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This article introduces an approach to estimation for static or

dynamic panel data models that feature intercept and slope hetero-

geneity across individuals and over time. It is able to estimate

each individual observation coefficient as well as the average co-

efficient over the sample, and allows for correlation between the

heterogeneity and the regressors. Asymptotic theory establishes the

consistency and asymptotic normality of the estimates as N and

T jointly go to infinity. Finally, Monte Carlo simulations demon-

strate that the estimator performs well in environments where fixed

effects and mean group estimators are inconsistent and severely bi-

ased.

JEL: C13, C22, C23, C33

Keywords: Panel Data; Parameter heterogeneity; Dynamic Pan-
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Parameter heterogeneity has long been of interest in econometrics, reflecting the

inherent instability of economic relationships that can arise from consumer tastes,

structural change, aggregation problems, or misspecification. Consider a dynamic

panel data model with minimal restrictions on the parameter heterogeneity:

yit = αit + γityit−1 + βitxit + uit (1)
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Bonhomme, Gerdie Everaert, Seojeong Lee, and Maurice Bun for constructive comments that improved
the article.
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where βit = β + λi + λt, and γit = γ + δi + δt.

Most of the focus in the panel data literature has been on heterogeneity in the

intercept term, here denoted by αit. The fixed effects, random effects, and first

difference estimators have been used extensively in applied research to account

for individual heterogeneity in the intercept (constraining αit to not vary over

time). It is also possible to adapt the fixed effects estimator to consider fixed time

effects as well (i.e. the two-way fixed effects estimator). Mesters and Koopman

(2014) and Boneva, Linton and Vogt (2015) are two recent examples of panel data

estimators that account for both cross-section and time variation in the intercept

term.

Heterogeneity in the slope coefficients γit and βit has also been a topic of great

interest. Swamy (1970), which introduces the random coefficients model, consid-

ers the case where γit = 0 ∀ i & t and βit is restricted to βi = λ + λi where λi

is a random variable uncorrelated with the regressors and E(λi) = 0. A highly

related approach was introduced in Pesaran and Smith (1995) and is called mean

group OLS. Regressions are undertaken on each individual to obtain consistent

estimates for γi and βi, and these are then averaged to derive a consistent esti-

mate of γ and β (usually as a simple average e.g. β̂MG = N−1
∑N

i=1 β̂i). Explicit

estimates of βi can also be of inherent economic interest, for instance when i

represents a country or industry. Both models assume that the slope coefficient

is constant over time for each individual, where λt = 0 ∀ t.

Meanwhile, time varying parameters have been studied extensively in time series

econometrics, usually in the form βt = ρβt−1 + εt where εt is a stochastic process

and βt is estimated using a Kalman filter. Pagan (1980) restricts ρ = 0 and

E(εt) = β̄. Cooley and Prescott (1976), comparatively, sets ρ = 1 and E(εt) = 0.

For a useful survey of these panel and time series models see Hsiao and Pesaran

(2004). There are some studies that have looked at time varying parameters in

panel data as well, such as Degui, Chen and Gao (2011), Lee (2015), and Liu and

Hanssens (1981).
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Given that parameter heterogeneity can exist across both individuals and time,

and can be of significant economic interest in either case, it is reasonable to ask if it

is possible to estimate a slope coefficient that varies across both dimensions. Hsiao

(1975) was the first to consider a static version of (1) where the individual effects

λi and the time effects λt were both random processes where E(λi) = E(λt) = 0.

Importantly, the model required that the heterogeneity be uncorrelated with the

regressors, which is necessarily untrue in dynamic panel models. Baltagi, Feng

and Kao (2016) allows for both forms of heterogeneity, again with a static version

of (1), but restricts the time heterogeneity to be in the form of a structural break.

Hsiao (1974) concludes, with Pesaran (2015) and Balestra (1996) in agreement,

that:

“If the coefficients of the explanatory variables are fixed and different

over time as well as across cross-sectional units, then the parameters

to be estimated will increase with the number of sample observations.

Not only is there no point at which to pool the data, but there may not

exist any consistent estimator at all.”

The purpose of this article is to demonstrate that it is in fact possible to consis-

tently estimate γit and βit, where the heterogeneity is assumed to be additive (as

in (1)) and the panel is moderate to large in both N and T . The approach exploits

the ability of large panel data models to pool data across different dimensions in

order to triangulate a consistent estimate of a slope coefficient associated with a

single observation in the sample. To the author’s knowledge this has not yet been

considered in the literature.

The result is potentially of significant interest to economists for several reasons.

Since time varying parameters and individual varying parameters are often found

to exist in time series and panel data applications respectively, a model that is

robust to both forms of heterogeneity will likely have wide applicability. The

intercept and slope heterogeneity is also allowed to be correlated with the regres-

sors, which is particularly important for dynamic panel data estimation. Most
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importantly, even if an applied researcher is only interested in the average effect

over the sample, fixed effects and mean group estimators will be inconsistent and

(potentially severely) biased in this environment.

For the sake of simplicity the technique is developed in an environment that

assumes cross-sectional independence (implying additive not interactive fixed ef-

fects) and exogenous regressors. However, there is no reason why future work

can’t weaken these assumptions just as Pesaran (2006) and Chudik and Pesaran

(2015) did the same for mean group OLS. Furthermore, the assumption of additive

slope heterogeneity may also be relaxed in future work.

The finite sample performance of this technique is tested using Monte Carlo

simulations. The results show that in a dynamic panel data model where the slope

coefficient varies across both dimensions, the estimator proposed in this paper is

consistent where fixed effects and mean group estimators are not. Moreover, the

simulations suggest that the estimator is also relatively efficient, preventing a

bias/variance trade-off from emerging.

The rest of the article is organised in the following way. Section 1 outlines the

estimation problem in a dynamic panel framework. Section 2 presents a consistent

estimator for the individual coefficients in this environment. Section 3 presents a

consistent estimate for the average coefficient. Section 4 conducts a Monte Carlo

simulation study that tests this approach against a number of alternatives under

varying assumptions. Section 5 discusses the potential for future extensions of the

approach. Section 6 contains some concluding remarks. The Appendix provides

proofs of the asymptotic results obtained in Sections 3 and 4.

1. Multidimensional Parameter Heterogeneity in a Dynamic Panel Model

Consider the following estimation problem:

yit = αit + γityit−1 + x′itβit + uit (2)

where xit = (x1it, x2it, · · · , xKit) is a K x 1 vector of regressors, βit = (β1it, β2it,
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· · · , βKit) is a K x 1 vector of coefficients that vary across individuals and over

time, γit is the autoregressive coefficient, and uit is the idiosyncratic error term.

Further assume that the regressors are driven by an autoregressive process:

xit = µi + xit−1ρx + eit (3)

where µi = (µ1i, µ2i, · · · , µKi) and eit = (e1it, e2it, · · · , eKit) are K x 1 vectors.

The coefficients have the structure:

αit = α+ ci + ct (4)

γit = γ + δi + δt (5)

βit = β + λi + λt (6)

where each possess a constant effect across all observations α, γ, and β = (β1,

β2, · · · , βK), individual effects that vary across every unit in the panel ci, δi, and

λi = (λ1i, λ2i, · · · , λKi), and finally time effects that vary between each time

period ct, δt, and λt = (λ1t, λ2t, · · · , λKt). Accordingly, in this environment

there are NT observations in the sample and (2 + K)(NT ) unique coefficients,

where (2 + K)(NT ) > NT since K ≥ 1. These coefficients are generated from

(2 +K)(N + T ) unknown parameters. Further lags of yit or lags of xit could be

added to (2) without meaningfully altering any of the results of this article.

A standard OLS regression of (2) problem will yield:

yit = α+ γyit−1 + x′itβ + vit (7)

vit = ci + ct + δiyit−1 + δtyit−1 + x′itλi + x′itλt + uit (8)

Simple examination of the pooled estimator reveals multiple sources of potential

endogeneity that will lead to bias and inconsistency in the estimates. yit−1 and

xit may be correlated with ci and ct which represent the heterogeneity of the in-
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tercept term. The two-way fixed effects estimator (implemented through dummy

variables or double-demeaning of the data) has been commonly used to control

for this source of endogeneity. yit−1 will necessarily be correlated with δi and

also λi if ρx 6= 0. Pesaran and Smith (1995) proposed mean group estimation (or

‘MG-OLS’) to deal with individual heterogeneity in the slope coefficients. Fur-

thermore, yit−1 will be correlated with uit if it possesses serial dependence, and

xit will be correlated with uit if it is somehow endogenous. Instrumental variable

estimation, such as Difference GMM or System GMM as seen in Arellano and

Bond (1991) and Blundell and Bond (1998), can be used to control for the former

as well as many forms of the latter. A particular form of endogeneity between xit

and uit is called cross section dependence (often represented by unobserved com-

mon factors), and that has received attention in Pesaran (2006) and Bai (2009) for

the case of static panel data models and Chudik and Pesaran (2015) for dynamic

panel data models.

The remaining sources of endogeneity, that to the author’s knowledge have not

been addressed before in this environment,1 is potential correlation between yit−1

and xit with δt and λt. yit−1 will be correlated with δt and λt if they contain

serial dependence2, while xit can be correlated with δt and λt for a variety of

reasons. For example, the heterogeneity may be correlated with an unobserved

covariate which is, in turn, correlated with xit.

This article will abstract from sources of endogeneity that have already received

a great deal of attention in the literature by making the following assumptions

on (2) to ease explanation in the next section. See the fifth section for a brief

discussion on weakening some of these assumptions along with others inherent in

the formulation of (4) - (6).

Assumption 1: The elements of the regressor term xit have a finite norm,

‖µi‖ < R and ‖eit‖ < R for all i and t, where ‖A‖ refers to the Frobenius norm

1Meaning a dynamic panel data model where heterogeneity also exists across panel units.
2The time series literature has often found it useful to model time varying heterogeneity with serial

dependence, such as βt = ρβt−1 + εt.
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of matrix A. Further assume that −1 < ρx < 1.

Assumption 2: The regressors are strictly exogenous with eit distributed inde-

pendently of ujt′ for all i, j, t, and t′.

Assumption 3: The error term uit is independently distributed across individ-

uals and time (i.e. cross-sectionally independent with no serial dependence):

E(uitujt′ |xit) = 0, for all i, j, t, and t′

Assumption 4: The heterogeneous effects all have a finite norm where ||λi|| < R,

||λt|| < R, ||δi|| < R, ||δt|| < R, ||ci|| < R, and ||ct|| < R for all i and t and some

constant R <∞. Furthermore, assume that the support of γit lies strictly within

the unit circle.

2. A Consistent Estimate of the Individual Coefficients

The aim of this section is to obtain a consistent estimate of θit = (αit, γit,βit),

while the next section will consider a consistent estimate of the average effect

defined as θ̄ = (α + E(ci) + E(ct), γ + E(δi) + E(δt),β + E(λi) + E(λt)). Fur-

ther define θ = (α, γ,β) as containing the constant effects, θi = (ci, δi,λi) as

containing the individual effects, θt = (ct, δt,λt) as containing the time effects,

and finally zit = (1, yit−1,xit) as the set of regressors.3 All of these vectors are

(K+2) x 1 in dimension. (2) can now be rewritten as:

yit = z′itθ + vit

vit = z′itθi + z′itθt + uit

Consider first the pooled OLS estimator of θ:

θ̂ =

(
1

NT

N∑
i=1

T∑
t=1

zitz
′
it

)−1(
1

NT

N∑
i=1

T∑
t=1

zityit

)
(9)

3Note that the constant term has been included in the set of regressors so that the fixed effects in
the intercept will be treated together with the fixed effects of the slope coefficients.
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Expanding on yit and simplifying yields:

θ̂ =θ +Q−1
zz,NT

(
1

NT

N∑
i=1

T∑
t=1

zitz
′
itθi

)

+Q−1
zz,NT

(
1

NT

N∑
i=1

T∑
t=1

zitz
′
itθt

)
+Q−1

zz,NT

(
1

NT

N∑
i=1

T∑
t=1

zituit

) (10)

where Q−1
zz,NT =

(
1
NT

∑N
i=1

∑T
t=1 zitz

′
it

)−1
. Next, consider a series of regressions

for each individual i:

yit = z′it(θ + θi) + vit

vit = z′itθt + uit

The resulting OLS estimates will yield:

θ̂i =

(
1

T

T∑
t=1

zitz
′
it

)−1(
1

T

T∑
t=1

zityit

)
(11)

Expanding on yit and noting that θi is now a scalar vector:

θ̂i = θ + θi +Q−1
zz,T

(
1

T

T∑
t=1

zitz
′
itθt

)
+Q−1

zz,T

(
1

T

T∑
t=1

zituit

)
(12)

where Q−1
zz,T =

(
1
T

∑T
t=1 zitz

′
it

)−1
. Next, consider a series of regressions for each

time period t:

yit = z′it(θ + θt) + vit

vit = z′itθi + uit

The estimates will be a mirror of those found in (12):
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θ̂t = θ + θt +Q−1
zz,N

(
1

N

N∑
i=1

zitz
′
itθi

)
+Q−1

zz,N

(
1

N

N∑
i=1

zituit

)
(13)

where Q−1
zz,N =

(
1
N

∑N
i=1 zitz

′
it

)−1
. In order to obtain a preliminary estimate of

θit, simply exploit the relations found in (10), (12), and (13) and apply them to

each observation in the sample:

θ̂it =θ̂i + θ̂t − θ̂ =

θ + θi +Q−1
zz,T

(
1

T

T∑
t=1

zitz
′
itθt

)
+Q−1

zz,T

(
1

T

T∑
t=1

zituit

)
+

θ + θt +Q−1
zz,N

(
1

N

N∑
i=1

zitz
′
itθi

)
+Q−1

zz,N

(
1

N

N∑
i=1

zituit

)
−

θ −Q−1
zz,NT

(
1

NT

N∑
i=1

T∑
t=1

zitz
′
itθi

)

−Q−1
zz,NT

(
1

NT

N∑
i=1

T∑
t=1

zitz
′
itθt

)
−Q−1

zz,NT

(
1

NT

N∑
i=1

T∑
t=1

zituit

)
(14)

This simplifies to:

θ̂it =θ + θi + θt + (RNθi −RNTθi) + (RTθt −RNTθt) +(
Q−1
zz,NQzu,N +Q−1

zz,TQzu,T −Q−1
zz,NTQzu,NT

) (15)

where RN = Q−1
zz,NQzz,N and similarly for RNT and RT , and also Qzu,N =

1
N

∑N
i=1 zituit and similarly for Qzu,T and Qzu,NT . In addition to the biases

related to the error term, there is a bias originating from correlation between the

regressors and the individual or time heterogeneity (this includes the fixed effects

of the intercept term). Because there are two dimensions of heterogeneity in a

two-dimension panel, it is impossible to remove this bias by pooling the data in
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different ways (as MG-OLS is able to do when the heterogeneity is only over the

i dimension).

In order to remove the heterogeneity bias this article proposes using θ̂i as a

sample approximation for θi in (RNθi −RNTθi) and θ̂t as a sample approxima-

tion for θt in (RTθt −RNTθt). Inserting (12) and (13) into these parts of (15)

yields:

(RN θ̂i −RNT θ̂i) + (RT θ̂t −RNT θ̂t) = (RNθi −RNTθi) + (RTθt −RNTθt)

+ (RNRTθt −RNTRTθt) + (RTRNθi −RNTRNθi)+

(RNQ
−1
zz,NQzu,N −RNTQ

−1
zz,NTQzu,NT ) + (RTQ

−1
zz,TQzu,T −RNTQ

−1
zz,NTQzu,NT )

(16)

While this correction will contain the original bias, it will also introduce further

biases, some of which relate to the idiosyncratic error term while others the slope

heterogeneity. In order to approximate the additional biases relating to the slope

heterogeneity, this article proposes inserting θ̂i into (RTRNθi−RNTRNθi) and

θ̂t into (RNRTθt −RNTRTθt). In fact, this process can be repeated L times to

form the bias corrected estimates:

θ̂
BC
it = θ̂i + θ̂t − θ̂+

L∑
`=0

(−1)`+1((RNΓ1,` −RNTΓ1,`)+

(RTΓ2,` −RNTΓ2,`))

(17)

where Γ1,` = RTΓ2,`−1 and Γ2,` = RNΓ1,`−1 when ` > 0, Γ1,0 = θ̂i, and finally

Γ2,0 = θ̂t. The proof of Theorem 1 in the Appendix will demonstrate that when

L is sufficiently large, this bias correction will approximate the true heterogeneity

bias. In practice, since the magnitude of the adjustment declines as ` increases, a

suitable L can be determined endogenously by programming the sum to stop once
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the bias adjustment converges to a given level of tolerance. Section 4 will show

its finite sample performance and the number of ‘iterations’ required to achieve

convergence in a number of scenarios.

Theorem 1 provides the result of asymptotic consistency for the individual

observation coefficients as L first goes to infinity, and then both N and T jointly

go to infinity. The proof can be found in the Appendix.

Theorem 1: Consistency of θ̂
BC
it

For the panel model outlined in (2) - (6) where Assumptions 1-4 hold, when

L→∞ and then (N,T )
j→∞ it is true that:

θ̂
BC
it − θit

p→ 0 (18)

3. A Consistent Estimate of the Average Coefficient

Applied researchers may be exclusively interested in the average relationship

between variables over the sample: θ̄ = (α+E(ci) +E(ct), γ+E(δi) +E(δt),β+

E(λi) + E(λt)). Possessing a consistent estimate for each individual coefficient,

the average coefficient can be easily constructed by taking the simple average of

these individual coefficients:

θ̂MO =
1

NT

N∑
i=1

T∑
t=1

θ̂
BC
it (19)

For ease of reference this average is referred to as Mean Observation OLS (or ‘MO-

OLS’). The following two theorems provide the results for asymptotic consistency

and also asymptotic normality.

Theorem 2: Consistency of θ̂MO

For the panel model outlined in (2) - (6) where Assumptions 1-4 hold, when

L→∞ and then (N,T )
j→∞ it is true that:

θ̂MO − θ̄
p→ 0 (20)
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Theorem 3: Asymptotic Normality of θ̂MO

For the panel model outlined in (2) - (6) where Assumptions 1-4 hold, when

L→∞ and then (N,T )
j→∞ such that N/T → χ and χ > 0 it is true that:

√
NT (θ̂MO − θ̄)

d→ N(0,ΣMO) (21)

where ΣMO is defined in (A14). The asymptotic variance can be consistently

estimated nonparametrically by:

Σ̂MO =
1

NT−1

N∑
i=1

T∑
t=1

(
(θ̂ī − θ̂MO)(θ̂ī − θ̂MO)′ + (θ̂t̄ − θ̂MO)(θ̂t̄ − θ̂MO)′

+ 2(θ̂ī − θ̂MO)(θ̂t̄ − θ̂MO)′
) (22)

where θ̂ī = 1
T

∑T
t=1 θ̂

BC
it and θ̂t̄ = 1

N

∑N
i=1 θ̂

BC
it . Restrictions on the relative rate

of convergence of N and T are required due to the presence of a small sample time

series bias O(T−1) that has been well documented in the literature (starting with

Hurwicz (1950)) and originates from the inclusion of a lagged dependent variable.

Accordingly, the estimator is not appropriate for panels with very large N and

small T , although adopting existent small T bias corrections for this estimator is

an area for future research.

4. Monte Carlo Simulations

This section conducts a Monte Carlo simulation study to determine the finite

sample performance of the MO-OLS estimator of the average coefficient vector θ̄

proposed in the third section against the closest alternatives that are currently

available: the one-way and two-way fixed effects estimators and mean group OLS

(‘MG-OLS’). A number of scenarios are constructed from a data generating pro-

cess that features a large panel data structure and multidimensional slope het-

erogeneity and fixed effects.
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The chief differentiation between scenarios will be the inclusion of a lagged de-

pendent variable, the degree of correlation between the unobserved heterogeneity

and the regressor, and lastly the generating process of the slope heterogeneity.

Each estimator will be tested according to its mean bias and empirical standard

deviation, while the number of simulation repetitions has been set to 1,000 for

this study.

4.1. Data Generating Process

The dependent variable is defined by:

yit = cit + γityit−1 + βitxit + εit (23)

where i = 1, 2, ..., N and t = −10, ..., 0, 1, ..., T with the first 10 observations of

each i discarded prior to estimation. In all scenarios, we generate heterogeneous

coefficients βit = β+λi+λt where β = 1, λi ∼ N(0, 0.353) and λt will vary between

scenarios. The heterogeneous autoregressive term will be γit = γ + δi + δt, where

γ = 0 in the static scenarios and γ = 0.5 in the dynamic scenarios. δi and δt

will vary between scenarios. In all scenarios an unbias estimate of the average βit

over all Monte Carlo repetitions will be approximately equal to 1, while an unbias

estimate of the average γit will be approximately equal to 0.5 (in the scenarios

featuring a lagged dependent variable).

Since complexity in the idiosyncratic error term is not a focus of this article, it

will be set simply to εit ∼ N(0, 1). The fixed effects are generated by cit = c+ci+ct

where c = 1, ci ∼ N(0, 0.353) and ct will vary between scenarios. The regressor

takes the following form:

xit = ρxit−1 + α1cit + α2(γit + βit) + eit (24)

where ρ = 0.5, α1 measures the degree of correlation between the fixed effects

cit and the regressor, α2 measures the degree of correlation between the slope
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coefficients γit and βit with the regressor, and eit ∼ N(0, 1). In all scenarios

α1 = 1 while α2 will vary between scenarios.

Six scenarios are considered and are outlined in Table 1. ‘Random’ heterogene-

ity in the table refers to the random process N(0, σ2), where σ2 = 0.104 for the au-

toregressive heterogeneity δi and δt, while σ2 = 0.353 for the regressor heterogene-

ity λt and also for the intercept heterogeneity ct. ‘Dependent’ heterogeneity adds

serial dependence to the random heterogeneity, with δt = 0.5(δt−1) +N(0, 0.104)

and λt = 0.5(λt−1) + N(0, 0.353). ‘Fixed’ heterogeneity refers to a fixed process

where:

γi =

−0.104 if i < N/2

0.104 if i ≥ N/2

and:

λt =

−0.353 if t < T/2

0.353 if t ≥ T/2

The first scenario is a static panel data model that will serve as a benchmark for

relative efficiency in a simple setting. The second scenario introduces correlation

between the regressor and the slope heterogeneity through α2. The third scenario

is a dynamic panel data model that features heterogeneity in the slope coefficients

and fixed effects across the i dimension, but not along the t dimension. The pur-

pose of this scenario is again to test the efficiency losses from using the technique

proposed in this article on data that is simpler than its intended purpose. The

fourth scenario features heterogeneity across both the i and t dimensions. Both

dimensions of heterogeneity are randomly generated but are also correlated with

the regressor term through α2. The fifth scenario is identical to the fourth except

that the time heterogeneity of the slope coefficients possess serial dependence,

and the sixth scenario features time heterogeneity that is fixed and different.
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Table 1—Scenario Design

Scenario 1 2 3 4 5 6
γ 0 0 0.5 0.5 0.5 0.5
α2 0 1 1 1 1 1
δi N/A N/A Random Random Random Random
δt N/A N/A N/A Random Dependent Fixed
λt Random Random N/A Random Dependent Fixed
ct Random Random N/A Random Random Random

4.2. Results

The results for the first scenario are presented in Table 2. The mean coefficient

is reported in the left panel, while the right panel lists the empirical standard

deviation for both the true values4 and the four estimators under consideration.

N is held at 50 in all scenarios while T varies between 30 and 200, since it was

found that variation in T is the main driver of variation in performance due to the

presence of the O(T−1) bias. This scenario presents a static panel data model that

does not contain correlation between the multidimensional slope heterogeneity

and the regressor, but does possess fixed effects across both dimensions that are

correlated with the regressor.

The results show that ignoring the time effects introduces some bias in one-

way FE and MG-OLS. The preliminary MO-OLS estimates (defined in (15)) are

also biased due to the correlation with the fixed effects. Performing the bias

correction on the MO-OLS estimates successfully removes all bias as does using

the two-way FE estimator. The second scenario introduces correlation between

the slope heterogeneity and the single regressor, and the results can be seen in

Table 3. The bias found in the one-way FE estimator and MG-OLS becomes

very severe. It demonstrates that ignoring heterogeneity in the slope coefficients

can have dramatic implications for statistical inference. The performance of the

MO-OLS estimator is identical to the previous scenario, with the bias correction

4Since the average slope coefficients vary between simulation repetitions due to them being a function
of random variables, the empirical standard deviation of the true coefficients serve as a natural benchmark
for the efficiency of other estimators.
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procedure requiring an average of three additional iterations to converge. Un-

published simulation results show that increasing the value of α2 in this scenario

introduces some bias to the two-way FE estimator and also significantly worsens

the standard deviation relative to MO-OLS.5

Table 2—Simulation Results - Scenario 1

(N = 50, T )
Mean Std. Dev.

30 50 70 100 200 30 50 70 100 200

Results for β̄

True Values 0.998 1.003 0.999 0.999 0.998 0.082 0.071 0.064 0.060 0.057

Pooled OLS
One-way FE 1.077 1.087 1.087 1.080 1.080 0.208 0.167 0.144 0.122 0.095
Two-way FE 0.999 1.003 0.999 0.998 0.999 0.090 0.076 0.067 0.063 0.058

MG-OLS 1.079 1.088 1.087 1.081 1.080 0.211 0.168 0.144 0.122 0.095

MO-OLS
Prelim. 1.039 1.040 1.038 1.034 1.033 0.112 0.092 0.078 0.074 0.065
Bias Corr. 0.998 1.002 0.999 0.998 0.999 0.087 0.074 0.066 0.062 0.058

Note: 1,000 Monte Carlo Simulations with N=50 and varied T.

The results for the third scenario are presented in Table 4. The third scenario

features a lagged dependent variable, but restricts heterogeneity in the slope

coefficient and fixed effects to be across the i dimension alone. The purpose of

doing this is to determine whether using MO-OLS is inefficient when MG-OLS

will perform fine. Indeed, the results show that MG-OLS is unbiased when T is

large (the typical small T time series bias in dynamic panel data models is still

present). The one-way and two-way FE models are both biased and inconsistent

as the sample size grows. MO-OLS performs virtually identically to MG-OLS in

terms of bias and efficiency. Furthermore, the results show that the bias correction

procedure does not introduce any additional inefficiency when it is unnecessarily

5The results of this exercise are available upon request.
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Table 3—Simulation Results - Scenario 2

(N = 50, T )
Mean Std. Dev.

30 50 70 100 200 30 50 70 100 200

Results for β̄

True Values 0.998 1.003 1.000 0.998 1.002 0.082 0.071 0.066 0.059 0.056

Pooled OLS
One-way FE 1.981 1.988 1.977 1.970 1.981 0.302 0.236 0.201 0.167 0.130
Two-way FE 0.999 1.003 1.001 0.998 1.002 0.090 0.077 0.071 0.062 0.058

MG-OLS 2.012 2.007 1.991 1.980 1.985 0.310 0.240 0.204 0.168 0.130

MO-OLS
Prelim. 1.623 1.604 1.590 1.572 1.572 0.192 0.156 0.133 0.120 0.103
Bias Corr. 0.998 1.002 1.001 0.998 1.002 0.087 0.074 0.069 0.061 0.057

Note: 1,000 Monte Carlo Simulations with N=50 and varied T.

applied to a model. This suggests that MO-OLS may be able to be applied to

models at virtually no cost when the underlying structure of the heterogeneity is

difficult to ascertain.

The results for the fourth scenario are presented in Table 5. In this scenario,

heterogeneity in the intercept term and slope coefficients are extended to vary

across both the i and t dimensions. The heterogeneity is random across both

dimensions and there is correlation between the regressors and the heterogeneity.

Both forms of the FE estimator and MG-OLS show strong bias (that does not

decline as T increases, with the exception of the autoregressive term for MG-

OLS) and inefficiency. The preliminary MO-OLS estimates are also strongly

biased. Applying the bias correction successfully removes all of the bias when T

is moderate to large, and also significantly decreases the standard deviation of the

estimate. It is unbiased in γ̄ when T > 70, and unbiased in β̄ when T > 30. Also

worth noting is that the number of iterations required to achieve convergence in

the bias correction has significantly increased, with over 100 iterations required

in most MC iterations. Since each iteration is computationally cheap, this has



18 2016

Table 4—Simulation Results - Scenario 3

(N = 50, T )
Mean Std. Dev.

30 50 70 100 200 30 50 70 100 200

Results for γ̄

True Values 0.500 0.501 0.501 0.500 0.501 0.015 0.015 0.015 0.015 0.015

Pooled OLS
One-way FE 0.531 0.543 0.545 0.549 0.552 0.045 0.033 0.027 0.031 0.026
Two-way FE 0.531 0.542 0.545 0.549 0.552 0.045 0.033 0.027 0.031 0.026

MG-OLS 0.458 0.477 0.484 0.488 0.495 0.023 0.019 0.017 0.017 0.016

MO-OLS
Prelim. 0.459 0.478 0.485 0.489 0.496 0.023 0.019 0.017 0.017 0.016
Bias Corr. 0.457 0.476 0.483 0.487 0.495 0.023 0.019 0.017 0.017 0.016

Results for β̄

True Values 1.000 1.001 1.000 1.001 0.999 0.050 0.049 0.048 0.050 0.051

Pooled OLS
One-way FE 0.983 0.979 0.977 0.974 0.971 0.059 0.054 0.053 0.052 0.052
Two-way FE 0.983 0.979 0.977 0.974 0.971 0.060 0.054 0.053 0.053 0.052

MG-OLS 1.019 1.013 1.009 1.007 1.003 0.056 0.053 0.051 0.052 0.051

MO-OLS
Prelim. 1.006 1.001 0.998 0.996 0.992 0.055 0.053 0.051 0.052 0.051
Bias Corr. 1.020 1.013 1.009 1.007 1.003 0.056 0.053 0.051 0.052 0.051
Iterations 26 22 20 20 19 14 10 9 10 10

Note: 1,000 Monte Carlo Simulations with N=50 and varied T.
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little significance in applied situations (at least at these sample sizes).

Table 5—Simulation Results - Scenario 4

(N = 50, T )
Mean Std. Dev.

30 50 70 100 200 30 50 70 100 200

Results for γ̄

True Values 0.500 0.500 0.500 0.500 0.501 0.025 0.022 0.020 0.018 0.016

Pooled OLS
One-way FE 0.412 0.450 0.462 0.477 0.491 0.146 0.116 0.104 0.085 0.067
Two-way FE 0.597 0.629 0.639 0.653 0.664 0.098 0.085 0.078 0.068 0.063

MG-OLS 0.356 0.393 0.407 0.420 0.434 0.138 0.107 0.094 0.075 0.055

MO-OLS
Prelim. 0.526 0.560 0.574 0.583 0.599 0.123 0.094 0.084 0.071 0.052
Bias Corr. 0.474 0.485 0.490 0.493 0.497 0.030 0.024 0.022 0.019 0.017

Results for β̄

True Values 0.998 1.003 1.000 0.998 1.002 0.082 0.071 0.066 0.059 0.056

Pooled OLS
One-way FE 2.381 2.370 2.343 2.325 2.327 0.465 0.361 0.304 0.250 0.194
Two-way FE 0.949 0.932 0.920 0.906 0.900 0.109 0.095 0.083 0.073 0.066

MG-OLS 2.541 2.492 2.452 2.421 2.410 0.493 0.372 0.312 0.255 0.191

MO-OLS
Prelim. 1.139 1.089 1.056 1.043 1.016 0.274 0.210 0.192 0.170 0.145
Bias Corr. 1.010 1.010 1.007 1.002 1.004 0.087 0.075 0.069 0.061 0.057
Iterations 356 335 325 320 313 82 62 56 47 39

Note: 1,000 Monte Carlo Simulations with N=50 and varied T.

The results for the fifth scenario are presented in Table 6. In this scenario,

the slope heterogeneity across t is generated with dependence (see Table 1 for

details). The results show very severe bias for all estimators considered here

save the bias corrected MO-OLS estimates. The autoregressive parameter γ̄ is

significantly overestimated, while the regressor coefficient is also overestimated by
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more than 100% (save for the two-way FE estimator). The bias corrected MO-

OLS estimates successfully removes all bias at moderate to large T , and is able

to estimate both parameters very efficiently. The number of iterations required

for the bias correction procedure to converge increased as well.

Table 6—Simulation Results - Scenario 5

(N = 50, T )
Mean Std. Dev.

30 50 70 100 200 30 50 70 100 200

Results for γ̄

True Values 0.499 0.500 0.500 0.499 0.500 0.042 0.033 0.030 0.026 0.022

Pooled OLS
One-way FE 0.668 0.706 0.717 0.728 0.747 0.109 0.086 0.074 0.061 0.048
Two-way FE 0.763 0.800 0.809 0.818 0.839 0.097 0.079 0.070 0.061 0.048

MG-OLS 0.616 0.654 0.666 0.678 0.694 0.104 0.080 0.069 0.055 0.040

MO-OLS
Prelim. 0.746 0.778 0.789 0.800 0.812 0.088 0.064 0.055 0.044 0.033
Bias Corr. 0.474 0.485 0.490 0.492 0.497 0.046 0.035 0.031 0.027 0.022

Results for β̄

True Values 0.997 1.004 1.001 0.999 1.003 0.137 0.110 0.097 0.084 0.073

Pooled OLS
One-way FE 2.356 2.306 2.272 2.244 2.224 0.586 0.445 0.376 0.307 0.231
Two-way FE 0.862 0.836 0.819 0.805 0.788 0.148 0.120 0.099 0.085 0.071

MG-OLS 2.609 2.513 2.460 2.415 2.387 0.628 0.466 0.393 0.315 0.233

MO-OLS
Prelim. 1.332 1.247 1.199 1.166 1.134 0.298 0.212 0.191 0.154 0.134
Bias Corr. 1.008 1.010 1.007 1.003 1.005 0.140 0.113 0.099 0.085 0.074
Iterations 457 434 422 415 409 125 101 88 77 72

Note: 1,000 Monte Carlo Simulations with N=50 and varied T.

The results for the sixth scenario are presented in Table 7. In this scenario, the

slope heterogeneity across t is fixed and different over the sample (see Table 1
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for details). More than any other, this scenario demonstrates how badly existent

estimators can overestimate the parameter values when the underlying data con-

tains heterogeneity over time that is correlated with one of the regressors. The

estimates for γ̄ are very close to 1 for both FE estimators, MG-OLS, and also the

preliminary MO-OLS estimates. Fortunately, the bias corrected MO-OLS esti-

mates are consistent and perform as well as in preceding scenarios. This suggests

that the performance of the estimator is almost independent of the underlying

complexity of the slope heterogeneity, nor the presence of correlation between the

regressors and that heterogeneity.

To summarise, the Monte Carlo simulation study has successfully demonstrated

that the bias corrected MO-OLS estimator is able to consistently and efficiently

estimate the mean coefficient in data containing intercept and slope heterogene-

ity over both dimensions of the panel. It is able to achieve this even when the

heterogeneity is correlated with the regressors, and when it is not randomly gen-

erated. Relying on existent estimators in these environments can potentially lead

to severely overestimated autoregressive parameters and also slope coefficients.

Given that the results also suggest that MO-OLS can potentially be applied with

virtually no cost (relative to MG-OLS) when the data features heterogeneity

across i alone, it would appear that MO-OLS is suitable for most empirical appli-

cations using dynamic panel data models provided that both N and T is moderate

to large in size.

5. Future Work

MG-OLS has received a number of extensions in order to generalise the esti-

mator, perhaps most importantly to incorporate cross-section dependence in the

data. This may appear in the data through interactive fixed effects (as in Bai

(2009)) or unobserved common factors (as in Pesaran (2006) and Chudik and

Pesaran (2015)). Further extensions also allow for serial dependence in the error

term and also endogeneity in the regressors as in Harding and Lamarche (2011).
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Table 7—Simulation Results - Scenario 6

(N = 50, T )
Mean Std. Dev.

30 50 70 100 200 30 50 70 100 200

Results for γ̄

True Values 0.499 0.500 0.501 0.500 0.499 0.016 0.016 0.015 0.015 0.015

Pooled OLS
One-way FE 0.950 0.956 0.961 0.963 0.967 0.017 0.012 0.012 0.011 0.009
Two-way FE 0.991 0.983 0.982 0.981 0.981 0.020 0.015 0.014 0.013 0.011

MG-OLS 0.920 0.930 0.936 0.941 0.947 0.016 0.010 0.008 0.006 0.004

MO-OLS
Prelim. 0.944 0.943 0.943 0.943 0.943 0.011 0.008 0.007 0.006 0.005
Bias Corr. 0.461 0.478 0.484 0.488 0.493 0.023 0.020 0.018 0.018 0.016

Results for β̄

True Values 0.999 0.999 0.998 0.998 1.003 0.051 0.051 0.051 0.049 0.049

Pooled OLS
One-way FE 1.310 1.098 0.992 0.919 0.829 0.213 0.150 0.128 0.107 0.080
Two-way FE 0.784 0.755 0.740 0.727 0.718 0.069 0.055 0.050 0.042 0.039

MG-OLS 1.571 1.309 1.186 1.094 0.978 0.221 0.156 0.117 0.089 0.058

MO-OLS
Prelim. 1.170 1.044 0.992 0.948 0.901 0.118 0.093 0.085 0.071 0.058
Bias Corr. 1.010 1.008 1.006 1.003 1.006 0.059 0.054 0.054 0.050 0.050
Iterations 820 839 881 905 932 232 214 222 210 214

Note: 1,000 Monte Carlo Simulations with N=50 and varied T.
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Future work may be able to extend MO-OLS in similar directions, using modified

versions of the techniques introduced in the papers referenced above.

Relaxing the assumptions that are inherent in (4) - (6) is another potential

avenue for future work. One possibility would be to allow for interactive fixed

effects in the slope coefficients, where for instance θit = θ+θi ·θt. Lastly, it may

be possible to relax the structure of the time heterogeneity in the slope coefficients

to vary between latent groups in the data, as Bonhomme and Manresa (2015) did

for time heterogeneity in the intercept term. For instance, it might be possible

to set θit = θ + θi + θgt where g is the group indicator.

6. Conclusion

Slope heterogeneity has been a significant issue for several decades in the econo-

metrics literature. Researchers have assumed in the past that it is impossible to

model slope heterogeneity across multiple dimensions without imposing strict as-

sumptions,6 noting that it would require a consistent estimate of at least as many

coefficients as there are observations in the sample. The purpose of this article is

to demonstrate that it is in fact possible to consistently estimate these individual

coefficients, assuming an additive structure is imposed on the heterogeneity and

the panel is moderate to large in both N and T . To the author’s knowledge this

has not been attempted before in the literature. Since time varying parameters

and individual varying parameters are often studied in the time series and panel

data literature respectively, an estimator that is capable of accounting for both

types of heterogeneity has the potential to be of significant interest to economists.

The capability of the estimator was tested in both an asymptotic and finite

sample setting. The Monte Carlo simulation study showed that the MO-OLS

estimator is able to consistently and efficiently estimate the mean coefficient in a

dynamic panel data model where the individual and time heterogeneity is corre-

lated with the regressors, and where the heterogeneity is not randomly generated.

6Such as restricting the time heterogeneity to only vary during a discrete structural break, or assuming
that the heterogeneity is random and uncorrelated with the regressors.
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In comparison, a number of existent estimators provided very severely biased es-

timates of the mean coefficients. The results suggest that MO-OLS has wide

applicability and benefits for empirical applications. The paper also discussed

the potential to generalise estimator in several directions, the most important

being to allow for cross-section dependence in the data.
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Appendix

Postulate 1

Consider two bounded random variables Ait and Bit. It can be easily verified

that the sequence:

a` = I[` is odd]
1

T

T∑
t=1

A−1
it Ait(a`−1) + I[` is even]

1

N

N∑
i=1

A−1
it Ait(a`−1) (A1)

is a Cauchy sequence in `, holding N and T constant where a0 = 1
N

∑N
i=1A

−1
it Bit.

The sequence will converge to the overall sample average:

lim
`→∞

(a`) =
1

NT

N∑
i=1

T∑
t=1

A−1
it Bit (A2)

Intuitively, when ` increases the sequence utilises more information from the entire

NT sample for each element in the sum and will eventually begin to approximate

the simple average of the entire sample arbitrarily well. This postulate will be

useful when proving Theorem 1.

Proof of Theorem 1

From (12), (13), and (17) it is seen that the bias correction constitutes:
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L∑
`=0

(−1)`+1((RNΓ1,` −RNTΓ1,`) + (RTΓ2,` −RNTΓ2,`)) =

(RNθi −RNTθi) + (RTθt −RNTθt)+

((RNΘ1,L −RNTΘ1,L) + (RTΘ2,L −RNTΘ2,L)) +

L∑
`=0

(−1)`+1 ((RNΛ1,` −RNTΛ1,`) + (RTΛ2,` −RNTΛ2,`))

(A3)

where Γ1,` = RTΓ2,`−1 and Γ2,` = RNΓ1,`−1 for ` > 0, Θ1,` = RTΘ2,`−1 and

Θ2,` = RNΘ1,`−1 for ` > 0, Λ1,` = RTΛ2,`−1 and Λ2,` = RNΛ1,`−1 for ` > 0,

Γ1,0 = θ̂i, Γ2,0 = θ̂t, Θ1,0 = θi, Θ2,0 = θt, Λ1,0 = Q−1
zz,NQzu,N , and finally

Λ2,0 = Q−1
zz,TQzu,T . The first term contains the original heterogeneity bias, which

the bias correction is seeking to approximate. The second term contains a second-

order heterogeneity bias that was introduced from the bias correction procedure.

The third term contains biases relating to the error term and was also introduced

from the bias correction procedure.

First, using Postulate 1 it is true that:

lim
L→∞

(
(RNΘ1,L −RNTΘ1,L) + (RTΘ2,L −RNTΘ2,L)

)
= 0 (A4)

where zitz
′
it is used in place of Ait (in Postulate 1), while zitz

′
itθi and zitz

′
itθt

are used in place of Bit. Given this, when L→∞:

θ̂
BC
it − θit =

(
Q−1
zz,NQzu,N +Q−1

zz,TQzu,T −Q−1
zz,NTQzu,NT

)
+

L∑
`=0

(−1)`+1 ((RNΛ1,` −RNTΛ1,`) + (RTΛ2,` −RNTΛ2,`))
(A5)

From the Weak Law of Large Numbers and Assumption 2 (exogenous regres-
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sors) it is true that as N →∞:

Qzu,N
p→ E(Qzu,N ) = 0

Q−1
zz,N

p→ E(Q−1
zz,N )

Furthermore, as T →∞:

Qzu,T
p→ E(Qzu,T ) = 0

Q−1
zz,T

p→ E(Q−1
zz,T )

and lastly as (N,T )
j→∞:

Qzu,NT
p→ E(Qzu,NT ) = 0

Q−1
zz,NT

p→ E(Q−1
zz,NT )

From the Continuous Mapping Theorem we know that:

Q−1
zz,NQzu,N

p→ E(Q−1
zz,N )0 = 0 (A6)

Q−1
zz,TQzu,T

p→ E(Q−1
zz,T )0 = 0 (A7)

Q−1
zz,NTQzu,NT

p→ E(Q−1
zz,NT )0 = 0 (A8)

Given (A6) - (A8) and the Continuous Mapping Theorem it is also true that:

L∑
`=0

(−1)`+1 ((RNΛ1,` −RNTΛ1,`) + (RTΛ2,` −RNTΛ2,`))
p→

L∑
`=0

(−1)`+1 ((RN0−RNT 0) + (RT 0−RNT 0)) = 0

(A9)

Therefore, as required for Theorem 1:
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θ̂
BC
it − θit

p→ 0 (A10)

Proof of Theorem 2

Since θ̄ = θ + E(θi) + E(θt) = E(θit), θ̂MO = 1
NT

∑N
i=1

∑T
t=1 θ̂

BC
it , and the

result from Theorem 1 that θ̂
BC
it − θit

p→ 0 when L→∞ and then (N,T )
j→∞,

the Weak Law of Large Numbers shows that:

θ̂MO =
1

NT

N∑
i=1

T∑
t=1

θ̂it
p→ E(θit) (A11)

which implies Theorem 2.

Proof of Theorem 3

From (A5), (19), and θ̄ = θ + E(θi) + E(θt) when L→∞ it is true that:

√
NT (θ̂MO−θ̄) =

1√
NT

N∑
i=1

T∑
t=1

((θi−E(θi))+(θt−E(θt))+
1√
NT

N∑
i=1

T∑
t=1

(Ψit+Ξit)

(A12)

where Ψit =
(
Q−1
zz,NQzu,N +Q−1

zz,TQzu,T −Q−1
zz,NTQzu,NT

)
and furthermore Ξit =∑L

l=1(−1)l ((RNΛ1,l−1 −RNTΛ1,l−1) + (RTΛ2,l−1 −RNTΛ2,l−1)).

Consider now the asymptotics where (N,T )
j→ ∞, Assumption 2 and the

WLLN implies that both Ψit
p→ 0 and Ξit

p→ 0 (as shown in Theorem 1). Ac-

cordingly, it is true that:

√
NT (θ̂MO − θ̄)

d→ N (0,ΣMO) (A13)

where

ΣMO =
V ar(θi)

T
+
V ar(θt)

N
+ 2Cov(θi,θt) (A14)

Now consider the nonparameteric estimate of ΣMO that was proposed in (22).

From (A5) it is true that:
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θ̂
BC
it = θ + θi + θt + Ψit + Ξit (A15)

and accordingly:

(
θ̂ī − θ̂MO

)
=(θ − θ) +

(
θi −

1

N

N∑
i=1

θi

)
+

(
1

T

T∑
t=1

(θt − θt)

)
+(

1

T

T∑
t=1

Ψit −
1

NT

N∑
i=1

T∑
t=1

Ψit

)
+

(
1

T

T∑
t=1

Ξit −
1

NT

N∑
i=1

T∑
t=1

Ξit

)
p→ (θi − E(θi))

and using a symmetric argument:

(
θ̂t̄ − θ̂MO

)
p→ (θt − E(θt))

where θ̂ī = 1
T

∑T
t=1 θ̂

BC
it and θ̂t̄ = 1

N

∑N
i=1 θ̂

BC
it .

Therefore it is true that:

1

NT−1

N∑
i=1

T∑
t=1

(
(θ̂ī − θ̂MO)(θ̂ī − θ̂MO)′ + (θ̂t̄ − θ̂MO)(θ̂t̄ − θ̂MO)′

+ 2(θ̂ī − θ̂MO)(θ̂t̄ − θ̂MO)′
) p→ V ar(θi)

T
+
V ar(θt)

N
+ 2Cov(θi,θt)

(A16)

and Σ̂MO
p→ ΣMO as required.
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