In particular, when T =250, the respective empirical rejection rates for a
VAR(4) model are only 8% and 51% compared to 30% and 100% for the first DGP. Thus, a researcher who only
considered {ut} or {ct} as a possible predictive variable would be even less likely to consider a multivariate BN
decomposition if this DGP represented the true state of the world.
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model estimated via MLE does relatively well, especially for this DGP, we know from the

analysis in the previous section that, like the BN decomposition based on a VAR model, it

suffers from larger revisions than our proposed approach.

The bottom line is that it is possible to think of a true state of the world in which stan-

dard model selection criteria and hypothesis testing would push a researcher towards an AR(1)

model (based on parsimony), an ARMA(2,2) model (as estimation and testing eventually dis-

covers the true model given enough data), or possibly a VAR model (based Granger causality

tests), but the BN decomposition based on these models would do much worse at capturing the

true cycle than our proposed approach. Although the ARMA(2,2) model is the correct specifi-

cation, the BN decomposition for this model suffers in finite samples due to known estimation

problems for such models. The BN decomposition for the AR(1) model performs poorly in

large samples, as does the VAR(4) model when the multivariate information is measured with

error. Meanwhile, even though the BN decomposition based on an AR(12) model does reason-

ably well, as would a VAR(4) model when the multivariate information is measured accurately,

these versions of the BN decomposition still suffer from reliability issues. By contrast, the BN

filter works well even in finite samples and is reliable in terms of its revision properties.

Next, we consider whether the BN filter is also reliable in the sense of minimizing a spurious

cycle that is unrelated to future output growth or other macroeconomic variables. Although

we might worry about model selection criteria and hypothesis testing pushing us to consider

models that lead to poor estimates of the output gap, we should at the same time worry that

imposing a low signal-to-noise ratio could produce a spurious cycle if the true state of the

world for U.S. real GDP growth is more along the lines of an AR(1) model than the two DGPs

considered above. In particular, if the BN filter produces a large spurious cycle, then our

estimated output gap should not perform as well as the BN decomposition based on a freely

estimated AR(1) model in forecasting output growth and inflation out of sample. We check

whether this is the case in practice.
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3.2 Out-of-Sample Forecast Comparisons

In this subsection, we evaluate different trend-cycle decomposition methods in terms of the

ability of their pseudo-real-time output gap estimates to forecast future U.S. output growth and

inflation. Our forecast evaluation sample starts in 1970Q1. We use an expanding window for

estimation. The first estimate of an output gap we have is for 1947Q2. We use the full extent of

the data sample for forecast evaluation after adjusting for the maximum number of lags in the

forecasting equation.

U.S. Output Growth Forecasts Nelson (2008) argues for using forecasts of future output

growth as a way to evaluate competing estimates of the output gap. The underlying intuition is

that if an estimated output gap suggests output is below trend, this should imply faster output

growth at some point in the future when output adjusts towards the trend to close the gap.

Conversely, if output is above trend, one should forecast slower output growth at some horizon

for output to return back towards the trend. The point is that the true cycle will cross its

unconditional mean of zero at some point, and a good estimate of the output gap should be able

to forecast the effects of this reversion to mean. For an h-period-ahead output growth forecast,

we consider a forecasting equation similar to Nelson (2008):

yt+h− yt = α +β ĉt + εt+h,t (7)

where y is the natural log of real GDP, ĉ is the estimated output gap, ε is a forecast error, and α

and β are coefficients estimated using least squares. Therefore, for an accurate estimate of the

output gap, we expect β < 0 at some horizon h and the inclusion of the estimated output gap in

the forecast equation to help predict h-period-ahead output growth.

Figure 7 presents the out-of-sample forecasting results. The Relative Root Mean Squared

Errors (RRMSEs) are in comparison to forecasts using the BN filter estimate of the output

gap. The figure includes 90% confidence bands obtained by inverting the Diebold and Mariano

(1995) test of equal predictive accuracy.

We make two observations about the forecasting results. First, the output gap estimates

constructed using the BN decomposition do better at all horizons than those based on other
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Figure 7: Out-of-sample U.S. output growth forecast comparison relative to the BN filter bench-
mark using pseudo-real-time output gap estimates

Notes: See notes for Figure 5 for descriptions of labels of methods. The graphs plot out-of-sample RRMSE
compared to forecasts based on the BN filter estimated output gap. Out-of-sample evaluation begins in 1970Q1.
The bands depict 90% confidence intervals from a two-sided Diebold and Mariano (1995) test of equal forecast
accuracy.

methods, including the HP and BP filters. This further vindicates our choice to work with a BN

decomposition. Second, within the class of BN decompositions, similar to with the revision

statistics, parsimony or shrinkage priors seem to be key. In particular, the BN decomposition

based on AR(12), ARMA(2,2), and VAR(4) models do worse than the BN decomposition based

on an AR(1) model or the BN filter. Therefore, the results for forecasting output growth mimic

many of the results we had for the revisions statistics. Notably, despite imposing a low signal-

to-noise ratio, the BN filter appears to avoid producing much of a spurious cycle that would

diminish the forecasting performance of its output gap estimate out of sample. It is true that the

estimated output gap from the BN decomposition based on an AR(1) model does slightly better

at short horizons. But this could be due to momentum in output growth initially following

a transitory shock. In particular, the BN cycle for an AR(1) model is proportional to output

growth, so its strong forecast performance could just be capturing positive serial correlation at
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short horizons rather than an ability to capture reversion to trend. Notably the RRMSE is close

to one and is not significant at longer horizons, suggesting that an AR model does no better than

the BN filter at longer horizons. So, unlike other methods that produce intuitive estimates of

the output gap by imposing a low signal-to-noise ratio, our approach does not seem to produce

a spurious cycle in the sense of having less of a link to future output growth at longer horizons

than a basic AR(1) model.

U.S. Inflation Forecasts We also consider a Phillips Curve type inflation forecasting equa-

tion to evaluate competing estimates of the output gap. Similar to, amongst others, Stock and

Watson (1999, 2008) and Clark and McCracken (2006), we use a fairly standard specification

from the inflation forecasting literature. In particular, we specify the following autoregressive

distributed lag (ADL) representation for our pseudo-real-time h-period-ahead Phillips Curve

inflation forecast:

πt+h−πt = γ +
p

∑
i=0

θi4πt−i +
q

∑
i=0

κiĉt−i + εt+h,t . (8)

where π is U.S. CPI inflation.26 We choose the lag orders of the forecasting equation, namely p

and q above, using the SIC. As is commonly done (see, for example, Stock and Watson, 1999,

2008; Clark and McCracken, 2006), we apply the information criterion to the entire sample

and run the pseudo-real-time analysis using the same number of lags, implicitly assuming we

know the optimal lag order a priori. The set of lag orders we consider for our ADL forecasting

equation are p ∈ [0,12] and q ∈ [0,12].

Figure 8 presents the out-of-sample forecasting results for the U.S inflation. Once again,

as with the results for output growth, we compute 90% confidence intervals by inverting the

Diebold and Mariano (1995) test.

As in the case of forecasting output growth, the BN filter estimate of the output gap does

relatively well. In particular, imposing a low signal-to-noise ratio outperforms all other BN de-

compositions, although generally not significantly so. The BN filter also generally does better

26The raw monthly data for the U.S. Consumer Price Index (CPI) for all urban consumers (seasonally adjusted)
are again taken from FRED and are converted to the quarterly frequency for 1947Q1 to 2016Q2 by simple aver-
aging.
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Figure 8: Out-of-sample U.S. inflation forecast comparison relative to the BN filter benchmark
using pseudo-real-time output gap estimates

Notes: See notes for Figure 5 for descriptions of labels of methods. The graphs plot out-of-sample RRMSE
compared to forecasts based on the BN filter estimated output gap. Out-of-sample evaluation begins in 1970Q1.
The bands depict 90% confidence intervals from a two-sided Diebold and Mariano (1995) test of equal forecast
accuracy.

than the HP filter, BP filter, and deterministic detrending, although again not significantly so.

In contrast to the results for forecasting output growth, the differences in inflation forecast per-

formance using the different output gap estimates are fairly small, with most RRMSEs within

the 1.00 to 1.05 range, indicating the gains in changing the output gap estimates for forecast-

ing inflation can be marginal at best and are generally not significant. To some extent, these

results are not entirely surprising. Atkeson and Ohanian (2001) and Stock and Watson (2008)

show that real-activity based Phillips Curve type forecasts may not be particularly useful for

forecasting inflation. In some sense, then, our results are simply a manifestation of what is

commonly found in the inflation forecasting literature. However, we note that our proposed ap-

proach is still competitive and may be slightly better than other methods in terms of providing

a good real-time measure of economic slack as it pertains to inflation. In particular, the BN

filter estimate of the output gap produces statistically significantly better inflation forecasts at
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Figure 9: Pseudo-out-of-sample U.S. inflation forecast comparison relative to the BN filter
benchmark using revised output gap estimates

Notes: See notes for Figure 5 for descriptions of labels of methods. The graphs plot pseudo-out-of-sample RRMSE
compared to forecasts based on the BN filter estimated output gap. Forecast evaluation begins in 1970Q1, but is
only a pseudo-out-of-sample evaluation given the use of revised output gap estimates. The bands depict 90%
confidence intervals from a two-sided Diebold and Mariano (1995) test of equal forecast accuracy.

some horizons relative to approaches such as the HP filter and deterministic detrending. It is

also noteworthy that none of the alternative methods outperform our proposed approach in a

statistically significant way.

3.3 Are Large Revisions Useful for Understanding the Past?

In this subsection, we discuss whether heavily revised output gap estimates, although less useful

for current analysis in real time, provide a better ex post understanding and interpretation of past

economic activity. Without ever knowing the true output gap, it can be a challenge to evaluate

the historical accuracy of output gap estimates. However, we attempt to address historical

accuracy in three ways.

First, we consider the ability of revised estimates to predict future inflation. Figure 9
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Figure 10: Relationship of U.S. output gap estimates with Chicago Fed’s National Activity
Index

Notes: Units in top panel are 100 times natural log deviation from trend for the ex post estimated output gap for
BN filter and reported index units for the Chicago Fed’s National Activity Index (CFNAI). Shaded bars correspond
to NBER recession dates. See notes for Figure 5 for descriptions of labels of methods. Ex post estimates are used
in the calculation of correlations.

presents a pseudo-out-of-sample U.S. inflation forecast comparison using revised output gap

estimates instead of real-time estimates. Notably, we find only small differences in the fore-

casting results, with the relative performance of heavily-revised approaches often deteriorating

in comparison to using the pseudo-real-time estimates.27 Thus, the large revisions for deter-

ministic detrending, the HP filter, the BP filter, and the Harvey-Clark model are clearly not

providing any additional insights into the historical values of the output gap that are relevant

for inflation.

Second, we consider the relationship of the various revised estimates of the output gap with

an alternative measure of U.S. economic activity that is constructed in a completely different

way, namely the Chicago Fed’s National Activity Index (CFNAI). The CFNAI is an index of

activity based on 85 data series and Berge and Jordà (2011) find it provides particularly ac-

27We do not report a similar exercise for predicting future output growth because the revised estimates for
deterministic detrending, the HP filter, the BP filter, and the Harvey-Clark model will directly reflect future output
growth. So it would be of little surprise, but not economically meaningful, that they would predict future output
growth better than pseudo-real-time estimates. We thank Adrian Pagan for pointing this out.
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Figure 11: Relationship between pseudo-real-time estimates of the U.S. output gap and subse-
quent revisions across methods

Notes: See notes for Figure 5 for descriptions of labels of methods. The top panel presents the correlation of
the k-step-ahead revision for the BN filter with the pseudo-real-time output gap estimate for each of the other
methods. The bottom panel presents the correlation of the k-step-ahead revision for each of the other methods
with the pseudo-real-time estimate for the BN filter. Each of the 10 bars indicates k = 1 to 10 step ahead reading
off k = 1 from the leftmost to k=10 to the rightmost.

curate signals about the current state of the business cycle as determined by the retrospective

evaluation of the NBER. The top panel of Figure 10 plots the revised CFNAI and the revised es-

timate for the BN filter. Despite our proposed approach being based only on the U.S. quarterly

real GDP data series, it displays a remarkable similarity to the CFNAI, including in the cor-

respondence of its movements with the NBER reference cycle. Meanwhile, the bottom panel

presents correlations between the CFNAI and the various revised estimates of the output gap

for different methods. The correlations confirm a strong positive relationship between the CF-

NAI and the estimate based on the BN filter, with much weaker and sometimes even negative

relationships for the other estimates.

Third, we consider whether future k-step ahead revisions of the output gap from alternative

methods are correlated with the pseudo-real-time BN filter output gap and vice versa. The

premise of this exercise is that, if the pseudo-real-time output gap from the BN filter is highly
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correlated with the true output gap, while other methods are less accurate but adjust towards the

true output gap with their revisions, then the revisions should be correlated with the pseudo-

real-time output gap from the BN filter. We also do the exercise in reverse as the same logic

holds in the other direction. If revisions for the BN filter are correlated with the pseudo-real-

time estimates for other methods, then this suggests the other estimates are more accurate. The

results of this exercise are presented in Figure 11. We present correlations for k = 1 to 10

steps ahead. As the top panel reveals, the correlation of the k-step ahead revision of the BN

filter never exceeds ±0.4 with any of the other pseudo-real-time estimates, suggesting that the

relatively small revisions for BN filter could not have been easily predicted by the pseudo-

real-time estimates for the other methods. By contrast, in the bottom panel, the large negative

correlations suggest that the other methods initially overestimate movements in the output gap

relative to the BN filter, but adjust back towards the BN filter estimate with revisions.

Overall, our analysis suggests that the large revisions for other trend-cycle decomposition

methods are not capturing much about the true output gap that is not already captured by the

BN filter. Also, our results suggest that our approach provides a convenient way to measure

economic slack in that it appears to provide a shortcut to a large-scale multivariate approach that

would also lead to a lower signal-to-noise ratio, while avoiding the overfitting and instability

issues that inevitably arise with such multivariate analysis.

4 Extensions

4.1 Accounting for Structural Breaks

The traditional BN decomposition assumes that the trend component of {yt} follows a random

walk with constant drift. One potential concern then is, if there has been a sufficiently large

change in the long-run growth rate, the assumption of constant drift will lead to biased estimates

of the output gap. For example, if there is a large reduction in the long-run growth rate, a

forecasting model that fails to account for it will keep anticipating faster growth than actually

occurs after the break, leading to a persistently negative estimate of the output gap from the

BN decomposition. More generally, Perron and Wada (2009, 2016) argue that estimates of
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Figure 12: U.S. output gap estimates from the BN filter when allowing for structural breaks

Notes: Units are 100 times natural log deviation from trend. The top panel compares the BN filter estimated output
gap in Figure 3 to a BN filter estimated output gap allowing for a break in long-run growth in 2006Q2 found using
the Bai and Perron (2003) test. The middle panel compares the BN filter estimated output gap allowing for a break
in long-run growth in 2006Q2 to a BN filter estimated output gap when dynamically demeaning the data relative
to a backward looking rolling 40 quarter average. The bottom panel compares the ex post and pseudo-real-time
BN filter estimates of the output gap when dynamically demeaning the data. Shaded bars correspond to NBER
recession dates.

the output gap from different methods can be highly dependent on accounting for structural

breaks. Therefore, we consider the effect of structural breaks on our estimates and propose a

modification of the BN filter to address their possible presence.

When we test for breaks in the long-run growth rate for U.S. real GDP using Bai and Perron

(2003) procedures, we find one break in 2006Q1.28 We therefore adjust the data for the break in

the long-run growth rate in 2006Q1 and apply the BN filter to the adjusted data. The estimated

28We use 15% trimming of the sample between potential breaks. One concern is that a possible break has
occurred since the Great Recession, a period which falls within the 15% trimming window at the end of the
sample. However, when we reduce the trimming window to 5% or 10%, we still find evidence of only one break
in 2006Q1.
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output gap allowing for a break in 2006Q1 is shown in the top panel of Figure 12.29 Because

we adjust for a slowdown in the long-run growth rate, the estimated output gap turns positive

around 2010 and remains slightly positive from then on. An interesting finding is that the

estimated output gap prior to the break is virtually identical to the benchmark results when not

allowing for a break.

There are two practical issue to deal with when considering structural breaks. First, it

would be difficult to detect breaks in real time. Our empirical example suggests that one can

date a possible break in 2006Q1, but this is only with hindsight given an addition of 10 extra

years of data.30 Therefore, allowing for breaks as done above with a Bai and Perron (2003)

test is ultimately an ex post exercise that requires a long span of data. Second, even though

we can allow for breaks ex post, there can remain a concern that break date estimates are not

particularly robust. For example, when we use data up to 2016Q2, the break date is estimated

at 2006Q1, but using data up to 2016Q1, the break date is estimated at 2000Q2.

To help address these practical issues, we propose a slight modification to the BN filter

to guard against possible structural breaks in the long-run growth rate in real time, while still

being robust to different possible break dates. In particular, instead of testing for breaks using

Bai and Perron (2003) procedures and adjusting the data to their regime specific mean, we

propose dynamically demeaning the data using a backward-looking rolling 40-quarter average

growth rate.31 That is, we construct deviations from mean as follows:

∆ỹt = ∆yt−
1

40

39

∑
i=0

∆yt−i.

We then apply the BN filter using Xt = (∆ỹt ,∆ỹt−1, ...,∆ỹt−p+1)
′ in equation (3) for the dy-

namically demeaned data. This procedure loses some precision in the estimate of the mean

compared to knowing the exact break date. But it is robust to multiple or gradual breaks and it

29If there were evidence of a structural break in the persistence of U.S. real GDP growth, it might motivate
consideration of a break in the imposed signal-to-noise ratio given the link between δ and φ(1) for an AR(p)
model. However, we find no evidence for a break in persistence and assume a constant δ̄ for the whole sample.

30Andrews (2003) proposes a generalized test for a structural break that is applicable at the end of a sample.
However, not surprisingly, such tests have somewhat limited power unless the magnitude of the break in mean is
very large relative to the error variance.

31One potential issue is what to choose as the appropriate window for estimating a changing long-run growth
rate. We consider 40 quarters to smooth over the effects of most business cycle fluctuations on average growth.
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can be easily applied in real time.32

In the middle panel of Figure 12, we plot the estimated output gap given dynamic mean

adjustment and compare it to the results when allowing for a break in 2006Q1. As can be seen,

the BN filter with dynamic mean adjustment does quite well at approximating the BN filter out-

put gap estimate when allowing for a break detected by Bai and Perron (2003) procedures.33

Meanwhile, in the bottom panel of Figure 12, we compare pseudo-real-time and ex post esti-

mates of the output gap using dynamic mean adjustment. Encouragingly, the pseudo-real-time

estimates appear reasonably reliable in terms of their revision properties.

4.2 Application to Other Data Series

We apply the BN filter to log real GDP and unemployment rate data for the G7, Australia, and

New Zealand in order to estimate both output and unemployment gaps.34 Figure 13 plots the

estimated gaps, reporting the signal-to-noise ratio that maximizes the amplitude-to-noise ratio

for the output gap and the implied Okun’s Law coefficient that estimates the percentage change

in the output gap per percentage point change in the unemployment gap. All of output growth

rates, except for the U.S. data, are adjusted for breaks in the long-run growth rate found by Bai

and Perron (2003) procedures. The negative of the unemployment gap is plotted to enhance the

visual comparison with the output gap.

For the U.S. data, the estimated unemployment gap is highly (negatively) correlated with

estimated output gap. When we regress the output gap against the unemployment gap, we

obtain a coefficient of -1.4, which is slight lower than the consensus estimate of Okun’s Law,

but in agreement with a comparable analysis by Sinclair (2009), who estimates output and

unemployment gaps in a multivariate UC model. For the other countries, the δ that maximizes

the amplitude-to-noise ratio is comparable to δ̄ = 0.24 for the U.S. data, but generally a bit

smaller, ranging from as low as 0.08 for New Zealand to 0.21 for Canada. As with the U.S.
32For the first 40 quarters of the sample, we use the average growth rate for that 10 year period. However, by the

start of our calculation of pseudo-real-time estimates in 1968Q1, the estimate of the mean is completely backward
looking.

33In the online appendix, we show that the BN filter with dynamic mean adjustment is still comparatively
reliable in terms of its revision properties and out-of-sample forecast performance. We also show that dynamic
mean adjustment also does quite well at approximating results when allowing for breaks detected from Bai and
Perron (2003) procedures for the non-U.S. G7 countries, Australia, and New Zealand.

34The data are sourced from the IMF Outlook.
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Figure 13: Output and unemployment gap estimates from the BN filter for the G7, Australia,
and New Zealand

Notes: Units are 100 times natural log deviation from trend. The estimated output gap is from the BN filter and δ is
the corresponding signal-to-noise ratio that maximizes the amplitude-to-noise ratio. The estimated unemployment
gap is from the BN filter and “Okun” refers to slope of Okun’s law coefficient implying the percentage point
change in the output gap per percentage point change in the unemployment gap. Shaded bars correspond to
NBER recession dates.

data, there is a clear negative relationship between the estimated output and unemployment

gaps for the other countries. The Okun’s Law coefficient ranges from -0.3 for Germany to -2.5

for Italy. In some cases, such as for Australia, Canada, and the United Kingdom, the negative

correlation between the estimated output and unemployment gaps is visually quite clear in

Figure 13, while in other cases, such as for Italy and Japan, it is less so, perhaps reflecting the

varying degrees of labour market rigidities across countries.

Overall, the main conclusion from these results for other data series is that the BN filter is

able to produce intuitive estimates of output and unemployment gaps not just for the United

States, but for other countries as well.
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5 Conclusion

In this paper, we have proposed a modification of the BN decomposition to directly impose

a low signal-to-noise ratio. In particular, rather than focusing solely on model fit by freely

estimating a time series forecasting model, we develop a “BN filter” that trades off amplitude

and model fit by maximizing the amplitude-to-noise ratio in order to determine a low signal-

to-noise ratio to impose in Bayesian estimation of a univariate AR model. When applied to

postwar U.S. quarterly log real GDP, the BN filter produces estimates of the output gap that

are both intuitive and reliable, while estimates for other methods are, at best, either intuitive or

reliable, but never both at the same time. Notably, the BN filter retains the apparent reliability

of the traditional BN decomposition based on freely estimated AR models, but the estimated

output gap is much more intuitive in the sense of being relatively large in amplitude, persistent,

and moving closely with the NBER reference cycle. Other methods that produce similarly

intuitive estimates of the output gap are far less reliable in terms of their revision properties.

We motivate why it can be useful to impose a low signal-to-noise ratio. In particular, if

the true state of the world is one in which there is an unobserved output gap that is large in

amplitude and persistent, other methods tend to produce highly misleading estimates of the

output gap in finite samples. By contrast, the BN filter performs relatively well in terms of

correlation with the true output gap. At the same time, despite imposing a low signal-to-noise

ratio, our proposed approach also appears reliable in the sense of not generating a large spurious

cycle when applied to U.S. log real GDP. Specifically, the estimated output gap from the BN

filter forecasts U.S. output growth and inflation similarly to estimated output gap from the BN

decomposition based on a freely estimated AR(1) model and better than for other methods,

especially those that also impose a low signal-to-noise ratio. The revised estimate from the

BN filter also appears to be more accurate than more heavily-revised output gap estimates in

terms of its relationships with inflation and a well-known revised measure of U.S. economic

activity, the Chicago Fed’s National Activity Index, that is constructed using a large number of

economic variables. Furthermore, the real-time estimates from the BN filter are more (typically

negatively) correlated with future revisions in other estimates than other real-time estimates are

correlated with future revisions in the estimate from the BN filter.
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Finally, we show how to account for potential structural breaks in long-run growth rates

when using the BN filter and we apply our approach to real GDP and unemployment rate data

for the United States and other countries, producing intuitive estimates of output gaps that have

strong Okun’s Law relationships with estimated unemployment gaps.
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