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This article introduces a technique to estimate static or dynamic panel data mod-

els that feature two dimensions of heterogeneity in the slope and intercept parameters.

It is able to consistently estimate the marginal effect for each individual observation

as well as the average over a sample, and allows for correlation between the het-

erogeneity and the regressors. Models with two-dimensional fixed-effects in the slope

parameters have long been considered interesting to economists yet intractable to es-

timate. Asymptotic theory establishes the consistency and asymptotic normality of

the proposed estimator as N and T jointly go to infinity. Finally, Monte Carlo sim-

ulations demonstrate that the estimator performs well in environments where fixed

effects and mean group estimators are inconsistent, inefficient, and severely biased.
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1 Introduction

Parameter heterogeneity has long been of interest in econometrics, reflecting the inher-

ent instability of economic relationships that can arise from consumer tastes, structural

change, aggregation problems, and misspecification. Panel Data estimators that allow for

heterogeneity in the intercept term across both individuals and time periods have been

extensively applied in economics, yet heterogeneity in the slope coefficients have only been

estimated over one dimension in isolation. Modelling two dimensions of fixed effects in the

slope coefficients is a highly desirable feature but considered intractable to solve. This arti-

cle proposes an approach to consistently and efficiently estimate two dimensions of additive

fixed effects in the slope coefficients, and thereby represents a significant contribution to

the literature that is widely applicable to empirical research.

Consider a dynamic panel data model with minimal restrictions on the parameter het-

erogeneity:

yit = αit + γityit−1 + βitxit + uit (1)

where βit = β+λi +λt, and γit = γ+ δi + δt. Most of the focus in the panel data literature

is on heterogeneity in the intercept term αit, where applied researchers use the one-way

and two-way fixed effects, random effects, and first difference estimators to account for

this heterogeneous intercept. Allowing the slope coefficients γit and βit to vary across i is

also a popular feature in panel data models. Pesaran and Smith (1995), which introduces

a technique known as mean group OLS, considers estimation when βit is restricted to

βi = β + λi and γit is restricted to γi = γ + δi. It shows that a consistent estimate of

the average slope effect is possible by averaging individual-specific regression estimates.

Explicit estimates of βi and γi can also be of inherent economic interest, for instance when

i represents a country or industry.

Meanwhile, time series econometrics contains techniques to model certain types of time

heterogeneity in the slope coefficient, usually in the form βt = ρβt−1 + εt where εt is a

stochastic process and βt is estimated using a Kalman filter. Pagan (1980) restricts ρ = 0

and E(εt) = β̄. Cooley and Prescott (1976), comparatively, sets ρ = 1 and E(εt) = 0.

There are some studies that have looked at time varying parameters in panel data as well,

such as Degui et al. (2011), Lee (2015), and Liu and Hanssens (1981). For a useful survey
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of these panel and time series models see Hsiao and Pesaran (2004).

Very few studies consider slope heterogeneity across two dimensions, and the ones that

do require strong restrictions on the structure of the heterogeneity. Hsiao (1975) considers

a static version of (1) (i.e. γit = 0 ∀ i and t) where the individual effects λi and the

time effects λt are both random processes such that E(λi) = E(λt) = 0. Importantly, the

estimator requires that the heterogeneity is uncorrelated with the regressors, which makes

it unsuitable for dynamic models and any static model with this correlation. Baltagi et al.

(2016) allows for two dimensions of heterogeneity, but again for a static version of (1) and

where the time heterogeneity is restricted to be in the form of a single structural break.

Hsiao (1974) concludes, with Pesaran (2015) and Balestra (1996) in agreement, that “If the

coefficients of the explanatory variables are fixed and different over time as well as across

cross-sectional units... there [is] no point at which to pool the data, and there may not

exist any consistent estimator at all.”

The purpose of this article is to demonstrate that it is in fact possible to consistently

estimate γit and βit, where the heterogeneity is assumed to be additive as in (1) and the

panel is moderate to large in both N and T . The approach exploits the ability of large panel

data models to pool data across different dimensions in order to triangulate an estimate

of the marginal effect associated with a single observation in the sample. It also proposes

a procedure to remove any bias from the estimates that will emerge from correlation be-

tween the regressors and this parameter heterogeneity (whether in the intercept or slope

coefficients). To the author’s knowledge neither component has been considered before in

the literature.

For the ease of explication the technique is developed in an environment that assumes

cross-sectional independence (implying additive not interactive fixed effects in the intercept)

and exogenous regressors. However, there is no reason why future work can’t weaken these

assumptions just as Pesaran (2006) and Chudik and Pesaran (2015) did the same for mean

group OLS.

The technique is potentially of significant interest to economists for several reasons.

Since time varying parameters and individual varying parameters are important issues in

time series and panel data applications respectively, a model that is robust to both forms
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of heterogeneity in both the intercept and slopes will have general applicability in empirical

research. Since the estimator is robust to correlation between regressors and the intercept

and slope heterogeneity, it is particularly useful for dynamic panel data estimation and

complex economic relationships. Most importantly, even if an applied researcher is only

interested in the average effect over the sample and not the nature of the multidimensional

heterogeneity, fixed effects and mean group estimators will be inconsistent and (potentially

severely) biased in this environment. Keane and Neal (2018) contains the first application

of the estimator to the sensitivity of crop yields to climate change, and demonstrates the

usefulness of the estimator for empirical research.

The finite sample performance of this technique is tested using Monte Carlo simula-

tions. The results show that in a dynamic panel data model where the slope coefficient

varies across both dimensions, the estimator provides a consistent estimate of the average

coefficient as well as the individual observation-level coefficients. Fixed effects and mean

group estimators are found to be inconsistent and highly biased estimators of the average

effect in this environment, and depending on the underlying structure of the heterogeneity

the bias can be very severe. The results also suggest that the estimator can be applied

without cost to any panel dataset, as it is no less efficient than fixed effects or mean group

estimators in simpler environments that do not feature two dimensions of fixed effects in

the slope parameters.

The rest of the article is organized in the following way. Section 2 presents the estimator

in a dynamic environment for both the observation-level coefficients and average coefficient

over the sample. Section 3 conducts a Monte Carlo simulation study that tests this approach

against a number of alternatives under varying assumptions, while Section 4 provides some

concluding remarks. The Appendix provides proofs of the asymptotic results presented in

Section 2.
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2 The Estimator

2.1 Description of the Environment

Consider the following estimation problem:

yit = αit + γityit−1 + β′itxit + uit (2)

for individuals i = 1, 2, · · · , N and time periods t = 1, 2, · · · , T , where xit = (x1it, x2it, · · · ,

xKit) is a K x 1 vector of regressors, βit = (β1it, β2it, · · · , βKit) is a K x 1 vector of coef-

ficients that vary across individuals and over time, γit is the heterogeneous autoregressive

coefficient, and uit is the idiosyncratic error term. Further assume that the regressors are

driven by an autoregressive process:

xit = µi + xit−1ρx + eit (3)

where µi = (µ1i, µ2i, · · · , µKi) and eit = (e1it, e2it, · · · , eKit) are K x 1 vectors.

The coefficients have the structure:

αit = α + ci + ct (4)

γit = γ + δi + δt (5)

βit = β + λi + λt (6)

where each possess a constant effect across all observations α, γ, and β = (β1, β2, · · · , βK),

individual effects that vary across every unit in the panel ci, δi, and λi = (λ1i, λ2i, · · · ,

λKi), and finally time effects that vary between each time period ct, δt, and λt = (λ1t, λ2t,

· · · , λKt). Accordingly, in this environment there are NT observations in the sample and

(2 + K)(NT ) unique coefficients. These coefficients are generated from (2 + K)(N + T )

unknown parameters. Further lags of yit or lags of xit could be added to (2) without

meaningfully altering any of the results of this article.

A standard OLS regression of (2) will yield:

yit = α + γyit−1 + β′xit + vit (7)

vit = ci + ct + δiyit−1 + δtyit−1 + λ′ixit + λ′txit + uit (8)

5



Examining the pooled estimator reveals multiple sources of potential endogeneity that will

lead to bias and inconsistency of the parameter estimates. yit−1 and xit may be correlated

with ci and ct which represent the fixed effects of the intercept term. yit−1 will necessarily

be correlated with δi and also λi if ρx 6= 0. Pesaran and Smith (1995) proposes mean group

estimation (or ‘MG-OLS’) to deal with heterogeneity across i in the slope coefficients.

Furthermore, yit−1 will be correlated with uit if it possesses serial dependence, and xit will

be correlated with uit if it is somehow endogenous. Instrumental variable estimation, such

as Difference GMM or System GMM as seen in Arellano and Bond (1991) and Blundell

and Bond (1998), can be used to control for the former as well as many forms of the latter.1

The remaining sources of endogeneity, which to the author’s knowledge has not been

addressed before in this environment, is correlation between yit−1 and xit with δt and λt.

yit−1 will be correlated with δt and λt if they contain serial dependence2, while xit can be

correlated with δt and λt for a variety of reasons. For example, the heterogeneity may be

correlated with an unobserved covariate which is, in turn, correlated with xit.

This article will propose an estimator that is able to account for fixed effects in the

intercept and slope coefficients across both N and T dimensions, and is robust to any

correlation between yi,t−1 and xit with ci, ct, δi, δt, λi, and λt. To ease explanation

in the next section, it abstracts from sources of endogeneity that have already received

attention in the literature by making the following four assumptions on (2). Weakening

these assumptions, along with others inherent in the formulation of (4) - (6), is left for

future work and briefly discussed in the conclusion to the paper.

Assumption 1: The elements of the regressor term xit have a finite norm, ‖µi‖ < R and

‖eit‖ < R for all i and t and some constant R < ∞, where ‖A‖ refers to the Frobenius

norm of matrix A. Further assume that −1 < ρx < 1.

Assumption 2: The regressors are strictly exogenous with eit distributed independently

of ujt′ for all i, j, t, and t′.

1A particular form of endogeneity between xit and uit is called cross section dependence, and that has

received attention in Pesaran (2006) and Bai (2009) for the case of static panel data models and Chudik

and Pesaran (2015) for dynamic panel data models.
2Indeed, the time series literature has often found it useful to model time varying heterogeneity with

serial dependence, such as βt = ρβt−1 + εt
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Assumption 3: The error term uit is independently distributed across individuals and

time (i.e. no cross-section or serial dependence):

E(uitujt′ |xit) = 0, for all i, j, t, and t′

Assumption 4: The heterogeneous effects all have a finite norm where ||λi|| < R, ||λt|| <

R, ||δi|| < R, ||δt|| < R, ||ci|| < R, and ||ct|| < R for all i and t and some constant R <∞.

Furthermore, assume that −1 < γit < 1 for all i and t.

2.2 A Consistent Estimate of the Observation Coefficients

The aim of this subsection is to obtain a consistent estimate of θit = (αit, γit,βit), while

the next subsection will consider a consistent estimate of the average effect defined as

θ̄ = (α+E(ci) +E(ct), γ+E(δi) +E(δt),β+E(λi) +E(λt)). Further define θ = (α, γ,β)

as containing the constant effects, θi = (ci, δi,λi) as containing the individual effects,

θt = (ct, δt,λt) as containing the time effects, and finally zit = (1, yit−1,xit) as the set of

regressors (note that it contains the constant term so that the fixed effects in the intercept

will be treated together with the slope coefficients). All of these vectors are (K+2) x 1 in

dimension. (2) can now be rewritten as:

yit = z′itθ + vit

vit = z′itθi + z′itθt + uit

Consider first the pooled OLS estimator of θ:

θ̂ =

(
1

NT

N∑
i=1

T∑
t=1

zitz
′
it

)−1(
1

NT

N∑
i=1

T∑
t=1

zityit

)
(9)

Expanding on yit and simplifying yields:

θ̂ =θ +Q−1
zz,NT

(
1

NT

N∑
i=1

T∑
t=1

zitz
′
itθi

)

+Q−1
zz,NT

(
1

NT

N∑
i=1

T∑
t=1

zitz
′
itθt

)
+Q−1

zz,NT

(
1

NT

N∑
i=1

T∑
t=1

zituit

) (10)
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where Q−1
zz,NT =

(
1

NT

∑N
i=1

∑T
t=1 zitz

′
it

)−1

. Next, consider a series of regressions for each

individual i:

yit = z′it(θ + θi) + vit

vit = z′itθt + uit

The resulting OLS estimates will yield:

θ̂i =

(
1

T

T∑
t=1

zitz
′
it

)−1(
1

T

T∑
t=1

zityit

)
(11)

Expanding on yit and noting that θi is now a scalar vector:

θ̂i = θ + θi +Q−1
zz,T

(
1

T

T∑
t=1

zitz
′
itθt

)
+Q−1

zz,T

(
1

T

T∑
t=1

zituit

)
(12)

where Q−1
zz,T =

(
1
T

∑T
t=1 zitz

′
it

)−1

. Next, consider a series of regressions for each time

period t:

yit = z′it(θ + θt) + vit

vit = z′itθi + uit

The time-specific regressions yield:

θ̂t = θ + θt +Q−1
zz,N

(
1

N

N∑
i=1

zitz
′
itθi

)
+Q−1

zz,N

(
1

N

N∑
i=1

zituit

)
(13)

where Q−1
zz,N =

(
1
N

∑N
i=1 zitz

′
it

)−1

. In order to obtain a preliminary estimate of θit we

combine (10), (12), and (13) as follows:

θ̂
Prel

it =θ̂i + θ̂t − θ̂ =

θ + θi +Q−1
zz,T

(
1

T

T∑
t=1

zitz
′
itθt

)
+Q−1

zz,T

(
1

T

T∑
t=1

ziteit

)
+

θ + θt +Q−1
zz,N

(
1

N

N∑
i=1

zitz
′
itθi

)
+Q−1

zz,N

(
1

N

N∑
i=1

ziteit

)

− θ −Q−1
zz,NT

(
1

NT

N∑
i=1

T∑
t=1

zitz
′
itθi

)

−Q−1
zz,NT

(
1

NT

N∑
i=1

T∑
t=1

zitz
′
itθt

)
−Q−1

zz,NT

(
1

NT

N∑
i=1

T∑
t=1

ziteit

)
(14)
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This simplifies to:

θ̂
Prel

it = θ + θi + θt + (RN −Ri,NT ) + (RT −Rt,NT ) +
(
Qzu,N +Qzu,T −Qzu,NT

)
(15)

where RN = Q−1
zz,N

(
1
N

∑N
i=1 zitz

′
itθi

)
, Rt,NT = Q−1

zz,NT

(
1

NT

∑N
i=1

∑T
t=1 zitz

′
itθt

)
and sim-

ilarly for RT and Ri,NT , and also Qzu,N = Q−1
zz,N

(
1
N

∑N
i=1 zituit

)
and similarly for Qzu,T

and Qzu,NT .

The expression in (15) can be decomposed into three parts. First, there are the true

observation-level coefficients θ + θi + θt, then the biases originating from any correlation

between the regressors and the heterogeneity (including the fixed effects in the intercept)

(RN −Ri,NT ) + (RT −Rt,NT ), and terms involving the errors
(
Qze,N +Qze,T −Qze,NT

)
.

It is impossible to remove the biases relating to the heterogeneity by pooling the data

in different ways (as MG-OLS is able to do when the heterogeneity is only over the N

dimension), as here there are two dimensions of heterogeneity in a two-dimension panel.

Nevertheless, the bias terms relating to the heterogeneity can be calculated to arbitrary

accuracy and eliminated from the observation-level coefficients by using a certain procedure.

To start, it is possible to use θ̂i as a sample approximation for θi in (RN −Ri,NT ) to form

R̂N and R̂i,NT , and also using θ̂t as a sample approximation for θt in (RT −Rt,NT ) to

form R̂T and R̂t,NT . Inserting (12) and (13) into these parts of (15) yields:

(R̂N − R̂i,NT ) + (R̂T − R̂t,NT ) = (RN −Ri,NT ) + (RT −Rt,NT ) +

Q−1
zz,N

1

N

N∑
i=1

(
zitz

′
itRT + zitz

′
itQzu,N

)
+Q−1

zz,T

1

T

T∑
t=1

(
zitz

′
itRN + zitz

′
itQzu,T

)
−Q−1

zz,NT

1

NT

N∑
i=1

T∑
t=1

(
zitz

′
itRT + zitz

′
itRN + zitz

′
itQzu,N + zitz

′
itQzu,T

)
(16)

While this correction contains the original heterogeneity bias (RN −Ri,NT ) + (RT −Rt,NT ),

it also introduce further bias terms, some of which relate to the idiosyncratic error term

while others the heterogeneity. However, it is possible to show that these new bias terms

are smaller in magnitude to the previous bias terms, and can again be approximated using

R̂N , R̂i,NT , R̂T , and R̂t,NT in the additional biases of (16). This will in turn produce

additional biases (that are again smaller in magnitude), which can again be approximated.

In fact, this process can be repeated L times to render the heterogeneity biases arbitrarily
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small and form the final estimates:

θ̂it = θ̂i + θ̂t − θ̂+
L∑

`=0

(−1)`+1

(
Q−1

zz,N

1

N

N∑
i=1

zitz
′
itΓ1,` +Q−1

zz,T

1

T

T∑
t=1

zitz
′
itΓ2,`

−Q−1
zz,NT

1

NT

N∑
i=1

T∑
t=1

(zitz
′
itΓ1,` + zitz

′
itΓ2,`)

) (17)

where Γ1,` = Q−1
zz,T ( 1

T

∑T
t=1 zitz

′
itΓ2,`−1) and Γ2,` = Q−1

zz,N( 1
N

∑N
i=1 zitz

′
itΓ1,`−1) when ` > 0,

Γ1,0 = θ̂i, and finally Γ2,0 = θ̂t. The procedure will approximate the true heterogeneity

bias when L is sufficiently large. This is a Cauchy sequence in `, so a suitable L can be

determined endogenously by programming the sum to stop once the procedure converges to

a given level of tolerance. In practice, in all examples we have considered the bias becomes

negligible for reasonable values of L.

Theorem 1 provides the result of asymptotic consistency for the individual observation

coefficients as L first goes to infinity, and then both N and T jointly go to infinity. The

proof can be found in the Appendix.

Theorem 1: Consistency of θ̂it

For the panel model outlined in (2) - (6) where Assumptions 1-4 hold, when L → ∞ and

then (N, T )
j→∞ it is true that:

θ̂it − θit
p→ 0 (18)

2.3 A Consistent Estimate of the Average Coefficient

Applied researchers may be exclusively interested in the average coefficients θ̄ = (α +

E(ci) + E(ct), γ + E(δi) + E(δt),β + E(λi) + E(λt)). Possessing a consistent estimate

for each observation-level coefficient, the average coefficient can be easily constructed by

taking a simple average over the sample:

θ̂MO =
1

NT

N∑
i=1

T∑
t=1

θ̂it (19)

For ease of reference this average is referred to as Mean Observation OLS (or ‘MO-OLS’).

The following two theorems provide the results for asymptotic consistency and also asymp-

totic normality.
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Theorem 2: Consistency of θ̂MO

For the panel model outlined in (2) - (6) where Assumptions 1-4 hold, when L → ∞ and

then (N, T )
j→∞ it is true that:

θ̂MO − θ̄
p→ 0 (20)

Theorem 3: Asymptotic Normality of θ̂MO

For the panel model outlined in (2) - (6) where Assumptions 1-4 hold, when L → ∞ and

then (N, T )
j→∞ such that N/T → χ and χ > 0 it is true that:

√
NT (θ̂MO − θ̄)

d→ N(0,ΣMO) (21)

where ΣMO = T−1V ar(θi) + N−1V ar(θt). The asymptotic variance can be consistently

estimated nonparametrically by:

Σ̂MO =
1

NT−1

N∑
i=1

T∑
t=1

(
(θ̂it − θ̂t̄)(θ̂it − θ̂t̄)′ + (θ̂it − θ̂ī)(θ̂it − θ̂ī)′

)
(22)

where θ̂ī = 1
T

∑T
t=1 θ̂it and θ̂t̄ = 1

N

∑N
i=1 θ̂it.Restrictions on the relative rate of convergence

of N and T are required due to the presence of a small sample time series bias O(T−1)

(first documented in Hurwicz 1950) and originates from the inclusion of a lagged dependent

variable. Accordingly, the estimator is not appropriate for panels with small T .

3 Monte Carlo Simulations

This section conducts a Monte Carlo simulation study to determine the finite sample per-

formance of the MO-OLS estimate of the average coefficient vector θ̄, as well as the set of

observation-level coefficients θit, that were proposed in the previous section. A number of

scenarios are formulated from a data generating process that features a large panel data

structure with multidimensional slope heterogeneity and fixed effects. The performance of

the average coefficient will be compared with the one-way and two-way fixed effects esti-

mators and mean group OLS (‘MG-OLS’), where each estimator will be tested according

to its mean bias and empirical standard deviation. To demonstrate the consistency of the

observation-level coefficients, the distribution of the bias over the set of coefficients will be

analyzed at each sample size.
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3.1 Data Generating Process

The dependent variable is defined by:

yit = cit + γityit−1 + βitxit + εit (23)

where i = 1, 2, ..., N and t = −10, ..., 0, 1, ..., T with the first 10 observations of each

i discarded prior to estimation. In all scenarios, we generate heterogeneous coefficients

βit = β + λi + λt where β = 1, λi ∼ N(0, 0.353) and λt will vary between scenarios. The

heterogeneous autoregressive term will be γit = γ + δi + δt, where γ = 0 in the static

scenarios and γ = 0.5 in the dynamic scenarios. δi and δt will vary between scenarios.

In all scenarios an unbiased estimate of the average βit over all Monte Carlo repetitions

will be approximately equal to 1, while an unbiased estimate of the average γit will be

approximately equal to 0.5 (in the scenarios featuring a lagged dependent variable).

Since complexity in the idiosyncratic error term is not a focus of this article, it will be

set simply to εit ∼ N(0, 1). The fixed effects are generated by cit = c+ ci + ct where c = 1

and ci ∼ ct ∼ N(0, 0.353). The regressor takes the following form:

xit = ρxit−1 + α1cit + α2(γit + βit) + eit (24)

where ρ = 0.5, α1 measures the degree of correlation between the fixed effects cit and the

regressor, α2 measures the degree of correlation between the slope coefficients γit and βit

with the regressor, and eit ∼ N(0, 1). In all scenarios α1 = 1, whereas α2 will vary by

scenario.

Six scenarios are considered and are outlined in Table 1. ‘Random’ heterogeneity in

the table refers to the random process N(0, σ2), where σ2 = 0.104 for the autoregressive

heterogeneity δi and δt and σ2 = 0.353 for the regressor heterogeneity λt. ‘Dependent’

heterogeneity adds serial dependence to the random heterogeneity, with δt = 0.5(δt−1) +

N(0, 0.104) and λt = 0.5(λt−1)+N(0, 0.353). ‘Fixed’ heterogeneity refers to a fixed process

where:

δt =

−0.104 if t < T/2

0.104 if t ≥ T/2
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and:

λt =

−0.353 if t < T/2

0.353 if t ≥ T/2

Table 1: Scenario Design

Scenario 1 2 3 4 5 6

γ 0 0 0.5 0.5 0.5 0.5

α2 0 1 1 1 1 1

δi N/A N/A Random Random Random Random

δt N/A N/A N/A Random Dependent Fixed

λt Random Random N/A Random Dependent Fixed

ct Random Random N/A Random Random Random

The first scenario is a static panel data model that will serve as a benchmark for

relative efficiency in a simple setting. The second scenario introduces correlation between

the regressor and the slope heterogeneity through α2. The third scenario is a dynamic panel

data model that features heterogeneity in the slope coefficients and fixed effects across the i

dimension, but not along the t dimension. The purpose of this scenario is again to test the

efficiency losses from using the technique proposed in this article on data that is simpler

than its intended purpose. The fourth scenario features heterogeneity across both the i

and t dimensions. Both dimensions of heterogeneity are randomly generated but are also

correlated with the regressor term through α2. The fifth scenario is identical to the fourth

except that the time heterogeneity of the slope coefficients possess serial dependence, and

the sixth scenario features time heterogeneity that is fixed and different.

3.2 Results for the Average Coefficient

The results for the first scenario are presented in Table 2. The mean coefficient is reported in

the left panel, while the right panel lists the empirical standard deviation for both the true

values and the four estimators under consideration. Since the average true slope coefficients

vary between simulation repetitions (due to them being a function of random variables),

the empirical standard deviation of the true coefficients serve as a natural benchmark for
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the efficiency of the econometric estimators. N is held at 50 in all scenarios while T varies

between 30 and 200, since it is primarily variation in T that affects performance (due to the

presence of the O(T−1) bias). The mean and standard deviation of iterations in the MO-

OLS bias removal procedure is also reported.3 This scenario presents a static panel data

model that does not contain correlation between the multidimensional slope heterogeneity

and the regressor (i.e. α2 = 0), but does possess fixed effects across both dimensions that

are correlated with the regressor.

The results show that ignoring the time effects in the intercept term introduces some

bias in one-way FE and MG-OLS. The preliminary MO-OLS estimates (defined in (15))

are also biased due to the correlation with the fixed effects. The final MO-OLS estimates,

utilizing the procedure defined in (17), successfully removes all bias, as does using the two-

way FE estimator. Moreover, MO-OLS is slightly more efficient than FE-OLS, particularly

in small samples. This result suggests that the procedure introduced in this article to

remove heterogeneity bias may be superior to standard econometric estimators even when

there is only correlation between the regressors and the heterogeneous intercept.

Table 2: Simulation Results - Scenario 1

(N = 50, T )
Mean Std. Dev.

30 50 70 100 200 30 50 70 100 200

Results for β̄

True Values 0.998 1.003 0.999 0.999 0.998 0.082 0.071 0.064 0.060 0.057

Pooled OLS
One-way FE 1.077 1.087 1.087 1.080 1.080 0.208 0.167 0.144 0.122 0.095
Two-way FE 0.999 1.003 0.999 0.998 0.999 0.090 0.076 0.067 0.063 0.058

MG-OLS 1.079 1.088 1.087 1.081 1.080 0.211 0.168 0.144 0.122 0.095

MO-OLS
Prelim. 1.039 1.040 1.038 1.034 1.033 0.112 0.092 0.078 0.074 0.065
Final 0.998 1.002 0.999 0.998 0.999 0.087 0.074 0.066 0.062 0.058
Iterations 14 12 11 10 9 2 2 1 1 1

Note: 1,000 Monte Carlo Simulations with N=50 and varied T.

The second scenario introduces correlation between the slope heterogeneity and the

single regressor, and the results can be seen in Table 3. The results show that the one-way

3This is the value of L sufficient for the procedure to achieve convergence.
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FE and MG-OLS estimates are severely biased and do not improve as T increases. It’s clear

that ignoring the time heterogeneity in the slope coefficients can have dramatic implications

for statistical inference. The MO-OLS estimates removes all of the heterogeneity bias as

does using the two-way FE estimator. Unpublished simulation results, which are available

upon request, show that increasing the value of α2 in this scenario introduces bias to the

two-way FE estimator and also significantly worsens its efficiency relative to MO-OLS.

Table 3: Simulation Results - Scenario 2

(N = 50, T )
Mean Std. Dev.

30 50 70 100 200 30 50 70 100 200

Results for β̄

True Values 0.998 1.003 1.000 0.998 1.002 0.082 0.071 0.066 0.059 0.056

Pooled OLS
One-way FE 1.981 1.988 1.977 1.970 1.981 0.302 0.236 0.201 0.167 0.130
Two-way FE 0.999 1.003 1.001 0.998 1.002 0.090 0.077 0.071 0.062 0.058

MG-OLS 2.012 2.007 1.991 1.980 1.985 0.310 0.240 0.204 0.168 0.130

MO-OLS
Prelim. 1.623 1.604 1.590 1.572 1.572 0.192 0.156 0.133 0.120 0.103
Final 0.998 1.002 1.001 0.998 1.002 0.087 0.074 0.069 0.061 0.057
Iterations 17 15 14 14 14 2 2 1 1 1

Note: 1,000 Monte Carlo Simulations with N=50 and varied T.

The results for the third scenario are presented in Table 4. The third scenario features a

lagged dependent variable, but restricts heterogeneity in the slope coefficient and fixed ef-

fects to be across the i dimension alone. The purpose of doing this is to determine whether

using MO-OLS is inefficient in environments where MG-OLS will perform adequately. In-

deed, the results show that MG-OLS is unbiased when T is large (the typical small T

time series bias in dynamic panel data models is still present). The one-way and two-way

FE models are both biased and inconsistent as the sample size grows. MO-OLS performs

virtually identically to MG-OLS in terms of bias and efficiency. Furthermore, the results

show that the procedure to remove heterogeneity bias does not introduce any additional

inefficiency when it is unnecessarily applied to a model. This suggests that MO-OLS may

be able to be applied to models at virtually no cost when the underlying structure of the

heterogeneity is difficult to ascertain.
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Table 4: Simulation Results - Scenario 3

(N = 50, T )
Mean Std. Dev.

30 50 70 100 200 30 50 70 100 200
Results for γ̄

True Values 0.500 0.501 0.501 0.500 0.501 0.015 0.015 0.015 0.015 0.015

Pooled OLS
One-way FE 0.531 0.543 0.545 0.549 0.552 0.045 0.033 0.027 0.031 0.026
Two-way FE 0.531 0.542 0.545 0.549 0.552 0.045 0.033 0.027 0.031 0.026

MG-OLS 0.458 0.477 0.484 0.488 0.495 0.023 0.019 0.017 0.017 0.016

MO-OLS
Prelim. 0.459 0.478 0.485 0.489 0.496 0.023 0.019 0.017 0.017 0.016
Final 0.457 0.476 0.483 0.487 0.495 0.023 0.019 0.017 0.017 0.016

Results for β̄

True Values 1.000 1.001 1.000 1.001 0.999 0.050 0.049 0.048 0.050 0.051

Pooled OLS
One-way FE 0.983 0.979 0.977 0.974 0.971 0.059 0.054 0.053 0.052 0.052
Two-way FE 0.983 0.979 0.977 0.974 0.971 0.060 0.054 0.053 0.053 0.052

MG-OLS 1.019 1.013 1.009 1.007 1.003 0.056 0.053 0.051 0.052 0.051

MO-OLS
Prelim. 1.006 1.001 0.998 0.996 0.992 0.055 0.053 0.051 0.052 0.051
Final 1.020 1.013 1.009 1.007 1.003 0.056 0.053 0.051 0.052 0.051
Iterations 26 22 20 20 19 14 10 9 10 10

Note: 1,000 Monte Carlo Simulations with N=50 and varied T.
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The results for the fourth scenario are presented in Table 5, which features a lagged

dependent variable with a heterogeneous slope coefficient. The heterogeneity in γit and βit

is random across both dimensions and there is correlation between the regressor and the

heterogeneity. Both forms of the FE estimator and MG-OLS show strong bias (that does

not decline as T increases, with the exception of the autoregressive term for MG-OLS) and

inefficiency. The preliminary MO-OLS estimates are also strongly biased. Applying the

bias removal procedure to the final estimates successfully eliminates all of the bias when T

is moderate to large, and also significantly decreases the standard deviation of the estimate.

It is unbiased in γ̄ when T > 70, and unbiased in β̄ when T > 50. Also worth noting is

that the number of iterations (i.e. the value of L) required to achieve convergence in the

bias removal procedure has significantly increased, with L > 300 required in most MC

iterations. Since each iteration is computationally cheap at these sample sizes, the number

of required iterations has little significance in practice.

The results for the fifth scenario are presented in Table 6. In this scenario, the slope

heterogeneity across t is generated with dependence (see Section 3.1 for details). The results

show very severe bias for all estimators considered here save the final MO-OLS estimates.

The autoregressive parameter γ̄ is significantly overestimated, while β̄ is more than double

its true value in one-way FE and MG-OLS. The MO-OLS estimator successfully removes all

bias at moderate to large T , and is able to estimate both parameters relatively efficiently.

The value of L required for the bias removal procedure to converge increases as well.

The results for the sixth scenario are presented in Table 7. In this scenario, the slope

heterogeneity across t is fixed and different over the sample (see Section 3.1 for details).

More than any other, this scenario demonstrates how badly existent estimators can over-

estimate the parameter values when the underlying data contains heterogeneity over time

that is correlated with one of the regressors. The estimates for γ̄ are very close to unity

for both FE estimators, MG-OLS, and also the preliminary MO-OLS estimates. Fortu-

nately, the final MO-OLS estimates are consistent and perform similarly to the preceding

scenarios.

To summarize, the Monte Carlo simulation study has successfully demonstrated that

the MO-OLS estimator is able to consistently and efficiently estimate the mean coefficient
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Table 5: Simulation Results - Scenario 4

(N = 50, T )
Mean Std. Dev.

30 50 70 100 200 30 50 70 100 200
Results for γ̄

True Values 0.500 0.500 0.500 0.500 0.501 0.025 0.022 0.020 0.018 0.016

Pooled OLS
One-way FE 0.412 0.450 0.462 0.477 0.491 0.146 0.116 0.104 0.085 0.067
Two-way FE 0.597 0.629 0.639 0.653 0.664 0.098 0.085 0.078 0.068 0.063

MG-OLS 0.356 0.393 0.407 0.420 0.434 0.138 0.107 0.094 0.075 0.055

MO-OLS
Prelim. 0.526 0.560 0.574 0.583 0.599 0.123 0.094 0.084 0.071 0.052
Final 0.474 0.485 0.490 0.493 0.497 0.030 0.024 0.022 0.019 0.017

Results for β̄

True Values 0.998 1.003 1.000 0.998 1.002 0.082 0.071 0.066 0.059 0.056

Pooled OLS
One-way FE 2.381 2.370 2.343 2.325 2.327 0.465 0.361 0.304 0.250 0.194
Two-way FE 0.949 0.932 0.920 0.906 0.900 0.109 0.095 0.083 0.073 0.066

MG-OLS 2.541 2.492 2.452 2.421 2.410 0.493 0.372 0.312 0.255 0.191

MO-OLS
Prelim. 1.139 1.089 1.056 1.043 1.016 0.274 0.210 0.192 0.170 0.145
Final 1.010 1.010 1.007 1.002 1.004 0.087 0.075 0.069 0.061 0.057
Iterations 356 335 325 320 313 82 62 56 47 39

Note: 1,000 Monte Carlo Simulations with N=50 and varied T.

18



Table 6: Simulation Results - Scenario 5

(N = 50, T )
Mean Std. Dev.

30 50 70 100 200 30 50 70 100 200
Results for γ̄

True Values 0.499 0.500 0.500 0.499 0.500 0.042 0.033 0.030 0.026 0.022

Pooled OLS
One-way FE 0.668 0.706 0.717 0.728 0.747 0.109 0.086 0.074 0.061 0.048
Two-way FE 0.763 0.800 0.809 0.818 0.839 0.097 0.079 0.070 0.061 0.048

MG-OLS 0.616 0.654 0.666 0.678 0.694 0.104 0.080 0.069 0.055 0.040

MO-OLS
Prelim. 0.746 0.778 0.789 0.800 0.812 0.088 0.064 0.055 0.044 0.033
Final 0.474 0.485 0.490 0.492 0.497 0.046 0.035 0.031 0.027 0.022

Results for β̄

True Values 0.997 1.004 1.001 0.999 1.003 0.137 0.110 0.097 0.084 0.073

Pooled OLS
One-way FE 2.356 2.306 2.272 2.244 2.224 0.586 0.445 0.376 0.307 0.231
Two-way FE 0.862 0.836 0.819 0.805 0.788 0.148 0.120 0.099 0.085 0.071

MG-OLS 2.609 2.513 2.460 2.415 2.387 0.628 0.466 0.393 0.315 0.233

MO-OLS
Prelim. 1.332 1.247 1.199 1.166 1.134 0.298 0.212 0.191 0.154 0.134
Final 1.008 1.010 1.007 1.003 1.005 0.140 0.113 0.099 0.085 0.074
Iterations 457 434 422 415 409 125 101 88 77 72

Note: 1,000 Monte Carlo Simulations with N=50 and varied T.
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Table 7: Simulation Results - Scenario 6

(N = 50, T )
Mean Std. Dev.

30 50 70 100 200 30 50 70 100 200
Results for γ̄

True Values 0.499 0.500 0.501 0.500 0.499 0.016 0.016 0.015 0.015 0.015

Pooled OLS
One-way FE 0.950 0.956 0.961 0.963 0.967 0.017 0.012 0.012 0.011 0.009
Two-way FE 0.991 0.983 0.982 0.981 0.981 0.020 0.015 0.014 0.013 0.011

MG-OLS 0.920 0.930 0.936 0.941 0.947 0.016 0.010 0.008 0.006 0.004

MO-OLS
Prelim. 0.944 0.943 0.943 0.943 0.943 0.011 0.008 0.007 0.006 0.005
Final 0.461 0.478 0.484 0.488 0.493 0.023 0.020 0.018 0.018 0.016

Results for β̄

True Values 0.999 0.999 0.998 0.998 1.003 0.051 0.051 0.051 0.049 0.049

Pooled OLS
One-way FE 1.310 1.098 0.992 0.919 0.829 0.213 0.150 0.128 0.107 0.080
Two-way FE 0.784 0.755 0.740 0.727 0.718 0.069 0.055 0.050 0.042 0.039

MG-OLS 1.571 1.309 1.186 1.094 0.978 0.221 0.156 0.117 0.089 0.058

MO-OLS
Prelim. 1.170 1.044 0.992 0.948 0.901 0.118 0.093 0.085 0.071 0.058
Final 1.010 1.008 1.006 1.003 1.006 0.059 0.054 0.054 0.050 0.050
Iterations 820 839 881 905 932 232 214 222 210 214

Note: 1,000 Monte Carlo Simulations with N=50 and varied T.
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in data containing intercept and slope heterogeneity over both dimensions of the panel. It

is able to achieve this even when the heterogeneity is correlated with the regressors, and

when it is not randomly generated. Relying on existent estimators in these environments

can lead to severely overestimated and highly inefficient estimates.

3.3 Results for the Observation Coefficients

Even if MO-OLS is a consistent estimate of the average coefficients, it is possible for the

estimates of observation-level coefficients proposed in Section 2.2 to remain inconsistent.

This section tests the consistency of (17) in the second and fourth scenario.4 Since there are

numerous observation-level coefficients in a panel dataset, and the number increases with

the sample size, the overall distribution of bias across the sample will give an indication

on the consistency and bias of each estimate. Bias for an observation-level coefficient is

simply defined as:

Bit = S−1

S∑
s=1

(θ̂its − θits) (25)

where S is set to 1, 000 for this study as above.

While the mean value of Bit will be approximately zero wherever we find no bias in

the MO-OLS estimate of the average coefficient in Tables 2 - 7, the standard deviation

and percentiles of the distribution will determine whether there exists specific observation

coefficients that remain biased even after S repetitions. The proportion of coefficients that

lie within 1% of bias will also indicate whether the tails of the distribution are noteworthy

at a specific sample size. In order to establish consistency, the standard deviation should

decline and the proportion of coefficients within 1% of bias should converge to one as the

sample size increases.

Table 8 presents the results of this exercise. It separates the results first by parameter

(as the fourth scenario includes a lagged dependent variable), and then by sample size

where N and T increase together in this case. In regards to the second scenario, the

simulations report that the mean bias of the observation coefficients over the sample is

approximately zero at all sample sizes, which is consistent with the results of the average

4Other scenarios are excluded for the sake of brevity, and the results (which are comparable) are available

upon request.
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coefficient in Table 3. Nevertheless, specific observation parameters over or undershoot the

true observation-level coefficient (which will not be exactly equal to one, it will vary over

the sample and across simulations). When N, T = 30, we find that 80% of the sample

contain estimates that are within 1% bias of the true coefficient, and the 25th to 75th

percentile range lies within -0.003 and 0.008 of bias.

Table 8: Simulation Results for θ̂it

(N, T )
Scenario 2 Scenario 4

30 50 100 200 350 30 50 100 200 350

Results for β̂it

Mean 0.002 -0.000 0.000 -0.000 0.000 0.013 0.007 0.004 0.002 0.001
Std. Dev. 0.007 0.004 0.003 0.002 0.002 0.008 0.005 0.004 0.003 0.002

75th pctile. 0.008 0.003 0.002 0.002 0.001 0.019 0.011 0.007 0.004 0.003
25th pctile. -0.003 -0.003 -0.002 -0.002 -0.001 0.008 0.004 0.002 0.000 0.000

Within 1% bias 0.794 0.987 0.999 1.000 1.000 0.346 0.698 1.000 1.000 1.000

Results for γ̂it

Mean -0.025 -0.014 -0.007 -0.004 -0.002
Std. Dev. 0.001 0.001 0.000 0.000 0.000

75th pctile. -0.025 -0.014 -0.007 -0.003 -0.002
25th pctile. -0.026 -0.015 -0.008 -0.004 -0.002

Within 1% bias 0.000 0.000 0.936 0.998 1.000

Note: 1,000 Monte Carlo Simulations with varied N and T. ‘Within 1% bias’ refers to the proportion of

parameter estimates across all i and t that have a bias within 1% of the true parameter value.

Importantly, the range of bias compresses as the sample size increases. When N, T =

100 approximately 100% of the sample coefficient estimates are within 1% of bias, and the

25th to 75th percentile lie within -0.002 and 0.002 of bias. This indicates that at this sample

size statistical inference on the observation-level coefficients is very reliable. It compresses

further still when the sample continues to grow.

The results for the fourth scenario are reported on the right panel of Table 8. Consistent

with the results in Table 5, the mean bias becomes insignificant when N, T > 50 for γ̂it

and when N, T ≥ 50 for β̂it. The range of bias across observation coefficients for γ̂it is very

narrow, and accordingly the proportion of coefficients within 1% of bias shifts suddenly
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from none to over 90% when N, T > 50 (or 100% when N, T > 100). For β̂it, the range

of bias is wider yet declines more quickly as the sample size increases. The distribution of

observation coefficients fits entirely within 1% of bias between N, T = 50 and N, T = 100.

In summary, the results demonstrate that the estimate of the observation-level coeffi-

cients outlined in (17) is consistent, and that even when the mean parameter is not biased

it is possible for an observation-level coefficient to be biased. It also provides information

specific to this data generating process on the reliability of statistical inference as N and T

jointly increase. Indeed, it demonstrates that larger sample sizes are needed to ensure the

unbiasedness of an individual observation-level coefficient, relative to the overall average

coefficient. This is intuitive as the overall sample average coefficient is able to average

out random biases in the observation-level coefficients that originate from additional error

terms.

4 Conclusion

Slope heterogeneity is a significant issue in both panel data and time series econometrics.

In the past, researchers have assumed that modelling slope heterogeneity across multiple di-

mensions without imposing strict assumptions on that heterogeneity (such as assuming that

the heterogeneity is idiosyncratic and uncorrelated with the regressors) is an intractable

problem. The purpose of this article is to demonstrate that it is in fact possible to con-

sistently estimate the observation-level coefficients and the average coefficient, even if the

heterogeneity is correlated with the regressors, assuming an additive structure is imposed

on the heterogeneity and the panel is moderate to large in both N and T . Since either time

varying parameters or individual varying parameters are applied extensively in economics,

an estimator that is capable of modelling both types of heterogeneity has the potential to

be significantly useful to applied researchers.

The capability of the estimator was tested in both an asymptotic and finite sample

setting. The Monte Carlo simulation study demonstrates that the MO-OLS estimator is

able to consistently and efficiently estimate both the mean coefficient and the observation-

level coefficients in a dynamic panel data model where the individual and time heterogeneity

is correlated with the regressors, and where the heterogeneity is not randomly generated.
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In comparison, a number of existent estimators produce severely biased estimates of the

mean coefficients.

Future work may be able to extend MO-OLS in a number of directions using techniques

adapted from extensions to MG-OLS. Perhaps the most important of these is to allow for

cross-section dependence in the data, which may appear through interactive fixed effects (as

in Bai 2009) or unobserved common factors (as in Pesaran 2006 and Chudik and Pesaran

2015). A further extension would allow for serial dependence in the error term and also

endogeneity in the regressors by using 2SLS or GMM in each of the regressions that form

the MO-OLS estimates.

Relaxing the assumptions that are inherent in (4) - (6) is another potential avenue for

future work. One possibility would be to allow for interactive fixed effects in the slope

coefficients, where for instance θit = θ + θi · θt. Lastly, it may be possible to relax the

structure of the time heterogeneity in the slope coefficients to vary between latent groups,

as Bonhomme and Manresa (2015) did for time heterogeneity in the intercept term. For

instance, it might be possible to set θit = θ + θi + θgt where g is the group indicator.
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Appendix: Mathematical Proofs

Lemma 1

Consider a MxN square matrix B and a Mx1 column vector ω:

B =


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n

...
...

. . .
...

bm,1 bm,2 · · · bm,n

 , ω =


ω1

ω2

...

ωm


where bm,n > 0 ∀ m and n. Then the Mx1 vector sequence:

a` =


(

1
N

∑N
n=1 bmn

)−1
1
N

∑N
n=1 bmna`−1 if ` is odd(

1
M

∑M
m=1 bmn

)−1
1
M

∑M
m=1 bmna`−1 if ` is even

where a0 =
(

1
M

∑M
m=1 bmn

)−1
1
M

∑M
m=1 bmnωm is a convergent sequence that has the follow-

ing pointwise limit in `:

lim
`→∞

(a`) = ω̄ =

(
1

MN

M∑
m=1

N∑
n=1

bm,n

)−1

1

MN

M∑
m=1

N∑
n=1

bm,nωm pointwise

Proof of Lemma 1

a0 represents an average of ω over m for each n which is weighted by B:

a0 =
[
ω̄n=1

0 , ω̄n=2
0 , · · · , ω̄n=N

0

]
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where ω̄n
0 =

(
1
M

∑M
m=1 bmn

)−1
1
M

∑M
m=1 bmnωm. Each element of a1, in turn, represents a

weighted average of all the elements in a0 over n for each m:

a1 = [ω̄m=1
1 , ω̄m=2

1 , · · · , ω̄m=M
1 ]

where ω̄m
1 =

(
1
N

∑N
n=1 bm,n

)−1 [
bm,n=1ω̄

n=1
0 + bm,n=2ω̄

n=2
0 + · · ·+ bm,n=N ω̄

n=N
0

]
.

Since bm,n > 0 ∀ m and n, it follows that inf{a0} ≤ inf{a1} and sup{a0} ≥ sup{a1}.

If ∃ an i, j pair such that ω̄n=i
0 6= ω̄n=j

0 and i 6= j, then it follows that inf{a0} < inf{a1}

and sup{a0} > sup{a1}. Only if ω̄n=i
0 = ω̄n=j

0 ∀ i, j will inf{a0} = inf{a1} and sup{a0} =

sup{a1}. The same argument applies for a2, which is a weighted average of all elements of

a1 over n for each m, and indeed all subsequent values of ` in a`.

Accordingly, for every positive real number ε > 0 there is a positive integer N such

that for all positive integers i, j > N , the distance d(ai, aj) < ε (i.e. the sequence is

convergent). The sequences condenses until all elements are equal, at which point it rests

at the converged value.

To demonstrate that lim`→∞(a`) = ω̄ pointwise, first note that:

sup{a0} ≥ ω̄ ≥ inf{a0}

as it is impossible for:(
1

M

M∑
m=1

bmn

)−1

1

M

M∑
m=1

bmnωm >

(
1

MN

M∑
m=1

N∑
n=1

bm,n

)−1

1

MN

M∑
m=1

N∑
n=1

bm,nωm ∀n

or: (
1

M

M∑
m=1

bmn

)−1

1

M

M∑
m=1

bmnωm <

(
1

MN

M∑
m=1

N∑
n=1

bm,n

)−1

1

MN

M∑
m=1

N∑
n=1

bm,nωm ∀n

when bm,n > 0 ∀ m and n.

Then:

sup{a1} ≥ ω̄ ≥ inf{a1}

since it is impossible for:(
1

N

N∑
n=1

bm,n

)−1

1

N

N∑
n=1

bm,nω̄
n
0 >

(
1

MN

M∑
m=1

N∑
n=1

bm,n

)−1

1

MN

M∑
m=1

N∑
n=1

bm,nω̄
n
0 ∀m
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or: (
1

N

N∑
n=1

bm,n

)−1

1

N

N∑
n=1

bm,nω̄
n
0 <

(
1

MN

M∑
m=1

N∑
n=1

bm,n

)−1

1

MN

M∑
m=1

N∑
n=1

bm,nω̄
n
0 ∀m

when bm,n > 0 ∀ m and n, and:(
1

MN

M∑
m=1

N∑
n=1

bm,n

)−1

1

MN

M∑
m=1

N∑
n=1

bm,nω̄
n
0 =

(
1

MN

M∑
m=1

N∑
n=1

bm,n

)−1

1

MN

M∑
m=1

N∑
n=1

bm,n

( 1

MN

M∑
m=1

N∑
n=1

bm,n

)−1

1

MN

M∑
m=1

N∑
n=1

bm,nωm

 =

(
1

MN

M∑
m=1

N∑
n=1

bm,n

)−1

1

MN

M∑
m=1

N∑
n=1

bm,nωm = ω̄

The same argument can be applied to a` ∀` > 0, so that sup{a`} ≥ ω̄ ≥ inf{a`} ∀`.

Therefore, a` is a convergent sequence of vectors that always contains within it ω̄, which

is accordingly the pointwise limit of the sequence.

Proof of Theorem 1

From (10), (12), (13), and (17) it is true that:

θ̂it − θit =
(
Qzu,N +Qzu,T −Qzu,NT

)
+ (−1)L

(
Q−1

zz,N

1

N

N∑
i=1

zitz
′
itΘ1,L

+Q−1
zz,T

1

T

T∑
t=1

zitz
′
itΘ2,L −Q−1

zz,NT

1

NT

N∑
i=1

T∑
t=1

(zitz
′
itΘ1,L + zitz

′
itΘ2,L)

)

+
L∑

`=0

(−1)`+1

(
Q−1

zz,N

1

N

N∑
i=1

zitz
′
itΛ1,` +Q−1

zz,T

1

T

T∑
t=1

zitz
′
itΛ2,`−

Q−1
zz,NT

1

NT

N∑
i=1

T∑
t=1

(zitz
′
itΛ1,` + zitz

′
itΛ2,`)

)
(A.1)

where Θ1,` = Q−1
zz,T ( 1

T

∑T
t=1 zitz

′
itΘ2,`−1) and Θ2,` = Q−1

zz,N( 1
N

∑N
i=1 zitz

′
itΘ1,`−1) for ` > 0,

Λ1,` = Q−1
zz,T ( 1

T

∑T
t=1 zitz

′
itΛ2,`−1) and Λ2,` = Q−1

zz,N( 1
N

∑N
i=1 zitz

′
itΛ1,`−1) for ` > 0, Θ1,0 =

θi, Θ2,0 = θt, Λ1,0 = Qzu,N , and finally Λ2,0 = Qzu,T . First, using Lemma 1, (16), and (17)
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it is true that:

lim
L→∞

(
Q−1

zz,N

1

N

N∑
i=1

zitz
′
itΘ1,L +Q−1

zz,T

1

T

T∑
t=1

zitz
′
itΘ2,L

−Q−1
zz,NT

1

NT

N∑
i=1

T∑
t=1

(zitz
′
itΘ1,L + zitz

′
itΘ2,L)

)
= 0

(A.2)

To see this, exchange bm,n and ωm in Lemma 1 for zitz
′
it and either θi or θt. Since Lemma

1 showed the sequence a` converges pointwise to ω̄ in `, then also the vector sequence:

q` = Q−1
zz,N

1

N

N∑
i=1

zitz
′
itΘ1,` +Q−1

zz,T

1

T

T∑
t=1

zitz
′
itΘ2,`

must converge to Q−1
zz,NT

1
NT

∑N
i=1

∑T
t=1 (zitz

′
itΘ1,L + zitz

′
itΘ2,L) in ` which gives us the

result in (A.2).

Furthermore, from the Weak Law of Large Numbers, the Continuous Mapping Theorem,

and Assumption 2 (exogenous regressors) it is true that as N →∞:

Q−1
zz,N

(
1

N

N∑
i=1

zituit

)
p→ E(Q−1

zz,N)E(zituit) = E(Q−1
zz,N)0 = 0 (A.3)

Furthermore, as T →∞:

Q−1
zz,T

(
1

T

T∑
t=1

zituit

)
p→ E(Q−1

zz,T )E(zituit) = E(Q−1
zz,T )0 = 0 (A.4)

and lastly as (N, T )
j→∞:

Q−1
zz,NT

(
1

NT

T∑
t=1

N∑
i=1

zituit

)
p→ E(Q−1

zz,NT )E(zituit) = E(Q−1
zz,NT )0 = 0 (A.5)

Given (A.3) - (A.5) and the Continuous Mapping Theorem it is also true that:

L∑
`=0

(−1)`+1

(
Q−1

zz,N

1

N

N∑
i=1

zitz
′
itΛ1,` +Q−1

zz,T

1

T

T∑
t=1

zitz
′
itΛ2,`−

Q−1
zz,NT

1

NT

N∑
i=1

T∑
t=1

(zitz
′
itΛ1,` + zitz

′
itΛ2,`)

)
p→ 0

(A.6)

Therefore, as required for Theorem 1:

θ̂it − θit
p→ 0 (A.7)
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Proof of Theorem 2

Since θ̄ = θ + E(θi) + E(θt) = E(θit), θ̂MO = 1
NT

∑N
i=1

∑T
t=1 θ̂it, and the result from

Theorem 1 that θ̂it−θit
p→ 0 when L→∞ and then (N, T )

j→∞, the Weak Law of Large

Numbers shows that:

θ̂MO =
1

NT

N∑
i=1

T∑
t=1

θ̂it
p→ E(θit) (A.8)

which implies Theorem 2.

Proof of Theorem 3

From (A.1), (A.2), (19), and θ̄ = θ + E(θi) + E(θt) when L→∞ it is true that:

√
NT (θ̂MO−θ̄) =

1√
NT

N∑
i=1

T∑
t=1

((θi−E(θi))+(θt−E(θt))+
1√
NT

N∑
i=1

T∑
t=1

(Ψit+Ξit) (A.9)

where Ψit =
(
Qzu,N +Qzu,T −Qzu,NT

)
and furthermore Ξit =

∑L
`=0(−1)`+1

(
Q−1

zz,N

1
N

∑N
i=1 zitz

′
itΛ1,`+Q

−1
zz,T

1
T

∑T
t=1 zitz

′
itΛ2,` −Q−1

zz,NT
1

NT

∑N
i=1

∑T
t=1 (zitz

′
itΛ1,` + zitz

′
itΛ2,`)

)
.

Consider now the asymptotics where (N, T )
j→∞, Assumption 2 and the WLLN implies

that both Ψit
p→ 0 and Ξit

p→ 0 (as shown in Theorem 1). Accordingly, it is true that:

√
NT (θ̂MO − θ̄)

d→ N (0,ΣMO) (A.10)

where

ΣMO =
V ar(θi)

T
+
V ar(θt)

N
(A.11)

since θi and θt are independent by construction.

Now consider the nonparameteric estimate of ΣMO that was proposed in (22):

Σ̂MO =
1

NT−1

N∑
i=1

T∑
t=1

(
(θ̂it − θ̂t̄)(θ̂it − θ̂t̄)′ + (θ̂it − θ̂ī)(θ̂it − θ̂ī)′

)
From (A.1) and (A.2) it is true that:

θ̂it = θ + θi + θt + Ψit + Ξit (A.12)

and accordingly:(
θ̂it − θ̂t̄

)
=

(
θi −

1

N

N∑
i=1

θi

)
+

(
Ψit −

1

T

T∑
t=1

Ψit

)
+

(
Ξit −

1

T

T∑
t=1

Ξit

)
p→ (θi − E(θi))
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and using a symmetric argument:(
θ̂it − θ̂ī

)
p→ (θt − E(θt))

where θ̂ī = 1
T

∑T
t=1 θ̂it and θ̂t̄ = 1

N

∑N
i=1 θ̂it. Therefore it is true that:

1

NT−1

N∑
i=1

T∑
t=1

(
(θ̂it − θ̂t̄)(θ̂it − θ̂t̄)′ + (θ̂it − θ̂ī)(θ̂it − θ̂ī)′

) p→ V ar(θi)

T
+
V ar(θt)

N
(A.13)

and Σ̂MO
p→ ΣMO as required.
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